SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution)

SRM Nagar, Kattankulathur – 603 203.

DEPARTMENT OF

ELECTRICAL AND ELECTRONICS ENGINEERING

QUESTION BANK

III SEMESTER

1916303 WIND ENERGY CONVERSION SYSTEMS

Regulation–2019

Academic Year 2022–23 ODD

Prepared by

Ms.R.Elavarasi , Assistant Professor (OG)/EEE

SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution)

SRM Nagar, Kattankulathur – 603 203.

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

QUESTION BANK

SUBJECT: 1916303 WIND ENERGY CONVERSION SYSTEMS SEM / YEAR: III / II

UNIT -I: INTRODUCTION

Components of WECS-WECS schemes-Power obtained from wind-simple momentum theory Power coefficient-Sabinin's Theory-Aerodynamics of Wind turbine.

$\mathbf{PAKT} - \mathbf{A}$					
O.No	Questions	BT	Competence	Course	
X	Questions	Level	competence	Outcome	
1.	List out the components of WECS.	1	Remember	CO1	
2.	How is the WECS classified?	3	Apply	CO1	
3.	What is the power coefficient of wind turbine?	4	Analyze	CO1	
4.	How is the coefficient of power calculated?	1	Remember	CO1	
5.	List out the advantages of wind power.	2	Understand	CO1	
6.	Plot the C _p curve of wind turbine.	5	Evaluate	CO1	
7.	What are the two basic design of turbines?	2	Understand	CO1	
8.	List the disadvantages of wind power generation.	2	Understand	CO1	
9.	What are the types of wind mills?	1	Remember	CO1	
10.	What is the application of Wind energy?	5	Evaluate	CO1	
11.	What are factors considering while selecting wind power generation?	1	Remember	CO1	
12.	List the important wind turbine generation installations in India.	4	Analyze	CO1	
13.	List the types of generators used in wind power plant.	2	Understand	CO1	
14.	Demonstrate the function of gear box in wind mills.	3	Apply	CO2	
15.	What are the examples of wind energy?	4	Analyze	CO1	
16.	How do wind turbine works?	1	Remember	CO1	
17.	How efficient is wind energy?	6	Create	CO1	
18.	What is momentum theory in wind power generation?	6	Create	CO1	
19.	How is rotor power coefficient calculated?	1	Remember	CO1	
20.	With an illustration describe the various forces acting on an air foil.	3	Apply	CO2	
21.	What is aerodynamic braking system?	1	Remember	CO1	
22.	Mention the four components of aerodynamics?	1	Remember	CO1	
23.	List out the function of nacelle.	2	Understand	CO1	
24.	What is the maximum efficiency of a wind turbine?	2	Understand	CO1	

PART – B						
1.	Explain the different schemes for wind electric generation. (13)	1	Remember	CO1		
2.	What is meant by Sabinin's theory? Explain in detail. (13)	5	Evaluate	CO1		
3.	Derive Betz limit for the power co-efficient of wind turbine using simple momentum theory. (13)	6	Create	CO1		
4.	Draw the basic block diagram and explain the components of wind energy conversion system in detail (13)	3	Apply	C01		
5.	Explain in detail about the variable power wing energy (13)	2	Understand	CO1		
6.	With neat sketch explain about the Wind turbine functional control elements (13)	1	Remember	CO1		
7.	Briefly explain about the wind energy conversion schemes (13)	2	Understand	C01		
8.	Explain about the transformation of kinetic wind energy to rotational shaft energy. (13)	1	Remember	CO1		
9.	Draw the block diagram shows the various component of wind turbine and explain function of each part (13)	2	Understand	C01		
10.	Explain in detail about sabinin's theory of ideal wind turbine. Derive the sabinin's limit of power coefficient Cp. (13)	1	Remember	CO1		
11.	Explain in detail about simple momentum theory? (13)	4	Analyze	CO1		
12.	What are the environmental impacts of wind power? Explain each case in detail. (13)	4	Analyze	CO1		
13.	Derive the Betz limit of power coefficient Cp of an ideal wind turbine. (13)	4	Analyze	CO2		
14.	Derive the equation for power obtained from the wind from the first principles. (13)	3	Apply	CO2		
15.	What are the various attributes to be taken care in the aerodynamically designed wind turbine? Explain in detail (13)	1	Remember	CO1		
16.	Briefly explain about the aerodynamics wind turbine. (13)	2	Understand	CO1		
17.	 (i)Describe the factors affecting the distribution of wind energy on the surface of the earth. (7) (ii)Account on the nature of the winds. (6) 	1	Remember	CO1		
1	Discuss on sabinin's theory of ideal wind turbine. Derive the	5	Evaluate	CO1		
1.	sabinin's limit of power coefficient Cp. (15)	2	Litute	001		
2.	Derive and express the equation for power obtained from the wind from the first principles. (15)	6	Create	CO1		
3.	Mention the various attributes to be taken care in the aerodynamically designed wind turbine? Explain in detail. (15)	6	Create	CO3		
4.	Analyze the transformation of kinetic wind energy to rotational shaft energy. (15)	5	Evaluate	CO2		
5.	Derive Betz limit for the power co-efficient of wind turbine using simple momentum theory. (15)	5	Evaluate	CO2		
	UNIT- II: WIND TURBINES					
HAWI	C-VAWT-Power Developed-Thrust-Efficiency-Rotor Selection	-Rotor	design considera	ations Tip		

speed ratio-No. of Blades-Blade profile-Power Regulation-yaw control- Pitch angle control- stall control-Schemes for maximum power extraction.

PART – A				
O No	Questions	BT	Competence	Course
Q.N0	Questions	Level	Competence	Outcome
1.	Define thrust force, angle of attack.	1	Remember	CO3
		-		<u> </u>
2.	Define lift and drag force of an wind mill.	2	Understand	COl
3.	What is lift and drag coefficient?	5	Evaluate	CO3
4.	List out the factors to be considered for rotor selection of WPP	1	Remember	CO4
5.	Define Tip Speed Ratio and blade solidity.	2	Understand	CO4
6.	Sketch Cp Vs λ curves for various types of wind turbines.	1	Remember	CO2
7.	What are the two types of brakes on a wind turbine?	1	Remember	CO3
8.	What is gearbox in wind turbine?	2	Understand	CO2
9.	Define stall control of wind turbine.	6	Create	CO2
10.	What is yaw control of wind turbine?	1	Remember	CO2
11.	What is pitch control of wind turbine?	1	Remember	CO3
12.	Define tip speed ratio, laminar flow, turbulent flow.	3	Apply	CO3
13.	Compare the performance of 3 blade and 4 blade WPP.	3	Apply	CO4
14.	Draw the different blade profile for the different TSR.	4	Analyze	CO1
15.	Write the factors affecting the performance rotor of a wind mill.	5	Evaluate	CO4
16.	Express the formula for thrust force.	3	Apply	CO1
17.	Write about pitch controlled WPP.	6	Create	CO4
18.	Analyze the factors involved in estimation of wind energy at a site?	4	Analyze	CO4
19.	Define the term gradient height.	2	Understand	CO3
20.	Define capacity factor.	4	Analyze	CO2
21.	Distinguish upwind and downwind machines.	1	Remember	CO2
22.	List out the disadvantages of darrieus rotor.	1	Remember	CO3
23.	Summarize the features of VAWT.	4	Analyze	CO4
24.	Write a note on the support structure provided for VAWT.	2	Understand	CO4
	PART – B			
1.	Discuss in detail various considerations in the design procedure of wind turbine rotor. (13)	1	Remember	CO1
2.	Describe the various types of vertical axis wind turbines with suitable illustrations. (13)	1	Remember	CO3
3.	Explain various schemes of maximum power extraction applied for a WECS. (13)	1	Remember	CO3
4.	Explain the step by step procedure for designing the blade of a wind mill. (13)	1	Remember	CO2
5.	Explain the factors affecting the performance rotor of a wind mill with necessary graphs and curves. (13)	2	Understand	CO3
6.	Derive the formula for thrust force and TSR. (13)	4	Analyze	CO3

Describe about Power control techniques in wind turbines. (13) (i)Write the factors affecting the performance rotor of wind mill. (6) (ii) Compare the performance of 3 blade and 4 blade WPP. (7) (7) PART - C (7) Explain all methods of pitch control techniques of a wind mill. (15) (15) Analyze the factors affecting the performance rotor of a wind mill with necessary graphs and curves. (15) (15) Discuss on various schemes of maximum power extraction applied for a WECS. (15) (15) Demonstrate the step by step procedure for designing the blade of a wind mill. (15) (15) Compare stall controlled and pitch controlled WPP. (15) (15)	2 1 5 6 5 6 8 8	Onderstand Remember Evaluate Create Evaluate Create Create Create	CO2 CO2 CO3 CO2 CO2 CO2 CO3
Describe about Power control techniques in wind turbines. (15) (13) (1)Write the factors affecting the performance rotor of wind mill. (6) (ii) Compare the performance of 3 blade and 4 blade WPP. (7) PART - C (7) Explain all methods of pitch control techniques of a wind mill. (15) Analyze the factors affecting the performance rotor of a wind mill with necessary graphs and curves. (15) Discuss on various schemes of maximum power extraction applied for a WECS. (15) Demonstrate the step by step procedure for designing the blade of a wind mill. (15) Compare stall controlled and pitch controlled WPP. (15)	2 1 5 6 5 6 6	Onderstand Remember Evaluate Create Evaluate Create Create Create Create	CO2 CO3 CO3 CO2 CO2 CO2 CO3
Control in white Energy conversion System (15) Describe about Power control techniques in wind turbines. (13) (i)Write the factors affecting the performance rotor of wind mill. (6) (ii) Compare the performance of 3 blade and 4 blade WPP. (7) PART - C (7) Explain all methods of pitch control techniques of a wind mill. (15) Analyze the factors affecting the performance rotor of a wind mill with necessary graphs and curves. (15) Discuss on various schemes of maximum power extraction applied for a WECS. (15) Demonstrate the step by step procedure for designing the blade of a wind mill. (15)	2 1 5 6 5 6	Onderstand Remember Evaluate Create Evaluate Create	CO2 CO3 CO3 CO2 CO2 CO2
Control in trinic Energy control is system (15) Describe about Power control techniques in wind turbines. (13) (i)Write the factors affecting the performance rotor of wind mill. (6) (ii) Compare the performance of 3 blade and 4 blade WPP. (7) PART - C (7) Explain all methods of pitch control techniques of a wind mill. (15) Analyze the factors affecting the performance rotor of a wind mill with necessary graphs and curves. (15) Discuss on various schemes of maximum power extraction applied for a WECS. (15) Demonstrate the step by step procedure for designing the (15)	2 1 5 6 5 6	Onderstand Remember Evaluate Create Evaluate Create Create	CO2 CO3 CO3 CO2 CO2 CO2
Control in trinic Energy control by stem (15) Describe about Power control techniques in wind turbines. (13) (i)Write the factors affecting the performance rotor of wind mill. (6) (ii) Compare the performance of 3 blade and 4 blade WPP. (7) PART - C (15) Explain all methods of pitch control techniques of a wind mill. (15) Analyze the factors affecting the performance rotor of a wind mill with necessary graphs and curves. (15) Discuss on various schemes of maximum power extraction applied for a WECS. (15)	2 1 5 6 5	Onderstand Remember Evaluate Create Evaluate	CO2 CO3 CO3 CO2
Control in white Energy conversion System (15) Describe about Power control techniques in wind turbines. (13) (i)Write the factors affecting the performance rotor of wind mill. (6) (ii) Compare the performance of 3 blade and 4 blade WPP. (7) PART - C Explain all methods of pitch control techniques of a wind mill. (15) Analyze the factors affecting the performance rotor of a wind mill with necessary graphs and curves.	2 1 5 6	Onderstand Remember Evaluate Create	CO2 CO3 CO3
Control in white Energy conversion System (13) Describe about Power control techniques in wind turbines. (13) (i)Write the factors affecting the performance rotor of wind mill. (6) (ii) Compare the performance of 3 blade and 4 blade WPP. (7) PART - C Explain all methods of pitch control techniques of a wind mill.	2 1 5	Evaluate	CO2 CO3
Control in which Energy conversion System (15) Describe about Power control techniques in wind turbines. (13) (i)Write the factors affecting the performance rotor of wind mill. (6) (ii) Compare the performance of 3 blade and 4 blade WPP. (7)	2	Remember	CO2
Control in which Energy conversion bystem (15) Describe about Power control techniques in wind turbines. (13) (i)Write the factors affecting the performance rotor of wind mill. (6) (ii) Compare the performance of 3 blade and 4 blade	2	Remember	CO2
(13) (i)Write the factors affecting the performance rotor of	2	Remember	CO2
Describe about Power control techniques in wind turbines. (13)	2	Understand	005
	~	I in demokerned	(()3
Control in Wind Energy Conversion System (13)		TT 1 . 1	
Discuss on Maximum Power Extraction Schemes & Power	2	Understand	CO3
Discuss the advantage of vertical axis windmill over	3	Apply	CO2
merits and demerits. (13)	5	Appry	005
using suitable diagram. (13) Discuss the various designs of rotors used for HAWT with its	2	Annly	CO3
How energy from the wind is extracted? Explain the process	6	Create	CO2
Explain the various requirements of Power Electronic Converters for the WPP applications (13)	4	Analyze	CO2
controlled WPP. (13)	5	Evaluate	04
passive stall controlled WPP. (13)		E 1 (
(13) Explain in detail about active stall controlled WPP and	4	Analyze	CO3
Explain in detail different pitching mechanisms of wind mill.	2	Understand	CO3
loads acting on the rotor blades with necessary diagrams and			
	Explain in detail about the lift force, drag force, different loads acting on the rotor blades with necessary diagrams and equations.(13)Explain in detail different pitching mechanisms of wind mill. (13)(13)Explain in detail about active stall controlled WPP and passive stall controlled WPP.(13)Explain the various features of pitch controlled WPP and stall controlled WPP.(13)Explain the various requirements of Power Electronic Converters for the WPP applications.(13)How energy from the wind is extracted? Explain the process using suitable diagram.(13)Discuss the various designs of rotors used for HAWT with its merits and demerits.(13)Discuss the advantage of vertical axis windmill over horizontal type.(13)Discuss on Maximum Power Extraction Schemes & Power	Explain in detail about the lift force, drag force, different loads acting on the rotor blades with necessary diagrams and equations.2Image: loads acting on the rotor blades with necessary diagrams and equations.(13)Explain in detail different pitching mechanisms of wind mill. (13)2Image: loads acting on the various features of pitch controlled WPP and stall controlled WPP.4Explain the various features of pitch controlled WPP and stall controlled WPP.5Image: loads acting suitable diagram.(13)Image: load demerits.(13)Image: load demerit	Explain in detail about the lift force, drag force, different loads acting on the rotor blades with necessary diagrams and equations.2UnderstandExplain in detail different pitching mechanisms of wind mill. (13)2UnderstandExplain in detail about active stall controlled WPP and passive stall controlled WPP.4AnalyzeExplain the various features of pitch controlled WPP and stall controlled WPP.5EvaluateExplain the various requirements of Power Electronic Converters for the WPP applications.4AnalyzeHow energy from the wind is extracted? Explain the process using suitable diagram.6CreateUsing suitable diagram.(13)3ApplyDiscuss the advantage of vertical axis windmill over horizontal type.(13)3ApplyDiscuss on Maximum Power Extraction Schemes & Power2Understand

Thick is in the speed wind turbine?Q.NoQuestionsBT
LevelCompetenceCourse
Outcome1.What is fixed speed wind turbine?1RememberCO32.What controls the speed of a wind turbine?5EvaluateCO33.Which controller is used in wind turbine?1RememberCO3

4.	Why is variable speed wind turbine generator WTG more	2	Understand	CO3
	efficient than fixed speed WTG?			
5.	What are the assumptions used in steady state stability analysis of wind mill generator model?	2	Understand	CO3
6.	Define short circuit ratio of generator.	3	Apply	CO3
7.	What are the assumptions used in transient state stability analysis of wind mill generator model?	1	Remember	CO3
8.	What do you mean by constant speed constant frequency systems?	6	Create	CO3
9.	Draw the block diagram of WECS based on self excited induction generator	1	Remember	CO3
10.	What are the advantages and disadvantages of fixed speed WECS?	4	Analyze	CO3
11.	Compare fixed speed WECS and variable speed WECS.	5	Evaluate	CO3
12.	Define wind modeling.	4	Analyze	CO3
13.	Compare SCIG and DFIG.	6	Create	CO3
14.	Compare conventional synchronous machine and PMSG.	3	Apply	CO3
15.	Define weibull and rayliegh distribution for wind speed modeling.	3	Apply	CO3
16.	Draw the speed torque characteristics of induction machine.	4	Analyze	CO4
17.	What is the drive train model of wind turbine?	1	Remember	CO3
18.	What is the formula of rotor speed?	1	Remember	CO3
19.	What is the difference between synchronous speed and rotor speed?	2	Understand	CO3
20.	What is squirrel cage induction generator?	2	Understand	CO3
21.	How is frequency controlled in a wind turbine?	1	Remember	CO3
22.	What is the frequency of wind turbine?	2	Understand	CO3
23.	Do windmills generate AC or DC?	4	Analyze	CO3
24.	Define rayliegh distribution for wind speed modeling.	1	Remember	CO3
	PART – B			
1.	Derive the steady state model of induction generator and describe its steady state performance characteristics. (13)	1	Remember	CO3
2.	Explain with necessary equations the drive train model. (13)	1	Remember	CO3
3.	Describe model of wind speed and wind turbine rotor. (13)	1	Remember	CO3
4.	Explain the different factors to be considered for choosing the generator for wind mill applications. (13)	2	Understand	CO3
5.	Explain steady state stability analysis for generator model	1	Remember	CO3

	for wind mill application (13)			
6	Explain transient state stability analysis for generator model	3	Apply	CO3
0.	for wind mill application. (13)	5	r ippij	005
7.	Explain different methods used for modeling of wind with	4	Analyze	CO3
	necessary equations and tabulations of data. (13)			
8.	Derive the torque equation of induction machine and deduce	3	Apply	CO3
	step by step equivalent circuit of it. (13)	_	rr J	
9.	Explain different types of drive train modeling of wind	2	Understand	CO3
	turbine with neat diagram and relationships of various			
	parameters. (13)			
10.	Draw the block diagram for the implementation of constant	4	Analyze	CO3
	speed constant frequency based WECS and explain the			
	function of each block in it. (13)			
11.	Explain different type of turbines used for constant speed	2	Understand	CO3
	WECS. (13)			
12.	Discuss about Constant speed constant frequency systems in	5	Evaluate	CO3
	Fixed speed system. (13)			
13.	Describe about the Modelling of wind turbine rotor. (13)	6	Create	CO3
14.	Briefly discuss on drive train model. (13)	4	Analyze	CO4
15.	Explain about Wind speed measurement using anemometer.	1	Remember	CO3
	I I I I I I I I I I I I I I I I I I I			
16	Compare fixed speed WECS and variable speed WECS (13)	2	Understand	CO3
10.	Discuss about the Construction and working of Squirrel cage	1	Remember	CO3
17.	induction generator (12)	1	Keinenibei	005
	Induction generator. (13)			
1	PARI-C	-	C I	G01
1.	Explain the complete operation of matrix converter used for	6	Create	CO3
	wind mill applications. (15)			
2.	Analyze transient state stability analysis for generator model	5	Evaluate	CO3
	for wind mill application. (15)			
3.	Sketch out the block diagram for the implementation of	5	Evaluate	CO3
	constant speed constant frequency based WECS and explain			
	the function of each block in it. (15)			
4.	Discuss about the steady state model of induction generator	6	Create	CO3
	and describe its steady state performance characteristics. (15)			
5.	Analyze the concept of Reference frame theory.	5	Evaluate	CO3
	UNIT -IV: VARIABLE SPEED SYST	EMS		
Need of	variable speed systems-Power-wind speed characteristics-Va	riable sp	eed constant fro	equency
systems	synchronous generator- DFIG- PMSG -Variable speed gener	rators m	odelling Variabl	e speed
variable	frequency schemes.			
	PART – A			
		рт		Course
Q.No	Questions		Competence	Course
		Level		Outcome
	What are the features of variable speed WFCS?	2	Understand	CO1
1.	what are the reactions of variable speed wheed:	2		0.01
2.	Compare fixed speed WECS and variable speed WECS	4	Analyze	CO1

3.	What is the need for variable speed WECS?	2	Understand	CO1
4.	What are the pros and cons of variable speed WECS?		Remember	CO1
5.	List the various advantages of PMSG over DFIG?	3	Apply	CO1
6.	List out features of DFIG used for WECS.	1	Remember	CO1
7.	Derive the simplified model of PMSG in d-q reference frame.	1	Remember	CO1
8.	List out the features of PMSG used for WECS.	1	Remember	CO1
9.	Compare DFIG and PMSG.	2	Understand	CO1
10.	Draw the wind power versus wind speed characteristics curve.	5	Evaluate	CO1
11.	Draw the block diagram of variable speed constant frequency WECS.	4	Analyze	CO1
12.	Write down the formula for capacity factor.	6	Create	CO1
13.	Which generator is used in variable speed wind energy conversion system?	3	Apply	CO2
14.	Which type of wind mill has high efficiency?	3	Apply	CO2
15.	What controls the speed of a wind turbine?	4	Analyze	CO2
16.	What is the need for variable speed WECS?	1	Remember	CO3
17.	Distinguish between variable speed constant frequency systems and variable speed variable frequency systems.	6	Create	CO5
18.	Sketch out the wind speed characteristics curve.	2	Understand	CO2
19.	What is the advantage of variable speed wind turbine?	1	Remember	CO3
20.	What is a DFIG generator?	5	Evaluate	CO1
21.	What are the disadvantages of doubly-fed induction generator?	1	Remember	CO3
22.	What is Betz criterion?	1	Remember	CO3
23.	Draw the CP curve.	4	Analyze	CO1
24.	Mention the working principle of VFD.	2	Understand	CO1
	PART – B		I	
1.	Explain the mathematical modeling of DFIG with necessary equations. (13)	1	Remember	CO1
2.	Derive the torque equation of induction machine and deduce step by step equivalent circuit of it. Prove P2:Pm:Prot.cu.loss = 1:(1-s):s (13)	1	Remember	CO1

3.	With neat illustrations, explain the power-wind speed (13)	1	Remember	CO1
4.	Discuss different modes of operation of DFIG with necessary power flow diagrams. (13)	2	Understand	CO1
5.	Deduce the equivalent circuit of induction machine. (13)	2	Understand	CO3
6.	Explain the equivalent circuit of PMSG with all of its parameters. (13)	2	Understand	CO3
7.	Draw the block diagram of variable speed variable frequency systems and explain the function of each block in it. (13)	1	Remember	CO5
8.	Compare Fixed speed system and variable speed system. (13)	3	Apply	CO3
9.	Explain the mathematical modeling of PMSG with necessary equations. (13)	4	Analyze	CO3
10.	Derive the torque equation of induction machine. (13)	4	Analyze	CO5
11.	Describe the features of variable speed WECS and explain how it is advantageous than the fixed speed WECS. (13)	6	Create	CO5
12.	Compare fixed speed WECS and variable speed WECS. (13)	3	Apply	CO2
13.	List out the types of towers used for wind mill with diagram. List out pros and cons of each type. (13)	4	Analyze	CO1
14.	Draw and explain the power- wind speed characteristics curve. Explain each term. (13)	5	Evaluate	CO3
15.	With block diagram explain WECS with fixed-speed with squirrel-cage induction generator (SCIG) and variable-speed with doubly fed induction generator (DFIG). (13)	4	Analyze	CO5
16.	Compare DFIG and PMSG. (13)	3	Apply	CO2
17.	Briefly explain the power flow control techniques in wind energy systems. (13)	1	Remember	CO5
	PART – C		1	
1.	Explain all types of towers used for wind mill with diagram. List out pros and cons of each type. (15)	5	Evaluate	CO2
2.	Derive the torque equation of induction machine and deducestep by step equivalent circuit of it.Pm:Prot.cu.loss = 1:(1-s):s.	5	Evaluate	CO1
3.	Explain the mathematical modeling of PMSG with necessary equations. (15)	6	Create	CO1
4.	Describe the features of variable speed WECS and explain how itis advantageous than the fixed speed WECS. (15)	6	Create	CO5
5.	Explain the mathematical modeling of DFIG with necessary equations. (15)	5	Evaluate	CO1
****	UNIT -V: GRID CONNECTED SYSTEM	<u>1S</u>		1
supply	of ancillary services for frequency and voltage control, curren	ramp t prac	tices and indust	, and try trends

modeling issue.					
	PART – A		ſ	1	
Q.No	Questions	BT Level	Competence	Course Outcome	
1.	What are the interconnection requirements for wind power plants?	1	Remember	CO5	
2.	Name any two issues of grid connection.	1	Remember	CO5	
3.	What is LVRT?	2	Understand	CO5	
4.	How are wind power systems classified?	5	Evaluate	CO5	
5.	What are the major problems related to grid interconnection?	5	Evaluate	CO5	
6.	What are the advantages of grid connected systems?	2	Understand	CO5	
7.	What is voltage dip and voltage swell?	2	Understand	CO5	
8.	Define voltage sag.	6	Create	CO5	
9.	Define sub synchronous resonance SSR in power grid.	6	Create	CO5	
10.	What is matrix converter?	3	Apply	CO5	
11.	How are wind turbines connected to the grid?	1	Remember	CO5	
12.	What is the ramp rate of a wind turbine?	4	Analyze	CO5	
13.	What is low voltage ride through?	3	Apply	CO5	
14.	Define the ramp rate limit of wind power output.	2	Understand	CO5	
15.	What are the two main types of grid connectivity in a wind?	1	Remember	CO5	
16.	Define pitch angle.	1	Remember	CO5	
17.	List the horizontal wind power collectors.	4	Analyze	CO5	
18.	What is the difference between stand alone and grid connected wind generators?	3	Apply	CO5	
19.	Which type of wind mill has high efficiency?	4	Analyze	CO5	
20.	Define cut out speed.	1	Remember	CO5	
21.	List the advantages of odd no of blades than even no of blades in wind mills.	4	Analyze	CO5	
22.	Define angle of attack in the design of wind mill blades.	1	Remember	CO5	
23.	What are the two main types of grid connectivity in a wind?	1	Remember	CO5	
24.	What are the grid-connected issues in wind turbines?	1	Remember	CO5	

PART – B				
1.	Explain Low Voltage Ride Through control strategy of grid	1	Remember	CO5
	connected variable speed wind turbine generator system. (13)			
2.	Explain the various grid interconnection requirements of WECS.	2	Understand	CO5
	(13)			
3.	Sketch the low-voltage ride through characteristics of grid	2	Understand	CO5
	connected WECS and discuss it. (13)			
4.	Discuss briefly the role of WECS used as ancillary services for	1	Remember	CO5
	frequency and voltage control of the grid. (13)			
5.	Explain the choice of generators for fixed speed systems and	2	Understand	CO5
	derive the model of synchronous generator for wind speed. (13)			
6.	Derive the power wind speed characteristics of variable speed	4	Analyze	CO5
	systems. (13)			
7.	Write the short notes on DFIG in variable speed systems. (13)	3	Apply	CO5
8.	Derive the modeling for variable speed generators. Also explain	4	Analyze	CO5
	variable speed and variable frequency schemes with necessary			
	diagrams. (13)			
9.	What is meant by standalone WECS system? Explain about the	6	Create	CO5
	issues of grid connection. (13)			
10.	Explain in detail about (i) machine side controllers and (ii) grid	4	Analyze	CO5
	side controllers.			
11.	Explain wind energy storage systems and hybrid systems. (13)	5	Evaluate	CO5
12.	Discuss few points on Grid connected wind power system. (13)	3	Apply	CO5
13.	Briefly discuss on Wind power grid interconnection. (13)	1	Remember	CO5
14.	Describe about the Real and reactive power regulation in wind	1	Remember	CO5
	farms. (13)			
15.	Explain LVRT control strategy of grid connected variable speed	2	Understand	CO5
	wind turbine generator system. (13)			
16.	List out the components required for grid connected system. (13)	1	Remember	CO5
17.	Discuss in detail on the supply of ancillary services for	2	Understand	CO5
	frequency and voltage control. (13)			
	PART – C		· · · · · · · · · · · · · · · · · · ·	
1.	Explain in detail about machine side controllers and grid side	6	Create	CO5
	controllers. (15)			
2.	Explain about the Grid connection and integration of wind	6	Create	CO5
	power. (15)			
3.	Discuss about the modeling for variable speed generators. Also	5	Evaluate	CO5
	explain variable speed and variable frequency schemes with			
	necessary diagrams. (15)			
4.	Discuss on Enhanced Dynamic behavior of Grid Connected	5	Evaluate	CO5
	Wind Farms in Load Participation and Frequency Regulation.			

		(15)			
5.	Analyze Grid connected wind power system.	(15)	6	Create	CO5

COURSE OUTCOMES:

- Acquire knowledge on the basic concepts of Wind energy conversion system.
- Understand the mathematical modeling and control of the Wind turbine.
- Develop more understanding on the design of fixed speed system.
- Study about the need of Variable speed system and its modeling.
- Able to learn about Grid integration issues and current practices of wind interconnection with power system.

