SRM VALLIAMMAI ENGINEERING COLLEGE (An Autonomous Institution)

S.R.M. Nagar, Kattankulathur - 603203

DEPARTMENT OF MATHEMATICS

QUESTION BANK

IV SEMESTER

B. E- Civil, EEE, EIE

1918401 – NUMERICAL METHODS

Regulation – 2019

Academic Year – 2022 - 2023

Prepared by

Dr. S. Chitra Associate Professor / Mathematics Dr. V. Vijayalakshmi Assistant Professor / Mathematics Ms. V. Nagarani Assistant Professor / Mathematics

SRM VALLIAMMAI ENGNIEERING COLLEGE

SRM Nagar, Kattankulathur – 603203.

DEPARTMENT OF MATHEMATICS

SUBJECT : 1918401 – NUMERICAL METHODS

SEM / YEAR: IV / II year B.E. (COMMON TO CIVIL, EEE, & EIE)

UNIT I - SOLUTION OF EQUATIONS AND EIGEN VALUE PROBLEMS: Solution of algebraic and transcendental equations - Fixed point iteration method – Newton Raphson method - Solution of linear system of equations - Gauss elimination method – Pivoting - Gauss Jordan method , Inverse of a matrix by Jordan Method –Iterative method of Gauss Seidel –Dominant Eigenvalue of a matrix by Power method.

Q.No.	Question		Competence				
	PART – A						
1.	Give two examples of transcendental and algebraic equations	BTL -1	Remembering				
2.	When should we not use Newton Raphson method?	BTL -1	Remembering				
3.	Write the iterative formula of Newton's- Raphson Method	BTL -1	Remembering				
4.	State the rate of Convergence and the criteria for the convergence of Newton Raphson method.	BTL -2	Understanding				
5.	Derive the Newton's iterative formula for P th root of a number N.	BTL -3	Applying				
6.	Find where the real root lies in between, for the equation $x \tan x = -1$.	BTL -3	Applying				
7.	State the order and condition for Convergence of Iteration method.	BTL -2	Understanding				
8	State the principle used in Gauss Jordon method.	BTL -2	Understanding				
9.	Find the inverse of $A = \begin{pmatrix} 4 & 1 \\ 1 & 3 \end{pmatrix}$ by Jordon method.	BTL -3	Applying				
10	Solve by Gauss Elimination method $x + y = 2$ and $2x + 3y = 5$	BTL -2	Understanding				
11.	Distinguish the advantages of iterative methods over direct method of solving a system of linear algebraic equations.	BTL -4	Analyzing				
12.	Find the inverse of $A = \begin{pmatrix} 1 & 3 \\ 2 & 7 \end{pmatrix}$ by Jordan method.	BTL -3	Applying				
13.	Compare Gauss Elimination, Gauss Jordan method.	BTL-4	Analyzing				
14.	State the condition for the convergence of Gauss Seidel iteration method for solving a system of linear equation.	BTL -2	Understanding				
15.	Compare Gauss seidel method, Gauss Jacobi method.	BTL -4	Analyzing				
16.	Which of the iterative methods is used for solving linear system of equations it converges fast? Why?	BTL -1	Remembering				
17.	Compare Gauss seidel method, Gauss Elimination method.	BTL -4	Analyzing				
18.	Explain Power method to find the dominant Eigen value of a square matrix A	DIL-2	Understanding				
19.	How will you find the smallest Eigen value of a matrix A.	BTL -4	Analyzing				
20.	Find the dominant Eigen value of $A = \begin{pmatrix} 2 & 3 \\ 5 & 4 \end{pmatrix}$ by power method up	BTL -3	Applying				

	to 1 decimal place accuracy. Start with $X^{(0)} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$		
21.	Write the other name of Newton Raphson method?	BTL -1	Remembering
22.	When Gauss Elimination method fails?	BTL -1	Remembering
23.	Give two indirect methods to solve system of linear equations.	BTL -1	Remembering
24.	Is the Iteration method, a self-correcting method always?	BTL -4	Analyzing
25.	Find the root of the equation $x^3 - 2x - 5 = 0$.	BTL -3	Applying
	PART – B		
1.	Find the positive real root of $log_{10} x = 1.2$ using Newton – Raphson method.	BTL -3	Applying
2.(a)	Evaluate the inverse of the matrix $\begin{pmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{pmatrix}$ using Gauss Jordan method.	BTL -5	Evaluating
2.(b)	Evaluate the positive real root of $x^2 - 2x - 3 = 0$ using Iteration method, Correct to 3 decimal places.	BTL -5	Evaluating
3.(a)	Find the inverse of the matrix $\begin{pmatrix} 2 & 2 & 3 \\ 2 & 1 & 1 \\ 1 & 3 & 5 \end{pmatrix}$ using Gauss Jordan method.	BTL -3	Applying
3.(b)	Solve by Gauss Elimination method $3x + y - z = 3$;	BTL -3	Applying
4.	2x - 8y + z = -5; x - 2y + 9z = 8 Find the dominant Eigen value and vector of $A = \begin{pmatrix} 3 & 2 & 4 \\ -1 & 4 & 10 \\ 1 & 3 & -1 \end{pmatrix}$ using Power method.	BTL -3	Applying
5. (a)	Solve by Gauss Jordan method $10 x + y + z = 12$; 2x + 10y + z = 13; $x + y + 5z = 7$.	BTL -3	Applying
5.(b)	Find the positive r root of $cos x = 3x - 1$ correct to 3 decimal places using fixed point iteration method.	BTL -3	Applying
6.	Apply Gauss seidel method to solve system of equations x - 2y + 5z = 12; $5x + 2y - z = 6$; $2x + 6y - 3z = 5$ (Do up to 4 iterations)	BTL -3	Applying
7.	Using Newton's method find the iterative formula for $\frac{1}{N}$ where N is positive integer and hence find the value of $\frac{1}{26}$	BTL -1	Remembering
8.	By Gauss seidel method to solve system of equations x + y + 54z = 110; 27x + 6y - z = 85; 6x + 15y - 2z = 72.	BTL -4	Analyzing
9.	Find the real root of Cos $x = x e^x$ using Newton - Raphson method by using initial approximation $x_0 = 0.5$.	BTL -3	Applying
10.	Evaluate the dominant Eigen value and vector of $A = \begin{pmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{pmatrix}$ using Power method.	BTL -5	Evaluating
11.	Determine the largest eigenvalue and the corresponding	BTL -6	Creating

	(1 3 -1)		
	eigenvectors of the matrix $\begin{pmatrix} 3 & 2 & 4 \\ -1 & 4 & 10 \end{pmatrix}$		
12.	Using Gauss-Jordan method, find the inverse of the matrix $ \begin{pmatrix} 8 & -4 & 0 \\ -4 & 8 & -4 \\ 0 & -4 & 8 \end{pmatrix} $	BTL -3	Applying
13.	Find the positive root of $e^x - 3x = 0$ correct to 3 decimal places using fixed point iteration method.	BTL -3	Applying
14.	Solve using Gauss-Seidal method $8x - 3y + 2z = 20, \ 4x + 11y - z = 33, \ 6x + 3y + 12z = 35$.	BTL -3	Applying
15.	Solve by Gauss Elimination method x+3y+3z = 16; $x+4y+3z = 18$; $x+3y+4z = 19$.	BTL -3	Applying
16.	Solve by Gauss Jordan method $10 \times -2y + 3z = 23$; 2x + 10y -5z = -33; $3x -4y + 10z = 41$.	BTL -3	Applying
17.	Using Gauss-Jordan method, find the inverse of the matrix $\begin{pmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{pmatrix}$	BTL -3	Applying
18.	Find the positive real root of $x log_{10} x = 12.34$ using Newton – Raphson method start with $x_0 = 10$.	BTL -3	Applying
	PART – C ^r o		
1.	Derive the iterative formula for \sqrt{N} where N is positive integer using Newton's method and hence find the value of $\sqrt{142}$.	BTL -4	Analyzing
2.	Solve using Gauss-Seidal method 4x + 2y + z = 14, $x + 5y - z = 10$, $x + y + 8z = 20$	BTL -4	Analyzing
3.	Find all possible Eigen values by Power method for $A = \begin{pmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$	BTL -2	Understanding
4.	Using Power method, Find all the Eigen values of $A = \begin{pmatrix} 5 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & 5 \end{pmatrix}$	BTL -2	Understanding
5.	Solve by Gauss Elimination method 3.15x -1.96y + 3.85z =12.95 ; 2.13x + 5.12y -2.89z = -8.61; 5.92x +3.05y + 2.15z =6.88.	BTL -3	Applying

UNIT -II INTERPOLATION AND APPROXIMATION: Interpolation with unequal intervals - Lagrange's interpolation – Newton's divided difference interpolation – Cubic Splines - Difference operators and relations - Interpolation with equal intervals - Newton's forward and backward difference formulae.

Q.No.	Question	BT Level	Competence				
	PART – A						
1.	Define Interpolation.	BTL -1	Remembering				
2.	Define inverse Lagrange's interpolation formula.	BTL -1	Remembering				
	Create Forward interpolation table for the following data						
3.	X : 0 5 10 15	BTL -6	Creating				
	Y: 14 379 1444 3584						

4.	Write the Lagrange's formula for y, if three sets of values $(x_0, y_0), (x_1, y_1), (x_2, y_2)$ are given?	BTL -1	Remembering
5.	Create the divided difference table for the following data $(0,1)$, $(1, 4)$, $(3,40)$ and $(4,85)$.	BTL -6	Creating
6.	Write the divided differences with arguments a , b , c if $f(x) = 1/x^2$.	BTL -2	Understanding
7.	Estimate the divided differences of $f(x) = x^3 + x + 2$ for the arguments 1, 3, 6, 11.	BTL -3	Applying
8.	Create the divided difference table for the following data X : 4 5 7 10 11 13 f(x) : 48 100 294 900 1210 2028.	BTL-6	Creating
9.	State any two properties of divided differences.	BTL -2	Understanding
10.	Estimate $f(a, b)$ and $f(a, b, c)$ using divided differences , if $f(x) = 1/x$.	BTL -2	Understanding
11.	Identify the cubic Spline $S(x)$ which is commonly used for interpolation.	BTL -1	Remembering
12.	Find $\Delta^4 y_0$, given $y_0 = 3$, $y_1 = 12$, $y_2 = 81$, $y_3 = 200 y_4 = 100$	BTL -3	Applying
13.	Define cubic spline.	BTL -1	Remembering
14.	Give the condition for a spline to be cubic.	BTL-2	Understanding
15.	Write any two applications of Newton's backward difference formula?	BTL -1	Remembering
17.	Find y, when $x = 0.5$ given $x : 0 = 1 = 2$ y: 2 = 3 = 12	BTL -4	Analyzing
18.	Evaluate y (0.5) given x : $\begin{pmatrix} 0 & 1 & 2 \\ y: & 4 & 3 & 24 \end{pmatrix}$	BTL -5	Evaluating
19.	Write Newton's forward formula up to 3rd finite differences.	BTL -1	Remembering
20.	Estimate the Newton's difference table to the given data: x : 1 2 3 4 f(x): 2 5 7 8	BTL -2	Understanding
21.	State Lagrange's interpolation formula.	BTL -1	Remembering
22.	State Gregory- Newton's Backward difference formula.	BTL -1	Remembering
23.	Create the divided difference table for the following data X : 2 5 10 f(x) : 5 29 109	BTL-6	Creating
24.	What is the order of convergence of cubic spline.	BTL-4	Analyzing
25.	Estimate the Newton's difference table to the given data: x : 2 4 6 f(x) : 3 6 12	BTL -2	Understanding
	PART –B		

				PAR	КТ – В				
	Find f(3), Using La	grange's	interpo	lation n	nethod	,			
1.(a)	x:	0	1	2	5			BTL -3	Applying
	y:	2	3	12	147				
	Using Newton's di	vided diff	erence	formula	a from	the follow	ring		
1 (h)	table, Find f(1) from	n the follo	owing					BTL -3	A na luin a
1. (b)	x:	-4	-1	0	2	5			Applying
	f(x):	1245	33	5	9	1335			
	Using Newton's di	vided diff	erence	formula	a From	the follow	ving	BTL -3	Applying
2. (a)	table, find f (8)	x:	3	7	9	10			
		f(x):	168	120	72	63			

	Evaluate f(1) using Lagrange's method	BTL -5	Evaluating
2.(b)	x: -1 0 2 3	DIL-J	Evaluating
2.(0)	y: -8 3 1 12		
2	Use Newton divided difference method find $y(3)$ given $y(1) = -26$,		
3. (a)	y(2) = 12, y(4) = 256, y(6) = 844.		
	Use Lagrange's Inverse formula to find the value of x for $y = 7$ given		
3.(b)	x: 1 3 4	BTL -3	Applying
	y: 4 12 19		
	Find the natural cubic spline for the function given by		
4.	X 0 1 2	BTL -4	Analyzing
	f(x) 1 2 33		
5 (a)	Estimate x when $y = 20$ from the following table using Lagrange's		
5. (a)	method x: 1 2 3 4	BTL -3	Applying
	y: 1 8 27 64		
	Using Lagrange's formula fit a polynomial to the data		
5.(b)	x: -1 1 2	BTL -3	Applying
	y: 7 5 15		
	Using Newton's divided difference formula find the missing value		
6.	from the table:	BTL -3	Applying
0.	X 1 2 4 5 6		
	f(x) 14 15 5 9		
7	Obtain root of $f(x) = 0$ by Lagrange's Inverse interpolation formula		TT 1 / 1
7	given that $f(30) = -30$, $f(34) = -13$, $f(38) = 3$, $f(42) = 18$	BTL -2	Understanding
8.	Using Newton's interpolation formula find the value of 1955 and		
0.	1975 from the following table x: 1951 1961 1971 1981	BTL -3	Applying
	y: 35 42 58 84	DIL-5	Applying
9.	Evaluate f(7.5) from the following table Using Newton's backward	BTL -5	Evaluating
	formula		8
	X:12345678		
	Y : 1 8 27 64 125 216 343 512		
10.	Fit the following four points by the cubic splines.		
	x: 1 2 3 4	BTL -5	Evaluating
	y: 1 5 11 8,		
	Use the end conditions $y_0'' = y_3'' = 0$. Hence compute (i) y (1.5)		
	(ii) y'(2).		
11.	Using Suitable Newton's f interpolation formula find the value of	BTL -4	Analyzing
	y(46) and $y(61)$ from the following		
	X: 45 50 55 60 65		
10	Y: 114.84 96.16 83.32 74.48 68.48		Analyzina
12.	Calculate the pressure $t = 142$ and $t = 175$, from the following data taken from steam table, Using suitable formula.	BTL -4	Analyzing
	Temp : 140 150 160 170 180		
	Pressure: 3.685 4.854 6.302 8.076 10.225		
13.	Determine by Newton's interpolation method, the number. of		
15.	patients over 40 years using the following data		
	Age (over x years) : 30 35 45 55	BTL -3	Applying
			1

14.	Using Newton's Forward interpolation formula find the Polynomial		
	f(x) to the following data, and find $f(2)$	BTL -3	Applying
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
15.	Estimate y when $x = 9$ from the following table using Lagrange's		
	method x: 5 7 11 13 17	BTL -3	Applying
	y: 150 392 1452 2366 5202		
16.	Using Newton's divided difference formula find $f(1.5)$ from the		
	table:	BTL -3	Applying
	X 1 1.3 1.6 1.9 2.2 f(x) 0.7652 0.6200 0.4554 0.2818 0.1104		
17.	Find the natural cubic spline for the function given by		
	$\begin{array}{c c} \hline X & 1 & 2 & 3 \end{array}$		
	f(x) -8 -1 18	BTL -4	Analyzing
	Also find y(1.5).		
18.	Use Suitable formula to find $f(5)$ and $f(9)$ from the table:		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	BTL -3	Applying
	f(x) 1 3 8 10 PART – C		
1.	The population of a town is as follows		
1.	Year (x): $1941 \ 1951 \ 1961 \ 1971 \ 1981 \ 1991$		
	Population 20 24 29 36 46 51	BTL -4	Analyzing
	in lakhs (y):		
	Estimate the population increase during the period 1946 to 1976.		
2.	Find the number of students who obtain marks between 40 and 45,		
	using Newton's formula Marks : $30 - 40 + 40 - 50 = 50 - 60 = 60 - 70 = 70 - 80$	BTL -3	Applying
	No of students : $31 42 51 35 31$		
3.	Evaluate $f(2), f(8)$ and $f(15)$ from the following table using Newton's		
	divided difference formula	BTL -5	Evaluating
	x: 4 5 7 10 11 13	DIL-J	Lvaluating
A	y: 48 100 294 900 1210 2028		
4.	The following table gives the values of density of saturated water for various temperature of saturated steam. Find density at the		
	temperature T = 125, and T= 275.	BTL -4	Analyzing
	Temp T°C 100 150 200 250 300	212 .	
	$\frac{1}{10000000000000000000000000000000000$		
5.	Using Newton's divided difference formulas find the polynomial		
	from the table. Also find f(3).	BTL -3	Applying
	X -4 -1 0 2 5		
	t(x) 1245 33 5 9 1335		
	f(x) 1245 33 5 9 1335		

UNIT – III NUMERICAL DIFFERENTIATION AND INTEGRATION: Approximation of derivatives using interpolation polynomials - Numerical integration using Trapezoidal, Simpson's 1/3 rule – Romberg's Method – Evaluation of double integrals by Trapezoidal and Simpson's 1/3 rules.

	PART – A		
Q.No.	Question	BT Level	Competence

1.	Write down the first two derivatives of Newton's forward difference formula at the point $x = x_0$	BTL -1	Remembering
2.	State Newton's backward differentiation formula to find $\left(\frac{dy}{dx}\right)_{x=x_n} and \left(\frac{d^2y}{dx^2}\right)_{x=x_n}$	BTL -1	Remembering
3.	Find $\frac{dy}{dx}$ at x=50 from the following table:X505152Y3.68403.70843.7325	BTL -2	Understanding
4.	Find y '(0) from the following table $X: 0 = 1 = 2 = 3 = 4 = 5$ Y: 4 = 8 = 15 = 7 = 6 = 2	BTL -2	Understanding
5.	Why is Trapezoidal rule so called?	BTL -1	Remembering
6.	State the formula for trapezoidal rule of integration.	BTL -1	Remembering
7.	State Simpson's one third rule of integration.	BTL -1	Remembering
8.	Find $\frac{dy}{dx}$ at x = 1, from the following table.X1234Y182764	BTL -1	Remembering
9.	Write down the trapezoidal double integration formula.	BTL -2	Understanding
10.	Write down the order of the errors of trapezoidal rule.	BTL -1	Remembering
11.	State Newton's forward differentiation formula to find $\left(\frac{dy}{dx}\right)_{x=x_n} and \left(\frac{d^2y}{dx^2}\right)_{x=x_n}$	BTL -1	Remembering
12.	If the range is not (-1, 1) then what is the idea to solve the Gaussian Quadrature problems.		
13.	Apply Simpson's 1 /3 rd rule to find $\int_0^4 e^x dx$ given that $e^0 = 1, e^1 = 2.72, e^2 = 7.39, e^3 = 20.09, e^4 = 54.6$.	BTL -3	Applying
14.	Calculate $\int_{1}^{4} f(x)dx$ from the table by Simpson's 1/3 rd rule x: 1 2 3 4 f(x): 1 8 27 64	BTL -3	Applying
15.	Write down the Simpson's 1/3 rd rule for double integration formula.	BTL -3	Applying
16.	Compare trapezoidal rule and Simpson's one third rule.	BTL -4	Analyzing
17.	In numerical integration , what should be the number of intervals to apply Simpson's one – third rule and trapezoidal rule – Justify	BTL -2	Understanding
18.	State Romberg's integration formula to find the value of $I = \int_{a}^{b} f(x)dx \text{ using h \& h / 2.}$	BTL -1	Remembering
19.	Which one is more reliable, Simpson's one – third rule or trapezoidal rule?	BTL -5	Evaluating
20.	Give the order and error of Simpson's one third rule.	BTL -1	Remembering
21.	How the accuracy can be increased in trapezoidal rule of evaluating a given definite integral?	BTL -4	Analyzing
22.	When Numerical Differentiation can be used?	BTL -4	Analyzing
23.	Find h for the function $f(x) = 1/x$ in $(1/2, 1)$ for Simpson's rule.	BTL-3	Applying
24.	What approximation is used in deriving Simpson's rule of integration?	BTL -3	Applying

25.	If $I_1 = 0.7083$, $I_2 = 0.6970$ find I using Romberg's Method.	BTL -3	Applying
	PART –B		
1.	Evaluate $\int_{0}^{6} \frac{1}{1+x^2} dx$, using trapezoidal and Simpson's 1/3 rd rules.	BTL -5	Evaluating
2. (a)	Using Romberg's method, Evaluate $\int_0^2 \frac{dx}{x^2 + 4}$.	BTL -5	Evaluating
2.(b)	Obtain first and second derivative of y at x = 0.96 from the data x : 0.96 0.98 1 1.02 1.04 y : 0.7825 0.7739 0.7651 0.7563 0.7473	BTL -2	Understanding
3.	Using backward difference, find y'(2.2) and y''(2.2) from the following table x : 1.4 1.6 1.8 2.0 2.2 y : 4.0552 4.9530 6.0496 7.3891 9.0250	BTL -3	Applying
4.	Evaluate $\int_{1}^{1.4} \int_{2}^{2.4} \frac{1}{xy} dx dy$ by using, Simpson's 1/3 rd rule, by considering $h = k = 0.1$	BTL -5	Evaluating
5. (a)	The table given below reveals the velocity of the body during the time t specified. Find its acceleration at $t = 1.1$ t: 1.0 1.1 1.2 1.3 1.4 v: 43.1 47.7 52.1 56.4 60.8	BTL -2	Understanding
5.(b)	Using Romberg's method to find $\int_{0}^{6} \frac{dx}{1+x^{2}}$.	BTL -4	Analyzing
6.	Calculate $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x = 1.35 from the following data: X 1.1 1.2 1.3 1.4 1.5 1.6 f(x) -1.62628 0.15584 2.45256 5.39168 9.125 13.83072	BTL -3	Applying
7. (a)	By dividing the range into 10 equal parts, evaluate $\int_{0}^{\pi} \sin x dx$ using Simpson's 1/3 rule.	BTL -2	Understanding
7.(b)	Evaluate $\int_{1}^{2} \frac{1}{x^{3}} dx$, using trapezoidal and Simpson's 1/3 rd rules.	BTL -5	Evaluating
8.	Evaluate $\int_{1}^{2} \int_{1}^{2} \frac{dx dy}{x + y}$ h = k = 0.25 using trapezoidal, Simpson's rule, and justify.	BTL -4	Analyzing
9	Find the value of f (8) from the table given below x: 6 7 9 12 f $(x): 1.556 1.690 1.908 2.158$ using suitable formula.	BTL - 3	Applying
10	From the following table, find the value of x for which y is minimum. X -2-101234Y2-0.250-0.25215.7556	BTL -5	Evaluating

11			
11.	Evaluate $\int_{0}^{1} \int_{0}^{1} \frac{dx dy}{1 + xy}$ using, Trapezoidal and Simpson's 1/3 rd rule,	BTL -4	Analyzing
10	given that $h = k = 0.25$.		
12.	Use Romberg method to estimate the integral from $x = 1.6$ to $x = 3.6$ from the data given below. $x : 1.6$ 1.8 2.0 2.2 2.4 2.6 2.8 $y:$ 4.953 6.050 7.389 9.025 11.023 13.464 16.445 $x:$ 3.0 3.2 3.4 3.6 $y:$ 20.056 24.533 29.964 36.598	BTL -4	Analyzing
13.(a)	Using the following data, find f'(5), f'(5) and the maximum value of $f(x)$. X 0 2 3 4 7 9 f(x) 4 26 58 112 466 922	BTL -4	Analyzing
13.(b)	Evaluate $\int_0^1 \frac{dx}{1+x^2}$ using Trapezoidal rule with h = 0.2, hence obtain an approximate value of π .	BTL -5	Evaluating
14.	Evaluate $\int_0^1 e^{-x^2} dx$ by dividing the range into 4 equal parts using (a) Trapezoidal rule (b) Simpson's 1/3 rd rule.	BTL -5	Evaluating
15.	Calculate $f'(3)$ and $f''(3)$ from the following data:X3.03.23.43.63.84.0f(x)-14-10.032-5.296-0.2566.67214	BTL -3	Applying
16.	Evaluate $\int_{1}^{2} \frac{1}{1+x^{3}} dx$, using trapezoidal and Simpson's 1/3 rd rules.	BTL -5	Evaluating
17.	Evaluate $\int_{0}^{1} \int_{0}^{1} \frac{dx dy}{1 + x + y}$ using, Simpson's 1/3 rd rule, given that (i) h = k = 0.25, (ii) h = k = 0.5.	BTL -4	Analyzing
18.	Evaluate $\int_{0}^{1} \int_{0}^{1} e^{x+y} dx dy$ using, Trapezoidal and Simpson's 1/3 rd rule,	BTL -4	Analyzing
	given that $h = k = 0.5$.		
1.	PART- CA Jet fighters position on an air craft carries runway was timed during landingt,sec: 1.01.11.21.31.41.51.6y, m: 7.9898.4038.7819.1299.4519.75010.03where y is the distance from end of carrier estimate the velocity and acceleration at t = 1.0.1.01.11.2	BTL -2	Understanding
2.	Using the given data find the first and second derivative at $x = 5$ and $x = 6$ by suitable formula to the given data: x: 0 2 3 4 7 9 f(x): 4 26 58 112 466 992	BTL -4	Analyzing
3.	The Velocity v(km/ min) of a moped which starts from rest, is given at fixed intervals of time (min) as follows. T: 0 2 4 6 8 10 12 V: 4 6 16 34 60 94 131 Estimate approximate distance covered in 12 minutes, by Simpson's 1/3 rd rule, also find the acceleration at t = 2 seconds.	BTL -2	Understanding
4.	Use Romberg's method to compute $\int_0^1 \frac{dx}{1+x^2}$ by taking h = 0.5, 0.25,	BTL -5	Evaluating
L	1 - - - - - - - - -	l	

	0.125 and. Hence deduce an approximate value of π .									
	X 0 0.125	0.25 0.	0.375 0.5	0.675	0.75	0.875	1			
	Y 1 0.9846	0.9412 0.	0.8767 0.8	0.7191	0.64	0.5664	0.5			
5.	Evaluate $\int_{0}^{1} \int_{1}^{2} \frac{1}{(1 + 1)^{2}}$ rule, given that	$\frac{2xy dx dy}{1+x^2 \left(1+y\right)}$ t h = k = 0	$\overline{y^2}$ using	, Trapez	oidal	and Sir	npso	n's 1/3 rd	BTL -4	Analyzing

UNIT – IV INITIAL VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATIONS Single step methods - Taylor's series method - Euler's method - Modified Euler's method – Fourth order Runge - Kutta method for solving first order equations - Multi step methods - Milne's and Adams - Bash forth predictor corrector methods for solving first order equations.

Q.No.	Question	BT	Competence
Q.NO.		Level	Competence
	PART A		
1.	Give Euler's iteration formula for ordinary differential equation.	BTL -2	Understanding
2.	Estimate y (1.25) if $\frac{dy}{dx} = x^2 + y^2$, y (1) = 1 taking $h = 0.25$, using Euler's method.	BTL -5	Evaluating
3.	Estimate y (0.2) given that $y' = x + y$, $y(0) = 1$, using Euler's method.	BTL -5	Evaluating
4.	Using Euler's method, compute $y(0.1)$ given $\frac{dy}{dx} = 1 - y$, $y(0) = 0$	BTL -2	Understanding
5.	Define initial value problems.	BTL -1	Remembering
6.	Write the Euler's modified formula for solving $\frac{dy}{dx} = f(x, y), y(x_0) = y_0$	BTL -1	Remembering
7.	Using modified Euler's method to find $y(0.4)$ given $y' = xy$, y(0) = 1	BTL -5	Evaluating
8.	Write the merits and demerits of the Taylor's method.	BTL -1	Remembering
9.	Find y(0.1), if $\frac{dy}{dx} = y^2 + x$ given $y(0) = 1$, by Taylor series method.	BTL -3	Applying
10.	Using Taylor series formula to find y (x ₁) for solving $\frac{dy}{dx} = f(x, y), y(x_0) = y_0.$ Using Taylor's series up to x ³ terms for 2 y' + y = x + 1,	BTL -2	Understanding
11.	Using Taylor's series up to x^3 terms for $2y' + y = x + 1$, y(0) = 1.	BTL -3	Applying
12.	Using Taylor series for the function $\frac{dy}{dx} = x + y$ when $y(1) = 0$ find y at $x = 1.2$ with $h = 0.1$.	BTL -3	Applying
13.	Explain Runge – Kutta method of order 4 for solving initial value problems in ordinary differential equation.	BTL -1	Remembering
14.	Find k_1 given $y' = xy$, $y(0) = 1$, using R-K method of fourth order.	BTL -3	Applying
15.	Using fourth order Runge – Kutta method to find y (0.1) given	BTL -2	Understanding

	$\frac{dy}{dx} = x + y$ y (0) = 1, h = 0.1		
16.	<i>dx</i> State Adam- Bashforth predictor and corrector formulae to solve first order ordinary differential equations.	BTL -2	Understanding
17.	State Milne's predictor corrector formula.	BTL -2	Understanding
18.	What are the single step methods available for solving ordinary differential equations.	BTL -1	Remembering
19.	What are the advantages of R-K method over taylor's method.	BTL -1	Remembering
20.	Prepare the multi-step methods available for solving ordinary differential equation.	BTL -4	Analyzing
21.	Write the Error for Adam- Bashforth predictor and corrector method.	BTL -1	Remembering
22.	Estimate $y (0.1)$ given that $y' = x y$, $y(0) = 2$, using Euler's method.	BTL -5	Evaluating
23.	Using modified Euler's method to find y (0.5) given $y' = x + y$, y(0) = 1	BTL -5	Evaluating
24.	Using Taylor series for the function $\frac{dy}{dx} = 2x + 3y$ when $y(1) = 0$ find y at $x = 1.5$ with $h = 0.5$.	BTL -3	Applying
25.	Find k_1 given $y' = x^3 + y$, $y(0) = 1$, using R-K method of fourth order.	BTL -3	Applying
	PART –B		
1.(a)	Apply Euler method to find y (0.2) given $\frac{dy}{dx} = y - x^2 + 1$ and y(0) = 0.5.	BTL -3	Applying
1. (b)	Find the values of y at x = 0.1 given that $\frac{dy}{dx} = x^2 - y$, y(0) = 1 by Taylor's series method.	BTL -5	Evaluating
2. (a)	Using Taylor series method find y at x = 0.1 given $\frac{dy}{dx} = x^2 y - 1$, y (0) = 1.	BTL -3	Applying
2.(b)	Using Euler Method to find y(0.2) and y(0.4) from $\frac{dy}{dx} = x + y$, y (0) = 1 with h = 0.2.	BTL -3	Applying
3.	Examine $2y' - x - y = 0$ given $y(0) = 2$, $y(0.5) = 2.636$, y(1) = 3.595, $y(1.5) = 4.968$ to get $y(2)$ by Adam's method.	BTL -4	Analyzing
4.	By Euler method for the function $\frac{dy}{dx} = \log_{10}(x+y)$, $y(0) = 2$ find the values of $y(0.2) y(0.4)$ and $y(0.6)$ by taking $h = 0.2$.	BTL -3	Applying
5.(a)	Find y(2) by Milne's method $\frac{dy}{dx} = \frac{1}{2}(x+y)$, given y(0) = 2,	BTL -3	Applying
5.(b)	y(0.5) = 2.636, y(1.0) = 3.595 and y(1.5) = 4.968. Interpret y(0.1) given $\frac{dy}{dx} = x^2 + y^2$ y(0) =1 using modified Euler methods.	BTL -3	Applying
6. (a)	Given $\frac{dy}{dx} = x^2(1+y)$, $y(1) = 1$, $y(1.1) = 1.233$, $y(1.2) = 1.548$,	BTL -5	Evaluating

	y(1.3) = 1.979, evaluate $y(1.4)$ By Adam's Bash forth predictor corrector method.		
6.(b)	Solve the equation $\frac{dy}{dx} = \log(x + y)$, $y(0) = 2$ find y at x = 0.2 using Modified Euler's method.	BTL -4	Analyzing
7.	Evaluate the value of y at x = 0.2 and 0.4 correct to 3 decimal places given $\frac{dy}{dx} = xy^2 + 1$, y(0) =1, using Taylor series method	BTL -5	Evaluating
8. (a)	Calculate y(0.4) by Milne's predictor – corrector method, Given $\frac{dy}{dx} = \frac{1}{2}(1 + x^2)y^2$ and y(0) = 1, y(0.1) = 1.06, y(0.2) = 1.12, y(0.3) = 1.21,	BTL -5	Evaluating
8.(b)	Find the values of y at x = 0.1 given that $\frac{dy}{dx} = x^2 - y$, y(0) = 1 by modified Euler method.	BTL -4	Analyzing
9.	Find y(4.4) given $5xy' + y^2 - 2 = 0$, y(4) = 1; y(4.1) =1.0049; y(4.2) = 1.0097 ; and y(4.3) =1.0143. Using Milne's method.	BTL -4	Analyzing
10.	Find y(0.4) by Milne's method, Given $\frac{dy}{dx} = xy + y^2$, y(0) = 1, y(0.1) = 1.1169, y(0.2) = 1.2773 Find i) y(0.3) by Runge –kutta method of 4 th order and ii) y(0.4) by Milne's method.	BTL -3	Applying
11	Solve $\frac{dy}{dx} = 1 - y$ with the initial condition $x = 0$, $y = 0$ using Euler's algorithm and tabulate the solutions at $x = 0.1, 0.2, 0.3, 0.4$. Using these results, Find y(0.5) using Adam's – Bash forth Predictor and corrector method.	BTL -3	Applying
12.	Solve $\frac{dy}{dx} = y^2 + x$, y(0)=1 (i) By modified Euler method at x=0.1 and x = 0.2. (ii) By Fourth order R-K method at x = 0.3 (iii) By Milne's Predictor-Corrector method at x = 0.4.	BTL -3	Applying
13.	Using Milne's method find y(2) if y(x) is the solution of, $\frac{dy}{dx} = \frac{1}{2}(x + y)$, given y(0) =2, y(0.5) =2.636, y(1) = 3.595 and y(1.5) =4.968.	BTL -3	Applying
14.	Apply fourth order Runge-kutta method, to find an approximate value of y when $x=0.2$ given that $y'=x+y$, $y(0)=1$ with h=0.2.	BTL -3	Applying
15.	Using Taylor series method find y at x = 0.1, x=0.2, y (0) = 1, given $\frac{dy}{dx} = x + y$.	BTL -3	Applying
16.	Using Euler Method to find y(0.3) and y(0.4) from $\frac{dy}{dx} = \frac{1}{2}(x^2+1)y^2$, y (0.2) = 1.1114 with h = 0.1.	BTL -3	Applying
17.	Apply fourth order Runge-kutta method, to find an approximate value of y when $x=0.1$ given that $y'=x+y^2$, $y(0)=1$ with $h=0.1$.	BTL -3	Applying
18.	Apply fourth order Runge-kutta method, to find an approximate value of y when x= 0.2 given that $y' = \frac{y^2 - x^2}{y^2 + x^2}$, y(0)=1 with h=0.2.	BTL -3	Applying
	PART-C		

1.	Apply Milne's method find y(0.4) given $\frac{dy}{dx} = xy + y^2$, y(0) =1 ,using Taylor series method find y(0.1) , Euler Method to find y(0.2) and y(0.3)	BTL -3	Applying
2.	By Adam's method, find y (4.4) given, $5xy' + y^2 = 2$, $y(4) = 1$; Find y(4.1), y(4.2), y(4.3) by Euler's method.	BTL -5	Evaluating
3.	Apply Runge – kutta method of order 4 solve $y' = y-x^2$, with $y(0.6) = 1.7379$, $h= 0.2$ find $y(0.8)$.	BTL -3	Applying
4.	Using Adam's – Bash forth method and Milne's method, find y(0.4) given $\frac{dy}{dx} = \frac{xy}{2}$, y(0) = 1, y(0.1) =1.01, y(0.2) = 1.022, and y(0.3) = 1.023.	BTL -5	Evaluating
5.	Interpret y(1.2) given $\frac{dy}{dx} = (y - x^2)^3$ y(1) =0, take h = 0.2 using (i) Euler methods, (ii) Modified Euler methods.	BTL -3	Applying

UNIT- V: BOUNDARY VALUE PROBLEMS IN ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS :

Finite difference techniques for the solution of two dimensional Laplace's and Poisson's equations on rectangular domain – One dimensional heat flow equation by explicit and implicit (Crank Nicholson) methods – One dimensional wave equation by explicit method.

Q.No.	Question	BT	Competence
	PART – A	Level	-
1.	Obtain the finite difference scheme for $2y''(x) + y(x) = 5$.	BTL -1	Remembering
2.	Write down the finite difference scheme for solving $y'' + x + y = 0$: y(0) = y(1) = 0.	BTL -1	Remembering
3.	Write down the finite difference scheme for the differential equation $\frac{d^2y}{dx^2} - 3y = 2$	BTL -2	Understanding
4.	Obtain the finite difference scheme for the differential equation 2 $\frac{d^2y}{dx^2} + y = 5$	BTL -1	Remembering
5.	State the finite difference approximation for $\frac{d^2y}{dx^2}$ and state the order of truncation error.	BTL -1	Remembering
6.	Classify the PDE $y U_{xx} + U_{yy} = 0.$	BTL -2	Understanding
7.	Classify the PDE $x U_{xx} + y U_{yy} = 0, x > 0, y > 0.$	BTL -1	Remembering
8.	Write down the standard five point formula in Laplace equation $U_{xx} + U_{yy} = 0.$	BTL -2	Understanding
9.	Write the Crank Nicholson formula to solve parabolic equations.	BTL -1	Remembering
10.	State one dimensional wave equation and its boundary conditions	BTL -1	Remembering
11.	Write down the two dimensional Laplace's equation and Poisson's equation.	BTL -1	Remembering
12.	Write down Poisson's equation and its finite difference analogue.	BTL -1	Remembering
13.	What is the order and error in solving Laplace and Poisson's	BTL -2	Understanding

	aquation by using finite difference method		
1.4	equation by using finite difference method?	1 א דידים	A mole
14.	State the finite difference scheme for solving the Poisson's equation.	BTL -4	Analyzing
15.	State one dimensional heat equation and its boundary conditions.	BTL -4	Analyzing
16.	Name at least two numerical methods that are used to solve one	BTL -4	Analyzing
	dimensional diffusion equation.		
17.	State the implicit finite difference scheme for one dimensional heat	BTL -4	Analyzing
	equation.		
18.	Write down the finite difference scheme for $u_t = u_{xx}$.	BTL -2	Understanding
19.	Define difference quotient of a function $y(x)$.	BTL -1	Remembering
	Evaluate the explicit finite difference scheme for one dimensional		
20.	wave equation $\frac{\partial^2 u}{\partial t^2} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$.	BTL -5	Evaluating
	wave equation $\frac{\partial t^2}{\partial t^2} \equiv \alpha \frac{\partial x^2}{\partial x^2}$.		
21.	Write the classification of $f_x - f_{yy} = 0$?	BTL -1	Remembering
22.	What is the purpose of Liebmann's process?	BTL -1	Remembering
22	Write down the diagonal five point formula in Laplace equation		TT. d
23.	$\mathbf{U}_{xx} + \mathbf{U}_{yy} = 0.$	BTL -2	Understanding
• •	How many number of conditions required to solve the Laplace		TT 1 / 1
24.	equations?	BTL -2	Understanding
	Write a note on the stability and convergence of the solution of the		D
25.	difference equation corresponding to the hyperbolic equation.	BTL -1	Remembering
	PART –B		1
	Evaluate the pivotal values of the equation $U_{tt} = 16 U_{xx}$ taking		
1.(a)	$\Delta x = 1$ up to t = 1.25. The boundary conditions are	BTL -5	Evaluating
	$u(0,t) = u(5,t) = 0, u_t(x,0) = 0 \& u(x,0) = x^2(5-x)$		
1. (b)	Solve $y'' - y = x$, $0 < x < 1$, given $y(0) = y(1) = 0$, using finite	BTL -4	Analyzing
	difference method dividing the interval into 4 equal parts.		
2. (a)	Solve by Crank – Nicholson's method the equation $16 U_t = U_{xx}$ 0 < x < 1 and $t > 0$ subject to $u(x, 0) = 0$, $u(0, t) = 0$ and	BTL -3	Applying
2. (a)	$u(1,t) = 100 t$. Compute one time step , taking $\Delta x = \frac{1}{4}$ and $\Delta t = 1$.	DIL-J	Applying
	Solve $y_{tt} = 4y_{xx}$ subject to the condition $y(0,t) = 0$; $y(2,t) = 0$; $y(x,0)$		
2.(b)	$= x(2-x)$; $u_t(x,0) = 0$, Do 4 steps. Find the values up to 2 decimal	BTL -2	Understanding
	accuracy.		
	Solve the boundary value problem $x^2 y'' - 2y + x = 0$ subject to $y(2)$	BTL -2	TT 1
3. (a)	=0 = y(3), find y (2.25) by finite difference method.		Understanding
	$(2x, 0 \le x \le 2.5)$		
	Solve $25\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial t^2}$, $\frac{\partial u}{\partial t}(x,0) = 0$, $u(0,t) = 0$, $u(5,t) = 0$, $u(x,0) =\begin{cases} 2x, 0 \le x \le 2.5\\ 10-2x, 2.5 \le x \le 5 \end{cases}$		
3.(b)	by the method derived above taking $h = 1$ and for one period of	BTL -3	Applying
	vibration, (i.e. up to $t = 2$)		
	Solve the elliptic equation $U_{xx} + Uyy = 0$ for the following square		
	mesh with boundary values as shown, using Liebman's iteration		
4.	procedure.	BTL -3	Applying

	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
5.	Solve the equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ subject to the initial conditions u (0, t) = u (1, t) = 0, u(x, 0) = sin πx , $0 \le x \le 1$, using Crank-Nicolson method.	BTL -4	Analyzing
6.	Solve the Laplace equation $U_{xx} + U_{yy} = 0$ for the following square mesh with the boundary values as shown in the figure below. A = 1 = 2 = B $1 = 4$ $2 = 1 = 4$ $3 = 2 = 4$	BTL -2	Understanding
7.	Solve $U_{xx} + U_{yy} = 0$ over the square region of side 4, satisfying the boundary conditions (i) $u(0,y) = 0$, $0 \le x \le 4$, (ii) $u(4,y) = 12 + y$, $0 \le x \le 4$, (iii) $u(x, 0) = 3x$, $0 \le x \le 4$, (iv) $u(x, 4) = x^2$, $0 \le x \le 4$, By dividing the square into 16 square meshes of side 1 and always correcting the computed values to two places of decimals, obtain the values of u at 9 interior pivotal points.	BTL -5	Evaluating
8.	Solve the equation $\nabla^2 u = -10(x^2 + y^2 + 10)$ over the square mesh with sides $x = 0$, $y = 0$, $x = 3$ and $y = 3$ with $u = 0$ on the boundary and mesh length is 1.	BTL -4	Analyzing
9.	Solve $\frac{\partial u}{\partial t} = 4 \frac{\partial^2 u}{\partial x^2}$ with the boundary conditions $u(0,t) = 0$, $u(4,t) = 0$ and the initial conditions $u_t(x, 0) = 0$ & $u(x, 0) = x (4 - x)$ by taking $h = 1$ (for 4 times steps)	BTL -3	Applying
10.	Solve : $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$, given u (0,t) = 0,u(4, t) = 0,u(x, 0) = x(4-x), taking h = 1 (for 4 times steps)	BTL -3	Applying
11.	Solve the Poisson equation $U_{xx} + U_{yy} = -81xy$, $0 < x < 1$, $0 < y < 1$ given that $u(0,y)=0$, $u(1,y)=100$, $u(x,0)=0$, $u(x,1)=100$ and $h=1/3$.	BTL -3	Applying
12.	Solve $\nabla^2 u = 8x^2y^2$ Over the square x=-2, x=2, y=-2, y=2 with u=0 on the boundary and mesh length =1.	BTL -3	Applying
13.	Solve by Crank-Nicolson's method $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ For 0 <x<1, t="">0, u(0,t)=0, u(1,t)=0, U(x,0)=100(x-x^2). Compute u for one time step. h=1/4.</x<1,>	BTL -3	Applying
L	1		1

14.	Solve $U_{xx} + U_{yy} = 0$ in $0 \le x \le 4$, $0 \le y \le 4$ given that $u(0,y)=0$, $u(4,y) = 8+2y$, $u(x,0) = x^2/2$, $u(x,4) = x^2$ taking h=k=1. Obtain the result correct of 1 decimal.	BTL -3	Applying
15.	Solve $U_{xx} + U_{yy} = 0$ numerically for the following mesh with boundary conditions as shown below. 1 2		
	1 U_1 U_2 2	BTL -3	Applying
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
16.	Solve by Crank – Nicholson's method the equation $U_t = U_{xx}$ $u(x, 0) = \sin \pi x \ 0 \le x \le 1$, $u(0, t) = 0$ and $u(1, t) = 0$. Compute one time step, taking $h = \Delta x = \frac{1}{3}$ and $k = \Delta t = \frac{1}{36}$.	BTL -3	Applying
17.	Solve $U_{xx} + U_{yy} = 0$ numerically for the following mesh with boundary conditions as shown below. $1 \qquad 2 \qquad 1 \qquad U_1 \qquad U_2 \qquad 2 \qquad 2 \qquad U_3 \qquad U_4 \qquad 4 \qquad 2 \qquad 4$	BTL -3	Applying
18.	Derive standard five point formula to solve Laplace equation.	BTL -2	Understanding
	PART C		
1.	Given the values of u(x, y) on the boundary of the square in figure, evaluate the function u(x,y) satisfying the Laplace equation $U_{xx} + U_{yy} = 0$ at the pivotal points of this figure by Gauss seidel method 1000 1000 1000 1000 $2000 2000 500 0$ $1000 500 0 0$	BTL -5	Evaluating
2.	Solve $\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$ subject to the following conditions $u(0,t)=0$, $u(1,t)=0$, t>0 and $\frac{\partial u}{\partial t}(x,0) = 0$ $u(x,0) = sin^3\pi x$ for all in $0 \le x \le 1$. Taking h=1/4. Compute u for 4 time steps.	BTL -3	Applying
3.	Using Bender Schmidt formula solve : $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ given u(0,t)=0, u (5,t)=0, u(x,0) = x ² (25 - x ²), assuming Δx =1. Find the	BTL -3	Applying
	value of u upto $t = 5$.		

	boundaries dividing the square into 16 sub squares of length 1 unit.		
5.	Solve by Crank – Nicholson's method the equation $U_t = U_{xx}$ $u(x, 0) = 0, 0 \le x \le 1$, $u(0, t) = 0$ and $u(1, t) = t$.Compute two time steps, taking $h = \Delta x = \frac{1}{4}$ and $k = \Delta t = \frac{1}{16}$.	BTL -3	Applying

