(An Autonomous Institution)

SRM NAGAR, KATTANKULATHUR – 603 203

DEPARTMENT OF CHEMISTRY

QUESTION BANK

I SEMESTER 1921104 – Engineering Chemistry Regulation 2019 Academic Year 2022-23

Prepared by

S. No	Unit	Topic	Staff
1	Ţ	WATER AND ITS TREATMENT	Dr. L. Devaraj Stephen
1	1	WATER AND ITS TREATMENT	Mr. V. Arivalagan
2.	II	SURFACE CHEMISTRY AND CATALYSIS	Dr. N. Jayaprakash
2	11	SORT NEL CILLWISTR'I AND CATALISIS	Dr. P. Maheswari
3	III	ELECTROCHEMISTRY, CORROSION AND	Ms. M. Meera
	111	PROTECTIVE COATINGS	Dr. M. Soundarrajan
4	IV	ENGINEERING MATERIALS	Dr. J. Krishnamurthi
-	1 4	ENGINEERING WINTERINES	Dr. S.G. Gunasekaran
5	V	NANOCHEMISTRY	Dr. S. G. Gunasekaran
3	V	NANOCHEMISTKI	Dr. P. Maheswari

SRM Nagar, Kattankulathur – 603 203

UNIT I – WATER AND ITS TREATMENT

Hardness of water – types – expression of hardness – units - Boiler feed water-boiler troubles - scale and sludge, priming and foaming, caustic embrittlement, boiler corrosion. Treatment of boiler feed water – Internal treatment (phosphate, colloidal, sodium aluminate and calgon conditioning). External treatment – Ion exchange process – domestic water treatment (break point chlorination) – Desalination of brackish water – Reverse Osmosis.

Q. No	PART-A (2 Marks)	BTL	Competence
1.	What is hardness? How is it classified?	1	Remembering
2.	What are the units of hardness of water?	2	Understanding
3.	Distinguish hard water and soft water.	2	Understanding
4.	What is priming and foaming? How can they be prevented?	3	Applying
5.	Name the salts responsible for scale and sludge.	1	Remembering
6.	Define conditioning of water.	1	Remembering
7.	How is calgon conditioning better than phosphate conditioning?	4	Analyzing
8.	Explain the term scales and sludges.	2	Understanding
9.	Mention the requisites of potable water.	5	Evaluating
10.	Investigate the reason for boiler corrosion.	6	Creating
11.	Explain the term boiler feed water.	3	Applying
12.	Define desalination.	1	Remembering
13.	Compare internal conditioning with external conditioning.	4	Analyzing
14.	Name any two salts that cause temporary hardness.	1	Remembering
15.	What is reverse osmosis (RO)?	1	Remembering
16.	Define the term break point chlorination.	2	Understanding
17.	How is blow down operation applied to remove hard water?	3	Applying
18.	Defend caustic embrittlement. How is it prevented?	4	Analyzing
19.	Critique carbonate and non-carbonate hardness. Give examples.	5	Evaluating
20.	Formulate is it necessary to chlorinate drinking water supply beyond break point.	6	Creating
21.	What are responsible for formation of the scale and sludge?	1	Remembering
22.	Sketch the requirement of boiler feed water.	3	Applying
23.	Interpret break point chlorination.	2	Understanding
24	Inspect the causes of caustic embrittlement of boiler water.	4	Analyzing
25.	State the term softening of water.	1	Remembering

Q. No		PART-B (13 Marks)	BTL	Competence
1.	(i)	How do you identify the hard and soft water? Explain the types of hard water.	2	Understanding
	(ii)	What are boiler troubles of using hard water in the boiler? Suggest steps to minimize the boiler troubles.	1	Remembering
2.	(i)	Differentiate scales and sludges.	2	Understanding
	(ii)	Discuss how the water is disinfected by chlorine?	4	Analyzing
3.	(i)	Criticize how caustic embrittlement can be prevented and define the same.	5	Evaluating

SRM Nagar, Kattankulathur – 603 203

		DELAKTILITI OF CHEPTSTRI		
	(ii)	Outline the various stages of domestic water treatment in sequence.	5	Evaluating
4.	(i)	What is boiler feed water? What are its requirements and explain its drawbacks?	1	Remembering
	(ii)	Explain with chemical reaction of the demineralization process.	1	Remembering
5.	(i)	How is hard water converted into soft water using ion exchange process?	3	Applying
	(ii)	Explain carbonate and non-carbonate hardness of water with examples?	2	Understanding
6.	(i)	What is calgon? Explain calgon conditioning briefly.	4	Analyzing
	(ii)	How is internal treatment of boiler water carried out using colloidal, phosphate and sodium aluminate conditioning method?	4	Analyzing
7.	(i)	Compare the external and internal treatment of boilers.	2	Understanding
	(ii)	Write the merits and demerits of external treatment of water.	2	Understanding
8.	(i)	What is desalination? With a neat diagram describe the Reverse Osmosis method for the desalination of brackish water.	1	Remembering
	(ii)	How will you regenerate the exhausted ion exchange resins?	3	Applying
9.	(i)	Explain the principle and process of break-point chlorination.	4	Analyzing
	(ii)	Describe sodium aluminate and calgon conditioning.	1	Remembering
10.	(i)	How is calgon conditioning is superior to phosphate conditioning?	4	Analyzing
	(ii)	Explain the disadvantages of scale formation?	1	Remembering
11.	(i)	What are the essential requirements of boiler feed water?	4	Analyzing
	(ii)	What are the factors which causes boiler corrosion? How can it be minimized?	1	Remembering
12.	(i)	Give an account of Internal treatment of boiler water.	2	Understanding
	(ii)	Draw a suitable diagram and describe the ion exchange process for the softening of boiler water.	1	Remembering
13.	(i)	Define the term desalination with a neat diagram and describe desalination by reverse osmosis method.	3	Applying
	(ii)	Illustrate how you will protect boiler from corrosion.	3	Applying
14.	(i)	Discuss the causes and prevention of priming and foaming.	2	Understanding
	(ii)	Explain how sterilization of water carried out using chlorine? Write the mechanism.	3	Applying
15.	(i)	Execute the process to regenerate the exhausted cationic and anionic resins.	3	Applying
	(ii)	Outline the various disadvantages of scale formation.	1	Remembering
16.	(i)	Formulate the causes and prevention of priming and foaming.	6	Creating
		Ü		

SRM Nagar, Kattankulathur – 603 203

		and how it can be minimized.		
17.	(i)	Assess the causes and prevention of caustic embrittlement.	5	Evaluating
	(ii)	Correlate the different internal treatment of boiler water.	4	Analyzing

Q. No	PART-C	BTL	Competence
1.	Evaluate with a suitable diagram and describe the ion exchange method for the softening of boiler water.	5	Evaluating
2.	What is break point chlorination? State its significance.	1	Remembering
3.	What are the problems one would face when hard water is used in boiler industries?	4	Analyzing
4.	Define desalination. Explain any one method in detail.	2	Understanding
5.	With a suitable schematic diagram, design the softening method of boiler water using ion exchange resins.	6	Creating

SRM Nagar, Kattankulathur – 603 203

UNIT II - SURFACE CHEMISTRY AND CATALYSIS

Adsorption: Types of adsorption – adsorption of gases on solids – adsorption of solute from solutions – adsorption isotherms. Freundlich's adsorption isotherm – Langmuir's adsorption isotherm – Contact theory. Kinetics of surface reactions, unimolecular reactions, Langmuir – applications of adsorption on pollution abatement. Catalysis: Catalyst – types of catalysis – Criteria – Autocatalysis – Catalytic poison and catalytic promoters – Acid base catalysis – Applications (3 way catalytic convertor) – Enzyme catalysis – Menten equation.

Q. No	PART-A (2 Marks)	BTL	Competence
1.	Define adsorption.	1	Remembering
2.	Mention a few important characteristics of adsorption.	3	Applying
3.	What is physical adsorption? Give an example.	1	Remembering
4.	What is chemisorption?	2	Understanding
5.	Differentiate catalytic promoters and catalytic poisoner.	4	Analyzing
6.	What is meant by negative adsorption?	2	Understanding
7.	Define adsorption isotherm.	1	Remembering
8.	Give the conditions in which Freundlich's adsorption isotherm fails.	2	Understanding
9.	Define the terms adsorbent and adsorbate with suitable example.	1	Remembering
10.	Mention the types of catalysis with an example.	3	Applying
11.	Define catalyst.	1	Remembering
12.	What are catalytic promoters?	2	Understanding
13.	What is meant by catalytic poisoning?	2	Understanding
14.	How is acid-base catalysis carried out?	3	Applying
15.	State the reason why the temperature of human body has to be maintained at 37°C.	5	Evaluating
16.	Explain the term negative adsorption.	2	Understanding
17.	With an example illustrate homogeneous catalysis.	3	Applying
18.	What is auto catalysis? Give an example.	1	Remembering
19.	Why is a reaction speeded up in the presence of a catalyst?	5	Evaluating
20.	List any four characteristics of enzyme catalysis.	4	Analyzing
21.	What is chemical adsorption? Give an example.	1	Remembering
22.	Demonstrate auto catalysis with an example.	3	Applying
23.	Examine the limitations of Langmuir adsorption isotherm.	4	Analyzing
24.	Compose the different factors of adsorption of gases on solids.	6	Creating
25.	Criticize the negative adsorption with example.	5	Evaluating

Q. No		PART-B (13 Marks)	BTL	Competence
1.	(i)	Differentiate physisorption and chemisorption.	4	Analyzing
	(ii)	Discuss various factors which affect the adsorption of a gas on a solid adsorbent.	1	Remembering
2.	(i)	Examine catalytic promoters and catalytic poisoning.	4	Analyzing

SRM Nagar, Kattankulathur – 603 203

	_			
	(ii)	Derive Freundlich's adsorption isotherm and state its limitations.	3	Applying
3.	(i)	State the postulates and derive Langmuir adsorption isotherm and discuss its pressure conditions and limitations.	3	Applying
	(ii)	Discuss the adsorption of solutes from solutions.	2	Understanding
4.	(i)	Explain the applications of adsorption in pollution abatement of air and waste water.	2	Understanding
	(ii)	List out the characteristics of catalysis and give four applications of absorption.	1	Remembering
5.	(i)	Explain contact theory of catalysis.	2	Understanding
	(ii)	Explain about positive and negative adsorption.	2	Understanding
6.	(i)	Derive the rate of a unimolecular reaction in a heterogeneous catalysis.	3	Applying
	(ii)	Explain auto catalysis with suitable examples.	2	Understanding
7.	(i)	Derive Michaelis-Menten equation for enzyme catalysis.	3	Applying
	(ii)	Evaluate on catalytic converters.	5	Evaluating
8.	(i)	Explain physical adsorption and chemical adsorption with suitable examples.	2	Understanding
	(ii)	What are unimolecular reactions? Explain its kinetics.	1	Remembering
9.	(i)	Explain by deriving, when Langmuir adsorption isotherm becomes identical with Freundlich's adsorption isotherm.	3	Applying
	(ii)	Outline the role of activated carbon in pollution abatement of water.	4	Analyzing
10.	(i)	Illustrate the role of adsorbents in ion exchange adsorption. Bring out the applications of activated carbon.	3	Applying
	(ii)	Discuss the factors that influence adsorption of solutes from solution.	1	Remembering
11.	(i)	Describe the heterogeneous catalytic reaction with a suitable example.	1	Remembering
	(ii)	Explain the Freundlich's adsorption isotherm at various pressures.	3	Applying
12.	(i)	With suitable examples explain homogeneous and heterogeneous catalysis.	2	Understanding
	(ii)	Investigate the criteria on auto catalysis.	5	Evaluating
13.	(i)	Explain the following (i) Acid base catalysis (ii) Enzyme catalysis.	2	Understanding
	(ii)	Explain the factors affecting the adsorption of a gas on a solid.	2	Understanding
14.	(i)	Discuss the kinetics of enzyme catalyzed reaction.	3	Applying
	(ii)	How does a three way catalytic converter work?	3	Applying
15.	(i)	Derive Langmuir adsorption isotherm under different pressure conditions and mention limitations.	3	Applying

SRM Nagar, Kattankulathur – 603 203

	(ii)	Categorize the factors influence the adsorption of solutes from solutions.	4	Analyzing
16.	(i)	Illustrate about the contact theory of catalysis.	2	Understanding
	(ii)	Criticize the catalytic converters.	5	Evaluating
17.	(i)	Justify the auto catalysis with suitable example.	5	Evaluating
	(ii)	Analyze the difference between the physisorption and chemisorption.	4	Analyzing

Q. No	PART-C	BTL	Competence
1.	Categorize the different factors of adsorption of gases on solids.	5	Evaluating
2.	Compose Langmuir adsorption isotherm at various pressures.	6	Creating
3.	Investigate the kinetics of enzyme catalyzed reaction by deriving Michaelis-Menten equation.		Evaluating
4.	Compose the categories of catalysis.	6	Creating
5.	Compute the Freundlich's adsorption isotherm and list out limitations.	3	Applying

SRM Nagar, Kattankulathur – 603 203

UNIT III - ELECTROCHEMISTRY, CORROSION AND PROTECTIVE COATING

DEPARTMENT OF CHEMISTRY

Electrochemical cell - redox reaction, electrode potential - origin of electrode potential - oxidation potential - reduction potential, measurement and applications - Electrochemical series and its significance - Nernst equation (derivation and problems). Corrosion - causes - factors - types - chemical, electrochemical corrosion (galvanic, differential aeration), corrosion control - material selection and design aspects - Electrochemical protection - sacrificial anode method and impressed current cathodic method. Protective coatings: Metallic coatings - Electroplating of Cu - electroless plating of Ni. Organic coatings: Paints - constituents and function.

Q. No	PART-A (2 Marks)	BTL	Competence
1.	Define electrochemical cell.	1	Remembering
2.	Describe standard electrode potential?	2	Understanding
3.	What are the factors affecting the emf of the cell?	3	Applying
4.	Can we use nickel spatula to stir a solution of copper sulphate?	4	Analyzing
5.	Calculate the reduction potential of lead electrode in solution of $0.018M \text{ Pb}^{2+}$ ions (standard reduction potential = - 0.13V).	1	Remembering
6.	What is the significance of electrochemical series?	3	Applying
7.	Illustrate the terms anode and cathode.	3	Applying
8.	What is corrosion? Give an example.	1	Remembering
9.	What is Pilling-Bedworth rule? Discuss its importance.	1	Remembering
10.	Blunt edges are preferred over sharp edges. Interpret.	2	Understanding
11.	Differentiate dry corrosion and wet corrosion.	4	Analyzing
12.	Bolt and nut made of same metal is preferred in practice. Why?	4	Analyzing
13.	What is water line corrosion? Give example.	1	Remembering
14.	Explain pitting corrosion.	2	Understanding
15.	Discuss cathodic protection. Mention its two applications.	1	Remembering
16.	How is galvanic corrosion prevented?	2	Understanding
17.	What is paint? Mention its constituents.	1	Remembering
18.	Describe electroplating (or) Give the principle of electro deposition.	1	Remembering
19.	Compose the Nernst equation for the cell, $Zn_{(s)}\!/Zn_{(aq)} $ $Mg(aq)\!/Mg(s)$	6	Creating
20.	Classify the advantages of electro less plating over electroplating.	4	Analyzing
21.	Outline the applications of Nernst equation.	2	Understanding
22.	Define the term cell potential.	1	Remembering
23.	Identify the various types of oxide layer.	1	Remembering
24.	Investigate the factors which influence the rate of corrosion.	4	Analyzing
25.	Compose the basic constituents of paint.	6	Creating

SRM Nagar, Kattankulathur – 603 203

Q. No	PART-B (13 Marks)	BTL	Competence
1.	(i) Derive Nernst equation and give its significance.	3	Applying
	(ii) Calculate the standard electrode potential of zing electrode dipped in a solution of 0.1 M ZnSO ₄ at 25° (Zn/Zn ²⁺ =0.76 V).		Applying
2.	(i) Compare electrolytic cell and electrochemical cell.	4	Analyzing
	(ii) Discuss the measurement of single electrode potential.	2	Understanding
3.	(i) Consider the cell reaction $Zn+Fe^{2+}$ (0.005) $\rightarrow Zn^{2+}$ (0.0 + Fe. Given that the standard emf of the cell is 0.323V 298K. Construct the cell and calculate emf of cell.		Applying
	(ii) Calculate the reduction potential of Cu^{2+} (0.5M)/Cu 25^{0} C. E^{0} (Cu^{2+} / Cu) = 0.337 V	at 6	Creating
4.	(i) Compose the measurement of single electrode potentiand its application.	al 6	Creating
	(ii) What is electrochemical series? Give its applications.	4	Analyzing
5.	(i) Analyze dry (or) chemical corrosion with suitable examples and diagrams.	ole 2	Understanding
	(ii) State the differences between electrochemical corrosion and chemical corrosion.	on 2	Understanding
6.	(i) Discuss wet (or) electrochemical corrosion with suitable examples and diagrams.	ole 3	Applying
<u> </u>	(ii) Explain differential aeration corrosion and galvan corrosion with suitable illustrations.	ic 1	Remembering
7.	(i) What are the factors which influence the rate of corrosion	n? 1	Remembering
	(ii) Explain the sacrificial anode and impressed curre cathodic techniques for the prevention of corrosion.	nt 2	Understanding
8.	(i) How will you control corrosion by material selection as design aspects?	nd 2	Understanding
	(ii) What is chemical corrosion? Explain the mechanism.	5	Evaluating
9.	(i) What are paints? Give its constituents and functions wi examples.	th 1	Remembering
	(ii) How is electroplating of copper carried out?	3	Applying
10.	(i) How is galvanic corrosion occurred?	2	Understanding
	(ii) Differentiate electroplating and electroless plating.	2	Understanding
11.	(i) Explain the terms, cell potential and single electron potential and describe the method of determination electrode potential.		Remembering
	(ii) How electrode potential can be obtained from Nerri equation.	ast 3	Applying
12.	(i) Define EMF Series. Explain its significance.	2	Understanding
-	(ii) Discuss the importance of design and material selection controlling corrosion.	in 2	Understanding
13.	(i) Illustrate Electroless plating and explain the plating of l by this process.	Ni 4	Analyzing

SRM Nagar, Kattankulathur – $603\,203$

	(ii)	Explain how corrosion is controlled by sacrificial anode.	3	Applying
14.	(i)	Describe the mechanism of differential aeration corrosion taking pitting as example.	4	Analyzing
	(ii)	Discuss the factors which influence electrochemical corrosion.	3	Applying
15.	(i)	Construct the Nernst equation and mention its applications.	6	Creating
	(i)	What is paint? Investigate the various constituents and functions with examples.	1	Analyzing
16.	(i)	Tabulate the factors which influence the rate of corrosion.	1	Remembering
	(ii)	Discuss the sacrificial anode and impressed current cathodic techniques for the prevention of corrosion.	2	Understanding
17.	(i)	Report the significance of electrochemical series.	2	Understanding
	(i)	Analyze and explain the plating of Nickel by this process.	4	Analyzing

Q. No	PART-C	BTL	Competence
1.	Derive the Nernst equation and Measure the emf of the cell at 25° C. The standard emf of the following cell is 1.54 V. Zn(s)/Zn ²⁺ (0.2M)//Ag+(0.002M)/Ag(s)	5	Evaluating
2.	Formulate the mechanism of wet corrosion for i) Hydrogen evolution type corrosion ii) Hydroxide formation type corrosion	6	Creating
3.	Execute the basic constituents and the functions of paint.	3	Applying
4.	i) Construct a plating bath for coating nickel on an object by electroless plating method.ii) Construct a electroplating of Cu	6	Creating
5.	Examine the corrosion control methods by sacrificial anode and impressed current cathode.	5	Evaluating

SRM Nagar, Kattankulathur – 603 203

UNIT IV – ENGINEERING MATERIALS

Cement: Definition – classification of cement – Portland cement - manufacture and properties - setting and hardening of cement - special cement, water proof, white and sorel cement – properties and uses – Glass: Manufacture, types, properties and uses (laminated, safety and flint glass) - Polymers: Classification - types of polymerization - mechanism - methods of polymerization - Engineering polymers: Nylon-6, Nylon-6,6, Teflon, Kevlar and PEEK - preparation, properties and uses - Plastic and its types - Conducting polymers: Types and applications - Polymers in medicine and surgery (applications).

Q. No	PART-A (2 Marks)	BTL	Competence
1.	Indicate the raw materials used for preparing Portland cement.	1	Remembering
2.	Using excess amount of lime during cement manufacturing is not good. Discuss.	4	Analyzing
3.	Evaluate the steps involved in the manufacturing of Portland cement.	5	Evaluating
4.	Analyze the main components of water proof cement.	4	Analyzing
5.	What are the advantages of sorel cement flooring?	1	Remembering
6.	Mention the uses of white cement.	1	Remembering
7.	What is a glass and give its general formula	3	Applying
8.	List the raw materials used for manufacturing of glass.	2	Understanding
9.	What is a laminated glass?	1	Remembering
10.	Give the chemical composition of flint glass.	3	Applying
11.	Outline the manufacturing of safety glass with two uses.	5	Evaluating
12.	Formulate the methods involved in preparing polymers.	6	Creating
13.	Why are plastics indispensible in everyday life?	4	Analyzing
14.	Find and write the monomers used in Kevlar and PEEK.	3	Applying
15.	Differentiate between addition and condensation polymer.	4	Analyzing
16.	Teflon is an addition polymer but it behaves like a thermosetting polymer. Give reasons.	5	Evaluating
17.	Enumerate the disproportionation reaction in free radical mechanism.	6	Creating
18.	Give any four applications of polymer in medicine and surgery.	2	Understanding
19.	Define polymer with an example.	1	Remembering
20.	How thermo plastics differ from thermosetting plastics?	2	Understanding
21.	Inspect how Nylon-6 is prepared	4	Analyzing
22.	Identify the benefits of water proof cement.	1	Remembering
23.	Discuss about condensation polymerization with an example.	2	Understanding
24.	Investigate the various techniques of polymerization.	4	Analyzing
25.	Arrange the applications of biopolymers.	1	Remembering

SRM Nagar, Kattankulathur – 603 203

Q. No		PART-B (13 Marks)	BTL	Competence
1.	(i)	What is cement? Give the various classification of cement.	2	Understanding
	(ii)	Organize a neat flow diagram to show various steps involved in the dry process of Portland cement manufacture by rotary kiln technology. Also write the chemical reactions involved in it.	4	Analyzing
2.	(i)	Sketch the various steps involved in manufacture of cement by wet process with sequential reactions.	3	Applying
	(ii)	Write the chemistry of setting and hardening of cement.	2	Understanding
3.	(i)	Formulate various reactions of water with cement constituents which take place during setting and hardening.	6	Creating
	(ii)	Prepare a detailed account on special cements with its various applications.	3	Applying
4.	(i)	Write notes on (i) water proof cement (ii) white cement (iii) sorel cement	3	Applying
	(ii)	What is a glass? Discuss the manufacture of glass.	1	Remembering
5.	(i)	How is glass prepared by pot-furnace method?	1	Remembering
	(ii)	Write a brief account of types of glass with its composition and uses.	2	Understanding
6.	(i)	Analyze in detail about laminated, safety and flint glass.	4	Analyzing
-	(ii)	Discuss in detail about different types of polymerization.	1	Remembering
7.	(i)	Elaborately explain addition, condensation and copolymerization.	2	Understanding
	(ii)	How are polymers prepared by high temperature and low temperature method?	2	Understanding
8.	(i)	Illustrate free radical mechanism of polymer.	4	Analyzing
	(ii)	Give the applications of polymers in medicine and surgery.	2	Understanding
9.	(i)	Outline the cationic and anionic mechanism for polymer preparation.	4	Analyzing
	(ii)	Analyze the methods by which condensation polymerization is conducted.	4	Analyzing
10.	(i)	Write elaborately on Bulk, Solution, Emulsion and Suspension polymerization?	1	Understanding
	(ii)	Develop the methods by which addition polymerization can be carried out?	6	Creating
11.	(i)	Formulate the mechanism of preparing polymers using both positive and negative ions.	5	Evaluating
12.	(i)	Write in detail about the preparation, properties and uses of Kevlar, Teflon and PEEK.	3	Applying
	(ii)	Summarize elaborately on conducting polymers.	6	Creating
13.	(i)	Evaluate any four engineering polymers.	5	Evaluating
	(ii)	What are plastics? Discuss in detail about different types of plastics.	1	Understanding

SRM Nagar, Kattankulathur – 603 203

14.	(i)	What are biopolymers? Find the various applications of	2	Remembering
	(::)	biopolymers in the field of medicine and surgery.		
	(ii)	Evaluate the following: (i). Intrinsically conducting polymer (ii). Extrinsically		
		conducting polymer (iii). Doped conducting polymer	5	Evaluating
		(iv). Coordination conducting polymer	3	Evaluating
15.	(i)	Compose the mechanism of cationic and anionic	6	Creating
	(**)	polymerization.	2	TT 1 4 1'
	(ii)	Interpret of setting and hardening of cement.	2	Understanding
16.	(i)	Formulate the different types of conducting polymers.	6	Creating
	(ii)	Expose the following (i) sorel cement (ii) water proof	3	Applying
		cement		11 0
17.	(i)	Summarize in detail preparation, properties and uses of	4	Analyzing
		laminated, safety and flint glass.		
	(ii)	Enumerate the applications of biopolymers in various fields.	2	Understanding
Q. No		PART-C	BTL	Competence
1.	Eval	uate the processes involving the manufacturing of cement.	5	Evaluating
2.	Com uses.	pile the manufacturing of glass with various types and its	6	Creating
3.		Explore various conducting polymers which act as engineering materials with respect to its functional properties.		Evaluating
4.		nine about the preparation, properties and applications of on-6, Kevlar, Teflon and PEEK	3	Applying
5.	Eval	uate the free radical mechanism for preparation of a mer.	4	Analyzing

SRM Nagar, Kattankulathur – 603 203

DEPARTMENT OF CHEMISTRY

UNIT V – NANOCHEMISTRY

Basics - distinction between molecules, nanoparticles and bulk materials; size-dependent properties (surface to volume ratio, melting point, optical and electrical). Nanoparticles, Nanocluster, Nanorods, Nanotube (CNT: SWNT and MWNT) and Nanowire, Synthesis - precipitation, thermolysis, hydrothermal, electrodeposition, chemical vapour deposition, laser ablation, sol-gel process and applications.

Q. No	PART-A (2 Marks)	BTL	Competence
1.	What are nanomaterials?	1	Remembering
2.	Illustrate the size dependent property of nanoparticles?	3	Applying
3.	Explore the important differences between nanoparticles and bulk materials?	4	Analyzing
4.	Discuss any four nanomaterials.	2	Understanding
5.	Demonstrate the some characteristic properties of nanomaterials?	3	Applying
6.	Criticize the different methods of preparing nanomaterials?	4	Analyzing
7.	State nanoclusters?	1	Remembering
8.	Explain nanorods? Mention their specific applications.	1	Remembering
9.	Define nanowires.	1	Remembering
10.	Summarize few applications of nanomaterials.	2	Understanding
11.	Defend the applications of nanotechnology in engineering.	1	Remembering
12.	What are carbon nanotubes?	1	Remembering
13.	Analyze the different types of CNTs.	4	Analyzing
14.	Clarify laser ablation method.	2	Understanding
15.	Evaluate chemical vapor deposition (CVD) method.	5	Evaluating
16.	Formulate electro-deposition method.	6	Creating
17.	Investigate the applications of nanorods and nanowires.	6	Creating
18.	Support how nanoparticles are prepared by precipitation method.	5	Evaluating
19.	Report the applications of nanomaterials in pollution control.	2	Understanding
20.	Enumerate hydrothermal and solvothermal synthesis of nanoparticles.	3	Applying
21.	Tell the various methods of preparing nanomaterials	1	Remembering
22.	Describe nanocluster.	2	Understanding
23.	Assess the different methods of top-down synthesis.	5	Evaluating
24.	Criticize nanorods with suitable example.	4	Analyzing
25.	Discuss the medicinal applications of nanomaterials	2	Understanding

Q. No		PART-B (13 Marks)	BTL	Competence
1.	(i)	Distinguish molecules, nanoparticles and bulk materials.	2	Understanding
	(ii)	Discuss the size dependent properties of nanomaterials.	2	Understanding
2.	(i)	Classify the various properties of nanomaterials.	1	Remembering
	(ii)	Write a note on top—down and bottom—up approach for nanomaterial preparation with examples.	2	Understanding
3.	(i)	Briefly explain carbon nanotubes and its properties?	1	Remembering

SRM Nagar, Kattankulathur – 603 203

	(ii)	Sketch chemical vapour deposition (CVD) method for the synthesis of nanomaterials.	3	Applying
4.	(i)	Discuss the vibration properties of CNTs with suitable diagram.	2	Understanding
	(ii)	Examine the hydrothermal synthesis of nanoparticles.	1	Remembering
5.	(i)	Compare hydrothermal and solvothermal synthesis of nanomaterials with suitable examples.	4	Analyzing
	(ii)	Interpret the synthesis of nanoparticles by any three methods.	3	Applying
6.	(i)	Discuss precipitation process with example in preparing nanoparticles.	2	Understanding
	(ii)	Enumerate solvothermal process for the preparation of nanoparticles.	4	Analyzing
7.	(i)	Formulate the synthesis of carbon nanotubes.	6	Creating
	(ii)	Report various applications of carbon nanotubes.	2	Understanding
8.	(i)	Elucidate the electrodeposition method for the synthesis of nanomaterial.	4	Analyzing
	(ii)	Tell about the laser ablation method of preparing nanoparticles.	1	Remembering
9.	(i)	State the synthesis, properties and applications of carbon nanorods.	1	Remembering
	(ii)	Analyze nanoclusters and nanowires? Explain their properties and applications.	4	Analyzing
10.	(i)	Discuss the various types of synthesis involved in the preparation of nanomaterials.	1	Remembering
	(ii)	Describe the solvothermal and laser ablation methods of synthesis of nanomaterials.	1	Remembering
11.	(i)	Explore in detail about bottom-up approach in nanomaterial synthesis.	4	Analyzing
	(ii)	Quote the electrical properties of CNTs.	1	Remembering
12.	(i)	Relate nanorods, nanotubes, nanowires.	5	Evaluating
	(ii)	Compare molecules and nanomaterials with bulk materials.	4	Analyzing
13.	(i)	Demonstrate medicinal and industrial application of nanomaterials.	3	Applying
	(ii)	Select the applications of nanomaterials in electronics and biomaterials.	5	Evaluating
14.	(i)	Explain nanoparticles and nanorods in detail.	3	Applying
	(ii)	Investigate the various applications of nanomaterials with suitable examples.	6	Creating
15.	(i)	Assess the hydrothermal, solvothermal and precipitation methods of synthesis of nanomaterials.	5	Evaluating
	(ii)	Examine in detail about top-down approach in nanomaterial synthesis.	4	Analyzing
16.	(i)	Explore the sol-gel process of synthesizing nanomaterials.	3	Applying

SRM Nagar, Kattankulathur – 603 203

	(ii)	Formulate the laser ablation and chemical vapour deposition method of synthesizing nanomaterials.	6	Creating
17.	(i)	Relate the nanoparticles with molecules and bulk materials.	2	Understanding
	(ii)	Discuss in detail about the size dependent properties of nanomaterials.	2	Understanding

Q. No	PART-C	BTL	Competence
1.	Formulate the various applications of nanomaterials with suitable examples.	6	Creating
2.	Clarify the top-down and bottom-up synthesis in the preparation of nanomaterials.	5	Evaluating
3.	Design the laser ablation and chemical vapour deposition (CVD) method of preparing nanomaterials.	6	Creating
4.	Evaluate the applications of nanotechnology in various industries.	5	Evaluating
5.	Categorize the properties and applications nanotubes, nanocluster, nanorods, nanoparticles and nanowires.	4	Analyzing