SRM VALLIAMMAI ENGINEERING COLLEGE (An Autonomous Institution) SRM Nagar, Kattankulathur – 603 203 ## DEPARTMENT OF MEDICAL ELECTRONICS Regulation – 2019 Academic Year: 2022 – 23 Odd Semester Prepared by Dr. R. Dhanush Assistant Professor (S.G) / MDE # SRMVALLIAMMAI ENGINEERING COLLEGE # (An Autonomous Institution) ### UNIT I – INTRODUCTION TO MICROBIOLOGY Classification and nomenclature of microorganisms, microscopic examination of microorganisms: Light, Fluorescent, Dark field, Phase contrast, and Electron microscopy. | | PART – A | | | |------|--|-------|---------------| | Q.No | Questions | BT | Competence | | | GINEE | Level | | | 1 | Define the microorganism classification groups Protozoa & Slime moulds. | BTL1 | Remembering | | 2 | Identify the significance of Algae & Bacteria classification biological groups. | BTL1 | Remembering | | 3 | List the different sources for microorganism names. | BTL1 | Remembering | | 4 | Differentiate between classification and nomenclature. | BTL4 | Analyzing | | 5 | Write the various biological groups used for microorganism classification. | BTL3 | Applying | | 6 | Show the various taxonomic ranks used for classification. | BTL3 | Applying | | 7 | Enlist some cellular microorganisms based on clinical purpose. | BTL1 | Remembering | | 8 | When to use initials during naming the microorganisms? | BTL1 | Remembering | | 9 | Enumerate various rules used in nomenclature. | BTL1 | Remembering | | 10 | Categorize the steps used to name subspecies and serovars. | BTL4 | Analyzing | | 11 | Examine the nomenclature used during the naming of microorganism using | BTL4 | Analyzing | | | binary names. | | | | 12 | Employ the significance of classification of microorganism in clinical practice. | BTL3 | Applying | | 13 | Articulate the principal types of viruses causing human disease. | BTL3 | Applying | | 14 | Inspect the various direct methods used for identification of bacteria. | BTL4 | Analyzing | | 15 | Categorize various indirect methods used for identification of bacteria. | BTL4 | Analyzing | | 16 | Explain the importance of microscopy identification method. | BTL4 | Understanding | | 17 | Indicate the significance of the cultural characteristics method. | BTL2 | Understanding | | 18 | Review the kind of information you think that can be provided | BTL2 | Understanding | | | by microscopic observations of microorganisms. | | | | 19 | How did Pasteur and Tyndall finally settle the spontaneous generation controversy? | BTL2 | Understanding | | 20 | Extend the set of information that you think can be provided | BTL2 | Understanding | | | by isolating microorganisms from their natural environment and culturing | | | | | them in the laboratory. | | | | 21 | Why was the belief in spontaneous generation an obstacle to the development | BTL2 | Understanding | | | of microbiology as a scientific discipline? | | | | |----------|--|------|--------|---------------------| | 22 | Use the various steps involved in scientific method used to conduct | | BTL3 | Applying | | | experimental research. | | | PP-J8 | | 23 | Illustrate the scientific method used in experimental science. How does a theory differ from a hypothesis? Why is it important to have a control group | n? | BTL3 | Applying | | 24 | | ρ. | BTL4 | A 1 | | 24 | Criticize Koch's postulates. What is a pure culture? Why are pure cultures | | B1L4 | Analyzing | | | important to Koch's postulates? PART – B | | | | | 1 | | | BTL2 | Undougtonding | | 1 | (i) Explain the various stages involved in designing and conducting | (0) | DIL2 | Understanding | | | _ • | (9) | | | | | (ii) Describe the role of Koch's postulates to demonstrate that mycobacteriu | | | | | _ | tuberculosis is the causative agent of tuberculosis. | (4) | DTI 2 | II J4 J: | | 2 | Classify the five most important research areas to pursue | (12) | BTL2 | Understanding | | 2 | | (13) | DTI A | Timed acceptance 10 | | 3 | Indicate the various aspects of resolution, numerical aperture, working | (12) | BTL2 | Understanding | | 4 | | (13) | | TI-dame. | | 4 | Report the various rules of nomenclature used during naming of | (12) | BTL1 | Understanding | | | | (13) | DOTE 4 | - · | | 5 | Enlist the parts of a light microscope and describe their functions. (13) | | BTL1 | Remembering | | 6 | Illustrate the following | | BTL3 | Applying | | U | (i) refraction and refractive index. | (5) | DILS | Applying | | | (ii) focal point. | (4) | 140 | | | | (iii) focal length. | (4) | 111 | | | 7 | Explain the importance of microscope resolution and numerical aperture wi | ` ' | BTL3 | Applying | | ' | The state of s | (13) | DILS | Applying | | 0 | | (13) | DEL 2 | A 1 · | | 8 | Interpret a method to convert light microscope to a dark field microscope (13) | | BTL3 | Applying | | 0 | | | DEL 2 | A 1 • | | 9 | Illustrate the following concept in detail | | BTL3 | Applying | | | (i) The formation of a micrograph of the protozoan Amoeba proteus using | | | | | | DIC microscope. (6) | | | | | 10 | (ii) The condenser lens system in dark field microscope (7) |) | BTL1 | Remembering | | 10 | State in detail the principle of production of contrast in a phase-contrast microscopy. | 13) | DILI | Kemembering | | 11 | Model a microscope with the following details | 13) | BTL4 | Analyzing | | 11 | (i) If a specimen is viewed using a 5X objective in a microscope with | ith | DIL4 | Anaryzing | | | a 15X eye piece. (7) | | | | | | (ii) Why don't most light microscopes use 30X ocular lenses for | | | | | | greater magnification? (6) | | | | | 12 | Analyze the function of immersion oil. | (13) | BTL4 | Analyzing | | 13 | Define and identify various steps and stages involved in staining of | | BTL2 | Understanding | | | microorganisms. | (13) | | | | 14 | Enumerate the characteristics of light and transmission electron microsc | opes in | BTL1 | Remembering | |----|--|---------|------|---------------| | | a tabular column. | (13) | | | | 15 | List the limits of microscopic resolution. | (13) | BTL1 | Remembering | | 16 | Examine an overview of TEM operation and compare it with the operation | on | BTL4 | Analyzing | | | of light microscope. | (13) | | | | 17 | Inspect the significance of lenses and bending of light and tabulate the | | BTL4 | Analyzing | | | common units of measurement used in microscopy. | (13) | | | | | PART – C | • | | | | 1 | Identify the working of fluorescence microscope system | | BTL4 | Analyzing | | 1 | with a neat diagram. | (15) | DIL | Anaiyzing | | 2 | Infer the specimen shadowing and transmission electron micrograph fro | ` / | BTL2 | Understanding | | | transmission electron microscope system. | (15) | | | | 3 | Under what circumstances would it be desirable to prepare specimens for | or | BTL3 | Applying | | | the TEM by use of negative staining? Shadowing? Freeze-etching? | (15) | | | | 4 | How does the scanning electron microscope operate and in what way | 0 | BTL1 | Remembering | | | does its function differ from that of the TEM? The SEM is used to study | 1 | | | | | which aspects of morphology? | (15) | - | | | 5 | Explain the following: | | BTL2 | Understanding | | | (i) Fixation, dye and chromophore. | (5) | 1 | | | | (ii) Basic dye, acidic dye and simple staining. | (5) | TI | | | | (iii) Differential staining, negative staining, and acid-fast staining | . (5) | - | | ## UNIT II – MICROBES- STRUCTURE AND REPRODUCTION Structural organization and multiplication of bacteria, Viruses (TMV, Hepatitis B), Algae(cyanophyta, rhodophyta) and Fungi (Neurospora), Life history of actinomycetes (Streptomyces), Yeast (Saccharomyces), Mycoplasma (M. pneumoniae) and Bacteriophages (T4 phage, lphage) | | PART – A | | | | | |----|---|-------|-------------|--|--| | Q. | Questions | BT | Competence | | | | No | | Level | | | | | 1 | What characteristic shapes can bacteria assume? Describe the ways in | BTL1 | Remembering | | | | | which bacterial cells cluster together. | | | | | | 2 | Label and draw a bacterial cell and label all important structures. | BTL1 | Remembering | | | | 3 | List the functions of the procaryotic plasma membrane | BTL1 | Remembering | | | | 4 | Prepare a diagram to represent the schematic of bacterial plasma membrane. | BTL3 | Applying | | | | 5 | Write the structure of a gas vacuole to its function. | BTL3 | Applying | | | | 6 | Illustrate how cell wall structure and sugar content are used to classify the | BTL3 | Applying | | | | | actinomycetes | | | | | | 7 | Interpret seven steps are involved in the infection process and pathogenesis | BTL1 | Remembering | | | | | of bacterial diseases? | | | | | | 8 | Mention the significance of nucleocapsid, capsid, icosahedral capsid, helical | BTL1 | Remembering | | | | | capsid. | | | | | | 9 | Enumerate the major properties of the genus Streptomyces. | BTL1 | Remembering | | | | 10 | Inspect the importance of gapped DNA in hepadnavirus. | BTL4 | Analyzing | | | | 11 | Seperate three ways in which Streptomyces is of ecological importance. | BTL4 | Analyzing | | | Page 4 of 13 | 12 | Articulate the reproductive technique in Cyanophyta & Rhodophyta. | | BTL2 | Understanding | |----|--|---------------|------|---------------| | 13 | Identify the `general properties of actinomycetes. | | BTL2 | Understanding | | 14 | Indicate with appropriate label and draw the helical model of TMV. | | BTL2 | Understanding | | 15 | Recognize the process involved in reproduction of the virus. | | BTL2 | Understanding | | 16 | Categorize the yeast and mold based on their differences. | | BTL4 | Analyzing | | 17 | Describe the various types of reproduction fungi. | | BTL2 | Understanding | | 18 | Review the various stages in lifecycle of Saccharomyces | | BTL2 | Understanding | | | cerevisiae | | | | | 19 | Prepare a table with various cellular organelles in a yeast cell. | | BTL3 | Applying | | 20 | Interpret different characteristics of neurospora genus of ascomycete fun | ıgi. | BTL3 | Applying | | 21 | Point out the morphological structure of yeast with a diagram | | BTL4 | Analyzing | | 22 | Outline the lifecycle of a bacteriophage | | BTL4 | Analyzing | | 23 | Sketch various stages involved in the assembly of T4 Bacteriophage. | | BTL3 | Applying | | 24 | Analyze the morphological structure of T4 Bacteriophage with a neat dia | agram | BTL4 | Analyzing | | | PART-B | 3 | | | | 1 | (i) Describe a bacterial cell and label all important structures. | (7) | BTL2 | Understanding | | | (ii) Indicate the various functions of prokaryotic structures | | 3 | | | | found in bacteria | (6) | - | | | 2 | (i) Compare the following terms: nucleocapsid, capsid, icosa | | BTL4 | Analyzing | | | capsid, helical capsid, complex virus, binal symmetry, pro- | | 1 | | | | capsomer, pentamer or penton, and hexamer or hexon. (ii) How do pentamers and hexamers associate to form a con- | (8)
mplete | 111 | | | | icosahedron; what determines helical capsid length | присс | (G) | | | | and diameter? | (3) | 177 | | | | (iii) Illustrate the TMV structure with a neat diagram | (2) | | | | 3 | Explain the importance of the Australian antigen and dane particle in | | BTL2 | Understanding | | | discovery of morphological structure of Hepatitis B. | (13) | | | | 4 | Write the organization and reproduction of cyanoaphyta. | (13) | BTL1 | Remembering | | 5 | Predict the cell wall structure and sugar content are used to classify the | | BTL3 | Applying | | | actinomycetes. Include a brief description of the four major wall types | (13) | | | | 6 | Illustrate the following with a neat diagram | | BTL3 | Applying | | | (i) The Fluid Mosaic Model of Membrane Structure | (5) | | | | | (ii) The Structure of a Polar Membrane Lipid. | (4) | | | | | (iii) Bacterial membranes. | (4) | | | | 7 | Show three ways in which Streptomyces is of ecological importance. | | BTL3 | Applying | | | Why do you think Streptomyces spp. produce antibiotics? | (13) | | | | 8 | Name the various the major properties of the genus Streptomyces. | (13) | BTL1 | Remembering | | 9 | Interpret the morphological significance of suborder streptomycineae | (13) | BTL3 | Applying | | 10 | Explain in detail the various stages in binary fission reproduction method | d | BTL1 | Remembering | | | with neat diagram. | (13) | | | | 11 | Describe the various types of bacteriophages. | (13) | BTL1 | Remembering | | | | · | | | | 12 | Enumerate the significance of different stages in cell cycle of E coli. (13) | BTL2 | Understanding | |----|---|------|---------------| | 13 | Review the cell reproduction cycle of mycoplasma. (13) | BTL2 | Understanding | | 14 | Illustrate the relationship between Mycoplasma genome size and growth requirements. (13) | BTL3 | Applying | | 15 | Categorize the various stages involved in the life cycle of the yeast Saccharomyces. (13) | BTL4 | Analyzing | | 16 | Analyze the Asexual reproduction in the fungi and some representative spores with diagrammatic illustrations. (13) | | Analyzing | | 17 | Examine the morphology of t4 phage with a neat diagram. (13) | BTL4 | Analyzing | | | PART – C | | | | 1 | Analyze the various stages in the life cycle of the Bacteriophage. Describe briefly the lytic and lysogenic cycle. (15) | BTL4 | Analyzing | | 2 | Describe the endocytic pathway and the three routes | BTL2 | Understanding | | | that deliver materials to lysosomes for digestion. Which type of endocytosis | 1 | | | | does not deliver ingested material to lysosomes? (15) | 1 | | | 3 | Write the significance of the following | BTL1 | Remembering | | | (iii) Rough & smooth EPR. (5) | G | | | | (ii) Golgi apparatus. (5) | - | | | 4 | (iii) Mitochondria. (5) Illustrate the structure of the nucleus. What are euchromatin and | BTL3 | Applying | | 7 | heterochromatin? What is the role of the pores in the nuclear envelope? (15) | | Applying | | 5 | What is meiosis, how does it take place, and what is its role in the microbial life cycle? (15) | BTL3 | Applying | ## UNIT III - MICROBIAL NUTRITION, GROWTH AND METABOLISM Nutritional classification of microorganisms based on carbon, Energy and electron sources . Definition of growth, Balanced and unbalanced growth, Growth curve and different methods to quantify bacterial growth:(counting chamber, viable count method, counting without equipment),Different media used for bacterial culture (defined, complex, selective, differential, enriched),The mathematics of growth-generation time, Specific growth rate. | DA | \mathbf{DT} | | A | |----|---------------|---|---| | PA | KI | _ | A | | Q.
No | Questions | BT
Level | Competence | |----------|-----------------------------------|-------------|-------------| | 1 | Define heterotroph and autotroph. | BTL1 | Remembering | | 2 | What are nutrients? On what basis are they divided into macroelements and trace element | BTL1 | Remembering | |----|--|---------|-----------------| | 3 | What are the six most important macroelements? How do cells use them? | BTL1 | Remembering | | 4 | What are growth factors? What are vitamins? | BTL3 | Applying | | 5 | How can humans put to use a microbe with a specific growth factor Requirement? | BTL3 | Applying | | 6 | Illustrate the growth factors that microorganisms produce industrially. | BTL3 | Applying | | 7 | Why do you think amino acids, purines, and pyrimidines are often growth factors, whereas glucose is not? | BTL1 | Remembering | | 8 | Mention the two pathways function during the procaryotic cell cycle. | BTL1 | Remembering | | 9 | How does the procaryotic cell cycle compare with the eucaryotic cell cycle? | BTL1 | Remembering | | 10 | Tabulate the sources of carbon, energy, and electrons. | BTL4 | Analyzing | | 11 | Categorize two trace elements. How do cells use them? | BTL4 | Analyzing | | 12 | Review the four phases of the growth curve in a closed system. | BTL2 | Understanding | | 13 | Differentiate the principles of turbidity and microbial mass measurement. | BTL4 | Analyzing | | 14 | Inspect the role of ATP in metabolism. | BTL4 | Analyzing | | 15 | Analyze the equations for the endergonic or exergonic reactions. | BTL4 | Analyzing | | 16 | Do living cells increase entropy within themselves? Do they increase entropy in the environment? | BTL4 | Analyzing | | 17 | What are cardinal temperatures? | BTL2 | Understanding | | 18 | Infer the significance between the dilution rate and maintenance energy | BTL2 | Understanding | | 19 | Mention the importance of growth rate rise with increasing temperature and then fall again at higher temperatures. | BTL2 | Understanding | | 20 | Indicate the significance of growth in living organisms. | BTL2 | Understanding | | 21 | Estimate the generation or doubling time and the mean growth rate constant. | BTL2 | Understanding | | 22 | Interpret the phenomenon of entropy and enthalpy. | BTL3 | Applying | | 23 | Employ a generalized method to write equation for a redox reaction. | BTL3 | Applying | | 24 | Show the significance of energy cycle and ATP's role in it. | BTL3 | Applying | | | | | | | 1 | PART – B | DTT 4 | IIndot 1° | | 1 | Review the ways in which microorganisms are classified based on their requirements for energy, carbon, and electrons. (13) | BTL2 | Understanding | | 2 | requirements for energy, carbon, and electrons. (13) Indicate the nutritional requirements of the major nutritional groups | BTL2 | Understanding | | | and give some microbial examples of each. (13) | V 1 L/2 | o naci stanting | | 3 | Explain facilitated diffusion, active transport, and group translocation in terms | BTL2 | Understanding | | | of their distinctive characteristics and mechanisms. (13) | · | | | 4 | Describe the significance of measurement of cell numbers. (13) | BTL1 | Remembering | | 5 | Distinguish between turbidity and microbial mass measurement. (13) | BTL2 | Understanding | | 6 | Examine the concept of membrane filtration procedure | (13) | BTL4 | Analyzing | |----|---|-------------------|--------------|---------------| | 7 | Interpret the concept of specific growth rate and apply it to a real-time scenario. | (13) | BTL3 | Applying | | 8 | Predict functional importance between chemostat and turbidostat continuiture system. | nuous
(13) | BTL3 | Applying | | 9 | Analyze the influence of solutes and water activity on growth. | (13) | BTL4 | Analyzing | | 10 | State in detail the effect of pH on microbial growth. | (13) | BTL1 | Remembering | | 11 | List the different phases of microbial growth curve in a closed system. | (13) | BTL1 | Remembering | | 12 | Analyze the overall schema of metabolism. | (13) | BTL4 | Analyzing | | 13 | Describe the flow of carbon and energy in an ecosystem. | (13) | BTL1 | Remembering | | 14 | Categorize the laws of thermodynamics with appropriate interpretations | s. (13) | BTL4 | Analyzing | | 15 | Illustrate the importance of loss of viability caused in a irreparable cell. | (13) | BTL3 | Applying | | 16 | Break down the process of counting and identifying microorganisms in natural Environments. | (13) | BTL4 | Analyzing | | 17 | Apply the principle the cell-cell communication within microbial populations. | (13) | BTL3 | Applying | | | PART – C | 1 | 0 | | | 1 | Model the growth rates in microorganisms by fitting exponential and curves. Use appropriate test data to simulate the results. From the sin data use conservative approach to Compute generation time microorganisms. | nulated | Green | Analyzing | | 2 | Explain the structure and classification aspects of enzymes with emphalock and key model of enzyme function. | sis on (15) | BTL2 | Understanding | | 3 | Apply the following environmental factors on the growth rate (i) Temperature. (ii) Oxygen Concentration. (iii) Pressure. | (5)
(5)
(5) | BTL3 | Applying | | 4 | Illustrate different approaches and methods used to quantify bacterial growth. | (15) | BTL3 | Applying | | 5 | Enlist different media used for bacterial culture. | (15) | BTL1 | Remembering | ### **UNIT - IV CONTROL OF MICROORGANISMS** Physical and chemical control of microorganisms, Definition of sterilization, Dry and moist heat, Pasteurization, Tyndalization, Radiation, Ultrasonication, Filtration. Disinfections anitization, Antiseptics sterilants and fumigation. Mode of action and resistance to antibiotics, Clinically important microorganisms. ### PART – A | Q.
No | Questions | BT
Level | Competence | |----------|---|-------------|---------------| | 1 | Mention the significance of sterilization and sterilant. | BTL1 | Remembering | | 2 | Define disinfection and disinfectant. | BTL1 | Remembering | | 3 | Describe the principles of sanitization, antisepsis and antiseptic. | BTL1 | Remembering | | 4 | How one decides whether microorganisms are actually dead? | BTL3 | Applying | | 5 | Employ graphically the pattern of microbial death. | BTL3 | Applying | | 6 | Illustrate the significance of population size and composition. | BTL3 | Applying | | 7 | Recognize the concepts of chemotherapy, germicide, bactericide and bacteriostatic. | BTL1 | Remembering | | 8 | State the significance of heat in controlling microbial growth. | BTL1 | Remembering | | 9 | Outline the phenomenon of thermal death time. | BTL1 | Remembering | | 10 | Categorize the approximate conditions for moist heat killing. | BTL4 | Analyzing | | 11 | Point out the importance of dry heat sterilization | BTL4 | Analyzing | | 12 | Examine the importance of filtration in controlling microbial growth. | BTL4 | Analyzing | | 13 | Inspect the use of chemical agents in control of microbial growth. | BTL4 | Analyzing | | 14 | Indicate the importance of depth filters and membrane filters | BTL2 | Understanding | | 15 | Examine the advantages and disadvantages of ultraviolet light and ionizing Radiation. | BTL4 | Analyzing | | 16 | Analyze the significance of pasteurization in the past for death of infants. | BTL4 | Analyzing | | 17 | Interpret the need of phenol coefficient test. | BTL3 | Applying | | 18 | How can low temperatures be used to control microorganisms? | BTL2 | Understanding | | 19 | Why is boiling milk over prolonged periods not a desirable method for controlling spoilage and spread of milk-borne pathogens? | BTL2 | Understanding | | 20 | What three things one must do when operating an autoclave to help ensure success? | BTL2 | Understanding | | 21 | Infer the Dans Z values for some food-borne pathogens. | BTL2 | Understanding | | 22 | Express the longitudinal cross section of a typical autoclave showing some of its parts and the pathway of steam in a schematic representation. | BTL2 | Understanding | | 23 | Interpret the activity levels of selected germicides | BTL3 | Applying | | 24 | Prepare a schematic design of an EtO sterilizer. | BTL3 | Applying | | | PART – B | | | | |----------|---|-------------------|-----------|------------------------| | 1 | Explain the various microbial control methods in an hierarchical tree structure. | (13) | | Understanding | | 2 | Complete the pattern of microbial death and fit the assessment with an exponential curve. | (13) | BTL3 | Applying | | 3 | Review the various aspects of use of heat as physical methods in contro microbial growth. | l of (13) | | Understanding | | 4 | Examine the significance of a membrane filters in sterilization process. | (13) | | Remembering | | 5 | Indicate the sterilization process used in automatically controlled autocl system. | ave (13) | BTL2 | Understanding | | 6 | Illustrate the following conditions influencing the effectiveness of antimicrobial agents (i) Concentration. (ii) Duration of exposure. (iii) Local environment. | (5)
(4)
(4) | BTL3 | Applying | | 7 | Review the working principle of UV treatment system for disinfection of water. | (13) | BTL2 | Understanding | | 8 | Interpret the use of following physical methods in control of microbial growth (i) Radiation. (ii) Low temperatures. | (7)
(6) | BTL3 | Applying | | 9 | Apply the working principle of sterilization system during the onset of ionization radiation. State in detail the various universal precautions for microbiology | (13) | BTL3 BTL1 | Applying Remembering | | 11 | Laboratories. Recognize the functioning of an ethylene oxide sterilizer. | (13) | | Remembering | | 12 | Describe the operation of a biological safety cabinet. | (13) | | Understanding | | 13
14 | Name the use of phenolics and alcohols in control of microbial growth. Categorize the various tests involved to check the effectiveness of | (13) | BTL1 BTL4 | Remembering Analyzing | | 15 | antimicrobial agent. Examine the working principle of dry heat incineration. | (13) | BTL4 | Analyzing | | 16 | Inspect different steps in the mechanism of antimicrobial resistance to antibiotics. | (13) | BTL4 | Analyzing | | 17 | Analyze the use of heavy metals and sterilizing gases in control of microfrowth. | ` ′ | BTL4 | Analyzing | | | PART –C | , | | 1 | | 1. | Explain various different systems that use heat as a physical method to control microbial growth. (15) | BTL2 | Understanding | |----|---|------|---------------| | 2. | Describe the structures of some frequently used disinfectants and antiseptics and explain their significance. (15) | BTL2 | Understanding | | 3. | Recognize the use of following chemical agents in microbial control (i) Sterilizing gases. (ii) Chemotherapeutic agents. (5) | BTL1 | Remembering | | 4. | Integrate various different systems that use filtration and radiation as a physical method to control microbial growth. (15) | BTL4 | Analyzing | | 5. | Suppose hospital custodians have been assigned the task of cleaning all showerheads in patient rooms in order to prevent the spread of infectious disease. What two factors would have the greatest impact on the effectiveness of the disinfectant the custodians use? Explain what that impact would be. Also briefly describe about other conditions. (15) | BTL3 | Applying | ### UNIT V - INDUSTRIAL MICROBIOLOGY Microbes involved in preservation (Lactobacillus, bacteriocins), Spoilage of food and food borne pathogens (E.coli, S.aureus, Bacillus, Clostridium). Industrial use of microbes (production of penicillin, alcohol, vitamin B-12); Biogas; Bioremediation (oil spillage leaching of ores by microorganisms, pollution control); Biofertilizers, Biopesticides. Biosensors. Quality assurance — Quality control — Practice of cGMP — Schedule M — USFDA. | PART – A | | | | | |----------|--|-------------|-------------|--| | Q.
No | Questions | BT
Level | Competence | | | 1 | What steps are usually taken to purify drinking water? | BTL1 | Remembering | | | 2 | Why is chlorination, although beneficial in terms of bacterial pathogen control, of environmental concern? | BTL1 | Remembering | | | 3 | Which important waterborne pathogens are not controlled reliably by chlorination? | BTL1 | Remembering | | | 4 | Interpret the significance of coagulation. | BTL3 | Applying | | | 5 | Show the various steps involved in water purification process. | BTL3 | Applying | | | 6 | Illustrate the various criteria required for "ideal" indicator organism. | BTL3 | Applying | | | 7 | Define coliform. How does this definition relate to presumptive, confirmed, and completed tests? | BTL1 | Remembering | | | 8 | In what type of environment is it better to use fecal enterococci rather than fecal coliforms as an indicator organism? Why? | BTL1 | Remembering | | | 9 | Why has the defined substrate test with ONPG and MUG been accepted as a test of drinking water quality? | BTL1 | Remembering | | | 10 | Differentiate the various metrics used to assess water quality. | BTL4 | Analyzing | | | 11 | Differentiate between coliforms and fecal coliforms in the laboratory. | | BTL4 | Analyzing | |----|---|-------|------|---------------| | 12 | Outline the advantages and disadvantages of membrane filters for microbiological examinations of water. | | BTL2 | Understanding | | 13 | Categorize the components that should limit the reactions in a BOD test. | | BTL4 | Analyzing | | 14 | Identify the components in excess and limiting at the end of incubation per | iod | BTL2 | Understanding | | 15 | Inspect the factors that can lead to a nitrogen oxygen demand (NOD) in wa | ter. | BTL4 | Analyzing | | 16 | Analyze the parameters that can be monitored in a modern, large-scale industrial fermentation. | | BTL4 | Analyzing | | 17 | Select the minerals can contribute to eutrophication | | BTL2 | Understanding | | 18 | Review the critical limiting factors are used in the penicillin and streptomycin fermentations. | | BTL2 | Understanding | | 19 | Describe the major uses for biopolymers and biosurfactants. | - | BTL2 | Understanding | | 20 | Use alternative definitions for the term biodegradation. | 1 | BTL3 | Applying | | 21 | Illustrate the components that should not limit reaction rates in a BOD test. | - 1 | BTL3 | Applying | | 22 | What are biosensors and how do they detect substances? | | BTL2 | Understanding | | 23 | Illustrate the significance of GMP Schedule M. | | BTL3 | Applying | | 24 | Categorize the five main components of good manufacturing practice. | | BTL4 | Analyzing | | | PART – B | | (4) | | | 1 | Indicate the various steps involved in water purification steps with a neat Diagram. | (13) | BTL2 | Understanding | | 2 | Enlist different stages involved in the multiple-tube fermentation test. | (13) | BTL1 | Remembering | | 3 | Enumerate the different metrics used to evaluate the quality of water. | (13) | BTL1 | Remembering | | 4 | State the significance of major steps in primary, secondary, and tertiary treatment of wastes. | (13) | BTL1 | Remembering | | 5 | Analyze the steps of organic matter processing that occur in anaerobic Digestion. Mention the significance acetogenesis step. | (13) | BTL4 | Analyzing | | 6 | Illustrate the following with a neat diagrams | (- / | BTL3 | Applying | | | (i) Constructed Wetland for Wastewater Treatment. | (7) | | | | | (ii) The Conventional Septic Tank Home Treatment System. | (6) | | | | 7 | Recognize the working principle of industrial stirred fermenters. | (13) | BTL2 | Understanding | | 8 | Infer the following products of industrial microbiology | | BTL2 | Understanding | | | (i) Antibiotics. | (7) | | | | | (ii) Amino acids. | (6) | | | | 9 | Analyze the alternate methods for mass culture. | (13) | BTL4 | Analyzing | | 10 | Recognize the phenomenon of stimulating biodegradation. | (13) | BTL1 | Remembering | |----|--|-------|------|---------------| | 11 | Explain in detail the following | | BTL2 | Understanding | | | (i) Metal Bioleaching. | (4) | | | | | (ii) Biopesticides. | (4) | | | | | (iii) Bio augmentation. | (5) | | | | 12 | Analyze the significance of a subsurface engineered bioremediation | | BTL4 | Analyzing | | | System. | (13) | | | | 13 | Categorize the components used to design a biosensor used in industrial | | BTL4 | Analyzing | | | microbiology. | (13) | | | | 14 | Inspect the phenomenon of phytoremediation with a neat diagram. | (13) | BTL4 | Analyzing | | 15 | Show the major organic acids produced by microbial processes. | (13) | BTL3 | Applying | | 16 | Interpret the major microbial products and processes of Interest in Indust | trial | BTL3 | Applying | | | Microbiology. | (13) | | | | 17 | Practice and use the growth of microorganisms in an industrial setting. | (13) | BTL3 | Applying | | | PART – C | 0 | | | | 1 | Integrate different sectors in a waste water treatment process to build a a | | BTL4 | Analyzing | | | secondary sewage treatment. | (15) | DIL | 7 mary zmg | | 2 | Employ appropriate principle used for recombinant vaccine production. | (15) | BTL3 | Applying | | 3 | Recognize the Streptavidin-Biotin binding systems and enumerate the va | rious | BTL1 | Remembering | | | application of such systems. | (15) | 111 | | | 4 | Inspect the mode of action of the Bacillus thuringiensis toxin. | (15) | BTL4 | Analyzing | | | Describe the use of microorg <mark>anisms</mark> in the fields of industrial microbiolog | | BTL2 | Understanding | | | Biotechnology. | (15) | 111 | |