SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution)

SRM Nagar, Kattankulathur- 603203

DEPARTMENT OF MECHANICAL ENGINEERING

QUESTION BANK

V SEMESTER

1909506-UNCONVENTIONAL MACHINING PROCESSES

Regulation-2019

Academic Year 2022-23

Prepared by

M.Vadivel, AP (O.G) /Mechanical Engineering
D.Sony Priyanka, AP (O.G) /Mechanical Engineering

SRM VALLIAMMAI ENGINEERING COLLEGE

SRM Nagar, Kattankulathur- 603203

SUBJECT / SUBJECT CODE : UNCONVENTIONAL MACHINING PROCESSES / 1909506 : V / III

UNITI INTRODUCTION AND MECHANICAL ENERGY BASED PROCESSES

Unconventional machining Process – Need – classification – merits, demerits and applications. Abrasive Jet Machining – Water Jet Machining – Water Jet Machining – Ultrasonic Machining. (AJM, WJM, AWJM and USM). Working Principles – equipment used – Process parameters – MRR- Applications.

Q.No	QUESTIONS	LEVEL	COMPETENCE
	Identify why unconventional mechanical machining process is not popular?	BT1	Remember
2	List the importance of unconventional machining process.	BT2	Understand
3	Quote the requirements that demand the use of nontraditional machining processes.	BT1	Remember
	Classify modern machining processes on the basis of the type of energy employed.	BT2	Understand
5	Articulate the requirements that demand the use of advanced machining process.	BT3	Apply
6	Summarize the advantages of unconventional machining process.	BT2	Understand
7	Quote the unconventional machining process which uses mechanical energy.	BT1	Remember
8	Distinguish between traditional and non-traditional machining.	BT2	Understand
9	Summarize the limitation of traditional machining processes.	BT2	Understand
10	Analyze, why abrasive jet machining is not recommended to machine ductile materials?	BT4	Analyze
11	Demonstrate, why reuse of abrasives is not recommended in abrasive jet machining process?	BT3	Apply
12	List the different type of abrasives used in AJM.	BT1	Remember
13	Summarize the applications of WJM.	BT2	Understand
14	Select any four process variables that control the material removal rate in AJM process.	BT4	Analyze
15	Express the desirable properties of carrier gas in AJM.	BT2	Understand
16	Compare the WJM and AWJM.	BT2	Understand
17	List the limitation of WJM.	BT2	Understand
18	Enumerate the Process Capabilities of AWJM	BT1	Remember

19	Quote the limitations in ultrasonic machining.	BT1	Remember
20	List the functions of transducers in ultrasonic machining.	BT1	Remember
21	Identify the range of frequency required for ultrasonic machining.	BT1	Remember
22	Describe the functions of a horn in ultrasonic machining.	BT2	Understand
23	Classify feed mechanism.	BT3	Apply
24	Write the importance of surface finishing in machining operations.	BT2	Understand
25	Name the Unconventional machining processes which produce best surface finish.	BT2	Understand

PART-B (13 Marks)

Q.No	QUESTIONS	MARKS	LEVEL	COMPETECE
1	(i) Demonstrate the classification of modern machining process on			
	the basic of energy employed.	7		
	(ii)Describe the mechanism of material removal and energy		BT2	Understand
	transfer in each category.	6		
2	(i)Analyze, why electro chemical process is found to be most			
	potential process for gear finishing?	7	BT4	Analyza
	(ii)Explain its principle, key process parameters and other		D14	Analyze
	applications.	6		
3	Explain the basis on selection of unconventional machining	13	BT4	Analyze
	process for given job.			
4	How will you analyze the applicability of different processes to	13	BT4	Analyze
	different type of materials namely metals, alloys and non metals?			
5	Discriminate the Abrasive Jet Machining, Water Jet Machining	13	BT5	Evaluate
	and Abrasive Water Jet Machining.			
6	Classify the unconventional machining process, based on type of	13	BT4	Analyze
	energy employed, MRR, transfer medial and energy resources			
	used.			
7	Summarize the needs for development of unconventional	13	BT2	Understand
	machining processes? Explain with examples.			
8	Explain the working principle of WJM with suitable diagrams.	13	BT4	Analyze
9	(i) Describe the factors that affect the performance of WJM.	8	BT2	Understand
	(ii) Discuss their effect of MRR.	5	DIZ	Understand

	Illustrate the schematic layout of abrasive jet machine and explain	13	BT3	Apply
	wear rate of nozzle in AJM.			
11	Describe the apparatus, metal removal rate, process principles and	13	BT2	Understand
	application of Water Jet Machining.			
12	Explain the principles, equipment, transducer, tool holders, tools,	13	BT4	Analyze
	abrasives, applications, advantages of Ultrasonic Machining.			
13	Classify and explain the types of transducers used in USM	13	BT3	Apply
14	Describe the various types of tool holders and the tool feed	13	BT2	Understand
	mechanism in USM process.			
15	Explain the following related to Ultra Sonic Machining:			
	(i)Functions of slurry and oscillator in USM	8	BT4	Analyze
	(ii)Grain size Vs Machining rate.	5		
16	Illustrate schematic layout of abrasive jet machine and explain	13	BT3	Apply
	wear rate of nozzle in AWJM.			
17	Describe the apparatus, metal removal rate and application of	13	BT4	Analyze
	abrasive Water Jet Machining.			
18	Explain the characteristics of AWJM and USM.	13	BT4	Analyze
l	PART-C (15 Marks)		I	
1	How are the developments in materials partly responsible for	15	BT6	Create
	evolution of advanced machining techniques?			
2	(i)Explain the basic limitations of conventional manufacturing			
	process?	8		
	(ii)Justify the need of unconventional manufacturing process in		BT5	Evaluate
	today's industries.	7		
3	Is it possible to produce spur gears by advanced machining	15	BT5	Evaluate
	processes, starting with round blank? Conclude.			
4	Formulate with appropriate sketches, describe the principles of	15	BT6	Create
	various fixing methods and devices that on be used for USM.			
5	Make a comparison between traditional and unconventional	15	BT6	Create
	machining processes in terms of cost, application, scope,			
	Machining time, advantages and limitations.			

UNIT II THERMAL AND ELECTRICAL BASED PROCESSES

Electric Discharge Machining (EDM) – Wire cut EDM – Working Principle-equipments-Process Parameters-Surface Finish and MRR- electrode / Tool – Power and control Circuits-Tool Wear – Dielectric – Flushing – Applications. Laser Beam machining and drilling, (LBM), plasma, Arc machining (PAM) and Electron Beam Machining (EBM). Principles – Equipment –Types - Beam control techniques – Applications.

Q.No	QUESTIONS	LEVEL	COMPETENCE
1	List the applications of wire EDM.	BT1	Remember
2	List the desirable properties of a good dielectric fluid.	BT1	Remember
3	Give the roles of dielectric fluid in EDM	BT2	Understand
4	List the types of EDM flushing techniques.	BT1	Remember
5	Indicate the range of pulse duration and current in EDM.	BT2	Understand
6	Name the most commonly used spark generating circuits.	BT2	Understand
7	How to minimize tool wear in EDM.	BT1	Remember
8	What is an arc gap? How is the arc gap controlled in EDM.	BT1	Remember
9	Quote the dielectric fluids used in EDM.	BT1	Remember
10	Distinguish wire cut EDM and EDM process.	BT2	Understand
11	Assess the influence of current in MRR in EDM process.	BT5	Evaluate
12	Assess the ways of gap-flushing used in EDM.	BT5	Evaluate
13	List the factors affecting metal removal rate.	BT1	Remember
14	Classify the tool materials in EDM.	BT4	Analyze
15	Interpret the meaning of plasma.	BT2	Understand
16	Summarize the advantage of EBM over LBM.	BT2	Understand
17	How Plasma arc used in the Machining Process.	BT1	Remember
18	Define the principle of electron beam machining.	BT1	Remember
19	Give the wear ratio for Brass, Copper, copper tungsten and non metallic electrode.	BT1	Remember
20	Summarize the advantages of Plasma Arc Machining.	BT2	Understand
21	Classify the various types of lasers.	BT4	Analyze
22	Distinguish between the vacuum and non-vacuum EBM.	BT2	Understand
23	Describe the Acronym of LASER?	BT1	Remember
24	List the function of electron beam gun?	BT1	Remember
25	Summarize the commonly used gas mixture in PAM.	BT2	Understand

Q.No	QUESTIONS	MARKS	LEVEL	COMPETECE
1	Briefly explain various types of dielectric fluid and its functions	13	BT3	Apply
2	in EDM process. Explain the general arrangement of an Electrical discharge	13	BT4	Analyze
2		13	D14	Anaryze
	machining process and list out its advantages, disadvantages,			
2	and applications of EDM.	10	DEC	A 1
3	Explain the principle, construction and working of Wire-cut	13	BT3	Apply
	electrical discharge machining process and state its merits and			
4	Explain and illustrate metal removal process in EDM.	13	BT4	Analyze
5	Explain the following on wire EDM technology.			
	(i) Dielectric system	7	BT4	Analyze
	(ii) Deionized water	6		
6	Analyze the break down mechanism in EDM process.	13	BT4	Analyze
7	Explain the three types of spark generators used in EDM.	13	BT4	Analyze
8	Illustrate and explain the types of tool wear in EDM process.	13	BT3	Apply
9	Explain how MRR and quality is controlled in EDM process.	13	BT4	Analyze
10	Explain the classification and characteristics of various spark	13	BT4	Analyze
11	erosion generators. Examine how laser is used to machine the materials.	13	BT3	Apply
12	Summarize the process parameters of LBM and influence on	13	BT5	Evaluate
12		13	D 13	Evaluate
13	machining quality. Explain the following in LBM process.			
	(i)Advantages	5		
	(ii)Disadvantages	4	BT4	Analyze
1.4	(iii)Application	4	DT2	A 1
14	Illustrate and explain the principles of EBM with neat sketch.	13	BT3	Apply
15	Point out the control of following parameters in EBM.			
	(i) Current	5	D.T. 4	
	(ii)Spot-diameter	4	BT4	Analyze
	(iii)Focus distance of magnetic lens	4		
16	Briefly explain on under water plasma cutting.	13	BT4	Analyze
17	Explain the thermal features of Laser beam machining. Discuss	13	BT4	Analyze
	the performance of various types of Lasers.			

18	Describe the principle, equipment, solid state laser, gas laser	13	BT2	Understand
	thermal features applications and advantages of Plasma Arc			
	Machining.			
	PART-C (15 Marks)		1	
	,		ı	
1	Integrate the wire cut EDM process, associated with	15	BT6	Create
	manufacturing industry.			
2	Formulate your thoughts regarding the laser beam machining of			
	nonmetallic material. Give several possible applications,	15	BT6	Create
	including their advantages as compared to other process.			
3	Formulate the types of surfaces produced by EBM, PAM and	15	BT6	Evaluate
	Laser cutting.	13	Dio	Dvalaace
4	Discuss about the process capabilities of EBM and the process	15	BT5	Evaluate
	parameters of EBM in improving machining quality.			
5	What are the types of laser used for material processing			
	applications? Describe how the system can be used for machining	15	BT6	Create
	purpose.			

UNIT III CHEMICAL AND ELECTRO-CHEMICAL ENERGY BASED PROCESSES

Chemical Machining and Electro-Chemical machining (CHM and ECM)- Etchants – Maskant - techniques of applying maskants - Process Parameters – Surface finish and MRR-Applications. Principles of ECM- equipments-Surface Roughness and MRR Electrical circuit-Process Parameters- ECG and ECH - Applications.

Q.No	QUESTIONS	LEVEL	COMPETENCE
1	Describe the principle of chemical machining process.	BT1	Remember
2	Write the Faraday's first law of electrolysis?	BT2	Understand
3	What are the properties are expected from the electrolysis used in the	BT2	Understand
	ECM?		
4	List the three different layers that can be identified in spark eroded surface.	BT1	Remember
5	Summarize the factors that affect MRR in ECM.	BT2	Understand
6	Define maskants in Electrochemical machining process.	BT1	Remember
7	What do you understand by charging of electrolyte?	BT2	Understand
8	Summarize the application of ECM.	BT2	Understand
9	What are the results due to improper selection of electrolyte in ECM?	BT2	Understand
10	How the current density affect the MRR.	BT2	Understand
11	Name the electrolytes which are used in electro chemical machining.	BT1	Remember
12	Discriminate the process of CHM and ECM.	BT5	Evaluate
13	What is etchant in chemical machining process?	BT1	Remember
14	Summarize the advantages of ECM process.	BT2	Understand
15	Differentiate the advantages of ECG over conventional grinding.	BT2	Understand
16	List the application of electro chemical grinding.	BT1	Remember
17	Summarize the parameters that affect the material removal rate in Electro chemical Grinding.	BT2	Understand
18	Quote the main difference between electroplating and ECM.	BT1	Remember
19	Define the principle of electro chemical grinding process.	BT1	Remember
20	What is meant by electro chemical honing process?	BT2	Understand
21	List the advantages of ECH process.	BT1	Remember
22	Define surface roughness.	BT1	Remember
23	List the process parameters of ECG process.	BT1	Remember
24	List the application of ECH process.	BT1	Remember

25	What are the factors to be considered while designing the tool?	BT2	Understand

PART-B (13 Marks)

Q.No	QUESTIONS	MARKS	LEVEL	COMPETENCE
1	Illustrate with the help of a simple diagram, explain the working	13	BT3	Apply
	of Electro-chemical machining process.			
2	Explain the principle of electro chemical deburring process.	13	BT4	Analyze
3	Explain the characteristics of ECM.	13	BT4	Analyze
4	Explain in detail about the types of maskants used in chemical	13	BT4	Analyze
	machining.			
5	Explain the followings with respect to chemical machining			
	process			
	(a) Characteristics of cut and peel maskants.	5	BT4	Analyze
	(b) Selection of maskants.	4		
	(c) Limitations.	4		
6	Illustrate the following with suitable sketch.			
	(i)Electro Chemical Machining process.	8	BT3	Apply
	(ii)Cathode tool and correction tool.	5		
7	(i) With a neat sketch, explain the principle of electro-chemical			
	grinding.	8	BT4	Analyze
	(ii)State its process capabilities and application	5		
8	Explain the electro-chemical Honing process with a neat sketch.	13	BT4	Analyze
9	Explain the characteristics of ECH.	13	BT3	Apply
10	Compare the Chemical Machining (CHM) with Electro-	13	BT5	Evaluate
	Chemical Machining (ECM) with respect to their process			
	parameters.			
11	Explain a neat sketch, explain the chemical machining process.	13	BT3	Apply
12	Discuss the effect of high temperature and pressure of electrolyte	13	BT2	Understand
	of ECM process.			
13	Explain the process parameters MRR and surface finish in CHM.	13	BT4	Analyze
14	Describe the Various characteristics of ECH.	13	BT4	Analyze

	,		ı	
15	Explain the requirement of tool material for ECM process and	13	BT4	Analyze
	write the commonly used tool materials.			
16	Measure amount of current required the iron is subjected to ECM	13	BT5	Evaluate
	process. The metal removal rate of iron is 4cm ³ /min. assuming			
	atomic weight iron N=56 Kg, valancy n=2, density of iron ρ =			
	7.787 g/cm^3 .			
17	Formulate the MRR by ECG comprise and summarize the	13	BT6	Create
	functions of abrasive particles.			
18	Describe the various elements of chemical machining. What are	13	BT4	Analyze
	the factors on which the selection of a resist for use in chemical			
	machining?			
	PART-C (15 Marks)			
			T	
1	Explain, why surface finish of chemically machined surface of	15	BT5	Evaluate
	an alloy is poor?			
2	Briefly explain about electro chemical deburring process	15	BT6	Create
	parameters of chemical machining process.		Б10	Create
3	Explain why the life of the ECG wheel is much higher than	15	BT5	Evaluate
	conventional grinding.			
4	What are the specific advantages of using chemical machining	15	BT5	Evaluate
	over electro chemical machining? Give some of the practical			
	applications of chemical machining process.			
1				
5	Tabulate the process parameters Of ECM,ECG	15	BT6	Create

UNIT IV ADVANCED NANO FINISHING PROCESSES

Abrasive flow machining, chemo-mechanical polishing, magnetic abrasive finishing, magneto-rheological finishing, magneto rheological abrasive flow finishing their working principles, equipments, effect of process parameters, applications, advantages, and limitations.

Q.No	QUESTIONS	LEVEL	COMPETENCE
1	Define abrasive flow machining.	BT1	Remember
2	What is Nano finishing process?	BT2	Understand
3	Which is not the type of abrasive flow finishing process?	BT1	Remember
4	What is the major difference between ER and MR fluids?	BT2	Understand
5	Classify AFM.	BT3	Apply
6	Summarize the components of AFM process.	BT2	Understand
7	List the process input parameters of AFM.	BT2	Understand
8	Quote the operating range of AFM.	BT1	Remember
9	Compare the difference between one way and two way AFM.	BT4	Analyze
10	List the advantages of one way AFM.	BT1	Remember
11	Summarize the applications of AFM.	BT2	Understand
12	Which ratio defines the etch factor?	BT1	Remember
13	List the types of surface finishing.	BT2	Understand
14	Define Chemical-mechanical polishing.	BT1	Remember
15	Define Damascene process.	BT1	Remember
16	Express the use of PVA in CMP.	BT2	Understand
17	Summarize the role of slurry in CMP process.	BT2	Understand
18	Quote any two applications of CMP.	BT1	Remember
19	List any two advantages of CMP.	BT1	Remember
20	What is meant magnetorheological finishing?	BT1	Remember
21	List the components of MR fluid.	BT1	Remember
22	Describe the desired properties of MR fluid.	BT2	Understand
23	Quote any two advantages of MRF.	BT1	Remember
24	List the limitations of MRF process.	BT1	Remember
25	List the applications of MRAFF process.	BT1	Remember

PART-B (13 Marks)											
Q.No	QUESTIONS					MARKS	LEVEL	COMPETENCE			
1	Briefly	explain	the	role	of	CMP	in	Semiconductor	13	BT4	Analyze
	manufact	turing.									

2	Explain about the origin and evolution of CMP process.	13	BT5	Evaluate
3	Illustrate the Copper dual-damascene process with a suitable	13	BT3	Apply
	sketch.			
4	Explain the working of CMP Planarization process.	13	BT4	Analyze
5	Explain the working principle of AFM with a neat sketch.	13	BT3	Apply
6	Illustrate the process parameter and process capabilities of	13	BT3	Apply
	AFM.			
7	Illustrate and explain one way and two way AFM with neat	13	BT3	Apply
	diagram.			
8	Write in details about the process parameters of AFM and	13	BT5	Evaluate
	evaluate the effect, on output responses.			
9	(i) Describe the working principle of orbital AFM.	7	BT2	Understand
	(ii)Write about the operating range and advantages of AFM.	6		
10	Explain in detail about the MR fluid in Magnetorheological	13	BT4	Analyze
	Finishing process.			
11	Explain the characteristics of the MRF process.	13	BT4	Analyze
12	Illustrate with a neat sketch explain the schematic of MR	13	BT3	Apply
	finishing.			
13	Summarize and explain the process parameters of MRF and	13	BT5	Evaluate
	their applications.			
14	Write about the magnetic abrasive finishing process working	13	BT3	Apply
	principle with a neat diagram.			
15	Discuss about the magnetorheological polishing fluid.	13	BT2	Understand
16	Describe the characteristics of the MRAH process.	13	BT4	Analyze
17	Explain the equipments, effect of process parameters,	13	BT4	Analyze
	applications, advantages, and limitations MRAH.			
18	Illustrate the mechanism of magnetorheological abrasive	13	BT3	Apply
	honing (MRAH) with suitable sketch.			
	PART-C (15 Marks)			
1	Formulate the recent and future developments of CMP.	15	BT6	Create

2	Explain with suitable example, how AFM is applied in different industries.	15	BT5	Evaluate
3	Summarize recent ball-end magnetorheological finishing used in industries.	15	BT5	Evaluate
4	Summarize the different fields of applications of Magnetic assisted abrasive flow machining	15	BT5	Evaluate
5	Explain the roll of magnetorheological polishing fluid in the industries.	15	ВТ6	Create

UNIT V RECENT TRENDS IN NON-TRADITIONAL MACHINING PROCESSES

Recent developments in non-traditional machining processes, their working principles, equipments, effect of process parameters, applications, advantages, and limitations. Comparison of non-traditional machining processes.

Q.No	QUESTIONS		COMPETENCE	
1	Define non-traditional machining.	BT1	Remember	
2	Describe principle of fiber laser cutter.	BT2	Understand	
3	What is meant by MAAJM?	BT1	Remember	
4	List out the components of fiber laser cutter.	BT1	Remember	
5	Summarize the factors affecting laser heat treatment process.	BT2	Understand	
6	Describe the Die sinking EDM process.	BT2	Understand	
7	List the components of ultrasonic assisted EDM.	BT1	Remember	
8	What are the materials used to make the tool electrode?	BT1	Remember	
9	What are the characteristics of a good ECM tool?	BT2	Understand	
10	List the dielectric flushing techniques applicable in case of EDM.	BT1	Remember	
11	What is the function of oscillator in Vibro-Electro discharge machining?	BT2	Understand	
12	Discriminate the machining processes of AWJM and ECM	BT5	Evaluate	
13	Summarize the applications of EDM.	BT2	Understand	
14	How to minimize tool wear in EDM?	BT2	Understand	
15	Indicate the range of pulse duration and current in EDM	BT2	Understand	
16	Compare ECG and ECH processes.	BT4	Analyze	
17	Quote any four applications of ECH.	BT1	Remember	
18	What is meant by MRAH?	BT1	Remember	
19	Summarize the process parameter of modified air abrasive jet machining.	BT2	Understand	
20	Describe the meaning of SOD and its effect on machining.	BT2	Understand	
21	Describe the vaporization cutting process in LBM.	BT2	Understand	
22	List the surface treatment that can performed by Laser beam machining process.	BT1	Remember	
23	How YAG laser differ from CO ₂ laser?	BT2	Understand	
24	List out the polymeric medium used in AFM.	BT1	Remember	
25	Quote the different variant of AFM	BT1	Remember	

PART-B (13 Marks)					
Q.No	QUESTIONS	MARKS	LEVEL	COMPETENCE	
1	Illustrate with neat sketch, about working principle of fiber laser cutter.	13	BT3	Apply	
2	Explain with neat sketch, about working principle of powder mixed EDM.	13	BT4	Analyze	
3	Illustrate with neat sketch, about working principle of modified air abrasive jet machining.	13	BT3	Apply	
4	Explain the factors affecting the performance of Laser based heat treatment.	13	BT4	Analyze	
5	Illustrate with neat sketch, about Laser based surface heat treatments.	13	ВТ3	Apply	
6	Define Electro Chemical Deburring (ECD). Explain the classification of electrochemical deburring.	13	BT4	Analyze	
7	Illustrate with neat sketch, about working Principle of ECD.	13	BT3	Apply	
8	Explain with neat sketch about working principle of Electrolyte Jet Machining (EJM).	13	BT4	Analyze	
9	Describe recent developments in wire cut EDM.	13	BT2	Understand	
10	Illustrate with neat sketch, about vibratory Electro Discharge Machining	13	BT3	Apply	
11	(i)Explain with neat sketch about Die sinking EDM process (ii) Summarize Die sinking EDM process parameter.	8 5	BT5	Evaluate	
12	Illustrate with neat sketch, about Ice jet machining processes.	13	BT3	Apply	
13	Write a brief notes on underwater plasma arc cutting system.	13	BT3	Apply	
14	Explain the features of EBM unit. Explain the effect of increasing the accelerating potential on MRR.	13	BT4	Analyze	
15	What is plasmatron? Explain various types of plasmatron.	13	BT3	Apply	
16	Explain the product application of ECG.	13	BT4	Analyze	
17	Explain about following recent developments in EDM (i) Water in EDM (ii) Dry EDM	7 6	BT4	Analyze	

18	Explain about following recent developments in EDM			
	(i) Adaptive control	5	BT4	Analyze
	(ii) Vibration rotary and Vibro-Rotary EDM	8		
	PART-C (15 Marks)			
1	Discriminate the Laser Beam Machining and Water Jet	15	BT5	Evaluate
1	Cutting process.	10		Lvaraate
2	Explain the working principle of Magnetic field based AFM	15	BT5	Evaluate
3	Design different products manufactured by 3D Printing machine and explain.	15	BT6	Create
4	Compose recent developments in UCMP.	15	BT6	Create
5	With the help of a neat diagram, explain plasma arc machining process mentioning how heating of the work piece takes place in the process.	15	BT6	Create