SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution)

SRM Nagar, Kattankulathur – 603 203

DEPARTMENT OF MECHANICAL ENGINEERING

QUESTION BANK

VII SEMESTER 1909706–HYDRAULICS AND PNEUMATICS Regulation – 2019

Academic Year 2022 – 2023 Prepared by

Mr.R.Ramkumar ,Assistant Professor (O.G) / Mechanical Engineering

SRM VALLIAMMAI ENGINEERING COLLEGE

DI ENGINEERING

(An Autonomous Institution) SRM Nagar, Kattankulathur - 603203

QUESTION BANK

SUBJECT CODE / NAME : 1909706 /HYDRAULICS & PNEUMATICS

SEM / YEAR

: VII SEM / IV YEAR

UNIT – I – FLUID POWER PRINICIPLES AND HYDRAULIC PUMPS

Introduction to Fluid power – Advantages and Applications – Fluid power systems – Types of fluids -Properties of fluids and selection – Basics of Hydraulics – Pascal's Law – Principles of flow - Friction loss – Work, Power and Torque Problems, Sources of Hydraulic power: Pumping Theory – Pump Classification – Construction, Working, Design, Advantages, Disadvantages, Performance, Selection criteria of Linear and Rotary – Fixed and Variable displacement pumps – Problems.

PART – A (2 Marks)				
S.No	Questions	Level	Competence	
1.	Define fluid power.	BT-1	Remembering	
2.	List the advantages of the fluid power.	BT-1	Remembering	
3.	Mention the drawbacks of fluid power.	BT-2	Understanding	
4.	Point out the applications of fluid power.	BT-2	Understanding	
5.	Differentiate between hydraulics and pneumatics.	BT-2	Understanding	
6.	Indicate the components of hydraulic system.	BT-1	Remembering	
7.	Indicate the components of pneumatic system.	BT-1	Remembering	
8.	Interpret the primary functions of a hydraulic fluid.	BT-1	Remembering	
9.	List any 4 properties of a hydraulic fluid.	BT-2	Understanding	
10.	Indicate the physical differences between liquid and gas.	BT-1	Remembering	
11.	Differentiate between gage pressure and absolute pressure.	BT-2	Understanding	
12.	Define bulk modulus and viscosity.	BT-1	Remembering	
13.	Define Pascal law.	BT-1	Remembering	
14.	State the effects of high viscosity hydraulic fluids in the fluid power	BT-2	Understanding	
	system.			
15.	State the effects of low viscosity hydraulic fluids in the fluid power	BT-2	Understanding	

	system.		
16.	Define absolute viscosity.	BT-1	Remembering
17.	Mention any two applications of Pascal's law.	BT-2	Understanding
18.	State the Bernoulli's equation.	BT-1	Remembering
19.	Differentiate between laminar flow and turbulent flow.	BT-2	Understanding
20.	Write the expression for Darcy equation.	BT-1	Remembering
21.	State the significance of Reynold's number.	BT-2	Understanding
22.	Differentiate between positive pump and non-positive pump.	BT-2	Understanding
23.	Define volumetric efficiency of the pump.	BT-1	Remembering
24.	Define mechanical efficiency of the pump.	BT-2	Understanding
25.	Mention the factors influencing the volumetric efficiency of the pump.	BT-2	Understanding

	PART-B (13 Marks)			
S.No	Questions	Marks	Level	Competence
1.	Write short notes on the advantages and disadvantages of fluid	13	BT-4	Analyzing
	power.			
2.	(i) Discuss the applications of fluid power systems.	7	BT-3	Applying
	(ii) Explain the components of hydraulic and pneumatic	6		
	systems.			
3.	Enumerate on the different types of fluid power system.		BT-1	Remembering
4.	A hand operated hydraulic jack as shown in the figure has a	13	BT-5	Evaluating
	piston pump with a cylinder diameter of 30 mm and a stroke of			
	50 mm. The operator makes one cycle (one suction stroke and			
	one delivery stroke) per second in the pump. The ram cylinder			
	is of 60 mm diameter raises a load of 8000 N. Calculate the			
	following (a) Pressure in the system (b) Force exerted on the			
	rod of the pump. (c) Force on the handle given by the operator			
	(d) the number of cycles of hand pump to lift the load by 500			
	mm. (e) What is the output power assuming 90% efficiency.			
5.	Elaborate on any one applications of Pascal's law with a neat	13	BT-3	Applying
	sketch.			
6.	Explain any 8 properties of hydraulic fluids.	13	BT-1	Remembering
7.	Discuss the influence of temperature on the viscosity of the	13	BT-4	Analyzing

	hydraulic fluids.			
8.	Explain in detail about the various losses in hydraulic fluid	13	BT-1	Remembering
	power systems.			
9.	(i)A gear pump has a 75 mm outside diameter, 1 50 mm inside	7	BT-5	Evaluating
	diameter and a 25 mm width. If the volumetric efficiency is 90			
	% at the rated pressure, what is the corresponding actual flow			
	rate? The pump speed is 1000 rpm.			
	(ii) A gear pump with the following specification runs at 1400	6		
	rpm. Module = 3 mm/tooth, Gear width = 15 mm, Number of			
	teeth = 12, Pressure angle = 20° . Determine (i) Theoretical			
	discharge (ii) Hydraulic power produced by the pump when the			
	working against a pressure of 100 bar.			
10.	A hydraulic pump delivers oil at 60 bar, 120 <i>l</i> /min into a circuit	13	BT-5	Evaluating
	laid on a horizontal plane. There are four elbows (K=0.75), one			
	globe valve fully open (K=10) and a direction control valve			
	(pressure drop = 3 bar) with the inside diameter of the pipe as			
	30 mm. The total length of the straight run pipe is 20 m and the			
	specific gravity of the oil is 0.9. The kinematic viscosity of the			
	oil is $0.0001 \text{m}^2/\text{s}$. Determine the pressure at the exit point of			
	the pipe.			
11.	(i) A pump has a displacement of 81.9 cm^3 . It delivers 75.8 x	8	BT-5	Evaluating
	10^{-3} m ³ /min at 1000 rpm at 67 bar. If the prime mover input			
	torque is 100 Nm. Determine the overall efficiency, volumetric			
	efficiency and theoretical torque required to operate the pump.			
	(ii) A vane pump is to have a volumetric displacement of 121.8	5		
	cm ³ . It has a rotor diameter of 65 mm, a camring diameter of			
	90 mm and a vane width of 50 mm. Determine its eccentricity.			
12.	Describe the construction and working principle of radial	13	BT-2	Understanding
	piston pump with neat sketch.			
13.	Explain the construction and working principle of bend axis	13	BT-2	Understanding
	axial piston pump with suitable sketch.			
14.	Explain the construction and working principle of in-line axial	13	BT-2	Understanding
	piston pump with suitable sketch.			

15.	(i) Explain the pumping theory with suitable sketch.	6	BT-3	Applying
	(ii) Explain the working of Lobe pump with suitable sketch.	7		
16.	Explain the working principle of following pumps with neat		BT-2	Understanding
	sketch (i) Lobe pump	7		
	(ii) Screw pump	6		
17.	(i) Explain the external gear pump with suitable sketch.	6	BT-2	Understanding
	(ii) Explain the working of internal gear pump with neat sketch.	7		
18.	Discuss the following		BT-2	Understanding
	(i) Balanced vane pump.	6		
	(ii) Unbalanced vane pump.	7		

	PART-C (15 Marks)			
S.No	Questions	Marks	Level	Competence
1.	The system shown in the figure contains a pump delivering	15	BT-5	Evaluating
	high pressure oil of specific gravity 0.9 and kinematic viscosity			
	1.25 x 10^{-4} m ² /s to a hydraulic motor. A pipe connects the			
	pump and motor has an inner diameter of 25 mm and length 15			
	m. The pipe has two elbow fittings (K=0.75) and one check			
	valve (K=4.0). The motor is placed 6m above the pump. The			
	inlet pressure to the motor is 34 bar. Determine the pump			
	discharge pressure, if the discharge from the pump os 150			
	<i>l</i> /min.			
2.	(i) A radial piston pump has the following specificcations:	7	BT-5	Evaluating
	Maximum pressure = 30 bar, Diameter of the plunger = 50 mm,			
	number of plungers = 7, maximum eccentricity = 10 mm ,			
	Speed of rotation of the shaft = 1500 rpm. Calculate (a)			
	Theoretical discharge and actual discharge. (b) theoretical and			
	actual power required to drive the pump, given that mechanical			
	efficiency is given as 80 % and volumetric efficiency is given			
	as 90 %.			
	(ii) A hydraulic system requires 32 <i>l</i> /min of a fluid pressure of	8		
	260 bar. The pump to be used is a manually variable axial			
	piston pump having a maximum displacement per revolution			

	of 28 cm ³ . The pump is driven at 1430 rpm and has an overall			
	efficiency of 0.85 and a volumetric efficiency of 0.9.			
3.	List and explain the design criteria of Linear and Rotary pump	15	BT-3	Applying
	in the hydraulic systems.			
4.	Design the hydraulic circuit and explain with neat sketch for	15	BT-6	Creating
	the application of hand operated hydraulic jack.			
5.	Design the hydraulic circuit and explain with neat sketch for	15	BT-6	Creating
	the application of air-to-hydraulic pressure booster.			

UNIT – II – HYDRAULIC ACTUATOR & CONTROL COMPONENTS

Hydraulic Actuators: Cylinders – Types and construction, Application, Hydraulic cushioning –
Hydraulic motors - Control Components: Direction Control, Flow control and pressure control valves
– Types, Construction and Operation – Servo and Proportional valves – Applications – Accessories:
Reservoirs, Pressure Switches – Applications –Fluid Power ANSI Symbols – Problems.

PART – A (2 Marks)				
S.No	Questions	Level	Competence	
1.	Define actuator.	BT-1	Remembering	
2.	List the benefits of choosing the correct cylinder in a hydraulic system.	BT-1	Remembering	
3.	Classify the cylinders based on their function.	BT-2	Understanding	
4.	Differentiate between linear actuator and rotary actuator.	BT-2	Understanding	
5.	Mention the uses of hydraulic shock absorber.	BT-2	Understanding	
б.	Define barrel in hydraulics.	BT-1	Remembering	
7.	Draw the graphical symbol for single acting hydraulic cylinder.	BT-1	Remembering	
8.	Define volumetric efficiency.	BT-1	Remembering	
9.	Define mechanical efficiency.	BT-2	Understanding	
10.	Define overall efficiency.	BT-1	Remembering	
11.	Distinguish between hydraulic power and brake power.	BT-2	Understanding	
12.	List the basic types of valves.	BT-1	Remembering	
13.	State the significance of directional control valves.	BT-1	Remembering	
14.	Classify hydraulic motors.	BT-2	Understanding	
15.	Indicate the objecctives of hydraulic valves.	BT-2	Understanding	
16.	Mention the types of cylinder mountings.	BT-1	Remembering	
17.	Interpret the functions of pressure control valve.	BT-2	Understanding	
18.	Point out the advantages of using compound relief valve.	BT-1	Remembering	
19.	List the various centre characteristics of three position four way valves.	BT-2	Understanding	
20.	Compare open centre and closed centre in three position valves.	BT-1	Remembering	
21.	Point out the purpose of tandem centre.	BT-2	Understanding	
22.	Classify flow control valve.	BT-2	Understanding	
23.	List the applications of pressure reducing valve.	BT-1	Remembering	
24.	Indicate some considerations for correct mounting of the cylinder.	BT-2	Understanding	
25.	Mention the parameters to be considered while designing a valve.	BT-2	Understanding	

	PART-B (13 Marks)				
S.No	Questions	Marks	Level	Competence	
1.	Write short notes on gear type motors and vane type motors.	13	BT-1	Remembering	
2.	(i) A hydraulic motor has a volumetric displacement of 125	5	BT-5	Evaluating	
	cm ³ and a pressure rating of 150 bar. It receives a theoretical				
	flow rate of oil 0.0015 m^3/s from a pump. Find the (i) motor				
	speed (ii) theoretical torque (iii) theoretical power.				
	(ii) A hydraulic motor has a displacement of 150 cm ³ and	8			
	operates with a pressure of 120 bar and a speed of 2500 rpm.				
	The actual flow rate consumed by the motor is 0.00781 m^3/s				
	and the actual torque delivered by the motor is 250 Nm.				
	Determine (a) Volumetric efficiency (b) mechanical efficiency				
	(c) Overall efficiency (d) Power delivered by the motor.				
3.	Write short notes on single acting cylinder and cylinder	13	BT-2	Understanding	
	cushioning with a neat sketch.				
4.	Enumerate on the factors involved in the rating of a hydraulic	13	BT-4	Analyzing	
	motors.				
5.	Explain the construction and working principle of rotary	13	BT-2	Understanding	
	spool valve used in the hydraulic systems.				
6.	With neat sketch explain the construction of Telescopic	13	BT-2	Understanding	
	cylinder and state its application with example.				
7.	Explain with neat sketch about the following	6	BT-1	Remembering	
	(i) Unloading valve. (ii) Sequence valve	7			
8	(i) Explain the working principle of Mechanical	7	BT-2	Understanding	
0.	hydraulic servo valve			0	
	(ii) Explain the flapper servo valve with neat sketch	6			
9	List the components used in the hydraulic systems and sketch	13	BT-1	Remembering	
	the ANSI symbol of all the components in the hydraulic	10	~ • •		
	systems.				
10	(i) A pressure relief value has a pressure setting of 200 bar	5	BT-5	Evaluating	
10.	Determine the power loss across the valve if all the pump flow		210		
	of 120 l/min flows back to the reservoir through this value				
8. 9. 10.	 (i) Explain the working principle of Mechanical hydraulic servo valve. (ii) Explain the flapper servo valve with neat sketch. List the components used in the hydraulic systems and sketch the ANSI symbol of all the components in the hydraulic systems. (i) A pressure relief valve has a pressure setting of 200 bar. Determine the power loss across the valve if all the pump flow of 120 l/min flows back to the reservoir through this valve. 	7 6 13 5	BT-2 BT-1 BT-5	Understanding Remembering Evaluating	

	(ii) A high-low circuit with an unloading valve is employed for	8		
	press application. The press requires a flow rate of 200 l/min			
	for high-speed opening and closing of the dies at maximum			
	pressure of 30 bar. The workstroke needs a maximum pressure			
	of 30 bar. The workstroke needs a maximum pressure of 400			
	bar but a flow rate between 12 and 20 <i>l</i> /min will be acceptable.			
	Determine the suitable delivery for each pump.			
11.	In a meter-in circuit, a cylinder with 100 mm bore diameter and	13	BT-5	Evaluating
	70 mm diameter is used to exert a forward thrust of 100 kN			
	with a velocity of 0.5 m/min. Neglect the pressure drop through			
	the piping and valves. If the pump flow is 20 <i>l</i> /min. Determine			
	(a) Pressure required at pump on extend (b) Flow through the			
	flow control valve (c) Relief valve setting (d) Flow out of			
	pressure relief valve (e) System efficiency during extend.			
12.	Explain the following with neat sketch		BT-1	Remembering
	(i) Poppet valve.	6		
	(ii) Pilot operated check valve	7		
13.	Explain the following		BT-1	Remembering
	(i) 4/3- Direction Control Valve.	7		
	(ii) 3/2-DirectionControlValve	6		
14.	Explain with neat sketch about different types of flow	13	BT-2	Understanding
	control valve used in the hydraulic systems.			
15.	Explain with neat sketch about the following		BT-1	Remembering
	(i) Meter-in circuit	7		
	(ii) Meter-out circuit	6		
16.	Explain with neat sketch about spring loaded pressure relief	13	BT-2	Understanding
	valve and pressure reducing valve.			
17.	Explain with neat sketch about compound pressure relief	13	BT-2	Understanding
	valve.			
18.	Discuss the following		BT-2	Understanding
	(i) Proportional pressure relief valve.	7		
	(ii) Proportional pressure reducing valve.	6		

	PART-C (15 Marks)			
S.No	Questions	Marks	Level	Competence
1.	(i) A pump supplies oil at 0.002 m^3/s to a 50 mm diameter	8	BT-5	Evaluating
	double acting cylinder and a rod diameter is 20 mm. If the load			
	is 6000 N both in extending and retracting. Determine (a)			
	Piston velocity during the extension stroke and retraction			
	stroke. (b) Pressure during the extension stroke and retraction			
	stroke. (c) Power during the extension stroke and retraction			
	stroke.			
	(ii) A hydraulic cylinder has to move a table of weight 13 kN.	7		
	Speed of the cylinder is to be accelerated upto a velocity of			
	0.13 m/s in 0.5 seconds and brought to a stop within a distance			
	of 0.02 m. Assume coefficient of sliding friction as 0.15 and			
	cylinder bore diameter as 50 mm. Calculate the surge pressure.			
2.	(i) A cylinder has a bore of 125 mm diameter and a rod of 70	8	BT-5	Evaluating
	mm diameter. It drives a load of 2000 kg vertically up and			
	down at a maximum velocity of 3 m/s. The load is slowed			
	down to rest in the cushion length of 50 mm. If the relief valve			
	is set at 140 bar, Determine the average pressure in the			
	cushions while extending and retracting.			
	(ii) A two stage telescopic cylinder is used to tilt the body of a	7		
	lorry. When the lorry is fully laden, the cylinder has to exert a			
	force equivalent to 40 kNat all points in its stroke. The outside			
	diameters of the tubes forming two stages are 75 mm and 100			
	mm. If the pump powering the cylinder delivers 12 l/min.			
	Calculate the extend speed and pressure required for each stage			
	of the cylinder when tilting fully laden lorry.			
3.	A cylinder has a bore of 125 mm diameter and a rod of 70 mm	15	BT-5	Evaluating
	diameter. It drives a load of 2000 kg vertically up and down at			
	a maximum velocity of 3 m/s. The load is slowed down to rest			
	in the cushion length of 50 mm. If the relief valve is set at 140			
	bar, Determine the average pressure in the cushions while			

	extending and retracting.			
4.	Design the hydraulic drilling circuit using sequence valve and	15	BT-6	Creating
	explain with neat sketch.			
5.	Explain and design the hydraulic circuit by using pressure reducing	15	BT-6	Creating
	valve for the weld and clamp unit to weld the Engineering			
	materials.			

UNIT – III – HYDRAULIC CIRCUITS AND SYSTEMS

Accumulators, Intensifiers, Industrial hydraulic circuits – Regenerative, Pump Unloading, Double- Pump, Pressure Intensifier, Air-over oil, Sequence, Reciprocation, Synchronization, Fail-Safe, Speed Control, Hydrostatic transmission, Electro hydraulic circuits, Mechanical hydraulic servo systems.

PART – A (2 Marks)				
S.No	Questions	Level	Competence	
1.	Draw the different types of accumulator symbols.	BT-1	Remembering	
2.	State the functions of accumulators.	BT-1	Remembering	
3.	What is meant by sizing of accumulator?	BT-2	Understanding	
4.	Identify the function of pressure intensifier.	BT-2	Understanding	
5.	Define the term "capacity of accumulator"	BT-2	Understanding	
6.	Identify type of gases used in a gas loaded accumulator.	BT-1	Remembering	
7.	Mention the reason for non-separator type gas loaded accumulator not	BT-1	Remembering	
	preferred in hydraulic systems.			
8.	What condition in a hydraulic system would require an intensifier?	BT-1	Remembering	
9.	List any four applications of intensifier.	BT-2	Understanding	
10.	Draw fluid power symbol for pressure intensifier and gas loaded type	BT-1	Remembering	
	accumulator.			
11.	Define the term intensifier ratio.	BT-2	Understanding	
12.	List the factors to be considered while designing any fluid power system.	BT-1	Remembering	
13.	Why extension stroke faster than the retraction stroke in the regenerative	BT-2	Understanding	
	circuit?			
14.	Indicate the purpose of using fail safe circuit in any hydraulic system.	BT-2	Understanding	
15.	Define servo control system.	BT-2	Understanding	
16.	Define the term lap and null with respect to servo valves.	BT-1	Remembering	
17.	Mention any four applications hydro-mechanical servo valves.	BT-2	Understanding	
18.	Indicate the purpose of air over oil intensifier circuit.	BT-1	Remembering	
19.	Define hydraulic accumulator and classify its types.	BT-2	Understanding	
20.	Differentiate between electro hydraulic servo valve and mechanical	BT-1	Remembering	
	servo valves.			
21.	List the sources of dynamic forces occurring in the accumulators.	BT-2	Understanding	
22.	Classify the separator type gas loaded accumulator.	BT-2	Understanding	

23.	State the drawback of using piston type gas loaded accumulator.	BT-1	Remembering
24.	Interpret the advantages of bladder type accumulator.	BT-2	Understanding
25.	List some applications of intensifier circuits.	BT-2	Understanding

	PART-B (13 Marks)				
S.No	Questions	Marks	Level	Competence	
1.	With a neat sketch, explain the construction and working of a	13	BT-2	Understanding	
	piston type accumulator and diaphragm type accumulator?				
2.	Explain the construction and working of the following		BT-2	Understanding	
	(i) Dead weight accumulator.	7			
	Spring loaded accumulator.	6			
3.	Write short notes on the application of the accumulator circuits	13	BT-3	Applying	
	in leakage compensation and auxillary power source.				
4.	Enumerate on the sizing of the accumulator.	13	BT-2	Understanding	
5.	A weight loaded accumulator has a ram of 300 mm diameter	13	BT-5	Evaluating	
	and stroke 6 m. It is loaded with 500 kN weight. The packing				
	friction accounts for 3 % of the total force. If the ram falls				
	steadily through its full range in 120 seconds and pump				
	delivers 7.5 l/min at the same time. Determine the total				
	discharge and power supplied at the mains.				
6.	Design and explain the working of a regenerative circuit.	13	BT-6	Creating	
7.	(i) What is the size of accumulator necessary to supply 4920	5	BT-5	Evaluating	
	cm ³ of oil with an allowable pressure from 210 bar absolute to				
	105 bar absolute. The precharge pressure is 70 bar absolute.				
	The charging and discharging processes are isothermal.				
	(ii)With a neat sketch, Explain the application of regenerative	8			
	circuit in the drilling machine.				
8.	Describe a hydraulic circuit for synchronizing two cylinder	13	BT-3	Applying	
	with flow control valves.				
9.	Design and explain the working of a sequencing circuit.	13	BT-6	Creating	
10.	Design the intensifier circuit for the application of punching	13	BT-6	Creating	
	press in the hydraulic circuit.				
11.	A punch press circuit with five stations operated by five	13	BT-5	Evaluating	

	parallel cylinders connected to an internsifier. The cylinders			
	are single acting cylinders with spring return and piston			
	diameter of the cylinder is 140 mm. The cylinders are used for			
	punching 10 mm diameter holes on sheet metal 1.5 mm			
	thickness. The ultimate shear strength of the sheet metal is 300			
	MN/m ² . The punching stroke requires 10 mm travel. If the			
	intensification ratio is 20 and the stroke of the intensifier is 1.3			
	m. Determine the (a) Pressure of the oil from the pump (b)			
	Diameter of small and large cylinder of intensifier.			
12.	A double acting cylinder is hooked up in a regenerative circuit	13	BT-5	Evaluating
	for drilling application. The relief valve is set as 75 bar. The			
	piston diameter is 140 mm and rod diameter is 100 mm. If the			
	pump flows 80 <i>l</i> /min. Find the cylinder speed and load carrying			
	capacity for various positions of direction control valve.			
13.	(i) Two double acting cylinders are to be synchronized by	8	BT-5	Evaluating
	connecting them in series. The load acting in each cylinder is			
	4000 N. If one of the cylinder having the piston diameter 50			
	mm and rod diameter is 28 mm. Determine (a) Diameter of the			
	second cylinder. (b) Pressure requirement of the pump (c)			
	Power of the pump in kW if the cylinder velocity is 4 m/s.			
	(ii) A hydraulic intensifier is meant to enhance the fluid	5		
	pressure from 50 bar to 200 bar. Its small cylinder capacity is			
	23 litres and has a stroke of 1.5 m. Determine the diameter of			
	the largest cylinder to be used for this intensifier.			
14.	Draw and explain the Air-over-oil circuit used in the	13	BT-2	Understanding
	hydraulic circuit.			
15.	Draw and explain the Air-oil intensifier circuit used in the	13	BT-2	Understanding
	hydraulic circuit.			
16.	Draw and explain the Air-oil cylinder circuit used in the	13	BT-2	Understanding
	hydraulic circuit.			
17.	List the comparison of hydro pneumatic, hydraulic and	13	BT-4	Analyzing
	pneumatic system			
18.	Design and explain the working of Electro hydraulic circuit	13	BT-2	Understanding

	with a neat sketch.
--	---------------------

	PART-C (15 Marks)			
S.No	Questions	Marks	Level	Competence
1.	(i) Determine the size of the accumulator to reduce the	10	BT-5	Evaluating
	hydraulic line shock in a system handling gasoline with a			
	specific gravity of 0.88 with a normal rate of flow 12.65 <i>l</i> /s.			
	The inner diameter of the pipe is 150 mm and the length is 1924			
	m. The system pressure at normal rate of flow is 10 bar			
	absolute. Maximum allowed shock pressure when shut-off			
	valve is closed is 17 bar absolute. The accumulator is			
	precharged with nitrogen.			
	(ii) What is the size of the accumulator necessary to supply	5		
	4920 cm ³ of oil with an allowable pressure from 210 bar			
	absolute to 105 bar absolute. The precharge pressure is 70 bar			
	absolute. The charging and discharging processes are			
	isothermal.			
2.	Create a fail safe control circuit using emergency cut off value	15	BT-6	Creating
	and two-hand safety control circuit.			
3.	Enumerate on the hydrostatic transmission with suitable	15	BT-2	Understanding
	sketches and applications.			
4.	Design and explain a hydraulic circuit for the robot arm	15	BT-6	Creating
	applications.			
5.	Design and explain a hydraulic circuit for the hydraulic	15	BT-6	Creating
	operations of machine tools.			

UNIT – IV – PNEUMATIC AND ELECTRO PNEUMATIC SYSTEMS

Properties of air – Perfect Gas Laws – Compressor – Filters, Regulator, Lubricator, Muffler, Air control Valves, Quick Exhaust Valves, Pneumatic actuators, Design of Pneumatic circuit – Cascade method – Electro Pneumatic System – Elements – Ladder diagram – Problems, Introduction to fluidics and pneumatic logic circuits.

	PART – A (2 Marks)				
S.No	Questions	Level	Competence		
1.	Compare pneumatic system with the hydraulic system.	BT-2	Understanding		
2.	List the properties of air.	BT-1	Remembering		
3.	State Boyle's law.	BT-1	Remembering		
4.	State Charles law.	BT-1	Remembering		
5.	List the basic components of pneumatic system.	BT-1	Remembering		
6.	Mention the functions of compressor.	BT-2	Understanding		
7.	Interpret the necessity of lubricator in a pneumatic system.	BT-2	Understanding		
8.	Point out the components of air filter.	BT-1	Remembering		
9.	State the functions of pressure regulator.	BT-2	Understanding		
10.	Indicate the functions of a lubricator.	BT-2	Understanding		
11.	Mention the advantages of double acting pneumatic cylinder over the	BT-2	Understanding		
	single acting pneumatic cylinder.				
12.	List the applications of air motors.	BT-3	Applying		
13.	A compressor has a rated output of 3 standard m ³ /min air delivery. What	BT-5	Evaluating		
	will be the output at an absolute pressure of 800 kPa at the same				
	temperature.				
14.	A compressor delivers 2.3 standard m ³ /min air through a 25 mm inside	BT-5	Evaluating		
	diameter pipe at a pressure of 10 bar. Find the pressure loss for a length				
	of 75 m.				
15.	Compute the size of the receiver that must supply air to a pneumatic	BT-5	Evaluating		
	circuit using 0.57 standard m^3 /min for 6 min between 7 bar and 5.5 bar				
	if the compressor is running and delivering air at 0.14 standard m^3/min .				
16.	Determine the actual power required to drive a compressor that delivers	BT-5	Evaluating		
	1.5 standard m^3 /min of air at 6 bar (gauge). The overall efficiency of the				
	compressor is 80 %.				
17.	Give the standard graphical symbol for FRL unit.	BT-1	Remembering		

18.	Point out the purpose of a quick Exhaust Valve.	BT-2	Understanding
19.	Sketch the graphical symbol of pneumatic regulator.	BT-1	Remembering
20.	Mention the function at reservoir in a pneumatic system	BT-2	Understanding
21.	Classify the logical circuits.	BT-2	Understanding
22.	Mention the factors influencing the selection of the filter.	BT-2	Understanding
23.	Give the truth table for fluidic AND/NAND gate.	BT-2	Understanding
24.	Define fluidics	BT-1	Remembering
25.	Define Programmable Logic Control (PLC).	BT-1	Remembering

	PART-B (13 Marks)				
S.No	Questions	Marks	Level	Competence	
1.	(i) A double acting pneumatic cylinder with a 50 mm bore, 20	8	BT-5	Evaluating	
	mm rod and a 100 mm stroke length must cycle 50 times per				
	minute. The supply pressure is 4.5 bar (gauge). Determine (a)				
	what is the force output of the cylinder on the extend and				
	retract strokes. (b) what is the air consumption of the cylinder				
	in standard m ³ /min.				
	(ii) A vacuum suction cup having a lip with 80 mm outside	5			
	diameter and 60 mm inside diameter is used for lifting the				
	sheets. If the suction pressure is -0.5 bar gauge, how heavy				
	sheet can be lifted using this suction cup. Assume a factor of				
	safety of 2.				
2.	(i) Write short notes on the laws governing the compressible	5	BT-2	Understanding	
	nature of the air.				
	(ii) Write short notes on the basic pneumatic system.	8			
3.	Enumerate on the construction, working of piston type and	13	BT-2	Understanding	
	vane type compressors.				
4.	Write short notes on two-way valve and three-way valve.	13	BT-2	Understanding	
5.	Explain the construction and working of four-way valve and	13	BT-3	Applying	
	five-way valve.				
6.	Explain the factors influencing the selection of the pneumatic	13	BT-4	Analyzing	
	components.				
7.	With a help of the pneumatic circuit, Explain the construction	13	BT-3	Applying	

	and working of speed control circuit and quick exhaust circuit.			
8.	With a neat sketch of the pneumatic filter and explain its construction and working of cartridge filter.	13	BT-3	Applying
9.	With a neat sketch of the pneumatic Regulator and explain its construction and working.	13	BT-3	Applying
10.	Explain the construction and working principle of Muffler with neat sketch.	13	BT-3	Applying
11.	Sketch the graphical symbol and Explain the construction and working principle of FRL Unit with neat sketch.	13	BT-4	Analyzing
12.	Design a pneumatic circuit using cascade method for the sequence A+ A- B+ B- and explain its working principle.	13	BT-6	Creating
13.	Explain the construction and operation of rotary actuators with neat sketch.	13	BT-3	Applying
14.	Design a pneumatic circuit for the following sequence using cascade method A+B+B-A- where the + cylinder extraction and - cylinder retraction.	13	BT-6	Creating
15.	Discuss the construction and operation of the basic fluidic devices.	13	BT-2	Understanding
16.	Draw the circuit of control of air cylinder using Flip-Flop and explain it.	13	BT-6	Creating
17.	Explain the ladder logic diagram with a suitable example.	13	BT-3	Applying
18.	Write short notes on step counter method.	13	BT-3	Applying

PART-C (15 Marks)

S.No	Questions	Marks	Level	Competence
1.	Enumerate the factors influencing the selection of the filter,	15	BT-4	Analyzing
	regulator, lubricator and sizing of the compressors.			
2.	With a help of the pneumatic circuit, Explain the construction	15	BT-3	Applying
	and working of two step feed control circuit and time delay			
	circuit.			
3.	Discuss how the coanda effect is useful to develop a mono-	15	BT-4	Analyzing
	stable and bi-stable- flip flop device			
4.	(i) Design a pneumatic cascade circuit for the following	10	BT-6	Creating

	sequence of operation: $A^+B^+B^-C^+C^-A^-$.			
	(ii) Develop the travel-step diagram for the above sequence	5		
	of operation.			
5.	Explain the various approaches used for entering the program	15	BT-4	Analyzing
	into the PLC.			

UNIT – V – TROUBLE SHOOTING AND APPLICATIONS

Installation, Selection, Maintenance, Trouble Shooting and Remedies in Hydraulic and Pneumatic systems, Design of hydraulic circuits for Drilling, Planning, Shaping, Surface grinding, Press and Forklift applications. Design of Pneumatic circuits for Pick and Place applications and tool handling in CNC Machine tools – Low cost Automation – Hydraulic and Pneumatic power packs.

PART – A (2 Marks)					
S.No	Questions	Level	Competence		
1.	Mention the common defects occurring in the hydraulic system.	BT-1	Remembering		
2.	List the parameters to be assessed before the taking the decision of	BT-2	Understanding		
	reconditioning a hydraulic system.				
3.	Define preventive maintenance.	BT-1	Remembering		
4.	Mention the key properties to be evaluated while inspecting the	BT-2	Understanding		
	hydraulic oil.				
5.	Mention the properties of the hydraulic oil apart from transmitting	BT-1	Remembering		
	power.				
6.	Point out the properties that are subjected to change service life of the	BT-1	Remembering		
	oil.				
7.	Interpret the precaution measures to be taken while inspecting the odour	BT-2	Understanding		
	of the oil.				
8.	Indicate the possible ways for the contaminants to enter into the	BT-2	Understanding		
	hydraulic system.				
9.	List the problems caused by the contaminants in the hydraulic system.	BT-1	Remembering		
10.	Identify the factors influencing the life of a filter in the hydraulic system.	BT-2	Understanding		
11.	Define cavitation.	BT-1	Remembering		
12.	List the effects of cavitation in the pump.	BT-2	Understanding		
13.	Point out the basic requirements for trouble free life of fluid power	BT-1	Remembering		
	systems?				
14.	Name any two faults that can be found in pneumatic systems.	BT-2	Understanding		
15.	Define pump priming.	BT-1	Remembering		
16.	List the four important steps of condition based monitoring.	BT-1	Remembering		
17.	Mention the three stages of maintenance.	BT-1	Remembering		
18.	Indicate the physical signals that helps to find the fault in a CBM	BT-2	Understanding		

	technique.		
19.	What is meant by interlock contacts?	BT-1	Remembering
20.	Mention any two roles of pneumatic systems in low cost automation	BT-2	Understanding
21.	Define power pack.	BT-1	Remembering
22.	List the important components of a hydraulic power Pack.	BT-1	Remembering
23.	Suggest remedies for the problem of leakage of compressed air in pneumatic system.	BT-2	Understanding
24.	Suggest a remedy to reduce or prevent excessive heating of oil in hydraulic system.	BT-2	Understanding
25.	List the causes for a noisy operation in a pump.	BT-2	Understanding

PART-B (13 Marks)				
S.No	Questions	Marks	Level	Competence
1.	Design and draw a circuit using the hydraulic components for	13	BT-6	Creating
	the Shaping operation.			
2.	Design and draw a circuit using the hydraulic components for	13	BT-6	Creating
	the Drilling operation.			
3.	List the common type of defects occurring in a hydraulic	13	BT-2	Understanding
	system.			
4.	Write short notes on the various approaches used for reducing	13	BT-4	Analyzing
	the entry the contaminants in the hydraulic system.			
5.	Describe the causes of the contamination occurring in the	13	BT-4	Analyzing
	hydraulic system.			
6.	(i) Explain the preventive action to be taken to control the	7	BT-4	Analyzing
	component fittings and failure due to the entry of the			
	contaminants.			
	(ii) Write short notes on the methods of measurement	6		
	contamination levels in a hydraulic system.			
7.	Discuss the corrective measures taken to enhance the filter life	13	BT-4	Analyzing
	on a regular basis.			
8.	Enumerate the important guidelines given to the maintenance	13	BT-2	Understanding
	personnel to maintain the effective functioning of the			
	hydraulic system.			

9.	Design a circuit using the hydraulic components for the Press	13	BT-6	Creating
	operation.			
10.	Enumerate on hydraulic and pneumatic power packs with	13	BT-2	Understanding
	suitable sketches and illustrations.			
11.	Explain in detail about how the failure and trouble shooting is	13	BT-2	Understanding
	carried out in pneumatic system.			
12.	Design a circuit using the hydraulic components for the surface	13	BT-6	Creating
	grinding operation.			
13.	Design and draw a circuit using the hydraulic components for	13	BT-6	Creating
	the planning machine operation.			
14.	Tabulate the various faults, probable causes and also the		BT-2	Understanding
	remedial actions for the following hydraulic system			
	components:			
	(i) Pump	3		
	(ii) DC Valve	3		
	(iii) Hydraulic motors	3		
	(iv) Hydraulic cylinders	4		
15.	Enlist the various faults, probable causes and also the remedial		BT-2	Understanding
	actions for the following pneumatic system components:			
	(i) Compressor	3		
	(ii) FRL Unit	3		
	(iii) Air cylinder	3		
	(iv) Pipelines and hoses.	4		
16.	Enumerate the rules to be carried out for the installation of	13	BT-2	Understanding
	tubing.			
17.	Write short notes on the trouble- possible causes and remedies	13	BT-4	Analyzing
	for regulator and lubricator.			
18.	Design a circuit using the hydraulic components for any	13	BT-6	Creating
	material handling operations.			

PART-C (15 Marks)				
S.No	Questions	Marks	Level	Competence
1.	Design and develop a pneumatic system to pick and place	15	BT-6	Creating

	objects.			
2.	Design and develop the tool handling system in a CNC	15	BT-6	Creating
	machine			
3.	Narrate a case study of low cost automation using the hydraulic	15	BT-6	Creating
	and pneumatic system.			
4.	Draw and explain a pneumatic circuit to actuate a shaping	15	BT-6	Creating
	machine ram. Incorporate the following features in the circuit.			
	(a) rapid tool approach (b) slow cutting (c) rapid tool			
	retraction / return.			
5.	Design and develop a hydraulic circuit for material handling	15	BT-6	Creating
	in a fork lift applications.			