SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution)

SRM Nagar, Kattankulathur - 603 203

DEPARTMENT OF AGRICULTURE ENGINEERING

QUESTION BANK

V SEMESTER

1909515 – DESIGN OF BASIC MACHINE ELEMENTS

Regulation – 2019

Academic Year 2022 –2023

Prepared by

Mr. KARTHICK K, Assistant Professor (O.G)

DEPARTMENT OF AGRICULTURE ENGINEERING

1909515 – DESIGN OF BASIC MACHINE ELEMENTS

UNIT-I: STRESSES IN MACHINE MEMBERS

Introduction to design process- factor influencing the machine design, selection of material based on mechanical properties- Direct, bending and torsional stress equations- calculation of Principal stresses for combined loading. Design of curved beams- factor of safety – theories of failure-stress concentration- design of variable loading-Soderberg and Goodman relations.

	PART - A (2Marks)	14 m	
S.No	QUESTIONS	LEVEL	COMPETENCE
1.	Define notch sensitivity. State the relation between stress concentration	BT1	Remember
	factor, fatigue stress concentration factor and notch sensitivity.		-
2.	Define shock factor and what does it indicate	BT1	Remember
3.	Compare hardness and toughness.	BT2	Understand
4.	List out the various phases of design process.	BT1	Remember
5.	Define fits and tolerances. How are they designated?	BT1	Remember
6.	Describe your understanding by the nominal size and basic size.	BT2	Understand
7.	Define following terms a. Interchangeability b. Allowance	BT1	Remember
8.	Define "hole basic system" and "shaft basic system.	BT1	Remember
9.	Express your understanding by preferred numbers.	BT2	Understand
10.	List out the different types of loads that can act on machine components.	BT1	Remember
11.	Describe the common materials used in mechanical engineering design.	BT1	Remember
12.	Describe your understanding by factor of safety.	BT2	Understand
13.	List the important factors that influence the magnitude of factor of safety.	BT1	Remember
14.	Describe working stress and how it is calculated from the ultimate stress or yield stress of a material.	BT2	Understand
15.	Define endurance limit.	BT1	Remember

16.	Summarize theory of failure as suitable for the design of brittle materials.	BT2	Understand
17.	Differentiate between repeated stress and reversed stress.	BT2	Understand
18.	Define stress concentration and stress concentration factor.	BT1	Remember
19.	Give some methods of reducing stress concentration.	BT2	Understand
20.	Describe about Soderberg and Goodman lines.	BT1	Remember
21.	What are all the factors influencing the machine design?	BT1	Remember
22.	Define the term Ductility and Brittleness.	BT1	Remember
23.	Explain about Factor of safety to design a machine element.	BT2	Understand
24.	Define the term Reliability and Durability.	BT1	Remember
25.	Define poisons ratio.	BT1	Remember
		- C	

	PART - B (13 Marks)	1	
S.No	QUESTIONS	LEVEL	COMPETENCE
	A hypothetical machine member by 50mm in diameter and 250mm in		11
	diameter and 250mm long is supported in one end as cantilever is subjected	BT3	Apply
1	to various types of loadings as given below. Calculate the principal stress		
1	and maximum shear stress in each case.		
	i. Axial load 15 KN		
	ii. Transverse load 3KN at the free end		
	iii. Twisting moment of 1KN-m at the free end, clockwise, while viewing from free end side		
	iv. (i) and (ii) together		
	v. (i) (ii) and (iii) together		
	A hollow shaft of 40mm outer diameter and 25mm inner diameter is	DT2	A 1
	subjected to a twisting moment of 120 N-m simultaneously; it is subjected	B13	Apply
2	to an axial thrust of 10kN and a bending moment of 80 N-m. Calculate the		
	maximum compressive and shear stresses.		

	(i) The frame of a punch press is shown in fig 1.3. Solve the stress at the	BT3	Apply
5	inner and outer surface at section X-X of the frame, if $W=5000N$. (7)		
	(ii) What is factor of safety? L ist out the factors to be considered while		
	deciding the factor of safety (6)	0.	
	(6)	DTA	
6	The load on a bolt consists of an axial pull of 10kN together with a	B14	Analyze
	transverse shear force of 5kN. Calculate the diameter of bolt required		
	according to 1. Maximum principle stress theory 2. Maximum shear stress		10
	theory; 3. Maximum principle strain theory; 4. Maximum strain energy		0
	theory; and 5. Maximum distortion energy theory. Take permissible		
	tensile stress at elastic limit = 100 MPa and Poisson's ratio = 0.3 .		
7	A mild steel shaft of 50mm diameter is subjected to a bending moment of	BT3	Apply
	2000 N-m and a torque T. If the yield point of the steel in tension is 200		
	MPa. Calculate the maxim <mark>um value</mark> of this torque without causing yielding		
	of the shaft according to 1. The Maximum principle stress; 2. The		
	maximumshear stress and 3. The maximum distortion strain energy theory		
	of yielding.		

8	Calculate the maximum stress induced in the following cases taking stress	BT3	Apply
0	concentration into account:		
	i. A rectangular plate 60 mm \times 10 mm with a hole 12 diameter		
	as shown in Fig 1.3. (a) and subjected to a tensile load of 12 kN.		
	(7)		
	ii. A stepped shaft as shown in Fig 1.3. (b) and carrying a tensile load		
	of 12 kN. (6)		
	12 kN (a) (b) (c)	00	
	Fig 1.3	1	
	A machine component is subjected to a flexural stress which fluctuates	BT4	Analyze
9	between +300 MN/m ² and -150 MN/m ² . Determine the value of minimum	1	0
	ultimate strength according to 1. Gerber relation; 2. Modified Goodman		
	relation; and 3. Soderberg relation. Take yield strength = 0.55 Ultimate		
	strength; Endurance strength= 0.5 Ultimate strength and factor of safety =		
	2.		
10	A bar of circular cross-section is subjected to alternating tensile forces	BT3	Apply
	varying from a minimum of 200kN to maximum of 500kN. It is to be		
	manufactured of a material with an ultimate tensile strength of 900MPa.		
	and an endurance limit of 700 MPa. Calculate the diameter of bar using		
	safety factors of 3.5 related to ultimate tensile strength and 4 related to		
	endurancelimit and a stress concentration factor of 1.65 for fatigue load.		
	Use Goodman straight line as basis for design.		
11	A circular bar of 500mm length is supported freely at its two ends. It is	BT4	Analyze
	acted upon by a central concentrated cyclic load having a minimum value		
	of 20kN and a maximum value of 50kN. Determine the diameter of bar by		

taking a factor of safety of 1.5, size effect of 0.85, surface finish of 0.9.		
The material properties of the bar are given by ultimate strength of 650		
MPa, yield strength of 500 MPa and endurance strength of 350 MPa.		
12 A cantilever beam made of cold drawn carbon steel of circular cross-section	BT3	Apply
as shown in fig. is subjected to a load which varies from –F to 3F. Solve the		
maximum load that this member can withstand for an indefinite life using a		
factor of safety as 2. The theoretical stress concentration factor is 1.42 and		
the notch sensitivity is 0.9. Assume the following values: Ultimate stress =		
550 MPa. Yield Stress = 470 MPa. Endurance limit = 275 MPa. Size factor		
= 0.85. Surface finish factor $= 0.89$.		
G		
F	0.	
	0	
	6	
	1	
	1	S.
All dimensions in mm. 3F		33
Fig 1.4		71
13 A pulley is keyed to a shaft midway between two bearings. The shaft is made	BT3	Apply
of cold drawn steel for which the ultimate strength is 550 MPa and the yield		
strength is 400 MPa. The bending moment at the pulley varies from -		
150N.m to +400 N.m as the torque on the shaft varies from -50N.m to 150		
N.m. Calculate the diameter of the shaft for an indefinite life. The stress		
concentration factors for the keyway at the pulley in bending and in torsion		
are 1.6 and 1.3 respectively. Take the following values, Factor of safety=1.5,		
Load correction factors=1 and 0.6 in torsion, size effect factor=0.85 and		
surface effect factor=0.88.		

14	A steel rod is subjected to a reversed axial load of 180KN. Solve the	BT4	Analyze
	diameter of the rod for a factor of safety of 2. Neglect the column effect.		
	The material has an ultimate tensile strength of 1070 MPa and yield strength		
	of 910 MPa. The endurance limit in reversed bending may be assumed to		
	be one half of the ultimate strength. Other correction factors may be		
	taken as follows. For axial loading=0.7, For machined surface=0.8, For		
	size=0.85, For stress concentration=1.0		
15	A beam of 500 mm long fixed at one end is subjected to a bending load of	BT4	Analyze
	5KN at this free end. determine the area of cross section of the beam, if;		
	(i) the cross section of the beam is circular.		
	(ii) the cross section of the beam rectangular for which the depth of the section		
	is twice that of the width.		
	(iii) the cross section of the beam is I- section having flange thickness 't',depth		
	'6t' and width '5t'.		
	Also justify the economic section. Assume permissible stress of the beam		
	material as 100 N/mm ² .		
16	A machine member is subjected to the stress as shown in fig. Determine the	BT3	Apply
	maximum principle stress, minimum principle stress, maximum shear stress		
	and locate the angle of principle stress.		
	10 N/mm ²		
	$ \begin{array}{c} $		

	PART-C (15 Marks)		
1	(i) What theory is in better agreement for predicting the failure of ductil	e BT6	Create
	component? Sketch the schematic representation under bi-axial stresse	S	
	for the theory. (5)		
	(ii) What is mean by safety factor? (5)		
	(iii) Design a wheel-chair in a multidisciplinary endeavor. (5)	

2	A steel shaft is subjected to completely reverse bending moment of 800 N-	BT5	Evaluate
-	m and a cyclic twisting moment of 500 N-m which varies over a range of		
	$\pm 40\%$. Calculate the diameter of shaft if a reduction factor of 1.2 is applied		
	to the variable component of bending stress and shearing stress. Assume		
	i) that the maximum bending and shearing stresses are in phase		
	ii) that the tensile yield point is the limiting stress for steady state		
	component		
	iii) that the maximum shear strength theory can be applied and		
	iv) that the Goodman relation is valid, take following material properties:		
	Yield strength = 500 MPa; Ultimate strength = 800 MPa; Endurance limit		
	$=\pm 400$ MPa.		
3	Design the diameter of a circular rod made of ductile material with a fatigue	BT6	Create
	strength (complete stress reversal) $\sigma_e = 280$ MPa. and a tensile yield	0	
	strength of 350 MPa. the member is subject to a varying axial load from	1	
	700 kN to -300kN. Assume $K_t = 1.8$ and FS =2	1	
Λ	Determine the diameter of a shaft to transmit twisting moment varying	BT5	Evaluate
4	from 800N-m to 1600 N-m. The ultimate tensile strength for the material is		
	600 MPa. and yield stress is 450 MPa. Assume the stress concentration		11
	factor = 1.2; surface finish factor = 0.8 and size factor = 0.85 .		
5	Explain in detail about the factors influencing the machine design.	BT6	Create

UNIT-II: DESIGN OF POWER TRANSMISSION SYSTEMS

Selection of V-Belts and pulleys- selection of flat belts and pulleys- wire ropes and pulleys- selection of transmission chains and sprockets. Design of pulleys and sprockets.

PART-A (2 Marks)			
Q.No	QUESTIONS	BT Level	Competence
1	Differentiate between open drive and cross drive of a belt drive.	BT-1	Remember
2	Describe how the ends of flat belt joined.	BT-1	Remember
3	Describe the term "Crowning of pulley."	BT-1	Remember
4	Express the ways, the timing belts are superior to ordinary V-belts.	BT-2	Understand
5	List the types of belt drives used for power transmissions.	BT-1	Remember
6	List the effect of centre distance and diameter of the pulley on the life of a belt.	BT-1	Remember
7	What is a Slack adjuster.	BT-2	Understand
8	Name the losses in belt drives.	BT-2	Understand
9	Define the centrifugal effects on belts.	BT-1	Remember
10	List the factors upon which the coefficient of friction between the belts and pulley depends.	BT-1	Remember
11	Define maximum tension in a belt. List the few materials for belt drives.	BT-1	Remember
12	Describe why slip is less in case of V-belts when compared to flat belts.	BT-2	Understand
13	Describe the cross section of V-belt and label its important parts.	BT-2	Understand
14	Describe how the wire ropes are designed. Write any four rope applications.	BT-1	Remember
15	Name the different types of compound wire ropes.	BT-1	Remember
16	Point out the circumstances chain drives are preferred over V belt drives.	BT-2	Understand
17	List the factors that affects the working conditions of chain drive.	BT-1	Remember
18	Name four elements in a chain. Give any three applications of chain drives.	BT-1	Remember

19	What is chordal action in chain drives?	BT-2	Understand
20	Define coefficient of friction. What do you mean by angle of friction?	BT-1	Remember
21	Define slip in belt and pulleys?	BT-1	Remember
22	Explain the advantages of belt drives?	BT-2	Understand
23	What are the factors should be considered during the selection of a belt drive?	BT-2	Understand
24	Explain the advantages of chain drives.	BT-2	Understand
25	Explain the different types of ropes.	BT-2	Understand
	PART-B (13 Marks)		
Q.No	QUESTIONS	BT Level	Competence
1	Calculate the power capacity of the leather belt of 9mm x 250mm	BT-3	Apply
	is used to drive a CI pulley 900mm in diameter at 336rpm. If the	C.	250
	active arc on the smaller pulley is 120° and stress in tight side is	- C	
	2Mpa. The density of the leather may be taken as 980 kg/m ³ and		5 C
	coefficient of friction of leather on CI is 0.35.		Fra.
2	A flat belt drive for a fan running at 360rpm which is drivenby a	BT-4	Analyze
	10 KW at1440 rpm motor. The belt drive is open type and the		(1)
	distance between the pulley Centres is 2000 mm. The diameter		
	of adriven pulley is 1 m.		
3	Calculate a flat belt drive to transmit 20kW at 720rpm. The	BT-3	Apply
	centre distance is 3m and the speed ratio is 3. Diameter of rolling		
	pulley is 1.2 m.	e .	
4	Design a flat belt drive to transmit 15 KW at 480 rpm from an	BT-4	Analyze
	engine to line shaft at 1200 rpm. The Centre distance between the		
	pulleys is 2m. The diameter of engine pulley is 600 mm		
	A flat belt drive is required to transmit 12 KW from a motor	BT-3	Apply
5	running at 720 rpm. The belt is 12 mm thick and has mass density.	DIJ	rippiy
	$of 0.001 \text{ gm/mm}^3$ Permissible stress in the belt not		
	1010.001 gm/mm.		
	to exceed 2.5 N/mm ² . Diameter of driving pulley is 250 mm		
	whereas thespeed of driven pulley is 240 rpm. The two shafts are		
	1.25 m apart, coefficient of friction is 0.25. Calculate the width		
	of the belt.		

6	Design a suitable V-belt for a centrifugal pump running at 340	BT-4	Analyze
	rpm is to be driven by 100 KW motor at 1440 rpm. The drive is to		
	workat least 20 hours every day. Centre distance is 1.2 m.		
7	Calculate a V-belt drive to transmit 10kW at 400 rpm. The speed	BT-3	Apply
	ratio is 3. Centre distance between the pulleys is 600 mm and the		
	drive is crusher.		
8	Design a V-belt drive and calculate the actual belt tension and	BT-4	Analyze
	average stress for the following data. Driven pulley diameter =		
	500 mm, driver pulley diameter, d=150 mm, center distance		
	C=925 mm, speed N1 = 1000 rpm, N2 = 300 rpm and power, P =	4	
	7.5kW.	°Q	
9	A truck equipped with 9.5 KW engine uses a roller chain of the	BT-3	Apply
	final drive to the rear axle. The driving sprocket runs at 900	_ 0	
	rpm and driven sprocket at 400 rpm with a center distance of	1	
	approximately600 mm. Calculate a suitable the roller chain.		5
10	A roller chain drive is used between a driver shaft running at 1440	BT-4	Analyze
10	rpm and a driven shaft running approximately at 720rpm. The		23
	power transmitted is 15KW. The drive is to be used for 2		
	shifts/day with 8hours/shift. The center distance is approximately		
	1000mm and the chain tension can be adjusted by moving the		
	motor in the rails. Design the drive.	1	
11	A workshop crank carries a load of 30KN using wire ropes and	BT-3	Apply
	a hook. The hook weighs 15KN. Diameter of the rope drum is 30		
	timesthe diameter of the rope. The load is lifted with an		
	acceleration of 1 m/s^2 . Calculate the diameter of the rope. FS = 6,		
	Er =80KN/mm ² , $\sigma u = 180$ KN/mm ² , cross section of the rope =		
	0.4x (Dia. of the rope) 2.		
12	A compressor is to run by a motor pulley running at 1440 rpm,	BT-3	Apply
12	speed ratio 2.5. Choose a flat belt crossed drive. Centre distances		
	betweenpulley is 3.6m take belt speed as 16m/s. Load factor is 1.3		
	take a 5ply, flat belt. Power to be transmitted to be 12 KW. High		
	speed load rating is 0.0118KW/Ply/mm width at V=5 m/s.		
	Calculate the width and length of the belt.		

13	At the construction site, 1 ton of steel is to be lifted up to a height	BT-3	Apply
15	of 20m with the help of 2 wire ropes of 6x 19 size, nominal diameter		
	12mm and breaking load 78 KN. Calculate the factor of safety if the		
	sheave diameter is 56 d and if wire rope is suddenly stopped in		
	one second when travelling at a speed of 1.2 m/s. What is the factor		
	of safety if bending load is neglected?		
14	A centrifugal pump running at 340rpmisto be driven by a 100kw	BT-3	Apply
	motor running at 1440rpm. The drive is to work for at least 20 hours		
	every day. The centre distance between the motor shaft and the		
	pump shaft is 2000mm. Suggest a suitable multiple V-belt drive		
	for this application. Also calculate the actual belt tensions and stress		
	induced.		
15	A V belt having a lap of 180° has a cross section area 2.5cm ² and	BT-4	Analyze
	groove angle is 45° . The density of the belt is 0.0015 kg/cm ³ and		
	maximum stress is limited to 400×10^4 N/m ² .if μ =0.15. find the		
	power that can be transmitted, if the wheel has the mean diameter		
	of 300 mm and runs at 1000 rpm.		
16	Two shafts whose centres are 1 m apart are connected by a V-belt drive. The driving pulley is supplied with 100 kW and has an effective diameter of 300 mm. It runs at 1000 r.p.m while the driven pulley runs at 375 r.p.m: The angle of groove on the pulleys is 40°. The permissible tension in 400 mm ² cross-sectional area of belt is 2.1 MPa. The density of the belt is 1100 kg/m ³ . Taking $\mu = 0.28$, estimate the number of belts required. Also calculate the length required of each belt.	BT-3	Apply
17	Design a cast iron pulley to transmit 20 kW at 300 r.p.m: The diameter of the pulley is 500 mm and the angle of lap is 180° The pulley has four arms of elliptical cross-section with major axis twice the minor axis. The coefficient of friction between the belt and the pulley surface is 0.3. The allowable belt tension is not to exceed 250 N in 10mm width. The allowable shear stress for the shaft material may be taken as 50 N/mm ² .	BT-4	Analyze
18	Design a V-belt drive to the following specifications : Power to be transmitted = 7.5 kW	BT-4	Analyze
	Speed of driving wheel =1440 r.p.m;		
	Speed of driven wheel = 400 r.p.m. Diameter of driving wheel = 300 mm Centre distance =1000 mm Service = 16hours / day		

	PART -C (15 Marks)		
1	A leather belt 9mm X 250 mm is use to drive a cast iron pulley 900 mm in diameter at 336 rpm. If the active are on the smaller pulley $is120^{\circ}$ and stress in tight side is 2 MPa. Evaluate the power capacity of the belt. The density of the leather may be taken as 980 kg/m ³ and coefficient of friction of leather on cast iron is 0.35.	BT-5	Evaluate
2	Design a chain drive to actuate a compressor from a 12 kW electric motor at 900 rpm, the compressor begin 250 rpm, Minimum centre distance should be 500 mm, the chain tension maybe adjusted by shifting the motor on rails. The compressor is to work 8 hour/day.	BT-6	Create
3	Design a flat belt drive to transmit 110 kW for a system consisting of two pulleys of diameters 0.9 m and 1.2 m respectively, for a centre distance of 3.6 m, belt speed of 20 m/s and coefficient of friction =0.3.There is a slip of 1.2% at each pulley and 5% friction loss at each shaft with 20% over load.	BT-6	Create
4	Evaluate a chain drive to actuate a compressor from 15 KW electric motor running at 1000 rpm, the compressor speed being 350 rpm. The minimum centre distance is 500 mm. The compressor operates15 hours per day. The chain tension may be adjusted by shifting the motor.	BT-5	Evaluate
5	Design a wire rope for an elevator in a building 60 metres high and for a total load of 20 kN. The speed of the elevator is 4 m/sec and the full speed is reached in 10 seconds.	BT-5	Evaluate

UNIT-III: DESIGN OF SHAFTS AND COUPLINGS

Design of solid and hollow shafts based on strength and rigidity- Design of keys, keyway sand splines- Design of rigid and flexible couplings. Design of bolts and nuts - knuckle and cotter joints.

PART - A (2Marks)				
S.No	QUESTIONS	LEVEL	COMPETENCE	
1.	Distinguish between pin, axle and shaft.	BT2	Understand	
2.	Describe how the shafts are formed.	BT1	Remember	
3.	Discuss the various types of shafts and the standard sizes of transmission shafts	BT2	Understand	
4.	List out types of stresses induced in shafts.	BT1	Remember	
5.	Point out, how the shaft is designed when it is subjected to twisting moment only.	BT2	Understand	
6.	Define equivalent twisting moment and equivalent bending moment. State when these two terms are used in design of shafts.	BT1	Remember	
7.	Describe when the shaft is subjected to fluctuating loads, what will be the equivalent twisting moment and equivalent bending moment.	BT2	Understand	
8.	Define what do you unde <mark>rstand</mark> by torsional rigidity and lateral rigidity	BT2	Understand	
9.	A hollow shaft has greater strength and stiffness than solid shaft of equal weight. Describe.	BT1	Remember	
10.	Describe under what circumstances are hollow shaft preferred over solid shafts.	BT2	Understand	
11.	Differentiate between rigid and flexible couplings.	BT2	Understand	
12.	List the different types of sunk keys and draw any one.	BT1	Remember	
13.	Define how is the strength of a shaft affected by the keyway.	BT2	Understand	
14.	Describe forces on keys.	BT1	Remember	
15.	Differentiate between keys and splines.	BT2	Understand	
16.	What are the considerations in the design of dimensions of formed and parallel key having rectangular cross-section.	BT2	Understand	
17.	Define the possible modes of failure of the pin (bolt) in a flexible coupling.	BT2	Understand	

18.	Describe the function of a coupling. List at least three practical applications.	BT1	Remember
19.	Why are two universal joints often used when there is angular misalignment between two shafts.	BT1	Remember
20.	Describe under what circumstances flexible couplings are used.	BT2	Understand
21.	Define the function of key.	BT2	Understand
22.	Classify the types of coupling.	BT1	Remember
23.	Write the torsional equation for the hollow shaft.	BT1	Remember
24.	Sketch and specify the dimension of the square key.	BT1	Remember
25.	Define critical speed.	BT2	Understand
<u> </u>		0	

	Y.	PART - B (13 Marks)		1	
S.No	3	QUESTIONS		LEVEL	COMPETENCE
	A mild steel shaft transmits	s 20kW at 200 rpm. It carries a central load	of	BT3	Apply
1	900N and is simply su	pported between the bearings 2.5m apa	art.		n -
	Determine the size of the sh	n <mark>aft, if the allowable shear stress is 42 MPa</mark> a	and		11
	the maximum tensile or	compressive stress is not to exceed MI	Pa.		
	Calculate the size of the	shaft will be required, if it is subjected	to		
	gradually applied loads.				
	A shaft is supported by two	bearings placed 1m apart. A 600mm diame	eter	BT4	Analyze
	pulley is mounted at a dista	nce of 300mm to the right of left hand beari	ing		
	and this drives a pulley d	irectly below it with the help of belt havi	ing		
	maximum tension of 2.25k	N. another pulley 400mm diameter is plac	ced		
	200mm to the left of right	t hand bearing and is driven with the help	of		
2	electric motor and belt, whi	ch is placed horizontally to the right. The any	gle		
2	of contact for both the pulle	eys is 180° and $\mu = 0.24$. Calculate the suital	ble		
	diameter for a solid shaft, al	lowing working stress of 63 MPa in tension a	and		
	42 MPa in shear for the m	aterial of shaft. Assume that the torque on o	one		
	pulley is equal to that on the	other pulley.			

	A shaft is supported on bearing A and B, 800 mm between centers. A 20°	BT3	Apply
3	straight tooth spur gear having 600mm pitch diameter, is located 200 mm		
	to the right of the left had bearing A, and a 700 mm diameter pulley is		
	mounted 250 mm towards the left of bearing B. The gear is driven by a		
	pinion with a downward tangential force while the pulley drives a		
	horizontal belt having 180° angle of wrap. The pulley also serves as a		
	flywheel and weights 2000N. The maximum belt tension is 3000 N and the		
	tension ratio is 3:1. Calculate the maximum bending moment and the		
	necessary shaft diameter if the allowable shear stress of the material is 40		
	MPa.		
		D.T.I	
	A steel solid shaft transmitting 15kW at 200 rpm is supported on two	BT4	Analyze
	bearing 750 mm apart and has two gears keyed to it. The pinion having 30	5	
	teeth of 5mm module is located 100 mm to the left of the right hand bearing	9	
	and delivers power horizontally to the right. The gear having 100 teeth of	1	
4	5mm module is located 1 <mark>50mm to the right of the left hand bearing and</mark>		-
	receives the power in ver <mark>tical direction below. Using an allowable str</mark> ess		
	of54MPa in shear, calculate the diameter of the shaft.		
	A hollow shaft of 0.5m outside diameter and 0.3m inside diameter is used	BT3	Apply
	to drive a propeller of a ma <mark>rine vesse</mark> l. The shaft is mounted on bearings 6m		
	apart and it transmits 560 <mark>0kW at 1</mark> 50 rpm. The maximum axial propeller		
5	shaft is 500kN and the sha <mark>ft weighs</mark> 70kN. Calculate		
	(i). The maximum shear stress developed in the shaft (7)		
	(ii). The angular twist between the bearings. (6)		

	A section of commercial shafting 2m long between bearings carries a	BT3	Apply
	1000N pulley at its midpoint as shown in fig. The pulley is keyed to the		
	shaft and receives 30 KW at 150 rev/min which is transmitted to a flexible		
	coupling just outside the right bearing. The belt drive is horizontal and		
	some of the belt tensions is 8000 N. Assume $K_t = K_b = 1.5$. Calculate the		
	necessary shaft diameter and determine the angle of twist between bearings.		
	$G=80 \text{ GN/m}^2$.		
6			
		1	
	\downarrow \downarrow \uparrow τ_2	Sa	
	1000 N	1	
	±	1	-
	Fig 2.1	1	0
	Design a sheft to transmit neuron from an electric motor to a lathe hard	DT4	Analyza
	stack through a nullar ha means of a halt drive. The nullar weights 200N	D14	Analyze
	stock through a pulley be means of a best drive. The pulley weights 200N		
	and is located at 300 mm from the centre of the bearing. The diameter of		
7	the pulley is 200 mm and the maximum power transmitted is 1 kW at 120		
/	rpm. The angle of the belt is 180° and coefficient of friction between the		
	belt and the pulley is 0.3. The shock and fatigue factors for bending and		
	twisting are 1.5 and 2.0 respectively. The allowable shear stress in the		
	shaft may be taken as 35 MPa.		
8	A shaft made of AISI 1030 cold drawn steel transmits 50 KW at 900 rpm through a gear. Calculate appropriate square key for the gear.	BT3	Apply
	anough a gean. Carcalaite appropriate square ney for the gean.		
	Design and draw a cotter joint to support a load varying from 30kN in	BT4	Analyze
	compression to 30kN in tension. The material used is carbon steel for which		
٥	the following allowable stress may be used. The load is applied statically.		
	Tensile stress = compressive stress = 50 MPa; Shear stress = 35 MPa and		
	crushing stress = 90 MPa.		

	Calculate a sleeve and cotter joint to resist a tensile load of 60 kN. All parts	BT3	Apply
10	of the joint are made of the same material with the following allowable		
	stresses: $\sigma_t = 60$ MPa; $\tau = 70$ MPa; and $\sigma_c = 125$ MPa.		
	Design a cotter joint to connect piston rod to the crosshead of a double	BT4	Analyze
	acting steam engine. The diameter of the cylinder is 300mm and the steam		
11	pressure is 1N/mm ² . The allowable stresses for the material of cotter and		
11	piston rod are as follows. Tensile stress=50MPa, Shear Stresses=40 MPa,		
	Compressive stresses=84MPa.		
	Calculate a knuckle joint for a tie rod of a circular cross section to sustain a	BT3	Apply
	maximum pull of 70kN.The ultimate, strength of the material of the rod		
12	against tearing is 420 Mpa. The ultimate tensile and shearing strength of the		
12	pin material are 510 MPa and 396 MPa respectively. Determine the tie rod		
	section and pin section. Take factor of safety=6.		
	Design a knuckle joint to transmit 150 kN. The design stresses may be	BT4	Analyze
13	taken as 75 MPa. in tension, 60 MPa in shear and 150 MPa in compression.		
	Calculate a gib and cotter joint to carry a maximum load of 35kN.Assuming	BT3	Apply
14	that the gib and cotter are of same material and have the following allowable		
	stresses. $\sigma_t = 20$ MPa; $\tau=15$ MPa; and $\sigma_c = 50$ MPa.		
15	Two 35 mm shafts are connected by a flanged coupling. The flanges are fitted with	BT4	Analyze
	6 bolts on 125 mm bolt circle. The shafts transmit a torque of 800 N-m at 350		
	r.p.m. For the safe stresses mentioned below, calculate 1. diameter of bolts ; 2.		
	thickness of flanges ; 3. key dimensions ; 4. hub length; and 5. power transmitted.		
	Safe shear stress for shaft material = 63 MPa Safe stress for bolt material = 56 MPa		
	Safe stress for cast iron coupling = 10 MPa Safe stress for key material = 46 MPa	200	
16	Design a cotter joint to connect a piston rod to the crosshead. The maximum steam	BT4	Analyze
	pressure on the piston rod is 35 kN. Assuming that all the parts are made of the		
	same material naving the following permissible stresses .		
17	Two 35 mm shafts are connected by a flanged coupling. The flanges are fitted	BT3	Apply
	with 6 bolts on 125 mm bolt circle. The shafts transmit a torque of 800 N-m at 350		
	r.p.m. For the safe stresses mentioned below, calculate 1. diameter of bolts ; 2.		
	unckness of nanges , 5. key dimensions , 4. hub length, and 5. power transmitted. Safe shear stress for shaft material = 63 MPa		
	Safe stress for bolt material = 56 MPa		
	Safe stress for cast iron coupling = 10 MPa		
	Safe stress for key material = 46 MPa		

coupling, in which the flange is forged on the end of the shaft. The following particulars are to be considered in the design : Power of the engine = 3 MW Speed of the engine = 100 r.p.m. Permissible shear stress in bolts and shaft = 60 MPa Number of bolts used = 8 Pitch circle diameter of bolts = $1.6 \times \text{Diameter of shaft}$ Find : 1. diameter of shaft ; 2. diameter of bolts ; 3. thickness of flange ; and 4. diameter of flange.BT6CreateO PART-C (15 Marks)A shaft made of steel receives 7.5 kW power at 1500 rpm. A pulley mounted on the shaft as shown in fig. has ratio of belt tension 4. The gear forces are follows $F_t = 1590N$; $F_r = 580$ N. Design the shaft diameter by maximum
particulars are to be considered in the design : Power of the engine = 3 MW Speed of the engine = 100 r.p.m. Permissible shear stress in bolts and shaft = 60 MPa Number of bolts used = 8 Pitch circle diameter of bolts = $1.6 \times \text{Diameter of shaft}$ Find : 1. diameter of shaft ; 2. diameter of bolts ; 3. thickness of flange ; and 4. diameter of flange.PART-C (15 Marks)A shaft made of steel receives 7.5 kW power at 1500 rpm. A pulley mounted on the shaft as shown in fig. has ratio of belt tension 4. The gear forces are follows $F_t = 1590N$; $F_r = 580$ N. Design the shaft diameter by maximum
Power of the engine = 3 MWSpeed of the engine = 100 r.p.m.Permissible shear stress in bolts and shaft = 60 MPaNumber of bolts used = 8Pitch circle diameter of bolts = $1.6 \times Diameter of shaft$ Find : 1. diameter of shaft ; 2. diameter of bolts ; 3. thickness of flange ; and 4.diameter of flange. PART-C (15 Marks) A shaft made of steel receives 7.5 kW power at 1500 rpm. A pulley mountedon the shaft as shown in fig. has ratio of belt tension 4. The gear forces are follows $F_t = 1590N$; $F_r = 580$ N. Design the shaft diameter by maximum
Speed of the engine = 100 r.p.m.Permissible shear stress in bolts and shaft = 60 MPaNumber of bolts used = 8Pitch circle diameter of bolts = $1.6 \times \text{Diameter of shaft}$ Find : 1. diameter of shaft ; 2. diameter of bolts ; 3. thickness of flange ; and 4.diameter of flange.PART-C (15 Marks)A shaft made of steel receives 7.5 kW power at 1500 rpm. A pulley mountedon the shaft as shown in fig. has ratio of belt tension 4. The gear forces are follows $F_t = 1590N$; $F_r = 580$ N. Design the shaft diameter by maximum
Permissible shear stress in bolts and shaft = 60 MPaNumber of bolts used = 8Pitch circle diameter of bolts = $1.6 \times \text{Diameter of shaft}$ Find : 1. diameter of shaft ; 2. diameter of bolts ; 3. thickness of flange ; and 4.diameter of flange.PART-C (15 Marks)A shaft made of steel receives 7.5 kW power at 1500 rpm. A pulley mountedon the shaft as shown in fig. has ratio of belt tension 4. The gear forces arefollows $F_t = 1590N$; $F_r = 580$ N. Design the shaft diameter by maximum
Number of bolts used = 8Pitch circle diameter of bolts = $1.6 \times \text{Diameter of shaft}$ Find : 1. diameter of bolts = $1.6 \times \text{Diameter of shaft}$ Find : 1. diameter of shaft ; 2. diameter of bolts ; 3. thickness of flange ; and 4. diameter of flange.PART-C (15 Marks)PART-C (15 Marks)CreateA shaft made of steel receives 7.5 kW power at 1500 rpm. A pulley mounted on the shaft as shown in fig. has ratio of belt tension 4. The gear forces are follows $F_t = 1590N$; $F_r = 580$ N. Design the shaft diameter by maximumBT6
Pitch circle diameter of bolts = $1.6 \times \text{Diameter of shaft}$ Find : 1. diameter of shaft ; 2. diameter of bolts ; 3. thickness of flange ; and 4. diameter of flange.PART-C (15 Marks)A shaft made of steel receives 7.5 kW power at 1500 rpm. A pulley mounted on the shaft as shown in fig. has ratio of belt tension 4. The gear forces are follows $F_t = 1590N$; $F_r = 580$ N. Design the shaft diameter by maximum
Find : 1. diameter of shaft ; 2. diameter of bolts ; 3. thickness of flange ; and 4. diameter of flange.PART-C (15 Marks)A shaft made of steel receives 7.5 kW power at 1500 rpm. A pulley mounted on the shaft as shown in fig. has ratio of belt tension 4. The gear forces are follows $F_t = 1590N$; $F_r = 580$ N. Design the shaft diameter by maximumBT6
diameter of flange. $PART-C (15 Marks)$ A shaft made of steel receives 7.5 kW power at 1500 rpm. A pulley mountedBT6On the shaft as shown in fig. has ratio of belt tension 4. The gear forces are follows $F_t = 1590N$; $F_r = 580$ N. Design the shaft diameter by maximum
PART-C (15 Marks)BT6A shaft made of steel receives 7.5 kW power at 1500 rpm. A pulley mountedBT6on the shaft as shown in fig. has ratio of belt tension 4. The gear forces are follows $F_t = 1590N$; $F_r = 580$ N. Design the shaft diameter by maximum
A shaft made of steel receives 7.5 kW power at 1500 rpm. A pulley mounted BT6 Create on the shaft as shown in fig. has ratio of belt tension 4. The gear forces are follows $F_t = 1590N$; $F_r = 580$ N. Design the shaft diameter by maximum
on the shaft as shown in fig. has ratio of belt tension 4. The gear forces are follows $F_t = 1590N$; $F_r = 580$ N. Design the shaft diameter by maximum
follows $F_t = 1590N$; $F_r = 580$ N. Design the shaft diameter by maximum
shear stress theory. The shaft material has the following properties.
1 Ultimate tensile strength = 720 MPa; Yield strength = 380 MPa; Factor of
safety = 1.5
Pulley T_1 T_2
A Gear F_t
All dimensions in mm.
A horizontal shaft AD supported in bearings at A and B and carrying pulleys BT5 Evaluate
2 at C and D is to transmit 75 kW at 500 rpm from drive pulley D to off-take
pulley C as shown in fig. Evaluate the diameter of shaft. The data given is
$P_1 = 2P_2$ (both horizontal) $Q_1 = 2 Q_2$ (both vertical) radius of pulley $C = 220$
mm, radius of pulley $D = 160$ mm allowable shear stress = 45 MPa.

	$\begin{array}{c} A \\ \hline \\$		
	Two mild steel rods 40mm diameter are to be connected by cotter joint. The	BT5	Evaluate
	thickness of the cotter is 12mm. Evaluate the dimensions of the joint, if the		
3	maximum permissible stresses are 46 MPa; in tension 35MPa; in shear	0	
	and 70 MPa in crushing.	0	
	Design a cotter joint to connect a piston rod to the cross-head. The maximum	BT6	Create
	steam pressure on the piston rod is 35 kN. Assuming that the all parts are		
4	made of the same material having the following permissible stress: σ_1 =		17
	50MPa; $\tau = 60$ MPa; $\sigma = 90$ MPa.		G
5	Design a knuckle joint to transmit 200 kN. The design stresses may be	BT4	Analyze
	taken as 90 MPa. in tensio <mark>n, 75 MP</mark> a in shear and 200 MPa in compression.		

UNIT-IV: DESIGN OF ENERGY STORING ELEMENTS

Design of helical, leaf, disc and torsional springs under constant loads and varying loads - Concentric torsion springs.

PART - A (2Marks)				
S.No	QUESTIONS	LEVEL	COMPETENCE	
1.	Describe the type of spring is used to maintain an effective contact	BT1	Remember	
	between a cam and a reciprocating roller or flat faced follower.	DII		
2.	List out the various function of a spring. In which type of spring	BT1	Remember	
	the behavior is non-linear.			
3.	The extension springs are in considerably less use than the	BT2	Understand	
	compression springs. Describe.			
4.	Why, while designing helical springs, K is introduced in the shear	DT1	Remember	
	stress equation?	DII		
5.	Define what do you understand stiffness of spring.	BT2	Understand	
6.	Describe any one method of avoiding the tendency of a compression	DT3	Understand	
	spring to buckle.	DIZ	G	
7.	Describe, what do you understand by full length and graduated leaves	BT2	Understand	
	of a leaf-spring.	212		
8.	Describe what is nipping in a leaf spring. Discuss its role.	BT2	Understand	
9.	Define surge in a spring.	BT1	Remember	
10.	Describe the utility of the centre bolt, U- clamp, rebound clip and camber	BT2	Understand	
	in a leaf spring.	D12		
11	How the longest leaf is named in leaf springs?	BT1	Remember	
12	Define stresses in compression springs for most of the materials with	BT1	Remember	
	increase in size of wire will			
13	Describe a shaft subjected to combined bending and torsion can be	BT2	Understand	
	designed by following stress theory			
14	Describe, what is the function of a spring. In which type of spring the	BT2	Understand	
	behavior is non-linear.			
15	Define the materials and practical applications for the various types of	BT1	Remember	

	springs.		
16	Define the following terms of the spring :	BT1	Remember
	(i) Free length;		
	(ii) Solid height;		
17	Describe one method of avoiding the tendency of a compression spring to	BT2	Understand
	buckle.		
18	Describe what is nipping in a leaf spring. Discuss its role.	BT1	Remember
19	Describe the application of Concentric helical springs.	BT1	Remember
20	Define, when two concentric coil springs made of the same material	' BT1	Remember
	having same length and compressed equally by an axial load, the load	l	
	shared by the two springs will be to the square of the diameters of the		
	wires of the two springs.		
	(i) directly proportional	0	
		0	
21	(1) inversely proportional	DTO	Understand
21	Classification of springs.	B12	Understand
22	Sketch the disc spring.	BT1	Remember
23	How do you calculate the shear stress in the helical spring.	BT1	Remember
24	What is stiffness of the spring?	BT2	Understand
25	List out few spring materials.	BT1	Remember

	PART - B (13 Marks)						
S.No	QUESTIONS	LEV EL	COMPETENCE				
1	Design a helical compression spring to sustain an axial load of 3KN. The deflection is 60mm. Spring index is 6. The shear stress is not to exceed300 MPa. Rigidity modulus for spring material is 81 GPa.	BT3	Apply				
2	A spring loaded safety value for a boiler is required to blow-off at a pressure 1.2 N/mm^2 . The diameter of the value is 60 mm. Design a suitable compression spring for the safety value, assuming spring index to be 5, and 35 mm initial compression. The maximum lift of the value is 10 mm. The shear stress in the spring material is to be limited to 500 MPa. Take $G = 0.8 \times 10^5 \text{ MPa}$.	BT4	Analyze				

	Calculate a closed coiled helical spring subjected a tensile load of magnitude	BT3	Apply
	varying from 2250N to 2750 N and the axial deflection of spring for this range		
3	of load is 6 mm. Design the spring, taking the spring index as 5 and safe shear		
	stress for material equal to 420 MPa. G=84kN/mm ² .		
	At the bottom of a mine shaft, a group of 10 identical close coiled helical	BT4	Analyze
	springs are set in parallel to absorb. The shock caused by the falling of the cage		
	in case of a failure. the loaded cage weighs 75KN, while the counter weight has		
	a weight of 15KN. If the loaded cage falls through a height of 50 meters from		
4	rest. Determine the maximum stress induced in each spring if it is made of		
	50mm diameter steel rod. The spring index is 6 and the number of active turn		
	in each spring is 20. Modulus of rigidity G=		
	80KN.mm ² .		
	Calculate and draw a valve spring of a petrol engine for the following	BT3	Apply
	operating conditions.		
	Spring load when the value is open $= 400 \text{ N}$		
5	Spring load when the value is closed $= 250 \text{ N}$		
5	Maximum inside diameter of spring = 25mmLength of		
	the spring when the valve is open = 40mmLength of		
	the spring when the value is closed $= 50$ mm		
	Maximum permissible shear stress = 400 MPa		
	Design a concentric spring for an aircraft engine valve is to exert a maximum	BT4	Analyze
	force of 5000N under an axial deflection of 40mm.Both the springs have same		
	free length, same solid length and are subjected to equalmaximum shear stress		
	of 850 MPa. If the spring index for both the spring is 6, find		
6	(i) the load shared by each spring,		
	(ii) the main dimensions of both the springs and		
	(iii) the number of active coils in each spring. G=80kN/mm ² and diametric		
	clearance to be equal to the difference between the wire diameter.		

	Calculate a leaf spring for the following specifications: Total load = 140 kN ;	BT3	Apply
7	Number of springs supporting the load = 4; Maximum number of leaves = 10 ;		
	Span of the spring = 1000 mm; Permissible deflection = 80 mm. Take Young's		
	modulus, $E = 200 \text{ kN/mm}^2$ and allowable stress in spring material as 600 MPa.		
	A semi-elliptical laminated vehicle spring to carry a load of 6000N is to consist	BT4	Analyze
8	of seven leaves 65mm wide, two of the leaves extending the full length of the		
	spring. The spring is to be 1.1m in length and attached to the axle by two U-		
	bolts 80mm apart. The bolts hold the central portion of the spring so rigidly		
	that they may be considered equivalent to a band having a width equal to the		
	distance between the bolts. Assume the design stress for spring material as 350		
	MPa. Determine thickness of the leaves, deflection of spring, diameter of eye,		
	length of leaves and radius to which leaves should initially bent.		
0	Calculate a leaf spring for the following specifications: Total load = 130 kN	BT3	Apply
9	\cdot Number of springs supporting the load = 3. Maximum number of leaves		
	, runder of springs supporting the fold - 5, maximum number of feaves		
	= 9; Span of the spring = 900 mm; Permissible deflection = 70 mm . Take		
	Young's modulus, $E = 150 \text{ kN/mm}^2$ and allowable stress in spring		
	material as 500 MPa.		
10	Analyze a semi-elliptical laminated vehicle spring to carry a load of 5000N is to	BT4	Analyze
	consist of seven leaves 60mm wide, two of the leaves extending the fulllength of		
	the spring. The spring is to be 1.1m in length and attached to the axle by two U-		
	bolts 70mm apart. The bolts hold the central portion of the spring so rigidly that		
	they may be considered equivalent to a band having a width equal to the		
	distance between the bolts. Assume the design stress for spring material as 300		
	MPa. Determine thickness of the leaves, deflection of spring, diameter of eye,		
	length of leaves and radius to which leaves should initially bent.		
11	A concentric spring for an aircraft engine valve is to exert a maximum force of	BT3	Apply
	4000 N under an axial deflection of 30 mm. Both the springs have same free		
	length, same solid length and are subjected to equal maximum shear stress of		
	750 MPa. If the spring index for both the springs is 5, Calculate (i) the load		
	shared by each spring, (ii) the main dimensions of both the springs, and (iii) the		
	number of active coils in each spring. Assume $G = 70 \text{ kN/mm2}$ and diametral		
	clearance to be equal to the difference between the wire diameters.		

12	A composite spring has two closed coil helical springs. The outer spring is 10	BT4	Analyze
	mm larger than the inner spring. The outer spring has 8 coils of mean diameter		
	30 mm and wire diameter 5mm. The inner spring has 7 coilsof mean diameter		
	28 mm and wire diameter 3 mm. When the spring is subjected to an axial load		
	of 300 N. Find 1. compression of each spring, 2. load shared by each spring,		
	and 3. shear stress induced in each spring. The modulus of rigidity may be		
	taken as 74 kN/mm2.		
13	A helical torsion spring of mean diameter 60 mm is made of a round wire of6	BT3	Apply
15	mm diameter. If a torque of 6 N-m is applied on the spring, find the bendingstress		
	induced and the angular deflection of the spring in degrees. Calculate the spring		
	index is 10 and modulus of elasticity for the spring material is 200 kN/mm2.		
	The number of effective turns may be taken as 5.5.	S	
14	A helical torsion spring of mean diameter 50 mm is made of a roundwire of 6	BT4	Analyze
14	mm diameter. If a torque of 5 N-m is applied on the spring, find the bending	0	
	stress induced and the angular deflection of the spring in degrees. The spring	1	
	index is 9 and modulus of elasticity for the spring material is 190 kN/mm2.	1	
	The number of effective turns may be taken as 5.	- G	3
15	Design a close coiled helical compression spring for a service load ranging	BT3	Apply
	from 2250 N to 2750 N. The axial deflection of the spring for the load range is 6		
	mm. Assume a spring index of 5. The permissible shear stress intensity is 420 MPa		
	and modulus of rigidity, $G = 84 \text{ kN/m}$ m2. Neglect the effect of stress concentration.		
	Draw a fully dimensioned sketch of the spring, showing		
	details of the finish of the end coils.		
16	Find the maximum shear stress and deflection induced in a helical spring of	BT4	Analyze
	the following specifications, if it has to absorb 1000 N-m of energy.		
	Mean diameter of spring = 100 mm ; Diameter of steel wire, used for making the		
	spring =20 mm; Number of coils = 30; Modulus of rigidity of steel = 85 kN/mm^2 .		
17	A closely coiled helical spring is made of 10 mm diameter steel wire, the coil	BT3	Apply
	consisting of 10 complete turns with a mean diameter of 120 mm. The spring carries		
	an axial pull of 200 N. Determine the shear stress induced in the spring neglecting		
	the effect of stress concentration.Determine also the deflection in the spring, its		
	stiffness and strain energy stored by it if the modulus		
	of rigidity of the material is 80 kN/mm2.		

18	A load vehicle is provided with 4 leaf springs each having a leaves and support	BT3	Apply
	are 1m apart and section of the leaves is 40×5 mm. the full capacity load for		
	springs amount to 8000 m. the real axel taken 60percent of load, breaking		
	strength 1200 N/mm ² .check the dimensions.	2.	
	PART-C (15 Marks)	1/4	A
	It is desired to design a valve spring of I.C. engine for the following details:	BT5	Evaluate
	i) Spring load when valve is closed = 80N ii) Spring load when valve is		0
	open = 100 N iii) Space constraints for the fitment of spring are: inside		6
1	guide bush diameter = 24mm Outside recess diameter = 36mm iv) Valve		
	lift =5mm v) Spring steel has the following properties Maximum		0
	permissible shear stress = 350 MPa. Modulus of rigidity = 84 kN/mm ²		1.1
	Evaluate: 1. Wire diameter 2. Spring index 3. Total number of coils 4. Solid		0
	length of springs 5. Free length of spring 6. Pitch of the coil when additional		
	15 percent of the working deflection is used to avoid complete closing of		
	coils.		
	Design a semi-elliptical laminated spring 900 mm long and 55 mm wide is	BT6	Create
	held together at the centre by a band 50mm wide. If thickness of each leaf		
	is 5mm, find the number of leaves required to carry a load of 4500 N.		-
2	Assume a maximum working stress of 490 MPa. If the two of these leaves		
	extend the full length of the spring, find the deflection of spring. The		
	young's modulus for the spring material may be taken as 210 kN/mm ² .		1
3	A concentric spring for an aircraft engine valve is to exert a maximum force	BT5	Evaluate
5	of 5000 N under an axial deflection of 40 mm. Both the springs have same		
	free length, same solid length and are subjected to equal maximum shear		
	stress of 850 MPa. If the spring index for both the springs is 6, Evaluate (i)		
	the load shared by each spring, (ii) the main dimensions of both the springs, and (iii) the number of active coils in each spring. Assume $G = 80 \text{ kN/mm2}$		
	and diametral clearance to be equal to the difference between the wire		
	diameters.		

	Design a composite spring has two closed coil helical springs. The outer	BT6	Create
	spring is 15 mm larger than the inner spring. The outer spring has 10 coils		
	ofmean diameter 40 mm and wire diameter 5mm. The inner spring has 8		
4	coilsof mean diameter 30 mm and wire diameter 4 mm. When the spring is		
	subjected to an axial load of 400 N, find 1. compression of each spring, 2.		
	load shared by each spring, and 3. shear stress induced in each spring.		
	The modulus of rigidity may be taken as 84 kN/mm2.		
5	Design a leaf spring for the following specification for a truck.	BT6	Create
	Maximum load on springs=120KN		
	No of springs=4		
	Metals of springs=Cr Va Steel		
	Span of spring=1200 mm	a.	
	Width of the central band= 200 mm	0	
	Permissible deflection=120 mm	~	
	SRM		
			22
	5		41
			<u>1</u>

-

UNIT-V: DESIGN OF GEARS AND BEARINGS

Gears - spur gear and helical gear - terminology - strength of gear teeth - Lewis equation - Buckingham equation. -Failure of gear teeth. - Applications of different types of Gears - Types of bearings – sliding contact and rolling contact types. – Bearing selection based on application - Lubrication in journal bearings – calculation of bearing dimensions.

PART - A (2Marks)							
S.No	QUESTIONS	LEVEL	COMPETENCE				
1.	Discuss law of gearing and summarize how interference can be avoided in gear.	BT2	Understand				
2.	Name the profiles of spur gear. List the various methods of manufacturing gears.	BT2	Understand				
3.	Describe the following (i) Pressure angle (ii) Diametrical pitch (iii) module	BT1	Remember				
4.	List the different types of gear mechanism.	BT1	Remember				
5.	Describe backlash. What factors influence backlash?	BT2	Understand				
6.	Define undercutting in gears.	BT1	Remember				
7.	Describe why is gear tooth subjected to dynamic load.	BT2	Understand				
8.	Define the main types of gear tooth failure.	BT1	Remember				
9.	Describe why dedendum value is more than addendum value.	BT1	Remember				
10.	Name the materials commonly used for gears.	BT1	Remember				
11.	List out the application of angular contact and self-aligning ball bearings.	BT1	Remember				
12.	Describe how do you express the life of a bearing. What is an average or median life?	BT2	Understand				
13.	Describe basic static load rating.	BT1	Remember				
14.	What is bearing characteristic number?	BT2	Understand				
15.	Write down the formula to calculate the heat generated and heat Dissipated in journal bearing.	BT1	Remember				
16.	Define critical pressure.	BT1	Remember				
17.	What is the formula to calculate sommerfield number?	BT2	Understand				

18.	What is the theory of lubrication?	BT2	Understand
19.	What do you understand by non-metallic bearings?	BT2	Understand
20.	Define partial journal bearing.	BT2	Understand
21.	Write few bearing materials	BT1	Remember
22.	State the advantage of sliding contact bearing.	BT1	Remember
23.	Mention the features of bearing materials.	BT2	Understand
24.	What are the types of bearing.	BT1	Remember
25.	Define gear ratio.	BT2	Understand

	D'						
	PART - B (13 Marks)	A					
S.No	QUESTIONS	LEVEL	COMPETENCE				
	Design a pair of straight spur gear drive for a stone crusher, the gears are made	BT3	Apply				
1	of C40 steel. The pinion is t <mark>o transmit 30 KW at 1200 rpm.The gear ratio</mark> is 3.	1	-				
	The gear is to work 8 hours/day 6days in a week for 3 years.		17				
	Calculate a spur gear pair to transmit 22.5KW at 900 rpm. Speed reduction	BT4	Analyze				
2	ratio is 2.5. Material for pi <mark>nion and</mark> wheel are C15 steel and cast iron grade						
	30 respectively. Take press <mark>ure an</mark> gle 200 and wo <mark>rking life of gear is 10,</mark> 000						
	hours.						
	Design a spur gear drive required to transmit 45 KW at pinion speed of 800	BT3	Apply				
	rpm. The velocity ratio is 3.5:1. The teeth are 200 full depth involute with						
3	18 teeth on the pinion. Both the pinion and gear are made of steel						
	with a maximum safe static stress of 180 N/mm ² . Assume medium shock						
	condition.						
	Design a straight spur gear drive to transmit 8KW. The pinion speed is	BT4	Analyze				
	720rpm and the speed ratio is 2. Both the gears are made of the same						
4	surface hardened carbon steel with 55RC and core hardness less than						
	350BHN. Ultimate strength is 720 N/mm ² and yield strength is 360 N/mm ² .						
-	Calculate a spur gear to transmit 2 KW at 1440 rpm. Desired speed ratio is	BT3	Apply				
5	3. Use C45 steel for gears.						

	A 37.5 kW power is transmitted at 450 rpm to a shaft running at approximately	BT3	Apply
	112 rpm through a spur gear drive. The load is steady and continuous.		
6	Designthe gear drive and check the design. Illustrate the following materials:		
	Pinion- heat treated cast steel; Gear-High grade cast iron.		
	Design a spur gear drive for a heavy machine tool with moderate shocks.	BT4	Analyze
7	The pinion is transmitting 18KW at 1200 rpm with a gear ratio of 3.5.		
,	Designthe drive and check for elastic stress and plastic deformation. Make		
	a sketch and label important dimensions arrived.		
	Select a single row deep groove ball bearing for a radial load of 4000N and	BT3	Apply
8	an axial load of 5000N, operating at a speed of 1600 rpm for an average life		
	of 5 year at 10hours per day. Solve and assume uniform and steady load.		
	The ball bearings are to be selected for an application in which the radial	BT4	Analyze
0	load is 2000N during 90 percent of the time and 8000N during the		
	remaining 10 percent. the shaft is to rotate at 150 rpm. Determine the		
	minimum value of the basic dynamic load rating for 5000 hours of		
	operation with not more than 10 percent failures.		
	A ball bearing subjected to a radial load of 4000 N is expected to have a	BT3	Apply
	satisfactory life of 12 000 hours at 720 r.p.m. with a reliability of 95%.		
	Calculate the dynamic load carrying capacity of the bearing, so that it can		
10	be selected from manufacturer's catalogue based on 90% reliability. If there		
	are four such bearings each with a reliability of 95% in a system,		
	Explain what is the reliability of the complete system.		
11	A single row deep groove ball bearing operating at 2000 rpm is acted by a	BT4	Analyze
	10 kN radial load and 8kN thrust load. The bearing is subjected to a tight		
	shock load and the outer ring is rotating. Explain the rating life of the		
	bearing.		
	<i>o</i> .		

12	A wall brack	ket supports	a Plummer	block for 8	0mm diame	eter shaft. The	BT3	Apply
12	length of the	bearing is						
	of four bolts,	, two n each	2					
	16.5kN.The	distance bet	ween the cer	ntre lines of	the bolts is	150mm.Solve	;	
	the thickness	s of the bear	ing cap and	the diameter	r of the bolt	s. Assume the	;	
	stresses in te	ension for th	e material fo	or the cap is	s cast iron a	as 15MPa and		
	for bolts as	35MPa.Als	o check the	deflection	of the beari	ing cap taking		
	E=110kN/m	m^2 .						
13	A roller bear	ing is be sel	ected to with	nstand a radi	al load of 4	000N and	BT4	Analyze
	have an L10	life of 1200	hours at a sp	peed of 600	rpm			
	i. Deter	mine the ba	sic dynamic	load rating	of the bearing	ng to be		
	selec	ted.				(7)		
	ii. If the	reliability r	equired is 9	9%, explain	what load	rating would		
	be us	ed. Take b=	1.17 and V=	S=1		(6)		
	Design a sin	gle row dee	p groove ba	ll bearing w	vith the open	rating cycleas	BT3	
14	below which	below which will have a life of 15000hours. Assume radial and axial load						Apply
14	factors to be	1 and 1.5 re	spectively ar	nd inner race	e rotates.			
	Fraction	Туре	Radial,	Thrust,	Speed,	Service		
	of cycle	of load	Ν	Ν	RPM	factor		
	1/10	Heavy shocks	2000	1200	400	3		
	1/10	Light	1500	1000	500			
	1/10	shocks				1.5		
	1/5	Moderate shocks	1000	1500	600	2		
	2/5	No shocks	1200	2000	800	1		
15	Selected a sui	table deep g	roove ball be	earing for a	drill machin	le spindle of 5	0 BT4	Analyze
	mm diameter. Thrust is 2KN spindle speed is 3000rpm.desired life is 3000 hrs.							
16	6 Design a helical gear to transmit 15 kW at 1440 rpm to the following specification. Speed reduction is 3 Pressure angle is 20 degree and helix							Creating
	angle is 15 de	egree. The n	naterial for l	both the gea	rs is C45 st	teel. Allowabl	e	
	static stress is 180 N/mm2 , Surface endurance limitis 800 N/mm2 and Young's Modulus of material is 2×10.5 N/mm							
1	2.5	ulus of marc						
17	Design a helic	cal gear for t	he following	g specificatio	on: Power- 1	12.5kW, Pinio	n BT6	Creating

18	A helical gear with 30 ° helix angle has to transmit 35kW at 1500 rpm with a speed reduction ratio 2.5. If the pinion has 24 teeth determine the necessary module, pitch diameter and face width for 20 degree full depth teeth. Assume 15Ni 2Cr 1 Mo15 material for both pinion and wheel	BT6	Creating
	PART-C (15 Marks)		
	Design a pair of spur gear to transmit 20 KW at a pinion speed of 1440 rpm.	BT6	Create
1	The transmission ratio is 4.Assume 15Ni2Cr1Mo15 for pinion and C45 for		
	gears.		
	For intermittent duty of an elevator, two cylindrical gears made of alloys	BT5	Evaluate
	steel 40 Ni 2 Cr 1 Mo 28, and have to transmit12.5 kw at a pinion speed of		
2	1200 rpm. Design a gear pair for the following specifications: Gear ratio:		
	3.5, pressure angle 200, involute full depth, helix angle 150. Gears are expected to work 6 hrs a day for 10 years. Minimum number of teeth on pinion can be taken as 20 and IS quality 8.	-	
	Select appropriate type of rolling contact bearing under the following	BT5	Evaluate
	condition of loading giving reasons for your choice:	4	
3	i. Light radial load with high rotational speed.	20	-
0	ii. Heavy axial and radial load with shock	1	0
	iii. Light load where radial space is very limited		C .
	iv. Axial thrust only with medium speed.	DTC	
	A tentative design of a journal bearing results in a diameter of /5mm and	B16	Create
	a length of 125mm for supporting a load of 20 kN. The shaft runts at 1000		
	rpm. The bearing surface temperature is not to exceed 75°C in a room		
4	temperature 35°C. The oil used has an absolute viscosity of 0.01 kg/m-s at		
	the operating temperature. Design the amount of artificial cooling required		
5	in watts. Assume d/c=1000.	BT6	Create
5	wheel are made of C15 steel and cast iron grade 30 respectively. The pinion is to	D 10	Create
	transmit 22 kW power at 900 rpm. The gear ratio is 2.5, take pressure angle of		
	20° and helix angle is 15°. The material for the both gears is NI2Cr1Mo28.Give		
	details of drive in tubular form		