SRM VALLIAMMAI ENGINEERING COLLEGE (An Autonomous Institution)

S.R.M. Nagar, Kattankulathur - 603203

DEPARTMENT OF MATHEMATICS

II YEAR / IV SEMESTER B.E Agriculture Engineering &

B.TECH-Information Technology 1918404 - PROBABILITY AND STATISTICS Regulation – 2019

Academic Year – 2022 - 23

Prepared by

Ms. A. Karpagam, AP(OG) Ms. S. Ramya, AP(OG)

SRM VALLIAMMAI ENGNIEERING COLLEGE

(An Autonomous Institution)

SRM Nagar, Kattankulathur – 603203.

DEPARTMENT OF MATHEMATICS

S.No	QUESTIONS	BT Level	Competence
UNIT I	RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS		
Random	Variables - Discrete and continuous random variables - Moments - Mom	nent gener	ating functions -
Binomia	l, Poisson, Geometric, Uniform, Exponential and Normal distribution		
	Part - A (2 MARK QUESTIONS)		
1.	The number of hardware failures of a computer system in a week of		
	operations has the following p.d.f, Find the mean of the number of failures		
	in a week.	BTL-2	Understanding
	No.of failures 0 1 2 3 4 5 6 \mathbf{N}		
	Probability .18 .28 .25 .18 .06 .04 .01		
2.	The number of hardware failures of a computer system in a week of		
	operations has the following p.d.f, Calculate the value of K.		
	No.of failures 0 1 2 3 4 5 6	BTL-2	Understanding
	Probability K 2 K 2 K K 3 K K 4 K		
2			
5.	Check whether the function given by $f(x) = \frac{x+2}{25}$ for x=1, 2,3,4,5 can serve	BTL-2	Understanding
	as the probability distribution of a discrete random variable.		6
	If the random variable X takes the values 1,2,3 and 4 such that		
4.	2P(X = 1) = 3P(X = 2) = P(X = 3) = 5P(X = 4), find the probability	BTL-1	Remembering
	distribution of X		
	The RV X has the following probability distribution:		
5.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	BTL-2	Understanding
	$\frac{P(X)}{V} = \frac{0.4}{K} + \frac{1}{K} = \frac{0.2}{V} = \frac{0.3}{V}$		
	Find k and the mean value of X If $f(x) = K(x + x^2)$ in $1 \le x \le 5$ is and f of a continuous random		
6.	If $f(x) = K(x + x^{-})$ in $1 < x < 5$ is a put of a continuous random variables. Find the value of K	BTL-1	Remembering
	The n d f of a continuous random variable X is $f(x) = k(1 \pm x)$ $2 < x < x < x < x < x < x < x < x < x < $		
7.	Find k	BTL-1	Remembering
	For a continuous distribution $f(r) = k(r - r^2)$ $0 \le r \le 1$ where k is a		
8.	constant Findk.	BTL-2	Understanding
9.	If $f(x) = kx^2$, $0 < x < 3$, is to be a density function, find the value of k	BTL-2	Understanding
	A test engineer discovered that the cumulative distribution function of the	2122	0.1001300100118
10	life time of an equipment (in years) is given by $F(x) = 1$, $a^{\frac{x}{5}}$	BTL-2	Understanding
10.	The time of an equipment (In years) is given by $F(x) = 1 - e^{-5}$, x > 0. What is the expected lifetime of the equipment?	DIL 2	onderstanding
	$x \ge 0$. What is the expected method of the equipment?		
11.	the parameters of the distribution	BTL3	Applying
	In 256 sets of 8 tosses of a coin, in how many sets one may expect heads		
12.	and tails in equal number?	BTL4	Analyzing
12	If 3% of the electric bulbs manufactured by a company are defective, Find		A
13.	the probability that in a sample of 100 bulbs exactly 5 bulbs are defective.	BIL4	Anaiyzing

14.	Suppose that, on an average, in every three pages of a book there is one typographical error. If the number of typographical errors on a single page of the book is a Poisson random variable. What is the probability if at least one error on a specific page of the book?	BTL3	Applying
15.	The no. of monthly breakdowns of a computer is a RV having Poisson distribution with mean 1.8. Find the probability that this computer will function for a month with only one breakdown.	BTL4	Analyzing
16.	If X is a Poisson variate such that $2P(X = 0) + P(X = 2) = 2P(X = 1)$, find E(X)	BTL4	Analyzing
17.	The probability that a candidate can pass in an examination is 0.6. What is the probability that he will pass in third trial?	BTL4	Analyzing
18.	If X is a geometric variate, taking the values 1,2,3,, find P(X is odd)	BTL3	Applying
19.	If the probability that an applicant for a driver's license will pass the road test on any given trial is 0.8, what is the probability that he will finally pass the test on the fourth trial	BTL4	Analyzing
20.	If X has uniform distribution in (-3,3), find $P(x-2 < 2)$	BTL-2	Understanding
21.	If the MGF of a continuous RV is $\frac{1}{t}(e^{5t} - e^{4t})$ what is the distribution of X2 What are the mean and variance of X2	BTL4	Analyzing
22.	Suppose that the life of industrial lamp (in thousands of hours) is exponentially distributed with mean life of 3000 hours, Evaluate the probability that the lamp will last between 2000 and 3000 hours.	BTL5	Evaluating
23.	A continuous RV X has the density function $ce^{-\frac{x}{5}}$, $x > 0$. Find c. Create E(x) and Var(X)	BTL6	Creating
24.	If X is a normal random variable with mean 3 and variance 9, find the probability that X lies between 2 and 5.	BTL3	Applying
25.	A normal distribution has mean $\mu = 20$ and standard deviation $\sigma = 10$. Evaluate $(15 \le X \le 40)$.	BTL5	Evaluating
	PART – B (13 MARK QUESTIONS)		
1.(a)	A random variable X has the following probability distribution: $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	BTL-2	Understanding
1.(b)	Find the MGF of Binomial distribution and hence find its mean and variance	BTL-1	Remembering
2.(a)	The probability mass function of a discrete R. V X is given in the following table:X-2-10123P(X=x)0.1K0.22k0.3kFind (1) Find the value of k, (2) P(X<1).(3) P(-1< X < 2)	BTL-2	Understanding
2.(b)	Obtain the MGF of Poisson distribution and hence find its mean and variance	BTL-1	Remembering
3.(a)	The probability mass function of a discrete R. V X is given in the following table $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	BTL-2	Understanding

3.(b)	Deduce variance	the MGF	f of a geo	metric di	istributio	n and he	nce find	the mear	n and	BTL-1	Remembering
4.(a)	If the dia table. x P(x) Find the	screte rar 1 k/3 value of	$\frac{2}{k/6}$ k and Cu	iable X h 3 $k/3$ k	as the pr 4 :/6 e distribu	obability	y function K.	n given b	by the	BTL-2	Understanding
4.(b)	Derive t	he MGF	of Unifor	rm distril	bution an	d hence	deduce t	he mean	and	BTL-1	Remembering
5.(a)	The properties $r = 1,2,$	bability n ,3,4. Find	nass func l (1) the v	tion of a value of k	RV X is x, $(2)P(\frac{1}{2})$	given by $< X < \frac{1}{2}$	$y P(X = \frac{1}{2})/X > 1$	r) = kr	3,	BTL3	Applying
5.(b)	Deduce variance	the MGF	and	BTL-1	Remembering						
6.(a)	The property $P[X = j]$ (3) $P(X)$	bability d] = $\frac{1}{2^{j}}$ (j is odd) (4)	n by	BTL-2	Understanding						
6.(b)	State an	d prove t		BTL3	Applying						
7.(a)	Find the mean and variance of the following probability distribution X_i 12345678 P_i 0.080.120.100.240.160.100.070.04									BTL-2	Understanding
7.(b)	Assume that 50% of all engineering students are good in mathematics. Determine the probabilities that among 18 engineering students (i) exactly 10.(ii) at least 15 are good in mathematics.										Applying
8.	Obtain t variance	he MGF	of a norn	nal distri	bution ar	nd hence	find its r	nean and	1	BTL-1	Remembering
9.(a)	If a rand Find (a)	lom varia $P(X < 1)$	ble X has	s p.d.f $f(X > 1)$	$(x) = \begin{cases} \\ \\ \\ \\ \\ \end{pmatrix} (c) P(2) \end{cases}$	$\frac{\frac{1}{4}}{\frac{1}{4}}, X $	< 2 erwise > 5).			BTL-2	Understanding
9.(b)	Out of 2 you exp	2000 fam ect to hav	nilies with ve i) at lea	n 4 child ast 1 boy	lren each ii) 2 boy	ı, Find h /s.	low man	y family	would	BTL3	Applying
10.(a)	Find the function	$e \overline{MGF} d$ $a f(x) = \begin{cases} \\ \\ \end{cases}$	of the ran $\frac{x}{4}e^{-\frac{x}{2}}$, $x_{4}e^{-\frac{x}{2}}$,	ndom va $x > 0$ therwise	uriable X . Also fi	having	the prol	oability o variance	density	BTL-2	Understanding
10.(b)	4 coins (i) 2 hea	were toss ds, (ii) a	ed simult it least 2 l	taneously neads, (ii	y. What ii) at mos	is the pro t 2 head	obability s.	of gettin	g	BTL4	Analyzing
11.(a)	A rand	om varial	ble X has	c.d.f <i>F</i> (x P(X>1/2	$f(x) = \begin{cases} a(x) \\ a(x) $	0, ij (1 + x), i 1, i $-0.5 \le 1$	$f_x < -1$ if $-1 < f_x \ge 1$ $X \le 0$.	<i>x</i> < 1.		BTL-2	Understanding
11.(b)	The ato gram of what is particles and at m	ms of a this elem the prob s emitted nost5	radioactiv nent, on a pability th from 1 g	ve eleme average, o nat durin gram is (ent are ra emits 3.9 ag the ne 1) at mos	andomly alpha p ext secor st 6 (2) a	disinteg articles p nd the nu it least 2	rating. If per secon umber of and (3) a	f every d, then f alpha at least	BTL4	Analyzing

12.	$\left(ax, 0 \le x \le 1 \right)$		
	$a 1 \le r \le 2$		
	If $f(x) = \begin{cases} a, y \in X \\ a, y \in X \end{cases}$ is the p.d.f of X. Calculate		
	$5u - ux, \ z \le x \le 5$		TT 1 1
	(0, elsewhere	BTL-2	Understanding
	(i) The value of a ,		
	(ii) The cumulative distribution function of X		
	(11) If X_1, X_2 and X_3 are 3 independent observations of X. Find		
10 ()	the probability that exactly one of these 3 is greater than 1.5?		
13.(a)	The Probability distribution function of a R.V. X is given by		
	$f(x) = \frac{4x(9-x^2)}{81}, \ 0 \le x \le 3$. Find the mean, variance	BTL-2	Understanding
13.(b)	The number of monthly breakdowns of a computer is a random variable		
	having a Poisson distribution with mean equal to 1.8. Find the probability	DTI 2	Applying
	that this computer will function for a month (1) without breakdown (2) with	DILS	Applying
	only one breakdown and (3) with at least one breakdown.		
14.(a)	Messages arrive at a switch board in a Poisson manner at an average rate of		
	6 per hour. Find the probability that exactly 2 messages arrive within one	BTL3	Annlying
	hour, no messages arrives within one hour and at least 3 messages arrive	DILS	rippijing
	within one hour		
14.(b)	Suppose that the life of an industrial lamp in 1,000 of hours is		
	exponentially distributed with mean life of 3,000 hours. Find the	DTI 2	A malazin a
	between 2,000 and 3,000 hours (iii) The lamp last enother 1,000 hours	BILS	Applying
	given that it has already lasted for 250 hours		
15 (a)	The time (in hours) required to repair a machine is exponentially		
13.(a)	distributed with parameter $\lambda = 1/2$		
	(a) What is the probability that the repair time exceeds 2 hours?	BTI 4	Analyzing
	(b) What is the conditional probability that a repair time exceeds at	DIL	7 mar y 2mg
	least 10 hours that its distribution exceeds 9 hours?		
15.(b)	Let X be a Uniformly distributed R. V. over [-5, 5]. Evaluate (i) $P(X \le 2)$		
	(ii) $P(X >2)$ (iii) Cumulative distribution function of X (iv) $Var(X)$	BILD	Evaluating
16.(a)	Buses arrive at a specified stop at 15 minutes interval starting at 7am that		
	is, 7,7:15,7:30,7:45, and so on, If a passenger arrives at the stop at a		
	random time that is uniformly distributed between 7 and 77:30 am,	BTL5	Evaluating
	evaluate the probability that he waits	DILU	Ditututing
	(a) Less than 5 minutes for a bus and		
1(1)	(b) At least 12 minutes for a bus		
16.(b)	The marks obtained by a number of students for a certain subject is		
	assumed to be normally distributed with mean of and standard deviation 5.	BTL4	Analyzing
	a south 2 of them will have marks over 702		
17	In a test on 2000 electric hulbs, it was found that the life of a particular		
1/.	make was normally distributed with an average life of 2040 hours and		
	Standard Deviation of 60 hours. Find the number of bulbs likely to burn	BTL3	Applying
	for (i) more than 2150 hours (ii) less than 1950 hours and (iii) more than	- 1	· · r r · J ····8
	1920 hours burs less than 2160 hours.		
18.(a)	The mileage which car owners get with a certain kind of radial tire is a RV		I Indexed 1
. ,	having an exponential distribution with mean 40,000 km. Find the	BIL-2	Understanding

	probabilities that one of these will last (a) at least 20,000 kn, and (b) at most 30,000 km		
18.(b)	The annual rainfall in inches in a certain region has a normal distribution with a mean of 40 and variance of 16. What is the probability that the rainfall in a given year is between 30 and 48 inches?	BTL3	Applying
	PART C(15 Mark Questions)		
1.	Out of 2000 families with 4 children each, Create how many family would you expect to have i) at least 1 boy ii) 2 boys and 2 girls iii) at most 2 girls iv) children of both genders	BTL6	Creating
2.	In a certain factory manufacturing razor blades, there is a small chance of 1/500 for any blade to be defective. The blades are supplied in packets of 10. Use Poisson distribution to calculate the approximate number of packets containing (i) No defective (ii) One defective (iii) Two defective blades Respectively in a consignment of 10,000 packet	BTL4	Analyzing
3.	Buses arrive at a specified stop at 15 minutes interval starting at 6 AM ie they arrive at 6 AM, 6.15AM, 6.30 AM and so on. If a passenger arrives at the stop at a time that is uniformly distributed between 6 and 6.30 AM. Evaluate the probability that he waits (i) Less than 5 minutes for a bus. (ii) More than 10 minutes for a bus.	BTL5	Evaluating
4.	The daily consumption of milk in excess of 20,000 liters in a town is approximately exponentially distributed with parameter 1/3000. The town has a daily stock of 35,000L. What is the probability that of 2 days selected at random, the stock is insufficient for both days?	BTL3	Applying
5.	In an Engineering examination, a student is considered to have failed, secured second class, first class and distinction, according as he scores less than 45%, between 45% and 60% between 60% and 75% and above 75% respectively. In a particular year 10% of the students failed in the examination and 5% of the students get distinction. Find the percentage of students who have got first class and second class. Assume normal distribution of marks.	BTL-2	Understanding
UNIT I	I TWO – DIMENSIONAL RANDOM VARIABLES	1	
Joint dis Transfor variable	stributions – Marginal and conditional distributions – Covariance – Correlation rmation of random variables – Central limit theorem (for independent and ide s)	ion and lin ntically di	near regression – stributed random
	PART-A(2 MARK QUESTIONS)		
1.	The joint probability distribution of X and Y is given by $p(x, y) = \frac{x+y}{21}$, x = 1,2,3; y = 1, 2. Find the marginal probability distributions of X	BTL-2	Understanding
2.	The joint probability function (X,Y) is given by $P(x,y) = k(2x + 3y)$, x = 0,1,2 $y = 1,2,3$, Find the value of K.	BTL-2	Understanding
3.	Find the probability distribution of X + Y from the bivariate distribution of (X,Y) given below: $X - Y$ 1210.40.220.30.1	BTL-2	Understanding
4.	Let X and Y have the joint p.m.f Y X 0 1 2	BTL-2	Understanding

		0	0.1	0.4	0.1							
		1	0.2	0.2	0							
	Find $P(X+Y > 1)$											
5.	Find the marginal distrib	utions of	X and Y from	om the bivar	ate distribut	ion						
	of (X,Y) given below:											
							BTI -2	Understanding				
	\overline{X}	<u> </u>	1	2			DIL-2	Onderstanding				
		1	0.1	0.2								
		2	0.3	0.4								
6.	The joint probability dis	tribution	function of	the random	variable (X	,Y) is						
	given by $f(x, y) = k(x^3)$ of k	BTL3	Applying									
7.	If the joint probability d	l Y is										
	$\int \frac{x^3 y^3}{y^3}$	$\frac{1}{2}$, $0 < x$	< 2, 0 < y	< 2				A multivin a				
	given by $f(x, y) = \begin{cases} 16 \\ 0 \end{cases}$		otherw	Nise			BILS	Applying				
	Obtain the marginal dens	itv funct	ion of X.	130								
8.	The joint probability den	sity of a	two dimens	ional random	variable (X	(Y) is						
	$\int \frac{d^2}{dt} dt = \int \frac{dt}{dt} dt$	$-y$; $0 \le x$	x < 2 , y >	0 Evolution	1.	. ,	BTL5	Evaluating				
	$given by f(x,y) = \{ (x,y) \in \{ (x,y$), o	therwise	. Evaluate	к.							
9.	The joint probability d	() is		Analyzing								
	$\int f(x, y) = k e^{-(2x+3y)}, x \ge 0$	DIL4	Anaryzing									
10.												
	If the joint pdf of (X, Y)	is $f(x, y)$	$) = \begin{cases} 4 \\ 0 \\ 0 \end{cases}$	horwico .			BTL4	Analyzing				
	Find $P(X + Y < 1)$	Find $P(X + Y < 1)$										
11.	Let X and Y be random v	variables	with joint d	ensity functi	on			-				
	f(x,y) = [4xy, 0 < x < 1, 0]	x < y < 1 for	ormulate the v	value of E(XY	~)		BTL4	Analyzing				
	0, otherwise	10)							
12.	Let the joint density fun	ction of	a random v	variable X a	nd Y be giv	en by						
	$\int f(x, y) = 8xy, 0 < y \le$	$x \le 1.0$	Calculate the	e marginal pr	obability fu	nction	BTL3	Applying				
	of X											
13.	What is the condition for	two ranc	lom variabl	es are indepe	ndent?		BTL-1	Remembering				
14.	If the joint probability de $(x+y)$	ensity fun	ction of X a	and Y is			BTL4	Analyzing				
1.7	$f(x, y) = e^{-(x+y)}, x, y \ge 0$	$\frac{1}{2}$ Are X a	nd Y indepe	endent								
15.	State any tow properties	of correla	ation coeffic	cient			BIL-I	Remembering				
10.	The regression equation	the regre	$\frac{14}{6x} = 14$	nd 211 + 211	– 1. Evoluo	ta tha	BIL-I	Remembering				
17.	correlation coefficient be	s are x +	4 by = 14 a & Y.	$110 \ 2x + 5y$	= 1. Evalua	te the	BTL5	Evaluating				
18.	If $\overline{X} = 970$, $\overline{Y} = 18$, σ_x	$= 38, \sigma_{2}$	y = 2 and 1	= 0.6, D	evise the li	ne of	BTI 4	Analyzing				
	regression of X on Y.						DILT	MidryZing				
19.	In a partially destroyed la	aboratory	, record of	an analysis c	f correlation	data,						
	the following results	only are	legible; Va	ariance of X	= 9; Regree	ession	BTL3	Applying				
	equations are 8X - 10Y	+ 66 =	0 and 40X	-18Y = 214	. Find the	mean	2120 rippijing					
20	values of X and Y?	a ant 2	·))/	and (d 41						
20.	The regression equation	s are 3x	+ 2y = 26	o and $6x +$	y = 31. Fin	a the	BTL3	Applying				
21	State central limit theorem	m					BTI 1	Remembering				
21.	Prove that $-1 < r < 1$	111						Understanding				
	$1 \leq x_y \leq 1$						DIL-2	Understanding				

23.	The equat	ions of tw	o regressio	9x=46. Ot	otain	BTL3	Applying			
24.	The equat	ions of tw	o regressio	on lines are	e 3x+2v=1	9 and $3v+$	9x=46. De	rive		
	the correla	ation coeff	icient betv	veen X an	d Y.	· · · · · · · · · · · · · · · · · · ·			BTL3	Applying
25.	If $X = R$	$\cos \varphi$ and $\nabla \nabla \varphi$	Y = Rsin	φ , how	are the j	oint proba	ability der	nsity	BTL3	Applying
	function (\mathbf{X}, \mathbf{Y}) and ((R, φ) are 1	$\frac{\mathbf{PART R}}{\mathbf{PART R}}$	(13 Mark	Question	(2)			
1	From the t	following	table for b	ivariate dis	stribution of	of (X, Y)	Find			
1.	(i) $P(X < $	(1)	(ii)	P(Y < 3)		(iii) $P(X)$	< 1.Y < 3	3)		
	$(iv)P(X \leq$	$\frac{1}{2} \frac{1}{Y} \le 3$	(v)	$P(Y \leq 3/)$	$X \leq 1$)	(vi)P(X)	$+Y \leq 4$	- /		
	Y					_				
	X	1	2	3	4	5	6			
	0	0	0	$\frac{1}{22}$	$\frac{2}{22}$	$\frac{2}{22}$	$\frac{3}{22}$		BTL-2	Understanding
				32	32	32	32			
	1	1	1	1	1	1	1			
		16	16	8	8	8	8			
	2	1	1	1	1	0	2			
		32	32	64	64		64			
2(a)	The two d	imonoiona	2000							
2.(a)	function									
	function	f(x,y):	$=\frac{1}{27}, x$	= 0, 1, 2; y	= 0, 1, 2.	Find t	ine marg	ginai	BTL3	Applying
	distributio	ons of X ar	nd Y. Also	find the co	conditional	distributio	on of Y give	en		
2(h)	$\Lambda = 1$ also The joint i	ndf a biya	riate R V(Σ	(\mathbf{Y}) is given	ven hv	1 - 1.				
2.(0)			K	$x_{y}, 0 < 0 < 0$	x < 1, 0	< <i>y</i> < 1				A 1 '
		f(x)	$(x, y) = \{ ($) ,	othe	erwise			BTL3	Applying
	Find K. ((2) Find I	P(X+Y<1)	(3) Are Σ	K and Y in	dependent	R.V's.			
3.(a)	If the join	t pdf of (X	(, Y) is giv	en by $P(\mathbf{x},$	y) = K(2)	x+3y), x=(1, 2, 3,	4		A 1 '
	y = 1, 2,	3 Find a	ll the mar	ginal prob V	ability di	stribution.	Also find	the	BTL3	Applying
3(h)	The joint	y distribut	$\frac{1011 01 \Lambda^+}{DV (V V)}$	1. ia aiyan hy	f(x, x)	$- \frac{1}{1}$	$(2^{2}+v^{2})$			
5.(0)	r = 1 for $r = 1$	put of the > 0 Find t	KV (A,I) be value o	is given by	y f(x, y) =	$= \kappa x y e^{-\kappa}$	e independ	lent	BTL4	Analyzing
4.	The follo	wing tabl	e represer	its the joi	nt probab	vility distri	ibution of	the		
	discrete R	V (X,Y). 1	Find all the	e marginal	and condi	tional dist	ributions.			
	Y	Х		-						
	1	2	3						BTL-2	Understanding
	1 1/2	1/6	0							C
	2 0	1/9	1/5							
	3 1/18	8 1/4	2/15							
5.	Find the n	narginal di	stribution	of X and Y	and also	$\overline{\mathbf{P}(P(X \leq $	$1, Y \leq 1),$			
	$P(X \leq 1)$	$P(Y \leq 1)$). Check v	whether X	and Y are	e independ	lent. The j	oint		
	probability	y mass fur	iction of X	and Y is 2						The dense 1
			1	2					BIL-2	Understanding
	$\begin{vmatrix} \Lambda \\ 0 \end{vmatrix}$	0.10	0.04	0.02						
	1	0.08	0.20	0.06						

	2 0.06 0.14 .030		
6.	A machine is used for a particular job in the forenoon and for a different job in the afternoon. The joint probability distribution of (X, Y), where X and Y represent the number of times the machine breakdown in the forenoon and in the afternoon respectively, is given in the following table. Examine if X and Y are independent RV's	BTL4	Analyzing
7.	If the joint pdf of a two-dimensional RV(X,Y) is given by $f(x,y) = \begin{cases} x^2 + \frac{xy}{3}; 0 < x < 1, 0 < y < 2\\ 0, \ elsewhere \end{cases}$ (ii) $P(Y < \frac{1}{2}, X < \frac{1}{2})$ (iii) $P\left(Y < \frac{1}{2} / X < \frac{1}{2}\right)$	BTL3	Applying
8.	The joint pdf of a two dimensional random variable (X, Y) is given by $f(x, y) = xy^2 + \frac{x^2}{8}, 0 \le x \le 2, 0 \le y \le 1$. Compute (i) $P\left(X > 1 / Y < \frac{1}{2}\right)$ (ii) $P\left(Y < \frac{1}{2} / X > 1\right)$ (iii) $P(X + Y) \le 1$.	BTL3	Applying
9.	(b)The joint pdf of X and Y is given by $f(x,y) = \begin{cases} kx(x-y), 0 < x < 2, -x < y < x \\ 0, & otherwise \end{cases}$ (i)Find K (ii) Find $f_x(x)$ and $f_y(y)$	BTL3	Applying
10.	Find the Coefficient of Correlation between industrial production and export using the following tableProduction (X)1417232125Export (Y)1012152023	BTL-2	Understanding
11.	Find the correlation coefficient for the following heights of fathers X, theirsons Y and also find the equations of regression lines. Hence find theheight of son when the height of father is 71X6566676768697072Y6768656872726971	BTL-2	Understanding
12.	X 50 55 50 60 65 65 60 60 Y 11 14 13 16 16 15 14 13	BTL-2	Understanding
13.	If $f(x,y) = \frac{6-x-y}{8}$, $0 \le x \le 2$, $2 \le y \le 4$ for a bivariate random variable (X,Y), Evaluate the correlation coefficient ρ .	BTL5	Evaluating
14.	Two random variables X and Y have the joint density function $f(x,y) = x + y, 0 \le x \le 1, 0 \le y \le 1$. Evaluate the Correlation coefficient between X and Y.	BTL5	Evaluating
15.(a)	20 dice are thrown. Find the approximate probability that the sum obtained is between 65 and 75 using central limit theorem	BTL3	Applying
15.(b)	The two regression lines are $4x-5y+33=0$ and $20x-9y=107$. Find the mean of X and Y. Also find the correlation coefficient between them	BTL3	Applying
16.(a)	If $X_1, X_2, X_3, \dots X_n$ are Poisson variates with mean 2, use central limit theorem to estimate $P(120 < S_n < 160)$ where $S_n = X_1 + X_2 + X_3 + \dots + X_n$ and n=75.	BTL4	Analyzing
16.(b)	If X and Y each follow an exponential distribution with parameter 1 and are independent, find the pdf of $U = X-Y$.	BTL4	Analyzing
17.(a)	If X and Y independent Random Variables with pdf e^{-x} , $x \ge 0$ and	BTL4	Analyzing

	e^{-y} , $y \ge 0$. Devise the density function of $U = \frac{X}{X+Y}$ and $V = X+Y$. Are		
	they independent?		
17.(b)	Two random variables X and Y have the following joint probability density		
	function $f(x, y) = \begin{cases} x + y; 0 \le x \le 1, 0 \le y \le 1 \\ 0, otherwise \end{cases}$. Find the probability	BTL3	Applying
	density function of the random variable $U = XY$.		
18.(a)	A random sample of size 100 is taken from a population whose mean is 60 and variance is 400. Using central limit theorem find what probability that we can assert that the mean of the sample will not differ from μ more than 4?	BTL5	Evaluating
18.(b)	If X and Y follows an exponential distribution with parameters 2 and 3 respectively and are independent, Create the probability density function of $U = X+Y$	BTL6	Creating
	PART-C(15 Mark Questions)		
1.	Three balls are drawn at random without replacement from a box containing 2 white, 3 red and 4 blue balls. If X denotes the number of white balls drawn and Y denotes the number of red balls drawn, Find the probability distribution of X and Y.	BTL3	Applying
2.	Out of the two lines of regression given by $x + 2y - 5 = 0$ and $2x + 3y - 8 = 0$, which one is the regression line of X on Y? Analyze the equations to find the means of X and Y. If the variance of X is 12, find the variance of Y.	BTL4	Analyzing
3.	From the following data, Find (i)The two regression equations (ii) The coefficient of correlation between the marks in Mathematics and Statistics (iii) The most likely marks in Statistics when marks in Mathematics are 30 Marks in Maths: 25 28 35 32 31 36 29 38 34 32 Marks in Statistics: 43 46 49 41 36 32 31 30 33 39	BTL-2	Understanding
4.	For a particular brand of TV picture tube, it is known that the mean operating life of the tubes is 1000 hours with a standard deviation of 250 hours, Devise the probability that the mean for a random sample of size 25 will be between 950 and 1050 hours?	BTL5	Evaluating
5.	The lifetime of a certain brand of an electric bulb may be considered a RV with mean 1200h and standard deviation 250h. Find the probability, using central limit theorem, that the average life time of 60 bulbs exceeds 1250 h.	BTL6	Creating
UNIT I Normal mean, va	II : TESTING OF HYPOTHESIS Sampling distributions - Estimation of parameters - Statistical hypothesis - L distribution for single mean and difference of means -Tests based on t, Chi-sq ariance and proportion - Contingency table (test for independent) - Goodness of	Large samp Juare and F of fit	le tests based on distributions for
	PART-A(2 Mark Questions)	1	
1.	Define Statistics	BTL-1	Remembering
2.	Define Parameter.	BTL-1	Remembering
3.	Explain null and alternate hypothesis.	BTL-1	Remembering
4.	Mention the various steps involved in testing of hypothesis.	BTL-1	Remembering

5.	What is the essential difference between confidence limits and tolerance limits?	BTL-1	Remembering
6.	Define Standard Error.	BTL-1	Remembering
7.	Define Type I and Type II error.	BTL-1	Remembering
8.	What are the parameters and statistics in sampling.	BTL-2	Understanding
9.	Define level of significance.	BTL-2	Understanding
10.	What is the test statistic for single proportion test?	BTL3	Applying
11.	A random sample of 25 cups from a certain coffee dispensing machine yields a mean $x = 6.9$ occurs per cup. Use 0.05 level of significance to test, on the average, the machine dispense $\mu = 7.0$ ounces against the null hypothesis that, on the average, the machine dispenses $\mu < 7.0$ ounces. Assume that the distribution of ounces per cup is normal, and that the variance is the known quantity $\sigma^2=0.01$ ounces	BTL3	Applying
12.	Twenty people were attacked by a disease and only 18 were survived. The hypothesis is set in such a way that the survival rate is 85% if attacked by this disease. Will you reject the hypothesis that it is more at 5% level.($Z_{0.05} = 1.645$).	BTL-2	Understanding
13.	In a large city A, 20 percent of a random sample of 900 school boys had a slight physical defect. In another large city B, 18.5 percent of a random sample of 1600 school boys had some defect. Is the difference between the proportions significant?	BTL-2	Understanding
14.	A standard sample of 200 tins of coconut oil gave an average weight of 4.95 kg with a standard deviation of 0.21 kg. Do we accept that the net weight is 5 kg per tin at 5% level of significance?	BTL-2	Understanding
15.	Write down the formula of test statistic 't' to test the significance of difference between the population mean and sample mean.	BTL-2	Understanding
16.	Write down the formula of test statistic 't' to test the significance of difference between two sample means.	BTL-1	Remembering
17.	What are the applications of t-test?	BTL-1	Remembering
18.	What is the assumption of t-test?	BTL4	Analyzing
19.	Write the application of 'F' test.	BTL4	Analyzing
20.	Define 'F' variate.	BTL-1	Remembering

21.	What are the	properties of	of "F" test	?				BTL-1	Remembering]
22.	Write the form sample to a h	mula for the ypothetical	e chi- squa distributio	are test of go on.	oodness of f	it of a rand	om	BTL4	Analyzing	
23.	State the main	n use of ψ^2 .	-test					BTL5	Evaluating	
24.	What are the	expected fr	equencies	of 2x2 cont	ingency tab	ole?				
		a b c d)					BTL5	Evaluating	
25.	State any two	application	ns of ψ^2 -te	est.				BTL4	Analyzing	
					I					
1.(a)	A sample of a of the student this sample is cm?	100 student ts in this sat s from a pop	height led that tion 10	BTL-2	Understanding					
1.(b)	Test of fideli shown in the Use 0.01 lev between fidel	ty and sele following to Selectivity Low Average High vel of sign lity and sele	ctivity of able Fid y Lov 6 33 13 nificance ectivity.	190 radio re elity w Averag 12 61 15 to test whe	eceivers pr e High 32 18 0 ether there	ionship	BTL-2	Understanding		
2.	Given the following table for hair color and eye color, identify the value of Chi-square. Is there good association between hair color and eye color?Hair colorFairBrownBlackTotalEyeBlue1552040							BTL-1	Remembering	
		Grey	20	10	20	50				

			Brow	wn	25		15			20		60				
			Tota	al	60		30		(60		150				
	Two	independ	dent s	ampl	es of	sizes	8 and	7 co	ntair	ned th	e fol	low	ving va	alues.		
	Sar	nple I	nple I 19 17 15 21			16	5 18 16 14									
3.	Sar	nple II	1	5	14	15	19)	15	18	16				BTL3	Applying
	Test	if the two	o popi	ulatio	ons ha	ave th	e sam	e me	an.							
	Two independent samples of 8 and 7 items respectively had the following Values of the variable (weight in kgs.) Use 0.05 LOS to test															
4.		Samp	ole I		9	11	13	11	15	5 9	1	2	14		BTL-1	Remembering
		Samp	ole II		10	12	10	14	9	8	1	0				
	whether the variances of the two population's sample are equal.															
	A group of 10 rats fed on diet A and another group of 8 rats fed on diet B, Recorded the following increase the following increase in weight.(gm)															
										,						
5. (a)	Die	et A	5	6	8 1	l 12	2 4	3	9	6	10				BTL3	Applying
	Die	et B	2	3	6 8	3 10	0 1	2	8	-	-					
	Fine	d the varia	ances	are s	signif	icantl	y diffe	erent.	. (Us	se F-te	est)					
	The grou	marks ol p of 11 p	otaine art tin	ed by ne co	a gr ourse	oup c stude	of 9 ro nts in	egula a test	t are	urse givei	stude 1 bel	ents ow :	and a	another		
5 (b)	2	Sample I	56	6 62	2 63	54	60	51	67	69	58					
5.(0)		Sample II	62	2 70) 71	62	60	56	75	64	72	6	8 66	5	BTL-1	Remembering
	Exa stud	mine whe ents diffe	ether r sign	the ification	marks ntly a	s obta t 5%	ained levels	by r of si	egul gnifi	ar stu icance	uden e.	ts a	nd pa	rt-time		
	In a same	certain fa	actory ne ave	ther ther	e are weig	two i ht in a	indepe a sam	ender	nt pro	ocess) iter	es m	anu: oduc	factur ced fro	ing the		
6.	proc	ess is fou	ind to	be 1	20 O	zs, w	ith a s	stand	ard o	deviat	tion (of 1	2 Ozs	, while	BTL3	Applying
	are	124 and	<u>14</u> .	Is	the o	a san liffere	ence	betw	veen	the	two	sai	mple	means		

	signifi	cant?										
	Record	ls taken four Ch	of th ildren	e number o are as follo	of male ws :	and fe	emal	e bir	ths in 800 f	amilies		
	Numbe	er of mal	le birtl	hs : () 1	2	3	4				
7.	Numbe	er of fen	nale bi	rths :	4 3	2	1	0			RTI 4	Analyzing
	Numbe	er of Far	nilies	::	32 178	290	236	64			DILI	7 maryzing
	Infer v law ho = q.	whether to olds the	the dat	ta are consi e of a male	stent w birth is	ith the equal to	hyp o fer	othes nale	is that the bi birth, namely	nomial $p = \frac{1}{2}$		
	A surv distrib	vey of 3 ution	320 fa	lowing								
0	Boys	-	5	4	3	2		1	0			
0.	Girls	()	1	2	3		4	5		BTL3	Applying
	Fami	lies 1	14	56	110	88		40	12			
	Is this equally	result co y probab	onsiste le?	ent with the	hypoth	esis that	at ma	ale a	nd female bin	ths are		
	The ni be as f	cotine co ollows	ontent	in milligraı	n of tw	o samp	les c	of tob	oco where fo	ound to		
9.	Sample	e 1 2	4 2	7 26 21	25							
	Sample	e 2 2	7 3	0 28 31	22	36					BTL-1	Remembering
	Can it same r	be said nean.	that	this sample	s where	e from	nor	mal j	population w	vith the		
	Two ra	andom sa	amples	s gave the fo	ollowin	g result	s:					
10.	Sample Size Sample mean Sum of squares of deviation from the mean											
		1	10	15				90		-	BTL-2	Understanding
		2	12	14			1	.08		-		
	Analyz	ze wheth	er the	lation.								
11.	Mechanical engineers testing a new arc welding technique, classified welds both with respect to appearance and an X-ray inspection										BTL3	Applying

	X-ray/Appea	ay/Appearance Bad Normal Good												
	Bad			20		7			3					
	Normal			13		51			16					
	Good			7		12			21					
	Test for indep	pende	nce usi	ng 0.0	5 level o	of sig	gnific	cance	•					
	A sample of these, 100 we result are as fe	200 ere gi follow	persons ven a d vs:	s with lrug ar	a parti nd the o	icula others	r dis s wei	ease re not	wa t gi	s select ven any	ed. (drug	Dut of g. The		
	Number of p	persor	18		Drug	5	No	drug		Total				
12.	Cured				65			55		120			BTL-2	Understanding
	Not cured				35		2	45		80				
	Total				100		1	.00		200				
	Test whether	Test whether the drug is effective or not?												
13.	The followin during the v uniformly dis Days No. accidents	g dat /ariou tribut of	a gives as days ed over Sun 14	s the r s of a r the w Mon 16	number veek Tues 08	of a . Fin s V	aircra nd w Ved 12	aft ac wheth The 11	er u	ents tha the acc Fri 9	at occ ciden Sat 14	curred ts are	BTL3	Applying
14.	The nicotine to be as follo samples.	conte ows, t	ent in m est the	nilligra signif 24	um of tw icant di 25	vo sa ffere	ample ence	es of betwo	tob	pacco w means 27	here of th	found ne two	BTL4	Analyzing
	Sample II	22		27	28		30	0		31	3	6		
15.(a)	The mean braking strength of the cables supplied by manufacture is 1800 with S.D 100. By a new technique in the manufacturing process it is claimed that the breaking strength of the cable has increased. To test this claim a sample of 50 cables is tested and is found that the mean braking strength is 1850. Can we support the claim at 1% level of significance.							s 1800 s it is st this raking e.	BTL6	Creating				
15.(b)	In a sample of 8 observations, the sum of squares of devaitation of the sample values from the sample mean was 84.4 and in the other sample of 10 observations it was 102.6. Test whether this difference is significant at 5% level, given that the 5% point of F for v1=7 and v2=9 defres of freedom							of the ple of cant at eedom	BTL-2	Understanding				

	is 3,27							
16.(a)	A simple sample a standard deviat Americans has a the data indica Englishmen?	of heights of 64 ion of 6.4cms, mean of 172 cr te that Americ	400 Engli while a s m and a s cans are	shmen has a imple sample standard devi , on the a	mean of 1700 e of heights ation of 6.30 verage, talle	cms and of 1600 cms. Do er than	BTL4	Analyzing
16.(b)	The theory predic and D should be in the four group support the surve	cts that the popu 9:3:3:1. In an e os was 882,313, y?	ilation of xperimen 287 and	beans in the t among 160 118. Do the	four groups 0 beans, the experimental	A, B, C number l results	BTL-2	Understanding
17.(a)	The mean popula was found to be 4 of a random same with standard dev means statistically	tion of a random 400 with a stand ple of 400 villag viation of 15. I y significant?	district pulation be 395 listrict's	BTL-2	Understanding			
17.(b)	Discuss the chi so	quare of indepen		BTL-2	Understanding			
18.	The heights of 10 61, 68, 70, 64, 6 height is grater th	62, 68, average	BTL5	Evaluating				
		Part	t C: 15 -	MARK QU	ESTIONS			1
1.	Twp samples of 6 Sample 1: 39, 41 Sample 2 : 40, 42 Do the sample va	5 and 7 items ha , 42, 42, 44, 4 2, 39, 45, 38, riances differ si	ve the fol 40 39, 40 gnificantl	lowing value y?	s for a variab	ole.	BTL-2	Understanding
2.	Two random sam	ples gave the fo	llowing d	ata.				
	Sample	Size	Mea	in	Variance			
	1	8	9.6		1.2		BTL3	Applying
	2	11		Dillo	, ippijing			
	Can we conclude population?	that the two sa	normal					
3.	Random samples the heights of ma	drawn from two le adults:	o places g	ave the follo	wing data rel	ating to	BTL4	Analyzing
				Place A	Place B			
	Mean height (in	inches)		68.50	65.50			

	S.D (in inches)				2.5	3.	0			
	No. of adut males in	sample			1200	15	0			
	Test at 5 % level, that	the mean h	eight is	the sa	ame for a	dults in	the t	u WO		
	places.									
	p									
4.	Samples of two types	s of electric	c bulbs	were	tested f	or leng	th of	life and		
	following data were of	btained.								
		Type I			Type II					
	Sample Size	8			102(1				DTI 5	Evoluting
	Sample Mean	1234hrs			1036hrs			DILJ	Evaluating	
	Sample S.D	36hrs			40hrs					
	Analyze that is the di	ifforman and in	the mee		ficiant		nt the	t trung I		
	Anaryze that, is the di					lo warra	ant the	ii type I		
	is superior to type II re	egarding th	e length	of hi	e?					
5.	5 coins were tossed 32	20 times. Tl	he numb	er of	heads of	oserved	is giv	en		
	below :									
	No. of heads	0	1	2	3	4	5			
	Observed	15	45	05	05	(0)	20		BIL6	Creating
	frequencies	15	45	85	95	60	20			
	Examine whether the	coin is unbi	iased U	se 5%	h level of	f sionifi	cance			
UNIT	IV : DESIGN OF EXP	ERIMENT	'S	3 0 0 /0		<u> </u>	cuiree	•		
	One way and two way	y classifica	tions - (Comp	oletely ra	Indomiz	zed de	sign – R	andomize	d block design –
Latin s	quare design.			1	2			C		C
									1	
1.	What is the aim of des	sign of expe	eriments	?					BTL1	Remembering
2.	Write the basic assum	ptions in ar	nalysis o	f vari	ance.				BTL2	Understanding
3.	When do you apply ar	halysis of v	ariance t	echni	ique?				BTL1	Remembering
4.	Define Replication.								BTL3	Applying
5.	Define Kandomization	1.								Understanding
0.	What is meant by tole	rance limite	<u>.</u> 9						DILZ	Understanding
7. 8	What is a completely i	randomized	s: 1 design')					BTI 2	Understanding
9	Explain the advantage	es of a Latin	square	desig	m?				BTL2	Analyzing
10.	What are the basic ele	ments of a	Complet	telv R	andomiz	zed Exr	erime	ntal		7 mary 2mg
	Design?		P	<u></u> j		r			BTL3	Applying
11.	Demonstrate the purp	ose of block	king in a	rand	omized l	olock de	esign?		BTL2	Understanding
12.	Manipulate the Basic principles of the design of experiment?								BTL2	Understanding
13.	Why a 2x2 Latin square is not possible? Explain.								BTL4	Analyzing
14.	Demonstrate main adv	vantage of I	Latin squ	iare I	Design ov	ver Ran	domiz	zed	BTI 2	Understanding
	Block Design?								DILZ	Onderstanding
15.	Analyze the advantage	es of the La	tin squa	re des	sign over	the oth	ner des	sign.	BTL1	Remembering
16.	Write any two differen	nces betwee	en RBD	and L	LSD.				BTL1	Remembering
17.	What is ANOVA?								BTL6	Creating
18.	What are the uses of A		BIL4 DTL 1	Analyzing						
19.	Define experimental e		BILI	Kemembering						

20.	Write any two advantag	ges of RBD over CRD).		BTL4	Analyzing
21.	Write down the ANOV	A table for Latin Squ		BTL5	Evaluating	
22.	Define one-way classif	ication and two way c	lassifications i	n ANOVA	BTL1	Remembering
23.	Compare RBD, LSD, C	CRD			BTL1	Remembering
24.	Write down the ANOV	A table for One way	classification		BTL1	Remembering
25.	Write down the ANOV	A table for Randomiz	ed Block Desi	gn	BTL1	Remembering
		PART-B (13	Mark Questie	ons)		
1.	The accompanying data of soiling for fabric co acrylic acid. Analyze th Mixture 1 : 0.56 1 Mixture 2 : 0.72 0	a resulted from an expopolymerized with the classification. .12 0.90 1.07	0.94 0.91	aring the degree mixtures of met	BTL1	Remembering
	Mixture 3 : 0.62 1	.08 1.07 0.99	0.93			
2.	The following table should amps brand A: 1610, 1610, 1 B: 1580, 1640, 1 C: 1460, 1550, 1 D: 1510, 1520, 1 Identify an analysis of yoof the four brands of late	ows the lives in hours 650, 1680, 1700, 640, 1700, 1750 600, 1620, 1640, 530, 1570, 1600, variance and test the h mps.	of four brands 1720, 1800 1660, 1740, 1680 tomogeneity of	of electric 1820 E the mean lives	BTL2	Understanding
3.	In order to determine v 3makes of computers, the frequency of repair results are as follows: draw? Makes A 5 6 8 9	whether the significan samples of size 5 are for during the first year. In view of the above In view of the above	t difference in e selected from r of purchase i data, what cor C 7 3 5 4	the durability of a each make and is observed. The aclusion can you	BTL2	Understanding

		7	4	1			
4.	A random sample is braking strength are I : 70 72 75 II : 100 110 108 III : 60 65 57 Test whether the br	s selected fr e measured 80 83 112 113 1 84 87 raking stref	rom each of 3 m with the follow 120 107 73 ngth of the rope	makes of rop wing results. es differs sig	es and their gnificantly?	BTL2	Understanding
5.	The following are to four technicians wo difference among th at a level of signific	the number orking for he four same cance $\alpha = 0$ I I 6 14 10 8 11	r of mistakes a photographic nple means ca .01. Technician II III 14 10 9 12 12 7 10 15 14 11	made in 5 s c laboratory. n be attribut IV 9 12 8 10 11	uccessive days by Test whether the ed to chance. Test	BTL2	Understanding
6.	A random sample i breaking strength (in Sample I : 70 7 Sample II : 100 1 Sample III: 60 6 Test whether the bre	s selected n pounds) = 72 75 = 10 108 = 65 57 = eaking stree	from each of t are measured v 80 83 112 113 120 84 87 73 ngth of the rop	three makes with the follo 107 bes differs sig	of ropes and their wing results nificantly?	BTL3	Applying
7.	Ten persons were apperformance was no100.EmployeeBefore TrainingAfter TrainingSy applying t-test ca	ppointed in oted by give A B C 80 76 92 84 70 96 an it be cor	DEFC60705678070528ncluded that th	dre in an offi narks were ro G H I J 4 56 70 56 84 72 72 50 e employees	ce. Their ecorded out of have been	BTL3	Applying

	benefited by t	he trainir	ng?							
	Five doctors e the number of follows (recov	each test f days eac very time	five treach patie	atments nt takes s)	for a cer to recov	tain disover. The	ease and results	l observe are as		
					Treatme	ent		7		
]	Doctor	1	2	3	4	5	-		
8.		A	10	14	23	18	20	-		
]	В	11	15	24	17	21		BTL4	Analyzing
		С	9	12	20	16	19	_		
]	D	8	13	17	17	20			
]	E	12	15	19	15	22	_		
	Estimate the d above data at	lifference 5% level	e betwe	en (a) de	octors ar	nd (b) tro	eatments	s for the		
	Perform a 2-w	vay ANO	VA on	the data	ı given b	elow:				
					Tre	atment	1			
			1	1	2		3			
0		1		30	26		38		DTI 1	Domomhoring
9.		2	~	24	29		28		DIL-I	Kemenibering
	Treatment 2	3		33	24		35			
		4	3	36	31		30			
		5		27	35		33			
	Use the codin	g method	l subtra	cting 30	from th	e given	no.			

	A chemist	wishes to t	test the effe	ect of for	ur chemi	ical age	nts on the			
	strength of	a particula	ar type of c	cloth. Be	cause the	ere mig	nt be			
	variability	from one	bolt to and	other, th	he chemi	ist deci	des to use	а		
	randomized	d block de	esign ,with	the bolts	s of cloth	n consid	er as block	KS		
	,she selects	five bolts	and applie	es all fou	r chemio	cal in ra	ndom orde	er to		
	each bolt, T	The resulti	ng tensile	strength	follows					
					BOL	Г				
					_					
10.			1	2	3	4	5		BTL -4	Analyzing
		1	73	68	74	71	67			
	CHEMIC	AI 2	73	67	75	72	70			
	CIILMIC	3	75	68	78	73	68			
		4	73	71	75	75	69			
	Does the te	nsile stren	oth depend	d on chei	 mical? T	est at 10)% level o	f		
	significanc	e.			inicui. I	ost at 1		I		
	The follow	ing data re	epresents th	ne numbe	er of uni	ts of pro	duction pe	er dav		
	turned out	by differen	nt workers	using 4	different	types o	f machine	S		
				Ν	<i>l</i> achine	Туре				
			Δ	B	6	7				
			Α	D						
		1	44	38	4	7	36			
11.	Workers	2	46	40	5	52	43		BTL -6	Creating
	W OIKCIS	3	34	36	4	4	32			
		4	43	38	4	6	33			
		5	38	42	4	.9	39			
	Test wheth	l er the mea	n producti	vity is th	le same f	for the 4	different	machines		
	types and 5	different	workers?	. 10j 10 th						

12.	Four different reading achieve are the scores	A B C	suppose st were g ney obtai 1 75 83 83 86 73	edly equ iven to ea ned 2 73 72 61 67	ivalent1ach of 5 sStudent359565362	Forms of atudents atudents atudents atudents atudents atual atua atual atual atua	a stand and the form form 5 84 92 88 95 95	dardized ollowing	BTL -3	Applying
	Perform a two 1%.	way ana	llysis of	variance	to test at	t the leve	el of sign	iificance		
	A latin square semiconductor methods A, B, and the devic following resu	e design c lead wi , C, D & e were e lt ,expres	was use res boun E. The b ncapsula sed as po	ed to conded to the conded to the conder the	mpare the ne lead t re made b g five difference force requ	e bond erminal by five di fferent p uired to b	strength by five of fferent of lastics. No preak the	of gold different operators With the bond		
	Plastics/ oper	ator	1	2	3	4	5			
13.	1		A3	B2.4	C1.9	D2.2	E1.7		BTL -4	Analyzing
	2		B2.1	C2.7	D2.3	E2.5	A3.1			
	3		C2.1	D2.6	E2.5	A2.9	B2.1			
	4		D2.0	E2.5	B3.2	B2.5	C2.2	-		
	5		E2.1	A3.6	B2.4	C2.4	D2.1	-		
	Analyze these	results ar	nd test w	ith .01 lev	vel of sig	nificance	·.	⊣		

14.	The following data i A, B, C. A Latin so engines and were spr	resulted from an quare design w ead over 3 days A 16 B B 16 C	n experiment yas used as t 17 C 20 21 A 15	to compare the tests were	three burners e made on 3	BTL -4	Analyzing
	Test the hypothesis burners.	C 15 A and infer tha	12B 13t there is not	o difference	between the		
15.	A farmer wishes to the yield of Wheat. in soil fertility, he syndicated in the fo unit area. A18 D22 B15 C22 Design an analysis difference between significance.	BTL -4	Analyzing				
	Set up the analysis of Design(use $\alpha = 0.01$)	of variance for level of signifi 2 C19	the following cance B10	g results of a	Latin Square		
16.	C18 B22 D12	B B12 D10 A7	D6 A5 C27	A7 C21 B17		BTL -3	Applying
			027	D 17			

17.	In a 5x5 Latin square experiment, the below Yield per plot is given in quin treatments A, B, C,D and E. H A48 E66 D56 C52 B61 D64 B62 A50 H B69 A53 C60 H C57 D58 E67 H E67 C57 B66 A	e data collected is given in the matrix ntals for the five different cultivation Perform the analysis of variance. E64 C63 D61 E67 B65 A55 A60 D57	BTL -4	Analyzing
18.	In a Latin square experiment given be on the paddy crop carried out for test C, D, E. Analyze the data for variation B25 A18 E2 A19 D31 C2 C28 B22 D2 E28 C26 A2 D32 E25 B2	elow are the yields in quintals per acre ting the effect of five fertilizers A, B, ns. 27 D30 C27 29 E26 B23 33 A18 E27 20 B25 D33 23 C28 A20	BTL -3	Applying
	PART	-C (15 Marks Questions)		
1.	A set of data involving 4 tropical foodis given below. All the 20 chicks arefeeding treatments and each feeding trthe data:A55494221B611123089C42978195D16913716985	d stuffs A, B, C, D tried on 20 chicks treated alike in all respects except the reatment is given to 5 chicks. Analyze 52 63 92 154	BTL -2	Understanding

2.	In a test given to follows, First group : 1 Second group: 29 Examine the sign by students of the	to two g 8 20 36 9 28 26 hificance above tw	roups o 5 50 4 35 3 differen vo group	f studer 9 36 60 41 ce betw	ats the 34 49 46 een the	marks of 9 41 means of	obtained of marl	d were as ks secured	BTL -3	Applying
	A company appoi 3 seasons, summe following table:	ints 4 sale er winter	esmen A and mor	, B, C at	nd D an he figur	d observ es are gi	es their ven in	r sales in the		
						l 				
3.	Sea	ason	1	2	3	4				TT 1 4 1
	Sur	nmer	45	40	28	3'	7		BIL-2	Understanding
	Wi	nter	43	41	45	3	8			
	Мо	onsoon	39	39	43	4	1			
	Carry out an Ana	alysis of v	variances	5.						
4.	A variable trial w design. The plan	vas condu of the exy C25 B2 A19 D B19 A D17 C	ucted on periment 23 A20 19 C21 14 D17 20 B21	wheat	with 4 v	varieties t yield a	in a La re give	atin square n below.	BTL -5	Evaluating
	A laboratory tech	hnician	neasures	s the br	eaking	strength	of eac	ch of five		
	kinds of linen the obtain the followi	reads by	using fo s.	our diffe	erent me	easuring	instrur	nents, and		
			Instru	nents						
5.			I1	I2	I3	I4			BTL-1	Understanding
		1	20.9	20.4	19.9	21.9				
		2	25	26.2	27.0	24.8				
		Thread 3	25.5	23.1	21.5	24.4				

		4	24.8	21.2	23.5	25.7
		5	19.6	21.2	22.1	22.1
Perform a 2-way	ANO	VA	using th	e 0.05 1	evel of s	significa

UNIT 5- STATISTICAL QUALITY CONTROL

Control charts for measurements (X and R charts) – Control charts for attributes (p, c and np charts) – Tolerance limits – Acceptance sampling

PART-A(2 Marks)

Q. No.	Question	BT	Competence
		Level	
1.	What is Statistical quality control?	BTL2	Understanding
2.	Write down advantage of SQC.	BTL1	Remembering
3.	What is meant by chance variation?	BTL2	Understanding
4.	What is meant by Assignable variation?	BTL1	Remembering
5.	Name the types of Control Chart.	BTL1	Remembering
6.	Define product control	BTL2	Understanding
7.	Define process control	BTL2	Understanding
8.	What is control Chart?	BTL1	Remembering
9.	Write down uses of Mean Chart.	BTL3	Applying
10.	Write down types of Acceptance sampling plan	BTL1	Remembering
11.	What are the uses of Quality control chart	BTL3	Applying
12.	Write down types of Causes variation.	BTL4	Analyzing
13.	Write the formula for np chart.	BTL4	Analyzing
14.	The total number of defects in 20 pieces is 220 .what is the UCL and LCL?	BTL4	Analyzing
15.	Define c chart and p chart	BTL1	Remembering
16.	Define Acceptance Sampling.	BTL5	Evaluating
17.	Explain producers Risk and Consumer Risk.	BTL3	Applying
18.	Define Tolerance limits.	BTL6	Creating
19.	Define one-sided Tolerance limits.	BTL1	Remembering
20.	Define Two-Sided Tolerance limits.	BTL2	Understanding
21.	Write down the objectives of statistical quality control	BTL5	Evaluating
22.	A garment was sampled on 10 consecutive hours of production. The number of defects found per garment is given below: Defects: 5,1,7,0,2,3,4,0,3,2 Compute upper and lower control limits for monitoring number of defects.	BTL3	Applying
23.	Write down the control limits for mean chart.	BTL6	Creating

24.	Write down th	BTL1	Remembering										
25.	Write down th	e cont	rol lin	nits fo	r c-cha	ırt.						BTL2	Understanding
					PA	RT-	B(13	Mar	ks)				
			41 1		7 D'		4:1:4	1	1:				
1.	what do you u		BTL1	Remembering									
2.	The following data give the weight of an automobile part. Five samples of four items each were taken on a random sample basis (at an interval of 1 hour each).Draw the mean Control Chart and find out if the production process is in control.SampleWeight of the parts in ounces 111012											BTL6	Creating
	2		10		12	2	1	3		13	_		
	3		10		10	10		9		11 14	_		
	5		12		10		1	2		14	-		
3.	You are given the value of sample means (\overline{X}) and Range for 10 samples of size 5 each. Draw mean chart and comment on the state of control of the process.Sample No12345678910(\overline{X})43403744453751464247											BTL2	Understanding
	R	5	6	5	7	7	4	8	6	4	6		
4.	For a sampling of acceptance (iii) 1%defecti Also draw and	bility tive, tive.	BTL2	Understanding									
5.	10 samples each the inspection for defectives.	ch of s were:	size 50 2,1,1,) were 2,3,5,	inspec 5,1,2,3	ted an. Draw	hd the the_{1}	numb pprop	er of d riate co	lefectiv ontrol c	es in chart	BTL1	Remembering
	A machine is s	set to	deliver	pack	ets of a	ı give	n weig	ht, 10	samp	les of s	ize 5		
	each were reco	oraea.	Below	v are g	given ti	he rele	evant c	iata:					
	Sample No	1	2	3	4 5	5 6	7	8	9	10			
6.	(<u>X</u>)	15	17	15	18 1	7 14	4 18	15	17	16		BTL3	Applying
	R	7	7	4	9 8	3 7	/ 12	4	11	5			
	Calculate the	values	s of the	e Cent	ral Lir	e and	the co	ontrol	limits	for the	mean		
	chart and the r	ange	chart a	nd the	en com	ment	on the	state	of con	trol.			
	(Conversion fa	ictors	tor n	= 5a	re A ₂	= 0.5	8 D ₃	= 0, L	$D_4 = 2$.115)			
7.		an the	K-Ull	ant cie	ally							BTL1	Remembering
0	The following data show the values of sample mean \overline{X} and the range.R for the samples of size 5 each. Calculate the values for central line and control limits for mean-chart and range chart and determine whether the process is in control.												Applying
ð.	Sample No	1	2	3	4	5	6	7	8	9	10	DILJ	Applying
	$(\overline{\mathbf{X}})$	11.2	11.8	10.8	11.6	11	9.6	10.4	9.6	10.6	10		
	R	7	4	8	5	7	4	8	4	7	9		
	(Conversion fa	actors	for n	= 5 a	$re A_2$	= 0.5	77 D ₃	$_{3}=0,$	$D_{4} =$	2.115)			

9.	Explain in detail the \overline{X}	BTL1	Remembering									
10.	15 tape-recorders were defects in each tape-re control chart and comm Unit No (i) No of defects (c)	BTL4	Analyzing									
11.	Construct \overline{X} chart forSample NoObservationAlso determine wheth	r followir 1 2 32 28 36 32 42 40 her the pro-	ng data 3 3 3 3 3 3 3 3 3 3 3 3 5 2 5 2 5 2 5 2	a 2 2 5 2 4 3 3 is in co	4 0 -2 0 1 0 ntrol	5 42 45 34	6 50 29 21	7 44 52 35	8 22 35 44	2 5 4	BTL5	Evaluating
12.	From the information Sample No.(each or No. of defectives State your conclusions chart including formul	BTL5	Evaluating									
13.	Construct a Control C data. Sample No. Sample Size No of defectives	2 3 65 8 7 3	n defe <u>3 4</u> <u>5 70</u> <u>3 2</u>	ctives 5 80 9	6 80 5	² hart) 7 70 3	for fo 8 95 9 9 0	llowin 9 10 90 75 6 7	ng) 5	BTL6	Creating	
14(a).	Explain Control Limit	ts for the	sampl	e mea	n \overline{X} a	nd sa	mple	range	R.		BTL1	Remembering
14(b).	An inspection of 10 sa following number of d	amples of defective	f size 4 units1	400 ea 7,15,1	ch fro 14,26	om 10 ,9,4,1) lots 9,12,9	revele 9,6	d the		BTL6	Creating
15.	Construct R chart for the Sample No.	following 1.7 0.8 1 0.4 1.4 1.8 1.6 2.5 2.9 Control. ves the m	g data	Ob 2.2 1.5 1.4 0.6 2.3 2 1. 1.6 2 0 f det	serva	tion 1.9 2.1 1 0.7 2.8 1.1 1.5 1.8 0.5 res in	10 sa	1. 0. 1. 0. 2. 0. 2. 1. 2. 2. mples	2 9 3 2 7 1 2 2 2 2 each	of	BTL4	Analyzing
16.	size 100.Constuct a np process is in controlSample No.No. of defectives2	p chart fo 1 2 24 38	3 62	e data 4 34	and a 5 26	ilso de 6 36	eterm 7 38	ine wl 8 52	9 33	10 44	BTL4	Analyzing

17.	The following data relate to the number of defects in each of 15 units drawn randomly from a production process. Draw the control chart or the number of defects and comment on the state of control. The Units are 6, 4, 9, 10, 11, 12, 20, 10, 9, 10, 15, 10, 20, 15, 10													BTL2	Understanding	
18	The following data gives the average life in hours and range in hours of 12 samples each of 5 lamps. Construct X - chart and R- chart, comment on state of control. Sample 18 no 1 2 3 4 5 6 7 8 9 10 11 12													2	BTI 4	Analyzing
10.	Mean X Range	12 0	12 7	15 2	15 7	16 0	13 4	13 7	12 3	14 0	144	11 12 0	12 12 7		DILT	
	PART-C(15 Marks)															
1.	A machine randomly. the contro whether the Sample No.	e fills The v l char ne pro- 1 10 1	boxe weigh ts for cess i 2 3 0.311	$\begin{array}{c} \text{s with} \\ \text{nts of} \\ \text{the s} \\ \text{is in a} \\ 3 \\ 4 \\ 1.5 \\ 11 \\ \hline \end{array}$	n dry the sa ample state 5 11.3	cerea ample e mea of co 6 10.71	1. 15 ed bo an an ontro 7 1.31	sam xes : d sar 1. 8 2.3	ples are s mple	of 4 shown rang 10 1 1.312	boxes a a as foll e and d 1 12 .511.91	re dra ows. eterm 13 1 2.1 1	awn Draw ine 4 1: 1.9 10	5	BTL6	Creating
	Weight Boxe: (X)	10.2 1 11.3 1 12.4 1	0.910 0.711 1.712	0.711. 1.410.′ 2.411.4	111.6 711.9 412.1	11.4 10.7 11	1.41 1.11 0.31	2.1 1 2.7 1 0.7 1	3.11 3.11 2.41	2.111 0.711 1.511	.912.11 .811.61 .311.41	1.1 12 2.1 12 1.7 1	2.1 11 3.1 11 2 12	.9 .7 .1		
2.	The follow chart and I Sampl X R Sampl X R R	ving a R chan es es 3	re the rt and 34 4 11 35.8 4	$e \overline{X} and e \overline{X} an$	ud R v <u>e your</u> <u>3</u> 30.8 <u>2</u> 13 34 14	values r con 4 33 3 14 35 4	s for 2 clusic 3: 5 1: 38 7	20 sa on. 5 3 5 .8 3	amp ⁷ 6 33.2 2 16 31.6 5	les of 7 33 5 17 33 5 5	reading 8 32.6 13 18 28.2 3	gs. Dr 9 33.8 19 19 31.8 9	raw \overline{X} 10 37.8 6 20 35.6 6		BTL2	Understanding
	(Given fo	r n =	= 5 a	re A ₂	= 0.	58 D	$b_3 = 0_3$	0, D ₄	$_{4} = \frac{1}{1}$	2.12)	10	1	6.10			
3.	The following table items each, concerni Sample Number 1 2 3 4 5			gives the inspection ng the production Size of Sample 100 100 100 100 100				bottl Num Defe	relat le co hber ectiv $\overline{5}$ $\overline{3}$ $\overline{6}$ $\overline{5}$	ing to rks. of es	> 10 samples of 100 Fraction Defective .05 .03 .03 .06 .05				BTL2	Understanding
			100 100				6 8		.06 .08							

		8	8 100					10			.1	0			
	9				00			10			.1	0			
		10		10	00			4			.0	4			
	Con	struct a p- cha	p- chart.												
	The bulbs	following data s each drawn a	a relate at an ii	to t nterv $\overline{\mathbf{v}}$	he life al of	e (in one	hours	s) of from	10 sa a pro	mples ductio	s of 6 on pi	o electi rocess.	ric		
	Drav	Sample No.	nart IC	or X a	and R	Life	nment e time	(in 1	hours	3)					
		1	620		687		666	6	89	73	8	686			
		2	501		585		524	5	85	65.	3	668			
		3	673		701		686	5	67	61	9	660			
4.		4	646		626		572	6	28	63	1	743		BTL3	Applying
		5	494		984		659	6	43	66	0	640			
		6	634	634 755 62		625	5	82	68.	33 555					
		7	619		710	664		6	93	77	0	534			
		8	630		723		614	5	35	55	0	570			
		9	482		791		533	6	12	49'	7	499			
		10	706		524		626	5	03	66	1	754			
	(Giv	en for $n = 6, A$	$_{2} = 0.$	483	$D_{3} =$	= 0, 1	$D_4 = 0$	2.004	4)						
	The	following data	a give	the	meası	ıren	nents o	of 10	sam	ples e	each	of size	e 5 in		
	the p	production pro	ocess	take	n in	an i	nterva	al of	2 ho	ours.	Calc	ulate	the		
	samp	ole means and	range	s and	l drav	vs th	e con	trol c	harts	for n	nean	and ra	nge.		
						Sam	ole Nur	nber							
5.				1	2	3	4	5	6	7	8	9	10	BTL3	Applying
				49	50	50	48	47	52	49	55	53	54		
		Observe	ed	55	51	53	53	49	55	49	55	50	54		
		Nieasurem X	ents	54	53	48	51	50	47	49	50	54	52		
		A		49	46	52	50	44	56	53	53	47	54		
				53	50	47	53	45	50	45	57	51	56		