SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution)

(S.R.M.NAGAR, KATTANKULATHUR-603203)

DEPARTMENT OF MATHEMATICS QUESTION BANK

I YEAR / I SEMESTER M.E., INDUSTRIAL SAFETY ENGINEERING 1918107 – PROBABILITY AND STATISTICAL METHODS Regulation – 2019

Academic Year – 2022- 23

Prepared by
A.Karpagam, Assistant Professor

VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution)

SRM Nagar, Kattankulathur – 603 203.

DEPARTMENT OF MATHEMATICS QUESTION BANK

SUBJECT : 1918107 – PROBABILITY AND STATISTICAL METHODS

SEM / YEAR : I Sem/ I M.E. INDUSTRIAL SAFETY ENGINEERING

UNIT-I PROBABILITY AND RANDOM VARIABLES

Probability – Axioms of probability – Conditional probability – Baye's theorem – Random variables – Probability function –Moments – Moment generating functions and their properties – Binomial, Poisson, Geometric, Uniform, Exponential, Gamma and Normal distributions – Function of a random variable.

Q.No	Question	Bloom's Taxonomy Level	Domain
	PART – A		
1.	If the probability density function of a random variable X is $f(x) = \frac{1}{4}$ in $-2 < x < 2$ find $P(x > 1)$	BTL1	Remembering
2.	If X is a geometric variate, taking values 1, 2, 3 ∞ , find $P(X \text{ is } odd)$	BTL1	Remembering
3.	State the memory less property of the exponential distribution.	BTL1	Remembering
4.	The mean and variance of binomial distribution are 5 and 4 Find the distribution of <i>X</i> .	BTL1	Remembering
5.	The mean of Binomial distribution is 20 and standard deviation is 4. Find the parameters of the distribution.	BTL1	Remembering
6.	If the events A and B are independent then show that \overline{A} and \overline{B} are independent.	BTL1	Remembering
7.	If a random variable X takes values 1, 2, 3, 4 such that $2P(X = 1) = 3P(X = 2) = P(X=3) = 5P(X=4)$. Find the probability distribution of X.	BTL2	Understanding
8.	Find the Moment generating function of a continuous random variable X whose p.d.f is $f(x) = \begin{cases} xe^{x/2}, & x > 0 \\ 0, & x \le 0 \end{cases}$	BTL2	Understanding
9.	If 3% of the electric bulbs manufactured by a company are defective, find the probability that in a sample of 100 bulbs exactly 5 bulbs are defective.	BTL2	Understanding
10.	If a random variable X has the MGF $M_X(t) = \frac{2}{2-t}$. Find the standard deviation of X.	BTL2	Understanding
11.	Show that the function $f(x) = \begin{cases} e^{-x}, x \ge 0 \\ 0, x < 0 \end{cases}$ is a probability density function of a continuous random variable X.	BTL3	Applying
12.	Show that the moment generating function of the uniform distribution $f(x) = \frac{1}{2a}$, $-a < x < a$ about origin is $\frac{\sinh(at)}{at}$.	BTL3	Applying

13.	If the MGF of a uniform distribution for a RV X is $\frac{1}{t}(e^{5t} - e^{4t})$. Find E(X).	BTL3	Applying
14.	A is known to hit the target in 2 out of 5 shots whereas <i>B</i> is known to hit the target in 3 of 4 shots. Find the probability of the target being hit when they both try?	BTL4	Analyzing
15 .	Define Gamma distribution.	BTL4	Analyzing
16.	If A and B are events in S such that $(A) = 1/3$, $P(B) = 1/4$ and $P(A \cup A) = 1/2$. Find $P(A \cap \overline{B})$ and $P(A/\overline{B})$.	BTL4	Analyzing
17 .	Write two characteristics of the Normal Distribution	BTL5	Evaluating
18.	The number of hardware failures of a computer system in a week of operations has the following p.d.f, Calculate the value of K. No of failures 0 1 2 3 4 5 6 probability K 2 K 2 K K 3 K K 4 K	BTL5	Evaluating
19.	Suppose that, on an average, in every three pages of a book there is one typographical error. If the number of typographical errors on a single page of the book is a Poisson random variable. What is the probability if at least one error on a specific page of the book?	BTL6	Creating
20.	The probability that a candidate can pass in an examination is 0.6. What is the probability that he will pass in third trial?	BTL6	Creating
21.	Suppose that X has a Poisson distribution with parameter $\lambda = 2$. Compute $P[X \ge 1]$.	BTL4	Analyzing
22.	State Baye's theorem	BTL5	Evaluating
23.	Define Normal distribution	BTL5	Evaluating
24.	State any two properties of normal distribution	BTL6	Creating
25.	Let X be a Uniformly distributed R. V. over [-3, 3]. Determine $P(X \le 2)$	BTL-2	Understanding
	PART-B		1
1.	A random variable X has the following probability distribution: X 0 1 2 3 4 5 6 7 P(X) 0 k 2 k 2 k 3 k k^2 $2k^2$ $7k^2+k$ Find (i) the value of k (ii) $P(1.5 < X < 4.5 / X > 2)$	BTL-2	Understanding
2.	Find the MGF of Binomial distribution and hence find its mean and variance.	BTL-2	Understanding
3(a).	A bolt is manufactured by 3 machines <i>A</i> , <i>B</i> , and <i>C</i> . <i>A</i> turns out twice as many items as <i>B</i> and machines <i>B</i> and <i>C</i> produce equal number of items. 2% of bolts produced by <i>A</i> and <i>B</i> are defective and 4% of bolts produced by <i>C</i> are defective. All bolts are put into 1 stock pile and 1 is chosen from this pile. What is the probability that it is defective?	BTL -6	Creating
3(b).	Find the moment generating function of a geometric random variable. Also find its mean.	BTL -3	Applying
4.	The probability distribution of an infinite discrete distribution is given by $P[X = j] = \frac{1}{2^j} (j = 1,2,3)$ Find (1)Mean of X, (2)P [X is even],(3) P(X is odd)	BTL -6	Creating
5.	Find the MGF of Poisson distribution and hence find its mean and variance.	BTL -6	Creating

6(a).	An urn contains 10 white and 3 black balls. Another urn contains 3 white and 5 black balls. Two balls are drawn at random from the first urn and placed in the second urn and then 1 ball is taken at random from the latter. What is the probability that it is a white ball?	BTL -6	Creating
6(b).	Find the MGF of Uniform distribution and hence find its mean and variance.	BTL-2	Understanding
7.	If $f(x) = \begin{cases} ax, & 0 \le x \le 1 \\ a, & 1 \le x \le 2 \\ 3a - ax, & 2 \le x \le 3 \end{cases}$ is the p.d.f of X. Calculate $\begin{cases} 0, & elsewhere \end{cases}$ (i) The value of a, (ii) The cumulative distribution function of X (iii) If X_1, X_2 and X_3 are 3 independent observations of X. Find the probability that exactly one of these 3 is greater than 1.5?	BTL -3	Applying
8.	A random variable X has c.d.f $F(x) = \begin{cases} 0, if x < -1 \\ a(1+x), if -1 < x < 1 \end{cases}$. Find the value of a. Also $P(X>1/4)$ and $P(-0.5 \le X \le 0)$.	BTL-1	Remembering
9.	State and Prove forget fullness property of exponential distribution. Using this property solve the following problem: The length of the shower on a tropical island during the rainy season has on exponential distribution with parameter 2, time being measured in minutes. What is the probability that a shower will last more than 3 minutes?	BTL -3	Applying
10(a).	In a normal population with mean 15 and standard deviation 3.5, it is found that 647 observations exceed 16.25. What is the total number of observations in the population?	BTL -3	Applying
10(b).	If the probability mass function of a RV X is given by $P(X = x) = kx^3$, $x = 1, 2, 3, 4$. Find the value of k, $P\left[\left(\frac{1}{2} < X < \frac{3}{2}\right)/X > 1\right]$, mean and variance of X.	BTL -3	Applying
11(a).	The marks obtained by a number of students for a certain subject is assumed to be normally distributed with mean 65 and standard deviation 5. If 3 students are taken at random from this set Find the probability that exactly 2 of them will have marks over 70?	BTL -3	Applying
11(b).	A bag contains 5 balls and it is not known how many of them are white. Two balls are drawn at random from the bag and they are noted to be white. What is the change that all balls in the bag are white?	BTL -6	Creating
12.	Out of 2000 families with 4 children each, Find how many family would you expect to have i) at least 1 boy ii) 2 boys iii) 1 or 2 girls iv) no girls	BTL -3	Applying
13.	In a certain city, the daily consumption of electric power in millions of kilowatt hours can be treated as a RV having Gamma distribution with parameters $\lambda = \frac{1}{2}$ and k = 3. If the power plant of this city has a daily capacity of 12 million kilowatts – hours, Find the probability that this power supply will be inadequate on any given day?	BTL -3	Applying
14.	Suppose that the life of an industrial lamp in 1,000 of hours is exponentially distributed with mean life of 3,000 hours. Find the probability that (i)The	BTL -3	Applying

	lamp last more than the mean life (ii) The lamp last between 2,000 and 3,000 hours (iii) The lamp last another 1,000 hours given that it has already lasted for 250 hours.		
15(a).	Assume that 50% of all engineering students are good in mathematics. Determine the probabilities that among 18 engineering students (i) exactly 10, (ii) At least 10 are good in mathematics.	BTL -3	Applying
15(b).	The life (in years) of a certain electrical switch has an exponential distribution with an average life of $\frac{1}{\lambda}$ = 2. If 100 of these switches are installed in different systems; find the probability that at most 30 fail during the first year.	BTL -3	Applying
16.	The probability mass function of a discrete R. V X is given in the following table:	BTL -4	Analyzing
17.	Let X be a Uniformly distributed R. V. over [-5, 5]. Determine (i) $P(X \le 2)$, (ii) $P(X > 2)$, (iii) Cumulative distribution function of X, (iv) $Var(X)$.	BTL -3	Applying
18.	The Probability distribution function of a R.V. X is given by $f(x) = \frac{4x(9-x^2)}{81}, \ 0 \le x \le 3.$ Find the mean, variance and 3 rd moment about origin.	BTL-5	Evaluating
	PART-C		•
1.	State and Prove memory less property of Geometric distribution	BTL-6	Creating
2.	In a test on 2000 electric bulbs, it was found that bulbs of a particular make, was normally distributed with an average life of 2040 hours and standard deviation of 60 hours. Estimate the number of bulbs likely to burn for 1.more than 2150 hours 2.less than 1950 hours 3.Less than 1980 4.more 1920 hours but less than 2100 hours	BTL-2	Understanding
3.	8 coins are tossed at a time 256 times. Number of heads observed at each throw is recorded and the results are given below. Find the expected frequencies. What are the theoretical values of mean and standard deviation? Calculate also the mean and S.D of the observed frequencies. No. of heads: 0 1 2 3 4 5 6 7 8	BTL-1	Remembering
	Frequency: 2 6 30 52 67 56 32 10 1		
4.	(i) Derive MGF, Mean and Variance of Poisson distribution.(ii) State and prove Additive property of independent Poisson Variates.	BTL-6	Creating
5.	Messages arrive at a switch board in a Poisson manner at an average rate of 6 per hour. Find the probability that exactly 2 messages arrive within one hour, no messages arrives within one hour and at least 3 messages arrive within one hour.	BTL -4	Analyzing

UNIT II - ESTIMATION THEORY

Principle of least squares – Regression – Multiple and Partial Correlations – Estimation of parameters – Maximum likelihood estimates – Method of Moments.

Q. No.	Question	BT Level	Competence
	PART – A		
1.	Define estimator.	BTL-1	Remembering
2.	Distinguish between point estimation and.	BTL-1	Remembering
3.	Mention the properties of a good estimator.	BTL-1	Remembering
4.	Define confidence coefficient.	BTL-1	Remembering
5.	What is the level of significance in testing of hypothesis?	BTL-2	Understanding
6.	Define confidence limits for a parameter.	BTL-1	Remembering
7.	State the conditions under which a binomial distribution becomes a normal distribution.	BTL-1	Remembering
8.	Explain how do you calculate 95% confidence interval for the average of the population?	BTL-3	Applying
9.	Define negatively biased.	BTL-2	Understanding
10.	An automobile repair shop has taken a random sample of 40 services that the average service time on an automobile is 130 minutes with a standard deviation of 26 minutes. Compute the standard error of the mean.	BTL-4	Analyzing
11.	Two variables X and Y have the regression lines $3X + 2Y - 26 = 0$, $6X + Y - 31 = 0$, Find the mean value of X and Y.	BTL-4	Analyzing
12.	State any two properties of regression lines.	BTL-4	Analyzing
13.	Define unbiasedness of a good estimator.	BTL-1	Remembering
14.	Write the normal equations for fitting a straight line by the method of least squares.	BTL-2	Understanding
15.	What are the merits and demerits of the least square method.	BTL-1	Remembering
16.	Find the maximum likelihood estimates for the population mean when the population variance is known for random sampling from a normal population.	BTL-6	Creating
17.	Define positively biased.	BTL-1	Remembering
18.	Give the normal equations to fit the parabola $y = a + bx + cx^2$	BTL-2	Understanding
19.	Can Y = $5 + 2.8x$ and X = $3 - 0.5$ y be the estimated regression equations of y on x and x on y respectively? Explain.	BTL-4	Analyzing
20.	Obtain the maximum likelihood estimator of $f(x, \theta) = (1 + \theta)x^{\theta}, 0 < x < 1$ based on a random sample of size x.	BTL-3	Applying
21.	Define estimate	BTL-1	Remembering
22.	Let the lines of regression concerning two variables x and y be given by $y = 32 - x$ and $x = 13 - 0.25y$. Obtain the values of the means.	BTL-2	Understanding
23.	Define estimation	BTL-1	Remembering
24.	What is meant by maximum likelihood estimator?	BTL-6	Creating
25.	Define interval estimation	BTL-2	Understanding
	PART –B		
1.	Fit a straight line $y = a + bx$ to the following data, using principle of least squares	BTL-2	Understanding

	x : 1 2 3 4 6 8		
	y: 2.4 3 3.6 4 5 6		
	Find the most likely price in Bombay corresponding to the price of Rs. 70 at Calcutta		
	from the following:		
	Calcutta Bombay		
2.		BTL-5	Evaluating
	Average Price 65 67		
	Standard deviation 2.5 3.5		
	Correlation coefficient between the prices of commodities in the two cities is 0.8.		
3(a).	Fit a straight line $y = ax + c$ to the following data.		
	X 1 3 5 7 9 11 13 15 17	BTL-3	Applying
	y 10 15 20 27 31 35 30 35 40		
	Find the regression line of Y on X for the data		
3(b).	x 1 4 2 3 5	BTL-2	Understanding
	y 3 1 2 5 4		
	Fit a parabola of second degree to the following data.		
4.	X: 0 1 2 3 4	BTL-3	Applying
	Y: 1 5 10 22 38		
5.	In random sampling from normal population $N(\mu, \sigma^2)$, find the maximum likelihood	BTL-1	Remembering
3.	estimator for μ when σ^2 is unknown.	DIL-1	Kemembering
	Let x1,x2xn denote a random sample from the distribution with pdf		
6.	$f(x,\theta) = \theta x^{\theta-1}, 0 < x < 1, \theta > 0$	BTL-4	Analyzina
0.	0 Elsew <mark>here</mark>	DIL-4	Analyzing
	prove that the product $u1(x1,x2,xn) = x1,x2xn$ is a sufficient estimator for θ .		
	Let x1,x2,xn be a random sample from uniform population on $[0,\theta]$. Find a sufficient		
7.	estimator for θ . Show that for a rectangular population $f(x,\theta) = 1/\theta$, $0 < x < \infty$	BTL-4	Analyzing
/•	0 elsewhere	DIL-4	Analyzing
	Find the maximum likelihood estimator for θ .		
	For a random sampling from a normal population find the maximum likelihood		
	estimators for		
8.	i) The population mean, when the population variance is known.	BTL-1	Remembering
	ii) The population variance, when the population mean is known.		
	iii) The simultaneous estimation of both the population mean and variance.		
	Obtain the lines of regression X 50 55 50 60 65 65 60 60	DTI 4	II. Janet 1
9.		BTL-2	Understanding
	The price of a commodity during 93-98 are given below. Fit a parabola $y = a + bx + bx^2$ to these data. Colculate the trend values, estimate the period of the commodity for		
	cx^2 to these data. Calculate the trend values, estimate the period of the commodity for the year 1999.		
10.	y .	BTL-4	Analyzing
	y 100 107 128 140 181		
	The following data relate to the marks of 10 students in the internal test and the		
	university examination for the maximum of 50 in each.		
	Internal Marks : 25 28 30 32 35 36 38 39 42 45		
	UniversityMarks: 20 26 29 30 25 18 26 35 35 46	BTL-1	Remembering
11.	a) Obtain the equations of the lines of regression	D 117-1	Kemembering
	b) The most likely internal mark for the university mark of 25		
	c) The most likely university mark for the internal mark of 30.		
	Find the maximum likelihood estimate for the parameter λ of a poisson distribution on		
12.	the basis of a sample of size n. Also find its variance. Show that the sample mean x is	BTL-1	Remembering
L	and cause of a sample of size in raiso fine its variance. Show that the sample mean A is		1

	sufficient for estimating the parameter λ of the poisson distribution.		
	Fit a straight line $y = a + bx$ for the following data by the principle of least squares.		
12	X: 0 1 2 3 4	DTI 4	A 1
13.	Y: 1 1.8 3.3 4.5 6.3	BTL-4	Analyzing
	Also find the value of y when $x = 1.5$		
	A random sample $(X_1, X_2, X_3, X_4, X_5)$ of size 5 is drawn from a population with unknown		
	mean μ .		
	Consider the following estimators to estimate μ .		
14	,	DTI 1	Domomhoring
17.	$t_1 = \frac{(x_1 + x_2 + x_3 + x_4 + x_5)}{5}$, $t_2 = \frac{(x_1 + x_2)}{2} + X_3$ and $t_3 = \frac{(2x_1 + x_2 + \lambda x_3)}{3}$ where	χ	Remembering
	2		
	is such that t_3 is an unbiased estimator of μ . Find λ . Are t_1 and t_2 unbiased? State		
	giving reason, the estimator which is best among t ₁ ,t ₂ ,and t ₃ .		
15(a).	Let $X_1, X_2,, X_n$ be a random sample of size n from a normal distribution with known		
	variance. Obtain the maximum likelihood estimator of μ .	BTL-1	Remembering
	SMOINCED.		
	Let $X_1, X_2,, X_n$ be a random sample size n from the Poisson distribution		
15(b)	$f(x/\lambda) = \frac{\lambda^x e^{-\lambda}}{x!}$ where $0 \le \lambda \le \infty$. Obtain the maximum likelihood estimator of	BTL-4	Analyzina
15(0).	$\int_{-\infty}^{\infty} (x / \lambda) = \frac{1}{x!}$ where $0 \le \lambda \le \infty$. Obtain the maximum likelihood estimator of	DIL-4	Analyzing
	a		
	1 -m r 1		
	For the double poisson distribution $P(X = x) = \frac{1}{2} \frac{e^{-m_1} m^{x_1}}{x!} + \frac{1}{2} \frac{e^{-m_2 x}}{x!}, x = 0,1,2$		
	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	BTL-4	Analyzing
16.	Show that the estimates for m ₁ and m ₂ by the method of moments are		
	$\mu_1 \pm \sqrt{\mu_2' - \mu_1' - \mu_1'^2}$		
	$\mu_1 \perp \sqrt{\mu_2} - \mu_1 - \mu_1$		
	The following are the managements of the singularity and even entire coefficient of		
	The following are the measurements of the air velocity and evaporation coefficient of burning fuel droplets in an impulse engine		
	burning ruer dropiets in an impurse engine		
	Air Velocity (cm/s) : 20 60 100 140 180 220 260 300 340 380		
17.	7 III Velocity (citis) . 20 00 100 140 100 220 200 500 500	BTL-4	Analyzing
1,,	Evaporation Coeff : 0.18 0.37 0.35 0.78 0.56 0.75 1.18 1.36 1.17 1.65	DIL-4	7 mary 2mg
	Fit a straight line to these data by the method of least squares, and use it to estimate the		
	evaporation coefficient of a droplet when the air velocity is 190 cm/s.		
	Fit an equation of the form $y = ab^x$ to the following data		
18.	x 2 3 4 5 6	BTL-3	Applying
	y 144 172.8 207.4 248.8 298.5		
	PART-C		
	Prove that the ML estimator of the parameter α of the population having pdf		
1.	f(x, α) = $2/\alpha^2$ (α – x). $0 < x < \alpha$ for the sample of unit size is 2x, x being the sample	BTL-1	Remembering
1.	value. Show also that the estimator is not unbiased.	DIL-I	Kemembering
	Fit a straight line trend of the form $y = a + bx$ to the data given below by the method		
	of least squares and predict the value of y when $x = 70$		
2.	X 71 68 73 69 67 65 66 67	BTL-3	Applying
	y 69 72 70 70 68 67 68 64		
	Fit the model $y = ax^b$ to the following data.		
3.	X	BTL-3	Applying
	y 2.98 4.26 5.21 6.10 6.80 7.50	DIL.3	Applying
L			l

		di) Fi	nd th	e mea	and y l n value elation	of x a	nd y			3x + 2	2y = 2	26 and	1 6x +	+ y = 31.	BTL-5	Evaluating
_		ain the	•		_	ssion li	ines y	= ax -	⊦ b fror	n the	follo	wing	data,	using the	DEV. 4	
5.	X	6	3	6	9	3	9	6	3	9	6	3	9		BTL-3	Applying
	у	526	421	581	630	412	560	434	443	590	570	346	672			

UNIT III -TESTING OF HYPOTHESIS

Sampling distributions – Small and Large samples and problems – Tests based on Normal, t distribution, Chi-square, Goodness of fit and F distributions

	$\mathbf{PART} - \mathbf{A}$		
Q. No.	Question	BT Level	Competence
1.	Define the following terms Standard error	BTL -1	Remembering
2.	Mention the various steps involved in testing of hypothesis	BTL -1	Remembering
3.	What are null and alternate hypothesis?	BTL -1	Remembering
4.	What is the essential difference between confidence limits and tolerance limits?	BTL -1	Remembering
5.	What are the parameters and statistics in sampling	BTL -1	Remembering
6.	State level of significance.	BTL -1	Remembering
7.	State the applications of Z-test.	BTL -2	Understanding
8.	A sample of size 13 gave an estimated population variance of 3.0 while another sample of size15 gave an estimate of 2.5. Could both samples be from populations with the same variance?	BTL-1	Remembering
9.	In a large city A, 20 percent of a random sample of 900 school boys had a slight physical defect. In another large city B, 18.5 percent of a random sample of 1600 school boys had some defect. Is the difference between the proportions significant?	BTL -2	Understanding
10.	When does the Z-test apply?	BTL -2	Understanding
11.	Write down the formula of test statistic't' to test the significance of difference between the means.	BTL -3	Applying
12.	What are the applications of t-test?	BTL -3	Applying
13.	What is the assumption of t-test?	BTL -6	Creating
14.	Write the application of 'F' test.	BTL -4	Analyzing
15.	Define 'F' variate.	BTL -4	Analyzing
16.	What are the properties of "F" test?	BTL -3	Applying
17.	State any two applications of ψ^2 -test.	BTL -5	Evaluating
18.	Write the formula for the chi- square test of goodness of fit of a random sample to a hypothetical distribution.	BTL -5	Evaluating
19.	Give the main use of ψ^2 -test	BTL -6	Creating
20.	What are the expected frequencies of 2x2 contingency table? a b c d	BTL -4	Analyzing

21.	Twenty people were attacked by a disease and only 18 were survived. The hypothesis is set in such a way that the survival rate is 85% if attacked by this disease. Will you reject the hypothesis that it is more at 5% level.($Z_{0.05} = 1.645$)	BTL-4	Analyzing
22.	What are the conditions for Large samples?	BTL -5	Evaluating
23.	A standard sample of 200 tins of coconut oil gave an average weight of 4.95 kg with a standard deviation of 0.21 kg. Do we accept that the net weight is 5 kg per tin at 5% level of significance?	BTL -6	Creating
24.	What are the conditions for small samples?	BTL -4	Analyzing
25.	Write the properties of t-distribution?	BTL -4	Analyzing
	PART – B		
1.	Given a sample mean of 83, a sample standard deviation of 12.5 and a sample size of 22, test the hypothesis that the value of the population mean is 70 against the alternative that it is more than 70. Use the 0.25 significance level.	BTL -1	Remembering
2.	Test of fidelity and selectivity of 190 radio receivers produced the results shown in the following table Fidelity Selectivity Low Average High Low 6 12 32 Average 33 61 18 High 13 15 0 Use 0.01 level of significance to test whether there is a relationship between fidelity and selectivity.	BTL -1	Remembering
3.	A sample of 100 students is taken from a large population. The mean height of the students in this sample is 160cms. Can it be reasonably regarded that this sample is from a population of mean 165 cm and standard deviation 10 cm? Also estimate the 95% fiducial limits for the mean.	BTL -1	Remembering
4(a).	Two independent samples of sizes 8 and 7 contained the following values. Sample I 19 17 15 21 16 18 16 14 Sample II 15 14 15 19 15 18 16 Test if the two populations have the same mean.	BTL -2	Understanding
4(b).	The following data gives the number of aircraft accidents that occurred during the various days of a week. Find whether the accidents are uniformly distributed over the week. Days Sun Mon Tues Wed Thu Fri Sat No. of accidents 14 16 08 12 11 9 14	BTL -3	Applying
5.	Two independent samples of 8 and 7 items respectively had the following Sample I 9 11 13 11 15 9 12 14 Sample II 10 12 10 14 9 8 10 Values of the variable (weight in kgs.) Use 0.05 LOS to test whether the variances of the two population's sample are equal. A group of 10 rats fed on diet A and another group of 8 rats fed on diet B,	BTL -4	Analyzing Evaluating

	Recorded the following increase the following increase in weight. (gm)		
	Diet A 5 6 8 1 12 4 3 9 6 10		
	Diet B 2 3 6 8 10 1 2 8 - -		
	Find the variances are significantly different. (Use F-test)		
7.	Two independent samples of sizes 8 and 7 contained the following values. Test if the two populations have the same variance. Sample I 19 17 15 21 16 18 16 14	BTL -2	Understanding
	Sample II		
8.	Records taken of the number of male and female births in 800 families having four Children are as follows: Number of male births : 0 1 2 3 4 Number of female births : 4 3 2 1 0 Number of Families : 32 178 290 236 64 Infer whether the data are consistent with the hypothesis that the binomial law holds the chance of a male birth is equal to female birth, namely $p = \frac{1}{2} = q$.	BTL -4	Analyzing
9.	Samples of two types of electric bulbs were tested for length of life and following data were obtained. Type I Type II Sample Size 8 7 Sample Mean 1234hrs 1036hrs Sample S.D 36hrs 40hrs Analyze that, is the difference in the means sufficient to warrant that type I is superior to type II regarding the length of life?	BTL -3	Applying
10.	The mean produce of wheat from a sample of 100 fields comes to 200kg per acre and another sample of 150 fields gives a mean 220 kg per acre. Assuming the standard deviation of the yield at 11 kg for the universe, test if there is a significant difference between the means of the samples?	BTL -2	Understanding
11(a).	The nicotine content in milligram of two samples of tobacco where found to be as follows Sample 1 24 27 26 21 25 Sample 2 27 30 28 31 22 36 Can it be said that this samples where from normal population with the same mean.	BTL -1	Remembering
11(b).	A simple sample of heights of 6400 Englishmen has a mean of 170cms and a standard deviation of 6.4cms, while a simple sample of heights of 1600 Americans has a mean of 172 cm and a standard deviation of 6.3cms. Do the data indicate that Americans are, on the average, taller than Englishmen?	BTL -1	Remembering
	Two random samples gave the following results: Sample Sum of squares of		
12.	Sample Size mean deviation from the mean 1 10 15 90	BTL -1	Remembering
	2 12 14 108		
	Analyze whether the samples have come from the same normal population.		
13.	A certain medicine administered to each of 10 patients resulted in the	BTL -1	Remembering

	following increases in the B.P. 8, 8, 7, 5, 4, 1, 0, 0, -1, -1. Can it be concluded that the medicine was responsible for the increase in B.P. 5% l.o.s		
14.	5 coins were tossed 320 times. The number of heads observed is given below: No. of heads : 0 1 2 3 4 5 Observed frequencies : 15 45 85 95 60 20 Examine whether the coin is unbiased .Use 5% level of significance.	BTL -5	Evaluating
15.	A sample of 200 persons with a particular disease was selected. Out of these, 100 were given a drug and the others were not given any drug. The result are as follows: Number of persons	BTL -1	Remembering
16.	A certain stimulus administered to each of 12 patients resulted in the following increase of blood pressure 5,2,8, -1,3,0, -2,1,5,0, 4 & 6. Can it be concluded that the stimulus will, in general, be accompanied by an increase in blood pressure?	BTL -6	Creating
17.	Random samples drawn from two places gave the following data relating to the heights of male adults: Place A Place B Mean height (in inches) 68.50 65.50 S.D (in inches) 2.5 3.0 No. of adult males in sample 1200 1500 Test at 5 % level, that the mean height is the same for adults in the two places.	BTL -2	Understanding
18.	In a random sample of 1000 people from city A, 400 are found to be consumers of rice. In a sample of 800 from city B, 400 are found to be consumers of rice. Does this data give a significant difference between the two cities as far as the proportion of rice consumers is concerned?	BTL -4	Analyzing
	PART C		
1.	The means of two random samples of size 9 and 7 are 196.42 and 198.92 respectively. The sums of the squares of the deviation from the mean are 26.94 and 18.73 respectively. Can the sample be considered to have been drawn from the same normal population?	BTL -6	Creating
2.	Two horses A and B were tested according to the time (in seconds) to run a particular track with the following results. Horse A 28 30 32 33 33 29 34 Horse B 29 30 30 24 27 27 - Test whether you can discriminate between two horses. You can use the fact that 5 % value of t for 11 degrees of freedom is 2.2	BTL-2	Understanding
3.	An sample analysis of examination results of 500 students was made. It was found that 220 students had failed. 170 had secured a third class, 90 were placed in second class and 20 got first class. Do these figures commensurate	BTL -5	Evaluating

Random samples of 400 men and 600 women were asked whether they would like to have a flyover near their residence. 200 men and 325 women		with the general examination result which is in the ration 4: 3:2:1 for the various categories respectively.		
were in favor of the proposal. Test the hypothesis that proportions of men and women in favor of the proposal are same at 5 % level. In a year there are 956 births in a town A of which 52.5% were male while in towns A and B combined, this proportion in a total of 1406 births was BTL-2 Understanding the proposal are same at 5 % level.		Random samples of 400 men and 600 women were asked whether they		
in towns A and B combined, this proportion in a total of 1406 births was BTL 2 Understanding	4.	were in favor of the proposal. Test the hypothesis that proportions of men	BTL-2	Understanding
the two Rows?	5.	in towns A and B combined, this proportion in a total of 1406 births was 0.496. Is there any significant difference in the proportion of male births in	BTL -2	Understanding

UNIT IV-DESIGN OF EXPERIMENTS

Analysis of variance - Completely randomized design - Randomized block design - Latin square design - 2^2 factorial designs.

	PART – A		
Q. No.		BT Level	Competence
1.	What is the aim of design of experiments?	BTL -1	Remembering
2.	Write the basic assumptions in analysis of variance.	BTL -1	Remembering
3.	When do you apply analysis of variance technique?	BTL -1	Remembering
4.	Define Randomization.	BTL -1	Remembering
5.	Define Replication.	BTL -1	Remembering
6.	Define Local control.	BTL -1	Remembering
7.	What is meant by tolerance limits?	BTL -2	Understanding
8.	What is a completely randomized design.	BTL -2	Understanding
9.	Explain the advantages of a Latin square design?	BTL -2	Understanding
10.	What are the basic elements of an Completely Randomized Experimental Design?	BTL -2	Understanding
11.	Demonstrate the purpose of blocking in a randomized block design?	BTL -3	Applying
12.	Manipulate the Basic principles of the design of experiment?	BTL -3	Applying
13.	Why a2x2 Latin square is not possible? Explain.	BTL -3	Applying
14.	Analyze the advantages of the Latin square design over the other design.	BTL -4	Analyzing
	Demonstrate main advantage of Latin square Design over Randomized Block Design?	BTL -4	Analyzing
16.	Write any two differences between RBD and LSD.	BTL -4	Analyzing
17.	What is ANOVA?	BTL -5	Evaluating
18.	What are the uses of ANOVA?	BTL -5	Evaluating
19.	Define experimental error.	BTL -6	Creating
20.	Express 2 ² factorial designs.	BTL -6	Creating
21.	Explain SSB and SSW in ANOVA.	BTL -5	Evaluating
22.	What is the advantages of CRD?	BTL -5	Evaluating

23.	What is RBD?				BTL -4	Analyzing
24.	What is the disadvantages of R	BD?			BTL -4	Analyzing
25.	Write any two differences betw	een RBD and	d CRD.		BTL -1	Remembering
			PART-B			l
1.	Mixture 2: 0.72 0.69	ed with the 3	3 different 7 0.94 8 0.91			Remembering
2.	Winter Monsoon Carry out an Analysis of varian	Sal 1 2 45 40 43 41 39 39 nces.	3	4 37 38 41	BTL -2	Understanding
3.	In order to determine whether to 3 makes of computers, samples frequency of repair during the fas follows: In view of the above Makes A 5 6 8 9 7	of <mark>size 5 are</mark> ïrst year of p	selected frourchase is	o <mark>m each m</mark> ake an observed. The re	nd the	Remembering
4.	Five doctors each test five treat number of days each patient tak (recovery time in days) Treat Doctor A 10 B 11 C 9 D 8 E 12 Estimate the difference between data at 5% level.	ments for a cover test to recover test to reco	7. The resurvation 4	5	BTL -2	Understanding
5.	Perform a 2-way ANOVA on the	Treatmen 1		3	BTL -3	Applying

			1	30		26	38			
			2	24		29	28			
		Treatment 2	3	33		24	35			
			4	36		31	30			
			5	27		35	33			
	Use the	e coding method	l subtra	cting 30	from the	given n	0.			
6.	of a pa bolt to ,with the applies	nist wishes to te rticular type of a another, the class of cloth a all four chemic strength follows	eloth. B hemist consid ral in ra	Because t decides er as blo ndom or	here mig to use a cks ,she der to ea	random selects fi ch bolt, 'BOLT 3	riability ized bloc ve bolts Fhe resul	from one ck design and ting	BTL -2	Understanding
			1	73	68	74	71	67		
		CHEMICAL	2	73	67	75	72	70		
			3	75	68	78	73	68		
			4	73	71	75	75	69		
		he tensile streng	th depe	end on ch	nemical?	Test at 1	0% level	of		
	signific	cance. in square desig			C	RM				
7.	method the dev result,	onductor lead very lead ve	E. The sulated unds of	e bonds volume force reference in the state of the state	were mad ive diffe quired to 2 B2.4 C2.7 D2.6 E2.5	le by five rent plas break th 3 C1.9 D2.3 E2.5 B3.2	e differentics. With the bond D2.2 E2.5 A2.9 B2.5	t operators and the following 5 E1.7 A3.1 B2.1 C2.2	d	Analyzing
		5		E2.1	A3.6	B2.4	C2.4	D2.1		
8.	The fo C. A I were sp	these results a llowing data restatin square despread over 3 day	ulted frign was 78. A 16 B 16 C 15 d infer	B C A	xperiments the test 17 C 21 A 12 I E is no di	to come to come to the to come to the to come to the to come to the to come to	pare thre made on between	3 engines and the burners.	BTL -1	Remembering
9.	source: Latin	fferent fertilizers of error due to square arrangers indicate yield	o varial ment a	C, Don t bility in syndica	soil ferti	ility, he	tl at. In ord uses the	fertilizers, in	f e a BTL -1	Remembering

		D22	B12	2	A15		C19				
		B15	A2		C23		D24				
		C22	D2		B10		A17				
					-	•					
	Design an	analysis c	of varian	ice to d	etermine	if the	ere is a s	ignifica	nt difference		
	between th										
						llowin	g results	of a l	Latin Square		
	Design(use							. 1			
10.			.12	C19		310	D8			BTL -4	Analyzing
		C	18	B12		D6	A7	7		D1L -4	Anaryzing
		В	22	D10		A5	C2	1			
		D	12	A7	(C27	B1	7			
	In a 5x5 I	atin squa	re expe	riment,	the data	a colle	ected is	given i	n the matrix		
									t cultivation		
	treatments						of variance	ce.			
11.			48 E60			B61				BTL -6	Creating
			64 B6			C63				DIL 0	Creating
				3 C60	-	E67			6		
				8 E67		A55			0		
	In a Latin a			7 B66		D57	violde in	avintal			
									s per acre on		
	Analyze the	_			g me em	ect of	iive ieru	nzers A	A, B, C, D, E.		
12.	Anaryze un	c uata 101			E27 I	030 (727		C		
12.					C29 E		B23		Property land	BTL -3	Applying
				B22	D33 A						
					A20 E						
					B23 C						
	Find out th	e main et						llowing	2 ² factorial		
	experiment										
		DI C	CKC	(1		a	b	ab			
13.		DLC	OCKS	00	0 1	.0	01	11		BTL -3	Amulaina
			I	64	4 2	25	30	60		B1L -3	Applying
			II	7:	5 1	.4	50	33			
		1	II	70		2	41	17			
			V	7:		33	25	10			
	As part of t										
	laboratory										
	at three dif					orces	required	to shear	r each of		
	these bolts	•				0.2	0.1				
14.	Position 1:	90	82	79	98	83	91	0.6		BTL -4	Analyzing
	Position 2:	105	89	93	104	89	95	86		DIL -T	, mary zmg
	Position 3:	83	89	80	94	5 1arra	1 of a:	ficara	whathan the		
	_	-					_		whether the		
	differences	among th	ie sampi	e mean	s at the th	шее р	OSITIONS !	are sign	mcant.		

	Analyze the RBD at 59	% lev	el of	sionifi	icance					
		, 0 10 ,	-		riety	'				
		Trea	atme	1	_	2	3			
15.			1	8 10		0	12		BTL-2	Understanding
			2	2	(5	7			
			3	4	1	0	9			
			4	3		5	9			
	Apply ANOVA technion of the 4 machines? Test	-		•			_	arding the performance		
16.		S	В	6	8	10	4	N/N/n	BTL -3	Applying
		Machines	С	14	12	18	9	· G		
	L	Ž	D	20	22	25	23	- 0		
17.	technicians working for	or a ple me	hotog	raphic an be	e labor	atory.	Test to cha	whether the difference nce. Test at a level of		Analyzing
18.	A completely random gave the results given Trea et A B	below tem	_	alyze t		ults fo	or the	plots and 3 treatments effects of treatments.	BTL-5	Evaluating
						PAR	T-C			
1.								ate of potash and super ns of 2 levels of super		Applying

	phosphate (p) and	d two level	ls of si	ılphate	(k) of	potash	were st	udied in a RBD		
	with 4 replication			-		-				
	table. The yields									
		Block		Yield	ls (per	plot)				
		I	(1)	K		P	KP			
		1	23	25		22	38			
		II	P	(1	,	K	KP			
			40	26		36	38			
		III	(1)	K		KP	P			
	-		29 VD	20		30 P	20			
		IV	KP 34	X 31		P 24	(1) 28			
	Analyze the data	and give v								
	Four different ma							stations and		
	the average measi									
	processes are give		-	•						
	the data and test f	for the diffe	erence	betwee	en the p	rocess	es.	. C		
2.					cocesses	3			BTL -6	Creating
		Stati	ons A		В			_ 0		
		1	1			1 1				
		2					0	and a		
	A laboratory tech	nician mea						of 5 kinds of		
	linen threads by u				_	_				
	following results,	_		iicusur.	ing mst	union	is, and or			
	, , , , , , , , , , , , , , , , , , , ,		I_1	I_2		I_3	I_4	120		
2	Th	read 1 2	0.9	20.4		19.9	21.		BTL -2	I In dougton din s
3.	Th	read 2 2	5.0	26.	2	27.0	24.3	8		Understanding
			5.5	23.		21.5	24.4			
			4.8	21.		23.5	25.			
			9.6	21.2		22.1	22.			
	Perform a 2-way . The figures in the									
	engines E_1 , E_2 , E_3									
	ran with a gallon					uncs iv	11, 1,12, 1,	13, 1414 and 1413,		
		E_1		Ξ_2	E_3	E_4	E_5			
	I	M_1 A3		324	C20	D20	E18			
	I	M_2 B2	1 (227	D23	E25	A31			
	I	M_3 C2	1 I)27	E25	A29	B21			
4.	I	M_4 D2		E25	A33	B25	C22		BTL-4	Analyzing
	<u> </u>	M_5 E21		A37	B24	C24	D20			
	Use the level of si	_								
		• -	$s H_0$ that	at there	e is no d	lifferei	nce in the	e performance		
	of the five	-	rvila a te	n a d	+b		. h o	affort and the state of		
	2. H ₀ that the performant	-	wno tu	nea up	mese e	ingines	nave no	effect on their		
		nce. ne engines j	nerforr	n eana	_{V W} ell	with e	each of th	ne fuels		
	3. 11() that th	ic chighics j	PCITOIL	ii cqua	iry well	WILLI C	acii Oi ti	ic tucis.		

	Analysis the v	variance of I	Latin square	of yields (in Kgs) of 1	paddy where P,		
	Q,R,,S denotes	the different	t methods of	cultivation.		_		
		S122	P121	R123	Q122			
_		Q124	R123	P122	S125		DTI 4	A a l
5.		P120	Q119	S120	R121		BTL -4	Analyzing
		R122	S123	Q121	P122			
	Examine whet	her the differ	rent methods	s of cultivati	on have give	en significantly		
	different yields	•						
			T.13	TTEN # 100T3 /	TE CEDIE	~		

UNIT 5- TIME SERIES

Characteristics and representation – Moving averages – Exponential smoothing – Auto regressive processes

PART-A

Q. No.	Question	BT Level	Competence
1.	What is time series? Give two examples	BTL -1	Remembering
2.	Describe the limitation of time series	BTL -3	Applying
3.	Write the limitation of method of moving average	BTL -1	Remembering
4.	Define weighted moving average	BTL -1	Remembering
5.	Name any three forecasting methods used in time series analysis	BTL -1	Remembering
6.	Mention the four basic components of a time series	BTL -2	Understanding
7.	Mention any two models of Time Series.	BTL -2	Understanding
8.	Describe the types of forecasting	BTL -3	Applying
9.	Write 1 st order autoregressive model	BTL -1	Remembering
10.	Define exponential smoothing	BTL -1	Remembering
11.	Mention the limits of exponential smoothing	BTL -2	Understanding
12.	Write any two merits of method of moving average	BTL -1	Remembering
13.	Define Secular trend.	BTL -1	Remembering
14.	What are the methods used to Cyclical variations	BTL -2	Understanding
15.	Write the uses of time series	BTL -1	Remembering
16.	What adjustments need to be in time series	BTL -2	Understanding
17.	What is moving average	BTL -1	Remembering
18.	Mention the points indicate time series	BTL -2	Understanding
19.	Describe the merits of exponential smoothing	BTL -3	Applying
20.	Mention the types of methods used to measure the trend	BTL -2	Understanding
21.	Define Cyclical variations	BTL -1	Remembering
22.	What are the merits of ratio to moving average method?	BTL -1	Remembering
23.	Write any two steps involved in auto regressive modeling	BTL -2	Understanding
24.	Mention the causes for random variation in a time series	BTL -2	Understanding
25.	Define Irregular Variations	BTL -3	Applying
	PART – B		•

1.	Calcu	late three yea	ırly mo	ving	avera	ge of	the fo	ollowi	ng da	ata					
	Y	ear	1971	1972	1973	1974	1975	1976	1977	1161	1978	1979	1980	BTL -3	Applying
	N	o. of students	s 15	18	17	20	23	25	29	9 3	33	36	40		
2.	Suppo	ose we have t	he foll	owing	serie			conse	cutiv	e an	nual v	valu	es:		
		1	2		3	Yea	<u>r</u>	5		6		7			
		Series 31	34		37	3	+ 35	36		6 43		40		BTL -3	Applying
		veloping a first							r this		es, de		nstrate		
		mparisons th					1 . 1.		.1	D			•		
3.		the following method.	g data c	calcul	ate se	easona	al indi	ces b	y the	Rati	io to l	Mov	ıng		
		Year	1 st Qu	arter	2 ⁿ	d Qua	rter	3 rd C	uarte	er	4 th Q)uart	er		
		1981	6			62	,		61	N		63		BTL -3	Applying
		1982 1983	6			58 63			56 63			61 67		DIE 3	rippiying
		1983	7			59			56			62	Y		
		1985	6			55			51			58			
4.	Take	a four yearly	movin	g ave	rage 1	from t	he fo	llowir	ng da	ta:			1		
		Year		$\frac{1}{2}$	7 5	3 4	55	99	27	98	99	70	-		
				1961	1963	1964	1965	1966	1967	1968	1969	1970		BTL -5	Evaluating
		Production	n .	464) «	467	20	9	7.	1	98	2	31		
		('000)		-				540	557	571	586	612			
5.	Giver factor	below are th	e figur	es of	prodi	uction	i (in tl	nousa	nd qu	iin <mark>ta</mark>	lls) of	a su	ıgar		
		<u>y</u> Year 1974	. 19	75	197	6 1	1977	19	78	19	79	198	0	DEL 4	
	I	Produ 77	88		94		35	91		98		90		BTL -3	Applying
		ction	41 1	4 -		41	- 1								
		straight line b the following						the m	ethod	l of e	expor	nenti	al		
	smoo	thing taking i					-								
	value	zero.			<u> </u>	<u> </u>	<u> </u>			1			\neg		
		Time perio	od (t)	1983	1984	1985	1986	1988	1989	1990	1991	1001	1	BTL -3	Applying
							_								
		Actual valu	ie (X)	104	108	118	120	155	123	123	128	120			
7.		ollowing serie										•			
	Yea	d of 4 years. I ar	rina th	e tren 198			the 1 1991	199		erago 1993		hod: 94	1995	BTL -3	Applying
		duction ('000))tons	506			735	865		798	66		779		
8.	Suppo	ose we have t	he follo	owing	serie	es of 1	n = 7	conse	cutiv	e an	nual v	valu	es:		
		1 :				Year	r			1	ı			BTL -3	Applying
		1	2		3	4	1	5		6		7			

		Series 31	34	-	37	35		36	4.	3	40					
	In de	eveloping a se					ve m									
		onstrate the co			•	_					-,					
9.		n the followin							he Ra	tio to	trend					
	meth															
		Year	1 st Qua		2 nd (Quarte	r 3	3 rd Qua		4 th (Quarte	er				
		1994	60			80		72		72			68		BTL -3	Applying
		1995	68		-	104		10			88		DIL -3	Applying		
		1996	80		-	116		10			96					
		1997	108			152		13			124					
1.0	G:	1998	160			184		17			164 ·					
0.		en the number				vrite d	own	the w	eighte	ed mov	ving a	verage	BTL -1	Remembering		
1		eriod 3, the w					a fau	41. a fa	11		.					
1.	WOI	k out the cent				iverag	e for	the IC	onowi			r				
		Year		onnag ods ca			Ye	ear		goods	age of					
		1976	<u> </u>	220			19	82			904	u				
	1	1977		250			19)98	1	BTL -6	Creating		
		1978		236			_	84			172		D11 -0	Creating		
		1979	V	268				85			952	-				
		1980		242				86			248	100				
		1981		263	4		19	87		31	172	100				
	2, 2,	2, 2, 1 respec		es (in	<u>(000)</u>			ear	S	ales (i	in '00	0)				
		1970		2			19	76		4	4		D/DI 1	D		
		1971		4			19	77			6		BTL -1	Remembering		
		1972		3			19				7					
		1973		6			19				8					
		1974		7			19	80		1	10					
		1975		9												
3.	1995 4.0,	oose the follows dollars) by a 5.0, 7.0, 6.0, 3 ages for this a	ca renta 3.0, 9.0, s nnual tir	l agen 5.0, 2. ne ser	cy ov 0, 3.5 ries.	er the , 5.5, 6	11 – 6.5; c	year p compu	period te the	1987 5 – y	– 199 ear m	97: oving	BTL -3	Applying		
14.	The year	data below gi s.	ve the av	erage	quart	erly p	rices	of a c	ommo	odity f	for fou	ır				
		Ye	ar	1991	1992	1993	1994	1995	1996	1997	1998		BTL -1	Remembering		
		Annual (Rs.in c		36	43	43	34	44	54	34	24					
15.	The	following fig Yes		te to the property of the prop	ne pro			mmer 1880			n for 8	years.	BTL -1	Remembering		

			Prof	it (R	s.)	15,420	14,470	15,520	21,020	26,120	31,950	35,370	34,670					
	Find	the tre	nd of pi	ofits	by c	alcul	lating	g fiv	e vea	r mo	ving	aver	ages.					
16.	Tak	e a five	yearly	movi	ing av										ons			
	Iron	the fol Year	lowing						Ι	1		l .		_	_			
		1 Cai		1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980		BTL -5	Evaluating
		Produc ('000)		14	17	22	28	26	18	20	24	25	29	30	23			
17.		alculate the trend values by the method of least squares. Also Calculate the les for the years 1999 and 2000)				
			Year		1991	1992		1993	1994	1995	0	1996	1997				BTL -3	Remembering
		_	Value	S	125	128	3 1.	33	135	140) 1	41	143					
18.	Calc	Calculate 3-yearly moving average for the following data:																
		Year No.of. Workers Year No.of. Workers																
		1		433				1982 463						1				
			977			465			1983		M			98	- 4		BTL -6	Creating
			978			449			1984				88	1111		DIL 0	Creating	
			979			451		*		985				84				
			980 981			483 464	-			9 <mark>86</mark> 987				10 00				
		1	901			404	-	Ł		_	ГС		3	00				
	.	1 .1 .	1 C				. ,			AR								1
1.		l the treathod:	nd of ar	ınual	l sale	s of a	a trac	ling	orga	nızatı	ion b	y Mo	oving	g Ave	erage			
			Year	r			Sales (000)		Ye	ar			Sales (000)					
			1964	1		80			197	74		84						
			1965	_		84			197			96						
			1960	5		80			197	76		92	r					
			196	7		88			197			104					BTL -1	Remembering
			1968			98			197			116						
			1969			92			197			112						
			1970			84		_	198			102		_				
			197			88		-	198			114		_				
			1972			80 100	`	-	198			108		\dashv				
	(Ha	e the mo	1973		ate no			Ovir	198		7) 	126)					
	$\sqrt{080}$	une mic	osi appi	opni	ne pe	1100	OI III	UVII	ig av	crage	· J							

2.	With the following values for 11 years, prepare forecast by the method of															
	exponential smoothing taking initial estimate as 100 and the value of $\alpha = 0.4$,															
	$1-\alpha = 0.6 \text{ and } 1-\alpha/\alpha = 1.5.$															
		Time period (t)	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989		BTL -3	Applying
		Actual value (X)	110	105	120	116	121	123	120	125	126	124	122			
3.	Calculate five-yearly moving averages of number of students studying in a															
	college from the following figures.															
		Year			1981		1982		983	19		198			BTL -3	Applying
		No. of Students		S	332		317		357	392		402				1.pp.jg
		Year			1985 405		1986		987	1988		199				
	T .1	No. of Students							127	405		438		•.1		
4.	For the following data, verify that the 5 year weighted moving average with											1th				
	weights 1, 2, 3, 3, 1 respectively is equivalent to 4 year centered moving															
	average.										D/DI - 5	D 1 4				
		Year 66		1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	j.	BTL -5	Evaluating
		Sales (Rs.in lakhs)	5	3	7	6	4	8	9	10	8	9	9	-		
5.	Calcul	ate the trend v	alues	by tl	he m	etho	d of 1	east	squa	res. (Calcu	late 1	the p	rofit		
		year 1979.	ď										_			
		Ye	ear	1971		1972	1973	1974		1975	1976				BTL -3	Remembering
		Pro	fits	83	3	92	71	90) 1	69	191					
				-1								_				
