VALLIAMMAI ENGEINEERING COLLEGE

(S.R.M.NAGAR, KATTANKULATHUR-603 203)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

QUESTION BANK

M. E – Computer Science Engineering

1918104 - APPLIED PROBABILITY AND STATISTICS

I SEMESTER Regulation – 2019

Academic Year 2022- 2023

Prepared by Ms.B.Vasuki Assistant Professor (Mathematics)

VALLIAMMAI ENGNIEERING COLLEGE SRM Nagar, Kattankulathur – 603203.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Year & Semester	:	I/I
Section	:	CSE
Subject Code	:	1918104
Subject Name	:	APPLIED PROBABILITY AND STATISTICS
Degree & Branch	:	M.E - CSE
Staff in charge	:	Ms. B. VASUKI

UNIT- I ONE DIMENSIONAL RANDOM VARIABLES						
Q.No.	Question	Bloom's Taxonomy Level	Domain			
	<u>PART – A</u>					
1)	A continuous random variable X has a pdf $f(x) = 3x^2$, $0 \le x \le 1$, Find a and b such that $P(x \le a) = P(x > a)$ and $P(x > b) = 0.05$	BTL-2	Understanding			
2)	The first 4 moments about 3 are 1 and 8. Find the mean and variance	BTL-3	Applying			
3)	If the distribution function of a random variable X is given by $F(x) = \begin{cases} 1 - \frac{4}{x^2}, x \ge 2, 0 \text{ for } x \le 2, \end{cases}$ find $P(5 < x < 6)$	BTL-2	Understanding			
4)	If a random variable X has $\operatorname{MGF} M_X(t) = \frac{2}{2-t}$ Find the mean of X	BTL-2	Understanding			
5)	Find the mean and variance of the binomial distribution	BTL-3	Applying			
6)	If X is a continuous RV with p.d.f. $f(x) = 2x$, $0 \le x \le 1$, then find the pdf of the RV Y = X ³	BTL-5	Evaluating			
7)	If the probability mass function of a random variable X is given by $p(X = r) = kr^3$, where $r = -1, 2, 3, 4$. Find the value of k and distribution function of X.	BTL-2	Understanding			
8)	A continuous random variable X has a density function given by $f(x) = k(1+x)$, 2 <x<5. find="" k.<="" of="" th="" the="" value=""><th>BTL-5</th><th>Evaluating</th></x<5.>	BTL-5	Evaluating			
9)	The first four moments of a distribution about 4 are 1,4,10 and 45 respectively. Show that the mean is 5 and variance is 3.	BTL-6	Creating			
10)	$If f(x) = \begin{cases} kx^2 , 0 < x < 3\\ 0, otherwise \end{cases}$ Find the value of X, then find the value of K	BTL-3	Applying			
11)	The random variable X has a Binomial distribution with parameters $n = 20$, $p = 0.4$. Determine P (X = 3).	BTL-3	Applying			
12)	If the probability is 0.05 that a certain kind of measuring device will show excessive drift, what is the probability that the sixth measuring device tested will be the first to show excessive drift?	BTL-3	Applying			
13)	If a RV has the probability density $f(x) = \begin{cases} 2e^{-2x} & \text{for } x > 0 \\ 0, & \text{for } x \le 0 \end{cases}$, find the probabilities that will take a value between 1 and 3.	BTL-2	Understanding			

14)	A RV X has the p.d.f. $f(x) = \begin{cases} xe^{-x} \text{ for } x > 0 \\ 0, \text{ for } x \le 0 \end{cases}$. Find the CDF of X	BTL-2	Understanding
15)	If the RV X takes the values 1,2,3 and 4 such that $2P(X = 1)=3P(X = 2) = P(X = 3) = 5 P(X = 4)$ find the probability distribution.	BTL-2	Understanding
16)	If X is the poisson random variable such that $p[X=1]=P[X=2]$, Find $E[x]$	BTL-2	Understanding
17)	Show that the function $f(x) = \begin{cases} e^{-x}, x \ge 0\\ 0, x < 0 \end{cases}$ is a probability density function of a continuous random variable X.	BTL-6	Creating
18)	Obtain the moment generating function of Geometric distribution.	BTL-1	Remembering
19)	Given that the p.d.f of a random variable X is $f(x) = kx$, $0 \le x \le 1$, find k		
20)	Find the Binomial distribution for which the mean is 4 and variance is 3.	BTL-3	Applying
21)	The mean of Binomial distribution is 20 and standard deviation is 4. Find the parameters of the distribution.	BTL-1	Remembering
22)	The probability that a candidate can pass in an examination is 0.6. What is the probability that he will pass in third trial?	BTL-2	Understanding
23)	A continuous random variable X has p.d.f $f(x) = 2x$, $0 \le x \le 1$. Find $P(X > 05)$.	BTL-6	Creating
24)	The number of hardware failures of a computer system in a week of operations has the following p.d.f, Calculate the value of K.No. of failures0123456ProbabilityK2 K2 KK3 KK4 K	BTL-3	Applying
25)	The number of hardware failures of a computer system in a week of operations has the following p.d.f, Find the mean of the number of failures in a week.No. of failures0123456Probability.18.28.25.18.06.04.01	BTL-1	Remembering
	<u>PART – B</u>		
1 a)	Buses arrive at a specific stop at 15 minutes intervals starting at 7a.m.If a passenger arrives at a random time that is uniformly distributed between 7 and 7.30 am, find the probability that he waits 1) less than 5 minutes for a bus and 2) atleast 12 minutes for a bus.	BTL-2	Understanding
1b)	Obtain the moment generating function of the Poisson distribution and hence find its mean and variance.	BTL-3	Applying
2)	A manufacturer of certain product knows that 5 % of his product is defective .If he sells his product in boxes of 100 and guarantees hat not more than 10 will be defective ,what is the approximate probability that a box will fail to meet the guaranteed quality?	BTL-3	Applying
3 a)	A continuous random variable X has a probability density function $f(x) = kx^2e^{-x}$, $x > 0$, find k, mean and variance	BTL-1	Remembering
3b)	In a company, 5% defective components are produced .What is the probability that at least 5 components are to be examined in order to get 3 defectives?	BTL-5	Evaluating
4a)	The diameter of an electric cable, say X is assumed to be a continuous random variable with pdf $f(x) = 6x (1-x)$, $0 \le x \le 1$. Check that $f(x)$ is a pdf and determine a such that $P(X \le a) = P(X \ge a)$	BTL-4	Analyzing
4 b)	Let the random variable X assumes the value r with the probability law $p(X = r) = p q^{r-1}, r = 1,2,3$ Find the moment generation function of X and hence its mean.	BTL-1	Remembering

5a)	The probability mass function of a discrete R. V X is given as $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	BTL-2	Understanding
5b)	Find the MGF, mean, variance of Geometric distribution.	BTL-1	Remembering
6a)	If X is Uniformly distributed over (0,10), find the probability that		IL 1 4 1
	(i) $X < 2$ (ii) $X > 8$ (iii) $3 < X < 9$?	BIL-2	Understanding
6b)	If the pdf of a random variable X is $f(x) = 2x, 0 \le x \le 1$. Find the pdf of Y = e^{-x}	BTL-5	Evaluating
7)	A discrete RV X has the probability function given below X : 0 1 2 3 4 5 6 7 $P(x) : 0 a 2a 2a 3a a^2 2a^2 7a^2 + a$ Find (i) Value of a (ii) p (X <6), P (X ≥ 6), P (0 < X < 4) (iii) Distribution function.	BTL-2	Understanding
8)	Find the MGF of Binomial distribution and hence find its mean and variance	BTL-3	Applying
9a)	The p.d.f of a random variable X is given by $f(x) = kx$ (2-x), $0 \le x \le 1$, Find k, mean, variance and rth moment.	BTL-2	Understanding
9b)	4 coins were tossed simultaneously. What is the probability of getting (i) 2 heads, (ii) at least 2 heads, (iii) at most 2 heads.	BTL-5	Evaluating
10a)	A random variable X has a uniform distribution over $(-3,3)$ compute $P(X<2), P([x]<2), P([x-2]\leq 2)$.	BTL-5	Evaluating
10b)	A random variable X has the following probability distributionX-2-101P(X)0.1k0.22kFind i) k ii) P(X<2) iii) P(-2 < X < 2)	BTL-3	Applying
11)	State and Prove memoryless property of Exponential distribution.	BTL-1	Remembering
12)	Find the first three moments about the origin ,Mean, Variance for the data X -2-13 $P(X)$ $1/2$ $1/4$ $1/4$	BTL-1	Remembering
13a)	An insurance company found that only 0.005% of the population is involved in a certain type of accident each year. If its 2000 policy holders were randomly selected from the population. What is the probability that not more than two of its clients are involved in such an accident next year?	BTL-2	Understanding
13b)	 Assume that 50% of all engineering students are good in mathematics. Determine the probabilities that among 18 engineering students 1) (i) Exactly 10, (ii) at least 10 are good in mathematics 	BTL-4	Analyzing
14	Find the Moment Generating function, mean. variance for uniform distribution	BTL-1	Remembering
15	Find the MGF of Exponential distribution and hence find its mean and variance	BTL-3	Applying
16a)	Let X be a random variable with pdf $f(x) = \frac{1}{3}e^{\frac{-x}{3}}$, $x \ge 0$ Find the moment generating function of X and hence find its mean and variance	BTL-2	Understanding
16b)	The atoms of a radioactive element are randomly disintegrating. If every gram of this element, on average, emits 3.9 alpha particles per second, then what is the probability that during the next second the	BTL-6	Creating

	number of alpha particles emitted from 1 gram is (i) at most 6 (ii) at least 2 and (iii) at least and		
17a)	Messages arrive at a switch board in a Poisson manner at an average rate of 6 per hour. Find the probability that exactly 2 messages arrive within one hour, no messages arrives within one hour and at least 3 messages arrive within one hour.	BTL-2	Understanding
17b)	The probability mass function of a discrete R. V X is given in the following table: X -2-10123 $P(X=x)$ 0.1k0.22k0.3k(i) Find the value of k, (ii) P(X<1), (iii) P(-1< X ≤ 2) (iv) cdf	BTL-1	Remembering
18a)	The probability mass function of a RV X is given by $P(X = r) = kr^3, r = 1,2,3,4$. Find (i) the value of k (ii) $P(\frac{1}{2} < X < \frac{5}{2}/X > 1)$	BTL-2	Understanding
18b)	If the discrete random variable X has the probability function given by the table. x 1234 $P(x)$ $k/3$ $k/6$ $k/3$ $k/6$ Find the value of k and Cumulative distribution of X.PART - C	BTL-1	Remembering
1)	Out of 2000 families with 4 children each, Find how many family would you expect to have (i) at least 1 boy, (ii) 2 boys, (iii) 1 or 2 girls and iv) no girls	BTL-6	Creating
2)	If a random variable X has p.d.f $f(x) = \begin{cases} \frac{1}{4}, X < 2\\ 0, Otherwise \end{cases}$ Find (i) $P(X < 1)$, (ii) $P(X > 1)$, (iii) $P(2X + 3 > 5)$.	BTL-3	Applying
3)	State and Prove memoryless property of Geometric distribution	BTL-1	Remembering
4)	The probability distribution of an infinite discrete distribution is given by P[X = j] = $\frac{1}{2^j}$ (j = 1,2,3) Find (i)Mean of X, (ii)P [X is even], (iii) P(X is odd).	BTL-1	Remembering
5	Derive the MGF, mean and variance of Gamma distribution	BTL-1	Remembering
	UNIT – II TWO DIMENSIONAL RANDOM VARIAH	BLES	
	<u>PART –A</u>		
1)	Define Two dimensional Discrete random variables.	BTL-2	Understanding
2)	Define Two dimensional Continuous random variables.	BTL-3	Applying
3)	If the joint pdf of (X,Y) is $f(x, y) = 6e^{-2x-3y}$, $x \ge 0$, $y \ge 0$, find the marginal density of X and conditional density of Y given X.	BTL-2	Understanding
4)	The joint pdf of (X,Y) is given by $f(x, y) = e^{-(x+y)}, 0 \le x, y < \infty$. Find the marginal density function of X.	BTL-3	Applying

5)	.Given the joint density function of X and Y as							
	$f(x, y) = \frac{1}{2}e^{-y}, 0 < 0$	BTL-2	Understanding					
	= 0, elsewh	ere						
	(X+Y).							
6)	The following table gine \mathbf{v}	ves the joint p	probability	y distrib T	oution c	of X and Y.		
	X 1 1	2	3	+				
	1 0.1	0.1	0.2				BTL-3	Applying
	2 0.2	0.3	0.1					
	Find a) marginal densi	ity function of	f X. b) ma	rginal c	lensity	of Y.		
7)	The joint probability n P(x,y) = K(2x+2y)	nass function	of (X,Y) i	is given	by			
	$P(\mathbf{x},\mathbf{y}) = \mathbf{K} (2\mathbf{x} + 3\mathbf{y}), \mathbf{x} = \mathbf{x} (2\mathbf{x} + $	x = 0, 1, 2, y	= 1,2,3.					
	X	2	3			14.		
	0 3K	6K 9	ЭK			G	BTL-2	Understanding
	1 5K	8K 1	1K			0		
	2 7K	10K 1	3K			0		
	Find the marginal prob	ability distrib	ution of X			1 2		
8)	Find the value of <i>k</i> , if	f(x, y) = k(x, y)	(1-x)(1-x)(1-x)(1-x)(1-x)(1-x)(1-x)(1-x)	y), for	0< x, y	<mark><1, i</mark> s to be a	BTL-3	Applying
0)	joint density function.	_	-					
9)	Let X be a random variable with pdf $f(x) = \frac{1}{2}, -1 \le x \le 1$, and let $Y = X^2$.						BTL-4	Analyzing
10)	When will the two regression lines be at right angles?							Anglering
11)		<u> </u>	V 11	7 1	1.4		BIL-4	Anaryzing
11)	from the following reg	ression equat	tions	and co	orrelatic	on co- efficient	BTL-4	Analyzing
	2Y - X - 50 = 0	0; 3Y - 2Z	X – 10	=	0			
12)	The correlation co-efficiency of the correlation co-efficiency of the second se	cient between	two rand	om vari	$\frac{ables}{\overline{V}}$	A and Y is $r =$		I la denstea dia e
	$0.0.$ If σ_X	$\sigma = 1.3, \sigma_Y = 1.3$	= 2, X =	nd Y	$\mathbf{r} = 2$	0, find the	BIL-2	Understanding
13)	The following results v	vere worked o	out from s	cores in	Maths	(X) and		
	Statistics (Y)	of students in	n an exam	ination:		1		
				X	Y			
		Mea	n 	39.5	47.5		BTL-3	Applying
		Standard de	eviation	10.8	17.8			
	Pearson's correlation co Use these regressions	and estimate	0.42. Find the value	l both th of Y fo	he regro r X	ession lines.		
14)	The co-efficient of correlation between x and y is 0.48. Their covariance is 36. The variance of x is 16. Find the standard deviation of y .					BTL-3	Applying	
1 =	If long (1 1 1					1.0		
15)	If x , y denote the devia	120	$rariates$ from ∇	m the a		uc means and if	י ודים	A
	$r = 0.5, \sum c$	$xy = 120, \sigma_y$	$= 8, \sum$	$x^{-}=9$	0, 110	<i>n</i> , the number	BIL-3	Applying
	of items.							

16)	Find the marginal density function of X and Y if $f(x,y) = 8xy$; $0 \le x \le 1$, $0 \le y \le x$.	BTL-4	Analyzing
17)	If the random variable X is uniformly distributed over (-1, 1), find the density function of $Y = \sin\left(\frac{\pi x}{2}\right)$	BTL-3	Applying
18)	The bivariate random variable X and has pdf $f(x,y) = kxy$, for $0 \le x \le 4$, $1 \le y \le 5$. Find k	BTL-4	Analyzing
19)	The two lines of regression are $8x - 10y + 66 = 0$, $40x - 18y - 214 = 0$, Find the mean value of X and Y	BTL-4	Analyzing
20)	The two regression lines are $4x - 3y + 33 = 0$, $20x - 9y = 107$, $var(x) = 25$, Find the mean of x and y.	BTL-2	Understanding
21)	Write the condition for two random variables to be independent.	BTL-4	Analyzing
22)	Find the probability distribution of X + Y from the bi-variate distribution of (X,Y) given below: X Y1210.40.220.30.1	BTL-2	Understanding
23)	The joint pdf of a bivariate RV (X,Y) is given by $f(x, y) = \begin{cases} 4xy & 0 < x < 1, & 0 < y < 1 \\ 0, & \text{otherwise} \end{cases}$ Find $P(X+Y<1)$.	BTL-3	Applying
24)	Consider the two – dimensional density function. $f(x, y) = \frac{8}{9}xy, 1 < x < y < 3,$ 0 outside Find the marginal density function of X.	BTL-2	Understanding
25)	If $\overline{X} = 970$, $\overline{Y} = 18$, $\sigma_x = 38$, $\sigma_y = 2$ and $r = 0.6$, Find the line of regression of X on Y.	BTL-1	Remembering
	<u>PART – B</u>		
1)	The two dimensional RV(X,Y) has the joint density $f(x,y) = 8xy, 0 < x < y < 1$ $=0$, otherwise(i)Find $P(X < 1/2 \cap Y < 1/4)$, (ii)(iii)Find the marginal and conditional distributions, and (iii)(iii)Are X and Y independent? Give reasons for your answer.	BTL-2	Understanding
2)	If the joint pdf of a two – dimensional RV (X,Y) is given by f(x, y) = K(6-x-y); 0 < x < 2, 2 < y < 4 $= 0, elsewhere$ find (i) the value of K, (ii) $P(X < 1, Y < 3)$ (iii) P(X + Y < 3) (iv) $P(X < 1/Y < 3)$	BTL-3	Applying
3a)	Determine the value of C that makes the function $F(x, y) = C(x + y)$ a joint probability density function over the range $0 \le x \le 3$ and $x \le y \le x + 2$. Also determine the following. i) $P(X \le 1, Y \le 2)$ ii) $P(Y \ge 2)$ iii) $E[X]$	BTL-4	Analyzing
3 b)	If the joint pdf of a two dimensional RV (X,Y) is given	BTL-2	Understanding

	$f(x, y) = x^2 + \frac{xy}{3}$; $0 < x < 1, 0 < y < 2$		
	= 0. elsewhere		
	(i) $P(X > \frac{1}{2})$, (ii) $P(Y < X)$ and (iii) $P(Y < \frac{1}{2} / X < \frac{1}{2})$.		
4 a)	If X and Y are two random variables having joint probability mass function given by $f(x,y) = (2x+y)/27$, $x = 0,1,2$ and $y = 0,1,2$. Find the marginal distribution function of X and Y.	BTL-4	Analyzing
4b)	The joint distribution of X_1 and X_2 is given by		
	$f(x_1, x_2) = \frac{x_1 + x_2}{21}, x_1 = 1,2 \text{ and } 3 \text{ ; } x_2 = 1 \text{ and } 2.$	BTL-2	Understanding
5-)	the marginal distributions of X_1 and X_2 . If the joint probability density function of (X, Y) is $f(x, y) = x + y$.		
5a)	$0 \le x \le 1$, $0 \le y \le 1$, find the probability function of $U = XY$	BTL-4	Analyzing
5b)	Three balls are drawn at random without replacement from a box containing 2 white, 3 red and 4 black balls. If X denotes the number of white balls drawn and X denotes the number of red balls drawn, find the joint probability distribution of (X, Y) .	BTL-3	Applying
6 a)	The joint probability distribution function of two random variables X and f(x, y) = x + y $0 < x < 1$, $0 < y < 1Y$ is $= 0$, otherwise efficient n x and y	BTL-2	Understanding
6b) <i>r_{UV}</i>	Let X_1 and X_2 be two independent RVs with means 5 and 10 and S.D's 2 and 3 respectively. Obtain r_{UV} where $U = 3X_1 + 4X_2$ and $V = 3X_1 - X_2$.	BTL-3	Applying
7a)	For the following data taken from 10 observations, find out the regression equations of X on Y and Y on X: $\Sigma X=250$, $\Sigma Y=300$, $\Sigma XY=7900$, $\Sigma X^2=6500$ and $\Sigma Y^2=10,000$ Hence find r.	BTL-3	Applying
7b)	Find the co-efficient of correlation and obtain the lines of regressionfrom the data given below; $x:$ 6264656970717274 $y:$ 126125139145165152180208	BTL-3	Applying
8a)	 The joint distribution function of X and Y is given by F(x,y) = (1-e^{-x}) (1-e^{-y}), x,y>0 i) Find the probability density function of X and Y. ii) Find the marginal density function of X and Y iii) Are X and Y independent. iv) Find P(1 < X < 3, 1 < Y < 2). 	BTL-3	Applying
8b)	A two dimensional random variable (X,Y) have a bivariate distribution given by $P(X=x, Y = y) = x^2 + y/32$ for x = 0,1,2,3 and y = 0,1. Find the marginal distribution of X and Y.	BTL-2	Understanding
9a)	If X and Y are independent variates uniformly distributed in (0,1) find the distribution of XY.	BTL-1	Remembering
9b)	Two random variable X and Y have the following joint probability density function $f(x,y) = \{2-x-y, 0 \le x \le 1, 0 \le y \le 1, 0 \text{ otherwise} \}$. Find the correlation coefficient of X and Y.	BTL-5	Evaluating
10a)	If (X,\overline{Y}) is a two – dimensional random variable uniformly distributed	BTL-3	Applying

	over the triangular region R bounded by $y = 0$, $x = 3$ and $y = \frac{4}{3}x$, find		
	r_{XY} .		
10b)	If the joint pdf of (X,Y) is given by $p(x,y) = k (2x + 3y)$, $x = 0,1,2$; $y = 1,2,3$. Find the marginal distributions of X and Y.	BTL-3	Applying
11a)	Show that the following function satisfies the properties of a joint probability mass function $\begin{array}{cccccccccccccccccccccccccccccccccccc$	BTL-4	Analyzing
11b)	The joint density function of X and Y is $f(x,y) = \begin{cases} e^{-(x+y)}, & 0 \le x, y \le \infty \\ 0 & otherwise \end{cases}$ Are X and Y independent.	BTL-4	Analyzing
12a)	In a partially destroyed laboratory data, only the equations giving the two lines of regression of y on x and x on y are available and are respectively $7x - 16y + 9 = 0$, $5y - 4x - 3 = 0$, calculate the coefficient of correlation.	BTL-6	Creating
12b)	If the probability of a two discrete random variable X and Y is given by $f(x,y) = \begin{cases} k(x+2y), & x = 0,1,2 \text{ and } y = 0,1,2 \\ 0 & otherwise \end{cases}$ i) Find k ii) Find the marginal distributions and conditional distribution of Y for X = x	BTL-5	Evaluating
13a)	The joint probability density function of a two dimensional random variable (X,Y) is given by $f(x,y) = \begin{cases} 4xye^{-(x^2+y^2)}, & x \ge 0, y \ge 0\\ 0 & otherwise \end{cases}$ Find the density function of U $= \sqrt{x^2 + y^2}$	BTL-5	Evaluating
13b)	Find the marginal density function of X and Y if $f(x,y) = \frac{2}{5}(2x+3y)$, $0 \le x \le 1, \ 0 \le y \le 1.$	BTL-4	Analyzing
14a)	The joint density function of two random variables X and Y is given by $f(x, y) = \begin{cases} \frac{1}{3}(3x^2 + xy), & 0 < x < 1, & 0 < y < 2\\ 0 & otherwise \end{cases}$ Find P(X+Y>1)	BTL-3	Applying
14b)	The two dimensional random variable (X, Y) has the joint probability mass function $f(x, y) = \frac{x+2y}{27}$, $x = 0, 1, 2$; $y = 0, 1, 2$. Find the conditional distribution of Y given X = 1 also find the conditional distribution of X given Y = 1.	BTL-3	Applying
15)	Find the Coefficient of Correlation between industrial production and export using the following table :Production (X)1417232125Export (Y)1012152023	BTL-4	Analyzing

16)	The joint pdf of a	two dimens	ional rando	om variabl	e (X, Y) is	5		
	$f(x, y) = xy^2 +$	$\frac{x^2}{2}, 0 \le x \le$						
	Compute (i) $P\left(X > 1 / Y < \frac{1}{2}\right)$ (ii) $P\left(Y < \frac{1}{2} / X > 1\right)$ (iii)							Applying
	$P(X+Y) \leq 1$		2/	2		-		
17)	From the following	g table for b	i-variate d	listribution	of (X, Y)	. Find		
	(i) P(X	≤ 1)	(ii) P(Y :	≤3)	(iii)			
	$P(X \le 1, Y \le 3)$ (iv) $P(X \le 1/Y \le 3)$ (v) $P(Y \le 3/X \le 1)$							
	(iv) $P(X \le 1/Y \le 3)$ (v) $P(Y \le 3/X \le 1)$ (vi) $P(X + Y \le 4)$							
	$(vi) P(X+Y \le 4)$							
	X 1	2	3	4	5	6	BTL-3	Applying
	0 0	0	1	2	2	3		
	1	1	32	32	32	32		
	$1 \frac{1}{16}$	1	1	1	1	1		
	10	10	1	8 1	0	8		
	$2 \frac{1}{32}$	32	64	64	0	64		
18)	f(x, y) = 6 - x - 6	y 0	2	1 for a bi	variata D	$\mathbf{V}(\mathbf{X}, \mathbf{V})$		
	$111(x, y) = \frac{1}{8}$	$-, 0 \leq x \leq 2,$	$, 2 \leq y \leq y$	4 101 a 01		· • (A, 1).	BTL-4	Analyzing
	Find the correlation	on coefficien	lt <mark>P</mark>	DM		1		
		7	PART -	<u>-C</u>			4	
1)	The joint probabil	ity distributio	on of X and	Y is given	by the follo	owing		
						1		
	X\Y	1	3	10	9			
	2	1/8	1/24	\sim	1/12		BTL-4	Analyzing
	4	1/4	1/4		0			
	(i) Fin	d the probabi	lity distribu	tion of Y	1/12			
	(ii) Fin	d the condition	onal distribu	ution of Y g	given X =2			
	(iii) X a	ndY indepen	dent?	V is given h				
2)	$F(x,y) = \{ (1 - e^{-x}) \}$	$(1 - e^{-y})$ for	or $x > 0$, $y >$	0	'y			
		0	otherwise				BTL_2	Understanding
		(i) Find the ii X and X	marginal d	ensities of .	X and Y	DIL 2	Onderstanding
		((iii) = P((1 < X < 3)	$1 \leq Y \leq 2$			
3)	Calculate the Kar	Pearson's co	efficient of	f correlation	1.			
	Price : 10	11 13	15 18				BTL-3	Applying
	Demand : 60	52 48	40 30					
4)	If X and Y each fol	low an expon	ential distri	ibution with	n parameter	1 and are	DTI 2	Appleira
	independ	ent, find the p	df of $U = X$	K - Y			DIL-J	Арргута
5)	From the followin	ig data , Find	l (i)The tw	o regressi	on equatio	ons (ii)		
	The coefficient of Statistics	Correlation	between the	ne marks in	n Mathem	atics and		
	Mathematics are	ne most nk 30	ery marks	m statistic	s when m	aiks III	BTL-3	Applying
	Marks in Maths	: 25 28	35 32 3	31 36 2	29 38 34	4 32		
	Marks in Statist	ics: 43 46	49 41	36 32 3	1 30 33	3 39		

UNIT – III ESTIMATION THEORY								
	PART –A							
1)	Define estimator.	BTL-1	Remembering					
2)	Distinguish between point estimation and interval estimation.	BTL-1	Remembering					
3)	Mention the properties of a good estimator.	BTL-1	Remembering					
4)	Define confidence coefficient.	BTL-1	Remembering					
5)	Define estimate	BTL-2	Understanding					
6)	Define confidence limits for a parameter.	BTL-1	Remembering					
7)	Define estimation	BTL-1	Remembering					
8)	Explain how do you calculate 95% confidence interval for the average of the population?	BTL-3	Applying					
9)	Write the normal equations for fitting a straight line by the method of least squares.	BTL-2	Understanding					
10)	An automobile repair shop has taken a random sample of 40 services that the average service time on an automobile is 130 minutes with a standard deviation of 26 minutes. Compute the standard error of the mean.	BTL-4	Analyzing					
11)	Two variables X and Y have the regression lines $3X + 2Y - 26 = 0$, $6X + Y - 31 = 0$, Find the mean value of X and Y.	BTL-4	Analyzing					
12)	State any two properties of regression lines.	BTL-4	Analyzing					
13)	Define unbiasedness of a good estimator.	BTL-1	Remembering					
14)	Let the lines of regression concerning two variables x and y be given by $y = 32 - x$ and $x = 13 - 0.25y$. Obtain the values of the means.	BTL-2	Understanding					
15)	What are the merits and demerits of the least square method.	BTL-1	Remembering					
16)	Find the maximum likelihood estimates for the population mean when the population variance is known for random sampling from a normal population.	BTL-6	Creating					
17)	What is meant by maximum likelihood estimator?	BTL-1	Remembering					
18)	Give the normal equations to fit the parabola $y = a + bx + cx^2$	BTL-2	Understanding					
19)	Can Y = 5 +2.8x and X = $3 - 0.5$ y be the estimated regression equations of y on x and x on y respectively ? Explain.	BTL-4	Analyzing					
20)	Obtain the maximum likelihood estimator of $f(x, \theta) = (1 + \theta)x^{\theta}, 0 < x < 1$ based on a random sample of size x.	BTL-3	Applying					
21)	What is the level of significance in testing of hypothesis?	BTL-4	Analyzing					
22)	State the conditions under which a binomial distribution becomes a normal distribution	BTL-4	Analyzing					
23)	Define point estimate	BTL-2	Understanding					
24)	Define interval estimate	BTL-2	Understanding					
25)	Write the characteristics of a good estimator	BTL-2	Understanding					
	<u>PART –B</u>							
1)	Fit a straight line $y = a + bx$ to the following data, using principle ofleast squares $x : 1$ 23468 $y : 2.4$ 33.6456	BTL-2	Understanding					

2)	Find the most likely price in Bombay corresponding to the price of Rs.70 at Calculate Correlation coefficient between the prices of commodities in the two cities is 0.8.from the following : Calcutta BombayAverage Price656567Standard deviation2.53.5	BTL-5	Evaluating
3)	Fit a straight line $y = ax + c$ to the following data. X 1 3 5 7 9 11 13 15 17 y 10 15 20 27 31 35 30 35 40	BTL-3	Applying
4)	Find the regression line of Y on X for the data x 14235y31254	BTL-2	Understanding
5)	Fit a parabola of second degree to the following data.X: 01234Y: 15102238	BTL-3	Applying
6)	In random sampling from normal population $N(\mu, \sigma^2)$, find the maximum likelihood estimator for μ when σ^2 is known.	BTL-1	Remembering
7)	The random variable X takes the value 1 and 0 with respective probabilities θ and 1 - θ . If $x_1, x_2,, x_n$ of X are independent observations, $T = X_1 + X_2 +, X_n$ then show that $T(n-T) / n(n-1)$ is an unbiased estimator of $\theta(\theta - 1)$.	BTL-1	Remembering
8)	Let x1,x2xn denote a random sample from the distribution with pdf $f(x,\theta) = \theta x^{\theta-1}, 0 < x < 1, \theta > 0$ 0 Elsewhere prove that the product $u1(x1,x2,,xn) = x1,x2xn$ is a sufficient estimator for θ . i) Let x1,x2,xn be a random sample from uniform population on $[0,\theta]$. Find a sufficient estimator for θ . ii) Show that for a rectangular population $f(x,\theta) = 1/\theta, 0 < x < \infty$ 0 elsewhere Find the maximum likelihood estimator for θ .	BTL-4	Analyzing
9)	For a random sampling from a normal population find the maximum likelihood estimators for i) The population mean, when the population variance is known. ii) The population variance, when the population mean is known. iii) The simultaneous estimation of both the population mean and variance.	BTL-1	Remembering
10)	Obtain the lines of regression X 150 152 155 157 160 161 164 166 Y 154 156 158 159 160 162 161 164	BTL-2	Understanding
11)	The price of a commodity during 93-98 are given below. Fit a parabola $y = a + bx + cx^2$ to these data. Calculate the trend values, estimate the period of the commodity for the year 1999.x1993199419951996y100107128140	BTL-4	Analyzing
12)	The following data relate to the marks of 10 students in the internal test and the university examination for the maximum of 50 in each.Internal Marks : 25 28 30 32 35 36 38 39 42 45UniversityMarks : 20 26 29 30 25 18 26 35 35	BTL-1	Remembering

	46		
	a) Obtain the equations of the lines of regression		
	b) The most likely internal mark for the university mark of 25		
12)	c) The most likely university mark for the internal mark of 30.		
13)	Find the maximum likelihood estimate for the parameter λ of a poisson distribution on the basis of a sample of size n. Also find its		
	variance. Show that the sample mean x is sufficient for estimating the	BTL-1	Remembering
	variance. Show that the sample mean x is sufficient for estimating the parameter λ of the poisson distribution		
14)	Fit a straight line $y = a + by$ for the following data by the principle of		
17)	least squares.		
	X: 0 1 2 3 4	BTL-4	Analyzing
	Y : 1 1.8 3.3 4.5 6.3	212 1	1 11101 / 21118
	Also find the value of y when $x = 1.5$		
15a)	A random sample $(X_1, X_2, X_3, X_4, X_5)$ of size 5 is drawn from a		
	population with unknown mean μ .		
	Consider the following estimators to estimate μ .		
	(r + r + r + r + r) $(r + r)$ $(2r + r)$	$+\lambda r$)	
	$t_1 = \frac{(x_1 + x_2 + x_3 + x_4 + x_5)}{5}, t_2 = \frac{(x_1 + x_2)}{2} + X_3 \text{ and } t_3 = \frac{(x_1 + x_2)}{3}$	BTwhere λ	Remembering
	is such that t_3 is an unbiased estimator of μ . Find λ . Are t_1 and t_2		
	unbiased? State giving reason, the estimator which is best among		
	t ₁ ,t ₂ ,and t _{3.}		
15b)	Let X_1, X_2, \dots, X_n be a random sample of size n from a normal	31	
	distribution with known variance. Obtain the maximum likelihood	BTL-3	Applying
	estimator of μ .	1	
16a)	Let X_1, X_2, \dots, X_n be a random sample size n from the Poisson	1	
	distribution $f(x/\lambda) = \lambda^x e^{-\lambda}$ where $0 \le \lambda \le \infty$. Obtain the	PTI 5	Evoluting
	$\frac{distribution}{x!} \int (x + x) = \frac{1}{x!} \text{where } 0 \le x \le \infty. \text{ Obtain the}$	DIL-J	Evaluating
	maximum likelihood estimator of λ	1.0	
16b)	For the double poisson distribution $P(X = x) =$		
	$1 e^{-m_1} m_1^x + 1 e^{-m_2^x}$		
	$\frac{1}{2}\frac{c}{x_1} + \frac{1}{2}\frac{c}{x_1}$, $x = 0, 1, 2$ Show that the estimates for m ₁	DTI 2	Applying
		DIL-J	Apprying
	and m ₂ by the method of moments are $\mu_1 \pm \sqrt{\mu_2' - \mu_1' - \mu_1'^2}$		
17a)	The following are the measurements of the air velocity and		
	evaporation coefficcient of burning fuel droplets in an impulse engine		
	Air Velocity (cm/s) :20 60 100 140 180 220 260 300 340 380		
	Evaporation Coeff : 0.18 0.37 0.35 0.78 0.56 0.75 1.18 1.36	BTL-4	Analyzing
	1.17 1.65		
	Fit a straight line to these data by the method of least squares, and use		
	it to estimate the evaporation coefficient of a droplet when the air		
	velocity is 190 cm/s.		
17b)	Fit an equation of the form $y = ab^x$ to the following data		
1.0)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		A . 1 *
	y 144 172.8 207.4 248.8 298.5	BIL-3	Applying
18)	Obtain the equation of regression lines $y = ax + b$ from the following		
	data, using the method of least squares.	RTI -3	Applying
			Abhiying
	$ \begin{vmatrix} y & 1 \\ 1.8 & 3.3 \\ 4.5 & 6.3 \end{vmatrix} $		

PART –C												
1) Prove that the ML estimator of the parameter α of the population having pdf $f(x,\alpha) = 2/\alpha^2 (\alpha - x)$. $0 < x < \alpha$ for the sample of unit size is 2x, x being the sample value. Show also that the estimator is not unbiased.									BTL-1	Remembering		
2)	Fit a straight line trend of the form $y = a + bx$ to the data given below											
	by the method	od of leas	st squares	s and pre	dict the	value	of y w	hen	x = 70		BTL-3	Applying
	X /1	68 72	73	69 70	68	65 67	68		6/ 6/			
3)	Fit the mode	$v = ax^b$	to the fo	llowing	data.	07	00		04			
5)	X 1		2	3	4	5		6			BTL-3	Applying
	y 2	.98	4.26	5.21	6.10	6	.80	7.	50			11.7.6
4)	If the two va	riables x	and y ha	ave the r	egressio	n line	s 3x + 2	2y =	26 and			
	6x + y = 31.	Find i)	Find the	mean va	alue of x	and y	/ 11)				BTL-5	Evaluating
5)	Fit a straight	t line for	the follo	wing dat	a by the	meth	od of le	east	squares			
5)	x 1979	1980	1981	1982	2 198	3 19	984 1	985	<u>squares</u>		BTL-5	Evaluating
	y 672	824	968	120	5 146	4 17	758 2	058				C C
				UNIT –	IV TES	STIN	G OF H	IYP	OTHESI	S		
			1			PAR	<u>T – A</u>		· 6			
1)	What is the limits?	essential	differenc	e betwe	en confi	dence	limits	and	tolerance	3	BTL-1	Remembering
2)	Define Null	hypothe	sis.							٢.	BTL-1	Remembering
3)	Define level	of signif	ïcance		S	RI	A.			5	BTL-1	Remembering
4)	Define Type	e-I error a	ind Type	-II error	?					5	BTL-1	Remembering
5)	5) Define student's t-test for difference of means of two samples.									BTL-1	Remembering	
6)	6) Write down the formula of test statistic'z' to test the significance of difference between proportions							1	BTL-2	Understanding		
7)	Write the ap	plication	of t-test		1.1						BTL-3	Applying
8)	Define Alter	mative hy	pothesis		20	-					BTL-3	Applying
9)	State the imp	portant p	roperties	of 't' di	stributio	n.					BTL-1	Remembering
10)	Write the ap	plication	of Chi-S	Square-te	est.			_	1		BTL-1	Remembering
11)	A standard of 4.95 kg net weight	l sample with a st is 5 kg p	of 200 t andard c per tin at	ins of c leviatio 5% lev	oconut n of 0.2 el of sig	oil ga 1 kg. gnific	Do we	avei e aco	rage weig cept that	the	BTL-4	Analyzing
12)	Write the ap	plication	of 'F' te	st							BTL-3	Applying
13)	Define a 'F'	variate									BTL-1	Remembering
14)	In a large city A, 20 percent of a random sample of 900 school boys had a slight physical defect. In another large city B, 18.5 percent of a random sample of 1600 school boys had some defect. Is the difference between the proportions significant?								a ne	BTL-3	Applying	
15)	(5) A sample of size 13 gave an estimated population variance of 3.0 while another sample of size15 gave an estimate of 2.5. Could both samples be from populations with the same variance?									BTL-3	Applying	
16)	Give the ma	in use of	chi-squa	re test.							BTL-1	Remembering
17)	What are the	e properti	es of "F'	' test.							BTL-1	Remembering
18)	Write the pr	ocedure f	for testing	g a statis	tical hy	pothes	sis				BTL-2	Understanding
19)	Write the sta	andard er	ror of an	y four sa	mpling	distrit	oution				BTL-2	Understanding
20)	What is the	differenc	e betwee	n small s	sample a	and la	rge sam	ple.			BTL-2	Understanding
21)	What are t	he expe	cted free	quencies	s of 2x2	cont	ingenc	y ta	ble?		BTL-1	Remembering

	a b											
22)	What is the assumption of t-test?	BTL_2	Understanding									
23)	What are the parameters and statistics in sampling	BTL-2	Understanding									
24)	Write the formula for test statistic for a single proportion	BTL-2	Pemembering									
25)	Twenty people were attacked by a disease and only 18 were survived	DIL-I	Kemembering									
23)	The hypothesis is set in such a way that the survival rate is 85% if attacked by this disease. Will you reject the hypothesis that it is more at 5% level? ($Z_{0.05} = 1.645$).	BTL-3	Applying									
	PART – B											
1 a)												
	A sample of 900 members has a mean 3.4 c.m and standard deviation 2.61 c.m. Is the sample from a large population of mean 3.25 c.ms and standard deviation of 2.61c ms?(Test at 5% L Ω S)	BTL-2	Understanding									
1b)	Before an increase in excise duty on tea, 800 persons out of a sample of											
	1000 persons were found to be tea drinkers. After an increase in duty, 800 people were tea drinkers in a sample of 1200 people. Using standard error of proportion, State whether there is a significant decrease in the	BTL-2	Understanding									
29)	A manufacturer claimed that at least 95% of the equipment which he											
2a)	supplied to a factory conformed to specifications. An examination of a sample of 200 pieces of equipment revealed that 18 were faulty. Test his claim at 5% level of significance	BTL-3	Applying									
2b)	A machine produces 16 imperfect articles in a sample of 500. After machine is overhauled, it produces 3 imperfect articles in a batch of 100. Has the machine been improved?	BTL-2	Understanding									
3a)	In a big city 325 men out of 600 men were found to be smokers. Does this information support the conclusion that the majority of men in this city are smokers?	BTL-5	Evaluating									
3b)	Examine whether the difference in the variability in yields is significant at 5% LOS, for the following. Set of 40 Plots Set of 60 Plots Mean yield per Plot 1258	BTL-3	Applying									
(1-)	S.D. per Plot 34 28											
4a)	68.0 inchesrespectively. Can the samples be regarded as drawn from the same population of standard deviation 2.5 inches?	BTL-3	Applying									
4b)	Two independent samples of sizes 8 and 7 contained the following values.											
	Sample I 19 17 15 21 16 18 16 14	BTL-4	Analyzing									
	Sample II 15 14 15 19 15 18 16											
	Test if the two populations have the same mean.											

5 a)	Samples of two ty	pes of electric bulk	os were tested for length of life and			
	following data we	reobtained.	Tupo II			
	Sample Size		7			
	Sample Meen	0 1234hrs	/ 1036brs	BTL-3	Annlying	
	Sample S D	12341118 36hrs	40brs		119919118	
	Is the difference i	n the means suffici	ant to warrant that type Lie superior to			
	type II regarding t	he length of life?	ent to warrant that type I is superior to			
	type if regulating t	ne lengui or me.				
5b)	Two independer	nt samples of 8 and	7 items respectively had the following	5		
	Values of the vari	able (weight in kgs.)			
	Sample I	9 11 13 11 1	5 9 12 14	BTL-3	Applying	
	Sample II	: 10 12 10 14	9 8 10			
	that they ariances	of the two population	whether it is reasonable to assume			
6)	Δ group of 10 rate	fed on diet A and	another group of 8 rats fed on diet B			
0)	Recorded the follo	wing increase the	following increase in weight (gms)			
	Diet	A: 5 6 8 1 12	4 3 9 6 10		TT. J	
	Diet I	B: 2 3 6 8 10) 1 2 8	BIL-2	Understanding	
	Does it show	v superiority of diet	A over diet B? (Use F-test)			
	TT1 1 1 / ·	11 60	1			
(1)	The marks obtained	ed by a group of 9 r	in a test are given below:			
	Regular ·	56 62 63 54 6	50 51 67 69 58	N		
	Part-time:	62 70 71 62 0	50 56 75 64 72 68 66	BTL-3	Applying	
	Examine whe	ether the marks obta	nined by regular students and part-time	2		
	students differ sig	nificantly at <mark>5% and</mark>	1 1% levels of significance.			
8)	Two independent	samples of size 8 a	nd 7 contained the following values	-		
0)	Sample 1 : 29 18	11 21 14 12 14	14			
	Sample 2 : 11 14	15 19 13 10 12		BTL-4	Analyzing	
	Test if the two pop	pulations have the s	ame variance.			
9 a)	The average inc	ome of a per <mark>son wa</mark>	s Rs. 210 with S.D of <mark>Rs. 10</mark> in a			
,	sample 100 people	e of a city. For a	nother sample of 150 persons the		Understanding	
	average income w	as Rs. 220 w <mark>ith S.E</mark>	of Rs. 12. Test whether there is	BIL-2		
	any significant dif	ference between the	e average income of the localities?			
9 b)	Two random sam	ples gave the follow	ving results:			
	Sample Size	Sample mean	Sum of squares of			
			deviation from the mean		TT 1 / 1	
	1 10	15	90	BIL-2	Understanding	
	2 12	14	108			
	Test whether the	samples have come	e from the same normal population.			
10)	Records taken of	of the number of ma	le and female births in 800 families			
,	having four childr	en are as follows :				
	Numb	er of male births :	0 1 2 3 4			
	Numbe	er of female births :	4 3 2 1 0			
		imber of Families :	32 1/8 290 236 64	BTL-4	Analyzing	
	I est whether t	ne data are consiste	nt with the hypothesis that the			
	of a male birth	s and that the chance is equal to that of the	e female hirth namely n = 1/2 = a			
		i is equal to that of I	p = 72 - q.			

11)	Given the f	following ta	value of							
	Cin-square.	is there go	<u>ou asso</u> H	$\frac{clation}{air colo}$	ur		ii and ey			
			Fair	E	Brown	Black	Total			
		Blue	15	5		20	40		BTL-4	Analyzing
	Eye	Grey	20	1	0	20	50			
	colour	Brown	25	1	5	20	60			
		Total	00	5	0	00	150			
12a)	Out of 800	graduates i	n a towi	n 800 ai	re female	s, out of 1	600 grac	luate		
	employees	120 are fer	ales. Us	se chi s	quare to o	determine	e if any d	istinction is	BTL-2	Understanding
	1 d.f is 3.84		ii the Da	515 01 50			juare at .			
12b)	The nicot	ine conten	t in mi	lligram	of two	samples	of toba	cco where		
	found to b	e as follow	vs, test	the sig	gnificant	differen	ce betw	een means		
	of the two	samples.	1 .					_	BTL-4	Analyzing
	Sample I	21	24		25	26	2	7 -		
	Sample II	22	27		28	30	3	1 36		
13)	The follow	ing data giv	ves the n	umber	of aircraf	t acciden	ts that oc	curred		
	during the v	arious days	s of a we	eek. Fin	a whethe	r the acci	dents are	uniformly		
	Days	Sun	Mon	Tues	Wed	Thu	Fri	Sat	BTL-2	Understanding
	No. of	14	16	08	12	11	9	14		
	accidents	1			SI	N		1		
14)	Two resear	chers A and	d B adop	oted dif	ferent tec	hniques y	vhile rati	ng the		
	students lev	el. Can yo	u say tha	at the te	chniques	adopted	by them a	are		
	significant	at 5% level	:					1		
						5				
	Researchers	Below av	verage	Averag	e Abov	e average	Genius	Total	BTL-5	Evaluating
	A	40		33	23		Z	100		
	В	86		60	44		10	200		
	Total	126		03	69		12	300		
	Total	120))	07		12	500		
15a)	From the fo	llowing two	o sample	e values	, find out	t whether	they hav	e come		
	from the same	me populati	on at 5%	% level	•					
	Sample I :	17 27	18	25	27 2	29 27	23	17	BTL-3	Applying
	1									
	Sample II	: 16 10	5 20	16	20	17 15	21			
15b)	5 coins v	were tosse	d 320 t	times. '	The nun	nber of l	neads ob	oserved is		
	given belo	ow:								
	No. of hea	ads	:	0 1	$\frac{2}{2}$ $\frac{3}{2}$	4	5		BTL-3	Applying
	Observed Examine u	frequencies	es: 1	3 43	85 9 Sed Use	5 60 1	20 Lofsign	ificance		
160)	It is desire	d to determ	ine who	ther the	re je leen	variabilit	$\frac{1}{v \text{ in the } c}$	vilver		
10a)	plating done	e by Compa	ing whe	in that d	lone by C	Company 2	2. If inde	ependent		
	random san	ples of size	e 1 of th	e two co	ompanies	work yie	eld $s_1 = 0$.035 mil	BTI -5	Evaluating
	and $s_2 = 0.0$	62 mil, test	the null	l hypoth	nesis $\sigma_1^{\ 2}$	$=\sigma_2^2$ ag	gainst the	alternative		Lyanaaning
	hypothesis	$\sigma_1^2 < \sigma_2^2$	at the 0.	.05 leve	l of signi	ficance.				

16b) 17a) 17b)	The Lapping process which is used to grind certain silicon wafers to the proper thickness is acceptable only if σ , the population standard deviation of the thickness of dice cut from the wafers, is atmost 0.50 mil. Use 0.05 level of significance to test the null hypothesis $\sigma = 0.50$ against the alternative hypothesis $\sigma > 0.50$, if the thickness of 15 dice cut from such wafers have a standard deviation of 0.64 mil. Given a sample mean of 83, a sample standard deviation of 12.5 and a sample size of 22, test the hypothesis that the value of the population mean is 70 against the alternative that it is more than 70. Use the 0.05 significance level. A sample of 200 persons with a particular disease was selected. Out								Applying Creating
	drug The result a	re given a	arug a	ind the	others w	ere not	given any		
	Number of pe	rsons	w 3.	Drug	N dru	0 1g	Total	BTL-6	Creating
	Cured			65	5:	5	120		U
	Not cured		10	35	4:	5	80		
	Total	1		100	10	00	200		
18)	To determine whet performance in the success in the job, extensive files and Performances in thBelowPoorPoor23Average28Very good9Total60Using the 0.01 leve performance in the	ther there rea company's the company obtains the e training Pr Average	Ally is a training y takes results cogram Ave 60 79 49 188 ance to ogram a	relations g prograr a sample shown in erage test the p nd succe PART C	ship betw n and his of 400 ca the follo Above 29 60 63 152 null hypo ss in the j	een an en or her ult ases from wing tabl Average Average thesis tha	nployee's timate its very e : Total 112 167 121 400 t dependent	BTL-3	Applying
1)	The means of two	random sam	nles of	size 9 an	d 7 are 10	96 42 and	1 198 92		
1)	respectively. The 26.94 and 18.73 re drawn from the sar	sum of the sum sum sum of the sum	quares of Can the opulation	of the development of the develo	viation from the considered	om the m lered to h	ean are ave been	BTL-2	Understanding
2)	Two horses A and	B were teste	ed accor	rding to t	the time (in second	ds) to run a		
	Horse 28	30 31	$\frac{110}{2}$	33	33	29	34		
	A		-						
	Horse 29 B	30 3	U	24	27	27	-	BTL-4	Analyzing
	Test whether you can discriminate between two horses. You can use the fact that 5 % value of t for 11 degrees of freedom is 2.2								
3)	An ample analysis of examination results of 500 students was made. It was found that 220 students had failed. 170 had secured a third class, 90 were placed in second class and 20 got first class. Do these figures commensurate with the general examination result which is in the ration								Creating

	4 : 3:2:1 for the various categories respectively.		
1	Pandom samples of 400 men and 600 women were asked whether they		
4)	would like to have a flyover near their residence 200 men and 325 women		
	were in favour of the proposal. Test the hypothesis that proportions of men	BTL-3	Applying
	and women in favour of the proposal are same at 5 % level.		
5)	The theory predicts that the population of beans in the four groups A,		
	B, C and D should be 9:3:3:1. In an experiment among 1600 beans,		
	the number in the four groups was 882,313,287 and 118. Do the		
	experimental results support the survey?		
	UNIT – V MULTIVARIATE ANALYSIS		
	PART A		
1)	Define random vector.	BTL-1	Remembering
2)	Define covariance matrix	BTL-1	Remembering
3)	State the properties of multivariate normal density.	BTL-1	Remembering
4)	Define Principal component analysis.	BTL-1	Remembering
5)	Define total population variance.	BTL-1	Remembering
6)	State the general objectives of principal components analysis.	BTL-3	Applying
7)	Define the expected value of a random matrix.	BTL-1	Remembering
8)	$(4 \ 1 \ 2)$ $(2 \ 0 \ 0)$		
,	$K \sum 1 0 2 $ and $V^{1/2} 0 2 0$ find 2	DTI 2	A 1 '
	$If \sum_{i=1}^{n} [1 9 -3] ana V = [0 3 0] IIII a p$	BIL-3	Applying
	(2 -3 25) $(0 0 5)$		
9)	$(4 \ 1 \ 2)$		
	If $\Sigma = \begin{bmatrix} 1 & 9 & -3 \end{bmatrix}$ Find the standard deviation matrix $V^{1/2}$	BTI -4	Analyzing
		DILT	7 mary 2mg
	(2 - 3 - 23)		
10)	$\begin{pmatrix} 42 & 4 \end{pmatrix}$		
	If $X = 52$ 5 Find x.	BTL-4	Analyzing
11)	Define second principle component.	BTL-1	Remembering
12)	If X_1 and X_2 are two uncorrelated random variables, then what is the		
	correlation coefficient matrix.	BTL-2	Understanding
13)	Define multivariate analysis.	BTL-1	Remembering
14)	State random matrices.	BTL-1	Remembering
15)	Establish the condition density of bivariate normal distribution.	BIL-4	Analyzing
16)	Explain correlation of variables and components.	BTL-4	Analyzing
17)	Enumerate rescaling the principal components.	BTL-5	Evaluating
18)	Define first principal component.	BTL-1	Remembering
19)	What is the formula to compute the population variance due to k ^m principal component.	BTL-2	Understanding
20)	Explain the principal components obtained from standardized variables.	BTL-2	Understanding
21)	Define correlation coefficient in terms of variance and covariance	BTL-2	Understanding
22)	Write the matrix notation for principal component from standardized variables	BTL-4	Analyzing
23)	Write any one theorem about principal component.	BTL-1	Remembering
24)	Write any two properties of multivariate normal distribution.	BTL-5	Evaluating
/	~	2120	

25)	Write the multivar	BTL-1	Remembering			
			PART -	<u>- B</u>		
1)	Compute the cova	riance matrix with	n the following dat	ta.		
		0	1	$P_1(x_1)$		
	X1 X2	0.24	0.00	0.2	BTL-2	Understanding
		0.24	0.06	0.3		6
		0.40	0.14	0.4		
2)	Explain partitionin	ng the covariance	matrix.	011	BTL-1	Remembering
3)	Explain the mean	vector and covaria	ance matrix for lin	ear combination of	DTI 1	Domomhoring
	random variables				DIL-I	Kennennbernig
4)	Discuss Bivariate	normal density.			BTL-1	Remembering
5)	Prove that the correction values – eigen vec	relation coefficien tor pairs for sigma	t between the com a.	ponents are the eigen	BTL-4	Analyzing
6)	Consider the rand X ₁ have the follow F probability functio	$\begin{array}{c} \text{om vector } \vec{X} = \{ \\ \text{ing probability fun} \\ X_1 := -1 & 0 \\ P_1(X_{1):} & 0.3 & 0.3 \\ n \\ X_2 := 0 & 1 \\ P_1(X_{1):} & 0.8 & 0.3 \\ \end{array}$	BTL-3	Applying		
7)	Let the random van $\sum = \begin{pmatrix} 1 & -2 \\ -2 & 5 \\ 0 & 0 \end{pmatrix}$	$ \begin{array}{c} \text{riables } X_1, X_2 \text{ and} \\ 0 \\ 0 \\ 2 \end{array} $ Determine	BTL-5	Evaluating		
8)	Let X_{3x1} be $N_3(\mu$ What about (X_1 , X	BTL-2	Understanding			
9)	Discuss principal of	components from s	standardized varia	bles.	BTL-1	Remembering
10)	Explain principal	component popula	ation.	/	BTL-1	Remembering
11)	Let X be distribut $N_3(\mu, \Sigma)$ where following random i) X ₁ and X ₂ ii) X ₁ and X ₃ iii) X ₂ and X ₃ iv)(X ₁ , X ₃) and X ₂	ted as $\mu' = (1, -1, 2)$ and variables are indep	$\Sigma = \begin{pmatrix} 4 & 0 & - \\ 0 & 5 & 0 \\ -1 & 0 & 2 \end{pmatrix}$ pendent ? Explain	$\begin{pmatrix} -1\\0\\2 \end{pmatrix}$ which of the	BTL-5	Evaluating
12)	For the covariance $= \begin{pmatrix} 1 & 0.4 \\ 0.4 & 1 \end{pmatrix}$, Sh covariance and con	e matrix $\Sigma = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$ ow that the princip	$\begin{pmatrix} 4\\ 100 \end{pmatrix}$ the derive pal components of are different.	d correlation matrix P otained from	BTL-3	Applying

13)	Prove that If \sum is positive definite so that \sum^{-1} exists the $\sum e =$		
	$\lambda e = \sum^{-1} e = \left(\frac{1}{\lambda}\right) e$ so (λ, e) is an eigen value – eigen vector pair for Σ corresponding to the pair $(\frac{1}{\lambda}, e)$ for Σ^{-1} , also Σ^{-1} is positive definite.	BTL-3	Applying
14)	Prove that the distribution of two linear combination of the components of a random vector.	BTL-4	Analyzing
15)	Compute the principal components to the following matrix $A = \begin{pmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{pmatrix}$	BTL-3	Applying
16)	Compute the principal components to the following matrix $A = \begin{pmatrix} 5 & 0 & 3 \\ 4 & 2 & 5 \\ 2 & -2 & -2 \end{pmatrix}$	BTL-3	Applying
17)	Compute the principal component to the variance covariance matrix $\Sigma = \begin{pmatrix} 1 & 4 \\ 4 & 100 \end{pmatrix}$	BTL-3	Applying
18)	If $\sum = \begin{pmatrix} 25 & -2 & 4 \\ -2 & 4 & 1 \\ 4 & 1 & 9 \end{pmatrix}$ then find (i) $V^{1/2}$ and ρ (ii) Show that $V^{1/2} = \rho$	BTL-3	Applying
	PART C		
1)	Compute the principal components to the following 3 x 3 variance covariance matrix for n = 20. $A = \begin{pmatrix} 2.8889 & 9.8968 & -1.8120 \\ 9.8968 & 201.0183 & -5.65553 \\ -1.8210 & -5.6553 & 3.6276 \end{pmatrix}$	BTL-3	Applying
2)	Prove that all the subsets of X are normally distributed	BTL-3	Applying
3)	Explain the distribution of a subset of a normal random vector	BTL-1	Remembering
4)	Explain the conditional density of bivariate normal distribution	BTL-1	Remembering
5)	Explain Multivariate Analysis	BTL-4	Analyzing
