SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution) ESTD. 1999 - Approved by AICTE - Accredited by NBA 'A' Grade Accreditation by NAAC - Affiliated to Anna University ISO 9001:2015 Certified Institution

DEPARTMENT OF INFORMATION TECHNOLOGY

QUESTION BANK

I SEMESTER

1918109- MATHEMATICAL FOUNDATION FOR DATA SCIENCE

Regulation – 2019

Academic Year 2022- 2023

Prepared by

Dr.T.Isaiyarasi, Assistant Professor / Mathematics

Mrs.S.Ramya, Assistant Professor / Mathematics

QUESTION BANK

SUBJECT CODE: 1918109

SUBJECT TITLE: MATHEMATICAL FOUNDATION FOR DATA SCIENCE

YEAR /SEMESTER: I Year / I Semester M.Tech.

Q.No	na, Maxima and saddle points, Test of Positive definiteness, semi- definite and in Ouestion	BT -Level	Competence
Q.III	PART-A	DI -Level	Competence
1	Find the eigen values of $A = \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}$	BTL-1	Remembering
2	Two eigen values of the matrix A = $\begin{pmatrix} 11 & -4 & -7 \\ 7 & -2 & -5 \\ 10 & -4 & -6 \end{pmatrix}$ are 0 and 1. Find the	BTL-3	Applying
3	third eigen value. Find the eigen values of A ⁻¹ if the matrix A is $\begin{pmatrix} 2 & 5 & -1 \\ 0 & 3 & 2 \\ 0 & 0 & 4 \end{pmatrix}$ Find the characteristic equation of A= $\begin{pmatrix} 1 & -2 \\ -5 & 4 \end{pmatrix}$	BTL-3	Applying
4	Find the characteristic equation of $A = \begin{pmatrix} 1 & -2 \\ -5 & 4 \end{pmatrix}$	BTL-1	Remembering
5	Find the eigen values of A^2 if $A = \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix}$	BTL-1	Remembering
6	If the eigen values of the matrix A of order 3X3 are 2,3 and 1, then find the determinant of A	BTL-2	Understanding
/	If the sum of 2 eigen values and the trace of a 3×3 matrix are equal, find the value of $ A $	BTL-1	Remembering
8	Find the sum of the eigen values of 2A, if A = $\begin{pmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{pmatrix}$	BTL-3	Applying
9	Find the sum of the eigen values of 2A, if A = $\begin{pmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{pmatrix}$ The product of the 2 eigen values of A = $\begin{pmatrix} 6 & -2 & 2 \\ -3 & 3 & -1 \\ 2 & -1 & 3 \end{pmatrix}$ is 14. Find the 3 rd eigen value.	BTL-3	Applying
	Find the sum and product of the eigen values of A = $\begin{pmatrix} 2 & -2 & 2 \\ -2 & -1 & -1 \\ 2 & -1 & -1 \end{pmatrix}$	BTL-3	Applying
	Find the sum and product of the eigen values of A = $\begin{pmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{pmatrix}$	BTL-1	Remembering
12	Find the constants a and b such that the matrix $\begin{pmatrix} a & 4 \\ 1 & b \end{pmatrix}$ has 3,-2 be the eigen values of A	BTL-1	Remembering
13	Find the matrix corresponding to the quadratic form 2xy-2yz+2xz.	BTL-1	Remembering
14	Find the quadratic form corresponding to the matrix $A = \begin{pmatrix} 2 & 2 & 0 \\ 2 & 5 & 0 \\ 0 & 0 & 2 \end{pmatrix}$	BTL-4	Analyzing
15	Write the 3 X 3 matrix corresponding to the function $x_1^2 + x_2^2 + x_3^2 - 2x_1 - 2x_1x_2 + 2x_2x_3$	BTL-2	Understanding
16	If the eigen values of the matrix $A = \begin{pmatrix} 1 & 1 \\ 3 & -1 \end{pmatrix}$ are 2,-2 then find the eigenvalues of A^{T} .	BTL-2	Understanding
17	If $A = \begin{pmatrix} -1 & 0 & 0 \\ 2 & -3 & 0 \end{pmatrix}$ Find the eigen values of A^2 .	BTL-2	Understanding

18	If 1,1,5 are the eigen values of A = $\begin{pmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{pmatrix}$	BTL-2	Understanding
19	What are the tests available to test the positive definiteness of a matrix	BTL-4	Analyzing
20	Decide for the positive definiteness of $\begin{pmatrix} 2 & -1 & -1 \\ 1 & 5 & 1 \end{pmatrix}$ using eigen values	BTL-5	Evaluating
21	Decide for the positive definiteness of $\begin{pmatrix} -1 & 5 & -1 \\ -1 & -1 & 2 \end{pmatrix}$ using eigen values $\begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & 1 \\ -1 & 1 & 2 \end{pmatrix}$ using sub matrices	BTL-5	Evaluating
22	Write down the condition for minimum of the function $ax^2 + 2bxy + cy^2$	BTL-6	Creating
23	Test for minima or maxima for the function $2x^2 + 4xy + y^2$	BTL-6	Creating
24	Define positive definite matrix	BTL-2	Understanding
25	State Singular value decomposition theorem	BTL-2	Understanding
	PART-B	BTL-5	Evolucting
1	Find the eigen values and eigen vectors of the matrix $A = \begin{pmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{pmatrix}$	DIL-3	Evaluating
2	Find the eigen values and eigen vectors of the matrix $A = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{pmatrix}$	BTL-5	Evaluating
3	Find the eigen values and eigen vectors of the matrix $A = \begin{pmatrix} 5 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & 5 \end{pmatrix}$	BTL-5	Evaluating
4	Obtain the eigen values and eigen values and eigen vectors of the matrix $A = \begin{pmatrix} 3 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 3 \end{pmatrix}.$	BTL-6	Creating
5	Obtain the eigen values and eigen vectors of the matrix $A = \begin{pmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{pmatrix}$	BTL-2	Understanding
6	Reduce the matrix A = $\begin{pmatrix} 10 & -2 & -5 \\ -2 & 2 & 3 \\ -5 & 3 & 5 \end{pmatrix}$ to diagonal form	BTL-4	Analyzing
7	Diagonalize the matrix $A = \begin{pmatrix} 2 & 1 & -1 \\ 1 & 1 & -2 \\ -1 & -2 & 5 \end{pmatrix}$ by means of an orthogonal transformation.	BTL-2	Understanding
8	Diagonalize the matrix $A = \begin{pmatrix} 2 & 0 & 4 \\ 0 & 6 & 0 \\ 4 & 0 & 2 \end{pmatrix}$ by means of an orthogonal transformation.	BTL-4	Analyzing
9	Diagonalize the matrix $A = \begin{pmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{pmatrix}$ by means of an orthogonal transformation.	BTL-5	Evaluating
10	Obtain the singular value decomposition of $A = \begin{bmatrix} 1 & 2 \\ 1 & 1 \\ 1 & 3 \end{bmatrix}$	BTL-4	Analyzing
11	Get the singular value decomposition of $\begin{pmatrix} 2 & 2 \\ -1 & 1 \end{pmatrix}$	BTL-1	Remembering
12	Find the singular value decomposition of $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ -1 & 1 \end{bmatrix}$	BTL-4	Analyzing

13	Evaluate the singular value decomposition of $\begin{bmatrix} -4 & -7 \\ 1 & 4 \end{bmatrix}$	BTL-5	Evaluating
14	Discuss the positive semi definiteness of the matrix $\begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$	BTL-2	Understanding
	using all the tests $\begin{pmatrix} -1 & -1 & 2 \end{pmatrix}$		
15	Test whether $A^{T}A$ is positive definite if $A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 2 & 1 \end{bmatrix}$	BTL-2	Understanding
16	Discuss the positive definiteness of the matrix $\begin{pmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{pmatrix}$ using all the tests	BTL-2	Understanding
17	Check the matrix for positive definite $A = \begin{pmatrix} 5 & 6 \\ 6 & 7 \end{pmatrix}$	BTL-1	Remembering
18	Test whether the quadratic (i) $f = x^2 + 4xy + 2y^2$ has a saddle point. Also write f as a difference of two squares (ii) $f = 2x^2 + 4xy + y^2$ has a saddle point. Also write f as a difference of two squares	BTL-1	Remembering
	Part C		
1.	Reduce the matrix $A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{pmatrix}$ to diagonal form using orthogonal transformation.	BTL-6	Creating
2.	Diagonalize the matrix $A = \begin{pmatrix} 7 & -2 & 0 \\ -2 & 6 & -2 \\ 0 & -2 & 5 \end{pmatrix}$ by means of an orthogonal transformation.	BTL-6	Creating
3.	The Eigen vectors of a $3X3$ real symmetric matrix A corresponding to the eigen values 1,2,4 are $(1, 0, 0)^T$, $(0, 1, 1)^T$, $(0, 1, -1)^T$ respectively Create the matrix A.	BTL-6	Creating
4	Prepare the singular value decomposition of $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$	BTL-6	Creating
5	Obtain the singular value decomposition of $\begin{pmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{pmatrix}$	BTL-6	Creating
	UNIT II LINEAR ALGEBRA		
dimensio square ap	y of linear equations, real vector spaces (Rn, matrices etc.) and subspaces, linear transformations, orthogonality, Orthogonal basis, Gram Schmidt Foplications	Process s proj	ections and least
Q.No.	Question	BTLevel	Domain
	PART – A		
1.	Draw the row picture and column picture for the system 2x - y = 1, x + y = 5	BTL -1	Remembering
2.	Draw the row picture and column picture for the system x + y = 4,2x - 2y = 4	BTL -4	Analyzing
3.	Draw the row picture and column picture for the system 2x - y = 0, -x + 2y = 3.	BTL -2	Understanding
4.	Draw the row picture and column picture for the system x - 2y = 0, x + y = 6.	BTL -3	Applying
5.	Write down the column form of the system equations 2x + y + z = 5, $4x - 6y = -2$, $-2x + 7y + 2z = 9$	BTL -2	Understanding
6.	Define Vector Space	BTL -4	Analyzing
7.	State and prove cancellation law for vector addition	BTL-6	Creating
8.	Define Subspace of a vector space	BTL -3	Applying
9.	What are the possible subspaces of R^2	BTL -3	Applying
	Is $\{(1,4,-6),(1,5,8),(2,1,1),(0,1,0)\}$ is a linearly independent subset of		11 7 0

	Write the vectors $v = (1, -2, 5)$ as a linear combination of the vectors		
11.	x=(1,1,1), y=(1,2,3) and $z=(2,-1,1)$	BTL -2	Understanding
12.	Show that the vectors $\{(1,1,0),(1,0,1) \text{ and } (0,1,1)\}$ generate F^3	BTL -2	Understanding
12.	Define Null space	BTL -2	Understanding
	Evaluate which of the following sets are bases for R^3 :		Ŭ.
14.	$(i)\{(1,0,-1),(2,5,1),(0,-4,3)\}(ii)\{(-1,3,1),(2,-4,-3),(-3,8,2)\}$	BTL -2	Understanding
	Illustrate that the transformation $T: R^2 \rightarrow R^2$ defined by		
15.	$T(a_1,a_2)=(2a_1+a_2,a_2)$ is linear	BTL -2	Understanding
16.	Define linear dependent set and Independent set of a vector space.	BTL -2	Understanding
	Determine whether the vectors $v_1 = (1, -2, 3), v_2 = (5, 6, -1),$		
17.	$v_3 = (3, 2, 1)$ form a linearly dependent or linearly independent set in R ³	BTL -3	Applying
18.	Find the norm and distance between the vectors $(1,0,1)$ and $(-1,1,0)$	BTL -3	Applying
10	Check whether the vectors (2,2,-1) and (-1,2,2) are orthogonal to each		
19.	other. Also find the lengths.	BTL -4	Analyzing
20.	State dimension theorem	BTL -2	Understanding
21.	Define linear transformation	BTL -3	Applying
22.	State the properties of linear transformation	BTL -3	Applying
	Find the values of a if the vectors (2, a) and (6, 4) are orthogonal vectors		
23.	$\operatorname{in} \mathbb{R}^2$.	BTL -3	Applying
24.	Find k so that $u=(1,2,k,3)$ and $v=(3,k,7,-5)$ in \mathbb{R}^4 are orthogonal.	BTL -3	Applying
25.	Define orthogonal basis.	BTL -2	Understanding
	PART – B		<u> </u>
	Determine whether the set of all 2×2 matrices of the form		
	$\begin{bmatrix} a & a+b \\ a+b & b \end{bmatrix}$ a, b in R with respect to standard matrix addition and		
1.		BTL -3	Applying
	scalar multiplication is a vector space or not? If not list all the axioms that		
	fail to hold.		
	Find a combination $x_1w_1 + x_2w_2 + x_3w_3$ that gives a zero vector, where		
2.	$\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{pmatrix} 4 \\ 5 \end{bmatrix} = \begin{pmatrix} 7 \\ 6 \end{bmatrix}$	BTL -4	Analyzing
	$w_1 = \begin{pmatrix} 1\\2\\3 \end{pmatrix}, w_2 = \begin{pmatrix} 4\\5\\6 \end{pmatrix}, w_3 = \begin{pmatrix} 7\\8\\9 \end{pmatrix}$		
2	Show that the set of all positive real numbers, with $x + y = xy$, $cx = x^c$ is		
3.	a vector space. What is the zero vector	BTL -3	Applying
	Let v denote the set of ordered pairs of real numbers. If (a_1, a_2) and (b_1, b_2)		
4	are elements of V and $c \in R$, define $(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2, b_2)$ and		A
4.	$c(a_1, a_2) = (ca_1, a_2)$. Is V a vector space over R with these operations?	BTL -3	Applying
	Justify your answer.		
5. (a)	Determine whether the set of vectors $u = \{6,2,3,4\}, v = \{0,5-3,1\}$ and	BTL -4	Analyzing
	w=(0,0,7,-2) are linearly independent.	DIL-4	Anaryzing
5. (b)	Illustrate that the vectors $\{(1,1,0),(1,0,1),(0,1,1)\}$ generate R^3	BTL -3	Applying
	Determine whether the set of vectors $X_1 = (1,1,2)$, $X_2 = (1,0,1)$, and		
6.	$X_3 = (2,1,3)$ span R^3	BTL -4	Analyzing
_	Identify whether the set $\{x^3+2x^2, -x^2+3x+1, x^3-x^2+2x-1\}$ in $P_3(R)$ is		
7.	linearly independent or not	BTL -1	Remembering
8. (a)	Determine whether the set of vectors $s = \{(1,3,-4,2), (2,2,-4,0), (1,-3,2,-4), \dots \}$		A 1 ·
	(-1,0,1,0)} are linearly independent.	BTL -4	Analyzing
8. (b)	Show that the vectors $u=(1,2,3)$, $v=(0,1,2)$ and $w=(0,0,1)$ generate R^3	BTL -4	Analyzing
0	Decide whether or not the set	0 דד ס	Applying
9.	$S = \{x^3 + 3x - 2, 2x^2 + 5x - 3, -x^2 - 4x + 4\}$ is a basis for $P_2(R)$	BTL -3	Applying
	Let $T: R^3 \rightarrow R^3$ be a linear transformation defined by		
10.	(x,y,z)=(x+2y-z,y+z, x + y - 2z). Evaluate a basis and dimension of	BTL -3	Applying
	null space $N(T)$ and range space $R(T)$. Also verify dimension theorem		
11.	Let $T: R^3 \rightarrow R^2$ be defined by $(x, y) = (2x - y, 3z)$ verify whether T is linear or	BTL -3	Applying
11.	not. Find N(T)and R(T) and hence verify the dimension theorem	DIL-3	Applying
10 ()	Prove that any intersection of subspaces of a vector space V is a subspace		
12.(a)	of V	BTL -3	Applying
L		I	<u> </u>

10 (1)	Prove that the union of two subspaces is not necessarily a subspace		A 1 '	
12.(b)		BTL -3	Applying	
	Let $V=P_2(R)$.) and $\langle f(x), g(x) \rangle = \int_{-1}^{1} f(t)g(t)dt$, β be the standard			
13.	ordered basis, using Gram- Schmidt process obtain orthonormal basis for	BTL -4	Analyzing	
	$P_2(R).$			
	Let the vector space P_2 have the inner product $\langle p, q \rangle =$			
14.	$\int_{0}^{1} p(x)q(x)dx$, Apply Gram- Schmidt process to transform the basis	BTL -4	Analyzing	
	$S = \{1, x, x^2\}$ into an orthonormal basis.			
15.	Apply the Gram-Schmidt process to the vectors $u_1=(1,0,1)$, $u_2=(1,0,-1)$, $u_3=(0,3,4)$ to obtain an orthonormal basis for \mathbb{R}^3 .	BTL -3	Applying	
	Apply the Gram-Schmidt process to the vectors $u_1=(1,1,1)$, $u_2=(0,1,1)$,			
16.	$u_3=(0,0,1)$ to obtain an orthonormal basis for R ³ .	BTL -3	Applying	
17	Solve the following system of equations in the least square sense		TT 1 / 1	
17.	$2x_1 + 2x_2 - 2x_3 = 1$, $2x_1 + 2x_2 - 2x_3 = 3$, $-2x_1 - 2x_2 + 6x_3 = 2$	BTL -2	Understanding	
18.	Solve the following system of equations in the least square sense		Applying	
18.	$x_1 + x_2 + 3x_3 = 1$; $x_1 + x_2 + 3x_3 = 2$	BTL -3	Applying	
	Part C			
1.	Discuss various singular cases in the system of linear equations in three	BTL -3	Applying	
1.	dimensions			
_	Let $x = (2, 1 + i, i)$ and $y = (2 - i, 2, 1 + 2i)$ be vectors in C ³ . Compute<			
2.	x, y > x , y and $ x + y $. Then verify both the Cauchy Schwarz			
	inequality and the triangle inequality.	BTL -5	Evaluating	
	Apply Gram Schmidt process to the given vector space $V=R^3$ and the			
3.	subset $S = \{(1,0,1), (0,1,1), (1,3,3)\}$ and $x = (1,1,2)$ of the inner product space V to obtain an orthogonal bases, normalize the vectors to obtain			
	orthonormal basis.	BTL -6	Creating	
	Solve the following system of equations in the least square sense			
4.	$x_1 + x_2 + x_3 = 1$; $x_1 + x_2 + x_3 = 2$; $x_1 + x_2 + x_3 = 3$.	BTL -6	Creating	
5	Solve the following system of equations in the least square sense	BTL -6	Creating	
5.	x + 2y - z = 1; $2x + 3y + z = 2$; $4x + 7y - z = 4$.	DIL-0	Creating	
	UNIT-III GRAPH THEORY AND COMBINATORIC	S		
Graph T	accrue Isomorphism Planar graphs, graph coloring Hamilton circuits and Fu	lar avalas D	armutations and	
-	neory: Isomorphism, Planar graphs, graph coloring, Hamilton circuits and Eu tions with and without repetition. Specialized techniques to solve combinatori	•		
Comona	tions with and without repetition. Specialized techniques to solve combinatori		on problems	
Q.No	Question	BTLevel	Domain	
	PART – A			
1.	Define isomorphism of two graphs	BTL -1	Remembering	
2.	Define planar graph	BTL -1	Remembering	
3.	What are the graph invariants of graph isomorphism?	BTL -1	Remembering	
4.	Define Euler path and Euler Circuit	BTL -1	Remembering	
5.	Define Hamilton path and circuit	BTL -2	Understanding	

			0
4.	Define Euler path and Euler Circuit	BTL -1	Remembering
5.	Define Hamilton path and circuit	BTL -2	Understanding
6.	Define planar graph	BTL -1	Remembering
7.	Write down Euler formula for planar graphs	BTL -3	Applying
8.	Suppose that a connected planar simple graph has 20 vertices, each of degree 3. Into how many regions does a representation of this planar graph split the plane?	BTL -3	Applying
9.	Show that K_5 is non planar	BTL -2	Understanding
10.	Define graph coloring	BTL -3	Applying
11.	Define chromatic number of a graph	BTL -4	Analyzing
12.	State Ore's theorem and Dirac's theorem	BTL -3	Applying
13.	Show that in any group any group 8 people at least two have birthdays which falls on same day of the week in any given year	BTL -1	Remembering
14.	How many permutations are there in the word MISSISSIPPI?	BTL -2	Understanding
15.	State the Pigeonhole principle.	BTL -3	Applying
16.	How many cards must be selected from a deck of 52 cards to guarantee that atleast 3 cards of the same suit are chosen?	BTL -2	Understanding

17.	How many different bit strings are there of length seven?	BTL -3	Applying
18.	How many permutations are there in the word MALAYALAM?	BTL -4	Analyzing
19.	How many different committees of three students can be formed from a group of four students?	BTL -4	Analyzing
20.	How many ways are there to select five players from a 10-member tennis team to make a trip to a match at another school?	BTL -4	Analyzing
21.	How many 16-bit strings are there containing exactly 5 zeros?	BTL -4	Analyzing
22.	How many 7 digit numbers can be formed using the digits 1,2,0,2,4,2 and 4?	BTL -4	Analyzing
23.	How many permutations of $\{a, b, c, d, e, f, g\}$ starting with a?	BTL -4	Analyzing
24.	In how many ways can all the letters in MATHEMATICAL be arranged?	BTL -4	Analyzing
25.	Give an example of a graph which is Eulerian but not Hamiltonian	BTL -4	Analyzing
	PART – B		
1.(a)	Examine whether the following pair of graphs are isomorphic or not. Justify your answer. $u_1 \underbrace{u_5}_{u_4} \underbrace{u_6}_{G} \underbrace{u_2}_{u_3} \underbrace{v_1 \underbrace{v_2}_{v_5} \underbrace{v_4}_{H}}_{v_5} \underbrace{v_4}_{H}$	BTL -2	Understanding
1.(b)	Find an Euler path or an Euler Circuit if it exists, in each of the three graphs given below. $A \longrightarrow C \longrightarrow D \longrightarrow E \qquad F \longrightarrow E \longrightarrow D \longrightarrow C \longrightarrow C$	BTL -3	Analyzing
2.(a)	Show that the following graphs G and H are not isomorphic.	BTL -2	Understanding
2.(b)	Which of the simple graphs in Figure have a Hamilton circuit or, if not, a Hamilton path? $ \begin{array}{c} a \\ e \\ g_1 \\ g_2 \\ \hline G_2 \\ \hline G_3 \\$	BTL -3	Applying
3.	Show that the following graphs are isomorphic.	BTL -4	Analyzing

	T		
	a'(3) b'(2) d'(4) e'(1) c'(3)		
	Using adjacency matrix examine whether the following pairs of graphs G and G^1 given below are isomorphism or not.		
4. (a)	a e d d e c d e c d d e c d	BTL -4	Analyzing
4.(b)	What is the chromatic number of the complete bipartite graph Km,n, where m and n are positive integers. Also illustrate the coloring of $K_{3,4}$	BTL -3	Analyzing
	The adjacency matrices of two pairs of graph as given below. Examine the isomorphism of G and H by finding a permutation matrix.		
5.	$A_{G} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} A_{H} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$	BTL -4	Applying
6. (a)	Define Isomorphism between the two graphs. Are the simple graphs with the following adjacency matrices isomorphic? $\begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 \end{bmatrix}$ and $\begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 \end{bmatrix}$	BTL -3	Analyzing
6.(b)	What is the chromatic number of Kn? . Also illustrate the coloring of K_5	BTL -3	Analyzing
7. (a)	 From a club consisting of six men and seven women, in how many ways we select a committee of (1) 3 men and 4 women? (2) 4 persons which has at least one woman? (3) 4 persons that has at most one man? (4) 4 persons that has both sexes? 	BTL -3	Analyzing
7. (b)	If we select ten points in the interior of an equilateral triangle of side 1, show that there must be at least two points whose distance apart less than $1/3$	BTL -2	Understanding
8.	There are three piles of identical red, blue and green balls, where each piles contains at least 10 balls. In how many ways can 10 balls be selected (1) If there is no restriction? (2) If at least 1 red ball must be selected?	BTL -1	Remembering

			1
	(3) If at least 1 red, at least 2 blue and at least 3green balls must be selected?		
	(4) If at most 1 red ball is selected?		
	How many permutations can be made out of the letters of the word "BASIC"? How many of those		
9. (a)	(1) Begin with B?(2) End with C?	BTL -3	Applying
	B and C occupy the end places?		
	How many bits of string of length 10 contain		
	(i). Exactly four 1's		
9.(b)	(ii) At most four 1's	BTL-3	Applying
	(iii) At least four 1's		
	(iv) An equal number of 0's and 1's		
10.(a)	Find the number of integers between 1 to 100 that are not divisible by any of the integers 2,3,5 or 7.	BTL -4	Applying
10.(b)	Prove that in a group of six people at least three must be mutual friends or at least three must be mutual strangers.	BTL -2	Understanding
11.(a)	Find the number of integers between 1 to 250 that are not divisible by any of the integers 2,3,5 and 7	BTL -4	Applying
11.(b)	Determine the number of positive integer n, $1 \le n \le 2000$ that are not divisible by 2, 3 or 5 but are divisible by 7.	BTL -2	Understanding
12.(a)	A Committee of 5 is to be selected from 6 boys and 5 girls. Determine the number of ways of selecting the committee if it is to consist of atleast 1 boy and 1 girl.	BTL -5	Evaluating
12.(b)	Triangle ACE is equilateral with AC=1. If five points are selected from the interior of the triangle, there are atleast two whose distance apart is	BTL -3	Applying
12.(0)	less than ¹ / ₂ .	212 0	
13.	A survey of 550 television watchers produced the following information: 285 watch football game, 195 watch hockey game, 115 watch baseball game, 45 watch football and baseball games, 70 watch football and hockey games, 50 watch hockey and baseball games , 100 do not watch any of the three games. Then (a) How many people in the survey watch all three games?	BTL -3	Applying
	(b) How many people watch exactly one of the three games?		
14.(a)	40 computer programmers interviewed for a job. 25 knew JAVA, 28 knew ORACLE and 7 knew neither language. How many knew both languages?	BTL -3	Applying
14.(b)	A survey of 500 from a school produced the following information. 200 play volleyball, 120 play hockey,60 play both volley ball and hockey. How many are not playing either volley ball or Hockey.	BTL -3	Applying
15.	Define isomorphism. Establish an isomorphism for the following the v_1 graphs. v_1 u_2 v_3 v_3 v_3 v_4 u_1 u_2 u_4	BTL -4	Analyzing
16.(a)	A team of 11 players is to be chosen from 15 members. In how many ways can this be done if (i)One particular player is always included. (ii)Two such players have always to be included.	BTL -3	Applying
16.(b)	A box contains 6 white balls and 5 red balls. Find the number of ways 4 balls can be drawn from the box if (i)They can be any colour. (ii)Two must be white and two red.	BTL -3	Applying

	(jiji)Th	ey mus	st all be	e the s	ame co	lour.								
	` ´	5												
		in exan	-			ch is								
		erian b												
17 .(a)	(ii) Hamiltonian but not Eulerian											B	STL -4	Analyzing
	(iii) Both Eulerian and Hamiltonian(iv) Not Eulerian and not Hamiltonian													
		ot Eule the adj					nh							
	wille	(11: 11)	(11)	12 12 12	11	uigia]	μı							
17 .(b)	((v_1, v_3)) (12	v_{2} , (v_{1})	$(2, \nu_4),$							я Д	STL -3	Applying
17.(0)	$G = \begin{cases} \\ \\ \\ \\ \\ \end{cases}$	(11. 11	(12)	$(1)_{1}$ (1	3, V4), 1. 11.)	Also	o draw	the gra	aph.					Thurne
	((v4, v1	[], ("4,	·27, (1	4, 23)								
		•				-				athema	tics, 54	+		
		d statis												
10					-						atics an	id _		A 1'
18.		ion Rea										B	STL -4	Analyzing
	(i) Ho	w man	y stude	ents stu	died n	one of	these s	subject	s?					
	(ii) Ho	w man	ny stud	ents stu		-		atics?						
						PART	C							
1	How c	an the	final e	xams a	it a uni	versity	be sch	neduled	l so tha	at no st	udent	R	TL -6	Creating
1.	has tw	o exan	ns at th	e same	e time?								•	
				-	-						ning tw			
											by seve			
2.											on the		TL -5	Evaluating
											As tin			E I
	passed, a question arose: was it possible to plan a walk so that you cross each bridge once and only once?										600			
							e foun	d that	52 enio	oyed w	ine with	h		
											enjoyed			
		ven pai		•										
3.		ne no. o	-	e	who e	njoyed						R	TL -4	Applying
5.	(i)		nly tea		.1							ц Ц	· • • · · · · · · · · · · · · · · · · ·	·
	(ii)		nly one				o#c o -							
	(iii None ($f(t) = E^2$	xactly 1 trinks	iwo of	the thi	ee bev	erages							
				lents h	ave tak	en a co	ourse i	n Snan	ish 87	9 have	taken a	a		
											103 hav			Applying
1													DTI 2	
4.	taken courses in both Spanish and French, 23 have taken courses in both Spanish and Russian and 14 have taken courses in both French and										B	TL -3	Applying	
		n. If 20												
		n, how												
							_				pulated			
				-						-	to eacl	n		
		o cause								w nat 1	s the			
	rewest	numb		equent				ia use?						
		A	В	С	D	E	F	G	Η	Ι	J			
	A			v			v	v			v			
5				Х			Х	Х			X	-		I Indonetor 1
5.	В			Х	X							B	STL -2	Understanding
	C	X					x	x			x			
		^					^	^			Λ			
	D		Х			Х	Х		Х					
	E				X					X				
	F	v		N7	v			v			v			
	Г	X		Х	Х			Х			X			
														·I

	G	X		X			X				X			
	Н				x					X				
					Α					A				
	Ι					х			Х		Х			
	J	X		Х			X	X		Х				
				T	INIT I	V OP			N TEC	HNIO	UES			
Introduct	UNIT IV OPTIMIZATION TECHNIQUES Introduction- Formulation of optimization problems, classification of optimization problems, overview of analyti												iew of analytical	
	solution for unconstrained optimization problems, constrained optimization, convex set, convex functions, convex													
optimiza			-		-		,		• F ·····		-,			·····, ·····
	-						ion						BTLevel	Domain
Q.No						Quest	1011						DILevel	Domani
	1						PA	RT - A	1					
1.		optim											BTL -1	Remembering
2.		is an ob	-										BTL -1	Remembering
3.		constr		1									BTL -1	Remembering
4.			he algo	orithms	s in sol	ving s	ingle v	ariable	e optim	ızatior	1		BTL -1	Remembering
	proble:		ect cent	rch me	thod in	solvi	no cinc	ile var	iable op	ntimize	ation		BTL -2	
5.	proble				uiou ii	1 501 1	ing sing	sie vai		Jumiza	ation		DIL-2	Understanding
	1		lient ba	ased se	arch r	nethoo	l in sol	ving s	ingle v	ariable	;			A 1 '
6.	optimi	zation	proble	ms									BTL -3	Applying
					-				It takes					
									one un					
									per we					
7.	produc	et A rec	juires 2	2 kg of	raw m	ateria	l, While	e prod	uct B re	equires	s 3 kg r	aw	BTL -3	Applying
	material per unit. The available raw material is limited to 180 kg per week. The products A and B have unlimited market potential and sell for Rs.200													
	-							-	ring co					
									optimi					
									cross a					
	The tra	ansport	tation of	cost ac	ross th	e rive	r in Rs	s 100 j	per trip	, irresp	pective	of		
			-						n the n			-		
						0. The	cost o	of the c	ontaine	er depe	ends up	on		
	its dim		-											Applying
8.		f botto											BTL -3	
	Cost of					-	-		ter					
		ost of tl			-	-			er will	he lec	e hut	the		
									tainer					
			-					-	of the c					
			-						is min					
9.	Define	Local	optima	al poin	t								BTL -1	Remembering
10.		e global			nt								BTL -1	Remembering
11.	Define		1		-								BTL -1	Remembering
12.								e a mi	nimum	point			BTL -2	Understanding
13.		te the i											BTL -2	Understanding
<u> 14.</u> 15.		conca					2	0.007	NOVO OF	000000	v		BTL -1 BTL -5	Remembering Evaluating
<u> </u>	Check	wheth	er the f	functio	$\frac{11}{n} f(x)$	$\frac{10}{1-2}$	$-x^{-1}$	$\frac{18}{2}$ contraction $\frac{2}{18}$ contraction $\frac{1}{2}$	cave or	conve			BTL -5 BTL -5	Evaluating
10.		Kuhn-T				$y - \Delta x$	- 52	, 15 00	incave (V GA		BTL -5 BTL -5	Evaluating
17.						f(x) =	$x^{3} -$	10x -	$-2x^{2} +$	10			BTL -5 BTL -5	Evaluating
19.	Identif	y the o	ptimur	n poin	t for f	(x) =	$\frac{1}{e^x - x}$	<u>ς</u> 3					BTL -3	Analyzing
20.		e uses (BTL -1	Remembering
21.		are the			1								BTL -1	Remembering
22.	Find th	ne optir	mal val	lue for	f(x) =	$= x^2 -$	-4x +	2					BTL -5	Evaluating

23.	What are the five steps involved in optimization problems	BTL -1	Remembering
24.	Check whether the function $f(x) = 5 - 3x^2$ is concave or convex	BTL-5	Evaluating
25.	Check whether the function $f(x) = x^4 + x^3$ is concave or convex	BTL-5	Evaluating
	PART -B		
1.	Perform a test for an optimization for the function $f(x) = x^{-3}$	BTL -5	Evaluating
2.	Perform a test for an optimization for the function $f(x) = x^4$	BTL -3	Applying
3.	Solve : Minimize $f(x) = x^2 + \frac{54}{x}$ at (0,5) using exhaustive search method	BTL-5	Evaluating
4.	Check whether the function (i) $f(x) = x^4 + 6x^2 + 12x$ (ii) $f(x) = x^4 + x^2$ is concave or convex or neither	BTL -3	Applying
5.	Use golden section search method in order to minimize the function $f(x) = x^2 - 6x + 15$ in the interval (0,4)	BTL -3	Applying
6.	Use golden section search method in order to minimize the function $f(x) = 4x^3 + x^2 - 7x + 14$ in the interval (0,1)	BTL -5	Evaluating
7.	Maximize $f(x) = 20x - 3x^2 - x^4$ using one- dimensional search procedure	BTL -3	Applying
8.	Maximize $f(x) = 6x - x^2$ using one- dimensional search procedure. Take the initial upper bound and lower bounds as 4.8 and 0 and error tolerance $\in = 0.04$	BTL -3	Applying
9.	Minimize $f(x) = x^4 - x^2 - 4x$ using one- dimensional search procedure. Take the initial upper bound and lower bounds as 2 and 0 and error tolerance $\in = 0.01$	BTL -5	Evaluating
10	Use the one dimensional search procedure to interactively solve, approximately the following equation : Minimize $f(x) = x^3 + 2x - 2x^2025x^4$ Use an error intolerance $\in = 0.04$ and the initial lower and upper bounds as 0 and 2.4	BTL -5	Evaluating
11.	Minimize $f(x)=x(x-1.5)$ using bounding phase method	BTL -5	Evaluating
12.	Minimize $f(x) = x^2 + \frac{54}{x}$ using bisection method at (2,5) and $\in = 10^{-3}$	BTL - 4	Applying
13.	Use the golden section search method to find the value of x that minimizes $f(x) = x^4 - 14x^3 + 60x^2 - 70x$ in the range [0,2].Locate this value of x to within a range of 0.3	BTL -4	Applying
14.	Discuss about the Exhaustive search method in solving single variate optimization problem	BTL -3	Analyzing
15.	Minimize $f(x) = x^2 + \frac{54}{x}$ using interval halving method at (0,5) and $\in = 10^{-3}$	BTL -4	Applying
16.	Minimize $f(x) = x^2 + \frac{54}{x}$ using Golden section search method at (0,5)	BTL -4	Applying
17.	Solve using bisection method $(x) = x^2 + 2x - 200$ and $\in = 0.2$	BTL -4	Applying
18.	Minimize $f(x) = x^2 + \frac{16}{x}$ using interval halving method at (0,5) to an accuracy of 0.1	BTL -4	Applying
1	PART C		
1.	Solve : Minimize $f(x) = x^2 + \frac{54}{x}$ using bounding phase method	BTL -5	Evaluating
2.	Use three iterations of the golden section search method in order to maximize the function $f(x) = x^2 - 3x - 20$. Use $x^{(0)} = 0$ and an initial $\Delta = 1$	BTL -6	Creating
3.	Maximize $Z = 12x - 3x^4 - 2x^6$ using bisection search method	BTL -5	Evaluating
4.	Discuss about the golden section method in solving single variate optimization problem	BTL -6	Creating
5.	Maximize $f(x) = 12x - 3x^4 - 2x^6$ using one dimensional search method	BTL -5	Evaluating

UNIT V

Search methods – Overview of single variable search methods, search methods for Multivariable unconstrained problems - Optimality criteria, unidirectional search – direct search methods- evolutionary search method, Hook-Jeeves pattern search method, gradient based methods –Cauchy's steepest descent method, Newton's method.

Q.No	Question	BT	Domain
	PART - A	Level	
1.	Define stationary point	BTL -5	Evaluating
2.	State the condition for a minimum point for the function $f(x_1, x_2,, x_n)$	BTL -3 BTL -2	Understanding
3.	State the condition for a maximum point for the function $f(x_1, x_2,, x_n)$ State the condition for a maximum point for the function $f(x_1, x_2,, x_n)$	BTL -2 BTL -2	Understanding
4.	State the condition for inflection point for the function $f(x_1, x_2,, x_n)$ State the condition for inflection point for the function $f(x_1, x_2,, x_n)$	BTL -2	Understanding
5.	Define single variable search methods $(x_1, x_2,, x_n)$	BTL -2	Understanding
6.	Define Multivariable unconstrained problems search methods	BTL -2	Understanding
7.	Define unidirectional search in multivariable optimization problem	BTL -2	Understanding
8.	What is multivariable optimization	BTL -2	Understanding
	Determine whether the function $f(x) = x_1x_2 - x_1^2 - x_2^2$ is convex,		
9.	concave or neither	BTL -2	Understanding
10.	Discuss whether the function $f(x) = 3x_1 + 4x_2 + 2x_1^2 + x_2^2 - 2x_1x_2$ is convex, concave or neither	BTL -2	Understanding
11.	Find out whether the function $f(x) = x_1^2 + 3x_1x_2 + x_2^2$ is convex, concave or neither	BTL -2	Understanding
12.	Find out whether the function $f(x) = x_1^2 - 2x_1x_2 + x_2^2$ is convex, concave or neither	BTL -2	Understanding
13.	Define univariate search method	BTL -4	Applying
14.	How do you solve unconstrained optimization problems?	BTL -4	Applying
15.	Define Newton's method	BTL -4	Applying
16.	What are the gradient based methods available to solve multi variable unconstrained problems	BTL -3	Analyzing
17.	State the methods to solve multivariate optimization problem	BTL -2	Understanding
18.	Define direct search method in solving unconstrained optimization problems	BTL -2	Understanding
19.	Define indirect search method in solving unconstrained optimization problems	BTL -1	Remembering
20.	Define random jumping method	BTL -2	Understanding
21.	Define random walk method	BTL -2	Understanding
22.	What are the Direct search methods methods available to solve multi variable unconstrained problems	BTL -1	Remembering
23.	What are the random search methods methods available to solve multi variable unconstrained problems	BTL -1	Remembering
24.	Define unidirectional search method	BTL -2	Understanding
25.	Define optimality criteria	BTL -2	Understanding
	PART- B	D mr -	** 1
1.	Discuss about random search methods	BTL -2	Understanding
2.	Minimize $f(x_1, x_2) = x_1^3 + x_2^3 + 2x_1^2 + 4x_2^2$ in (-2,2) using Random jumping method.	BTL -4	Applying
3.	Discuss Hooke-Jeeves pattern search method	BTL -2	Understanding
4.	Solve the following two-variable unconstrained non-linear problem using search procedure Maximize $f(x_1, x_2) = 2x_1x_2 + x_2 - x_1^2 - 2x_2^2$	BTL -3	Analyzing
5.	Starting from the initial trial solution $(x_1, x_2) = (0,0)$, interactively apply two iterations of the gradient search procedure to the following two- variable unconstrained problem. Also determine the exact solution by solving $\nabla f(x) = 0$, Maximize $f(x) = 8x_1 - x_1^2 - 12x_2 - 2x_2^2 + 2x_1x_2$	BTL -3	Analyzing
6.	Solve the following two-variable unconstrained non-linear problem using search procedure Maximize $f(x_1, x_2) = x_1 - x_2 + 2x_1x_2 + 2x_1^2 + x_2^2$	BTL -4	Applying

7.	Minimize $(x_1, x_2) = x_1^3 + x_2^2 + 2x_1^2 + 4x_2^2$ using univariate search method with the initial point as (2,2)	BTL -1	Remembering
8.	Apply Newton's method to Minimize : $f(x_1, x_2) = x_1^2 + x_2^2 + 14x_1 + 14x_2 + 100$ with initial point as $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	BTL -2	Understanding
9.	Apply Random search method to Minimize: $f(x_1, x_2) = x_1 - x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$	BTL -4	Applying
10.	Apply Newton's method to solve: $f(x_1, x_2) = x_1 - x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$ Apply Cauchy's steepest decent method to solve:	BTL -2	Understanding
11.	Apply Cauchy's steepest decent method to solve: Minimize : $f(x_1, x_2) = x_1^2 - x_1 x_2 + x_2^2$, the error not exceed by 0.05 for function approximation $X_1 = \left(1, \frac{1}{2}\right)$	BTL -2	Understanding
12.	Minimize: $f(x) = (1 - x_1)^2 + (2 - x_2)^2$ using simplex search method with initial point as $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ and scaling factor $\alpha = 2$	BTL -2	Understanding
13.	Discuss Cauchy's steepest decent method	BTL -2	Understanding
14.	Apply Hooke-Jeeves pattern search method to solve: Minimize : $(x_1, x_2) = x_1 - x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$ Minimize $f(x_1, x_2) = x_1^3 + x_2^3 + 2x_1^2 + 4x_2^2$ in (-2,2) using Random	BTL -6	Creating
15.	Minimize $f(x_1, x_2) = x_1^3 + x_2^3 + 2x_1^2 + 4x_2^2$ in (-2,2) using Random walk method.	BTL -6	Creating
16.	Discuss the procedure of Gradient search in Multivariable unconstrained problems	BTL -2	Understanding
17.	Apply Newton's method to solve: $f(x_1, x_2) = x_1^3 + 2(x_1 - x_2)^2 - 3x_1 \text{ start from } x^{(0)} = \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix}, \text{ minima at}$ $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$	BTL -6	Creating
18.	Discuss the step by step process involved in simplex search method.	BTL -2	Understanding
	PART- C		
1.	Solve the following two-variable unconstrained non-linear problem using search procedure Maximize $f(x_1, x_2) = 2x_1x_2 + 2x_2 - x_1^2 - 2x_2^2$, $(\frac{1}{2}, \frac{1}{2})$ may be taken as the starting trial solution. Draw the path of the trial solution by solving the system of linear equations by setting $\nabla f(x) = 0$	BTL -5	Evaluating
2.	Solve $f(x) = 4x_1^2 + x_2^2 - 2x_1x_2$ by Newton's method	BTL -6	Creating
3.	Discuss briefly about the direct search methods in solving the multivariate unconstrained optimization problem	BTL -5	Evaluating
4.	Apply Cauchy's steepest decent method to solve Minimize : $4x_1^2 + 3x_1x_2 + 2.5x_2^2 - 5.5x_1 - 4x_2$	BTL -5	Evaluating
5.	Minimize $(x_1, x_2) = x_1 - x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$ using univariate search method with the starting point as $(0,0)$	BTL -6	Creating