SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution) (S.R.M.NAGAR, KATTANKULATHUR-603 203)

DEPARTMENT OF MATHEMATICS

QUESTION BANK

IV SEMESTER B.TECH- ARTIFICIAL INTELLIGENCE & DATA SCIENCES 1918406 – NUMERICAL LINEAR ALGEBRA

> **Regulation – 2019** Academic Year 2022- 2023 *Prepared by*

Dr. G. Sasikala, Assistant Professor/ Mathematics

SRM VALLIAMMAI ENGINEERING COLLEGE (An Autonomous Institution)

SRM Nagar, Kattankulathur – 603 203. DEPARTMENT OF MATHEMATICS

QUESTION BANK

SUBJECT : 1918406 - NUMERICAL LINEAR ALGEBRA

SEMESTER / YEAR: IV/ II (AI&DS)

UNIT I - VECTOR SPACES

Vector Spaces- Subspaces-Linear combinations and linear system of equations-Linear independence and linear dependence-Bases and Dimensions.

	PART- A		
		Bloom's	
Q.No.	Question	Taxonomy	Domain
	SRM S	Level	
1.	Define Vector Space 🚽	BTL-1	Remembering
2.	Define Subspace of a vector space	BTL-1	Remembering
3.	What are the possible subspace of R^2	BTL-1	Remembering
4.	In a Vector Space V (F) if αv=0 th <mark>en e</mark> ither α=0 or v=0 prove.	BTL-2	Understanding
5	Is $\{(1,4,-6), (1,5,8), (2,1,1), (0,1,0)\}$ is a linearly independent subset of R^3 ? Justify	BTL-2	Understanding
5.	your answer		
6.	State Replacement Theorem	BTL-3	Applying
7.	In a vector Space V(F), prove that $0v=0$, for all $v \in V$	BTL-3	Applying
o	Write the vectors $v = (1, -2, 5)$ as a linear combination of the vectors	BTL-2	Understanding
ð.	x = (1,1,1), y = (1,2,3) and $z = (2,-1,1)$		
9.	What is the Dimension of $M_{2x2}(R)$?	BTL-3	Applying
10	Determine whether the set W={ $(a_1, a_2, a_3) \in R^3 : a_1 + 2a_2 - 3a_3 = 1$ }	BTL-2	Understanding
10.	is a subspace of R^3 under the operations of addition and scalar multiplication.		
11	Determine whether $w = (4, -7, 3)$ can be written as a linear combination of $v_1 =$	BTL-2	Understanding
11.	$(1,2,0)$ and $v_2 = (3,1,1)$ in R^3		
10	For which value of k will the vector $u = (1, -2, k)$ in R^3 be a linear combination of	BTL-3	Applying
12.	the vectors $v = (3,0,-2)$ and $w = (2,-1,5)$?		
13.	Define Infinite dimensional vector Space	BTL-2	Understanding
	Point out whether the set $W_1 = \{(a_1, a_2, a_3) \in \mathbb{R}^3 : a_1 - 4a_2 - a_3 = 0\}$ is a	BTL-4	Analyzing
14.	subspace of R^3 under the operations of addition and scalar multiplication defined		
	on R^3		
15	If W is a Subspace of the Vector Space V(F) prove that W must contain 0 vector in	BTL-4	Analyzing
15.	V		
14	Point out whether $w = (3,4,1)$ can be written as a linear combination of $v_1 =$	BTL-4	Analyzing
10.	$(1, -2, 1)$ and $v_2 = (-2, -1, 1)$ in \mathbb{R}^3		

17	What are the possible subspaces of \mathbf{P}^3	DTT 4	Anolymina
17.	what are the possible subspaces of K^2 .	<u>Б1L-4</u> рті 2	Analyzing
18.	Show that the vectors $\{(1,1,0), (1,0,1)\}$ and $\{(0,1,1)\}$ genarate K°	DIL-J	Applying
19.	dependent $v_1, v_2 \in v(F)$ and $\alpha_1, \alpha_2 \in F$. Snow that the set $\{v_1, v_2, \alpha_1v_{1+}, \alpha_2v_2\}$ is linearly	D1L-4	Anaryzing
20.	Test whether $S = \{(2,1,0), (1,1,0), (4,2,0)\}$ in R^3 is a basis of R^3 over R	BTL-5	Evaluating
21.	Define finite dimensional Vector Space	BTL-1	Remembering
22.	Is $v = (2, -5, 4)$ a linear combination of $(1, -3, 2)$ and $(2, -1, 1)$ in $R^{3}(\mathbb{R})$?	BTL-2	Understanding
23.	Define linear span	BTL-1	Remembering
24.	Show that the set $S = \{(0,1,0), (1,0,1) \text{ and } (1,1,0)\}$ in R^3 is a basis over R	BTL-3	Applying
25.	Define linear combination of vectors	BTL-1	Remembering
	PART-B		
	Determine whether the following set is linearly dependent or linearly	BTL-3	Applying
1.	independent $\begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix}$, $\begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$, $\begin{pmatrix} -1 & 2 \\ 1 & 0 \end{pmatrix}$ and $\begin{pmatrix} 2 & 1 \\ 2 & -2 \end{pmatrix}$ generate $M_{2 \times 2}(R)$		
	If x, y and z are vectors in a vector space V such that $x + z = y + z$,	BTL-5	Evaluating
2.	then prove that $x = y$		
	i) The vector 0 (identity) is unique		
	ii) The additive identity for any $x \in V$ is unique		
3.	Show that the set $S = \{(1,3,-4,2), (2,2,-4,0), (1,-3,2,-4), (-1,0,1,0)\}$ is linearly dependent of the other vectors	BTL-4	Analyzing
4.	Determine whether the following subset of vector space $\mathbb{R}^{3}(\mathbb{R})$ is a subspace $W_{r} = \{((q_{1}, q_{2}, q_{3}); 2q_{2}, 7q_{3}), q_{2} = 0\}$	BTL-5	Evaluating
	W ₁ -{((u_1, u_2, u_3)). 2a ₁ -7a ₂ +a ₃ -0} Illustrate that set of all diagonal matrices of order $n \times n$ is a subspace of the vector	RTI _4	Analyzing
5.	space $M_{n \times n}(F)$, where $M_{n \times n}$ is the set of all square matrices over the field F	DIL-4	
6	Evaluate that $W_1 = \{(a_1, a_2, \dots, a_n) \in F^n; a_1 + a_2 + \dots + a_n = 0\}$ is a subspace of	BTL-2	Understanding
0.	F^n and $W_2 = \{(a_1, a_2, \dots, a_n) \in F^n; a_1 + a_2 + \dots + a_n = 1\}$ is not a subspace		
7.	Illustrate that the vectors $\{(1,1,0), (1,0,1), (0,1,1)\}$ generate \mathbb{R}^3	BTL-5	Evaluating
8.	Determine the following sets { $1-2x-2x^2$, $-2+3x-x^2$, $1-x+6x^2$ } are bases for P ₂ (R)	BTL-3	Applying
9.	Analyze that the matrices $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ and $\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$ generate $M_{2 \times 2}(R)$	BTL-2	Understanding
10.	Identify whether the set $\{x^3 + 2x^2, -x^2 + 3x + 1, x^3 - x^2 + 2x - 1\}$ in $P_3(R)$ is linearly independent or not	BTL-3	Applying
11	Determine the following sets $(1+2x, x^2, 4, 2x+x^2, 1+19x, 0x^2)$ are based for D (D)	DTI 2	A no lavin a
11.	Determine the following sets { $1+2x-x^2$, $4-2x+x^2$, $-1+18x-9x^2$ } are bases for $P_2(R)$	<u>Б1L-5</u> рті 2	Applying
12.	Industrate that the set $\{1, x, x^2, \dots, x^n\}$ is a basis for $P_n(F)$	DIL-J DTL 2	Applying
13.	a basis for R^4	DIL-3	Apprying
14.	Determine the basis and dimension of the solution space of the linear homogeneous system $x + y = 0$, $2x + 2z = 0$, $x + z = 0$	BTL-3	Applying
	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	RTI _3	Applying
15.	over R	DIL-J	rzhhràng
16.	Whether the sets { $1-2x-2x^2$, $-2+3x-x^2$, $1-x+6x^2$ } are bases for P ₂ (R)	BTL-5	Evaluating
17	Determine whether the set of vectors $X_{1=}(1,0,-1)$, $X_{2=}(2,5,1)$, and $X_{3=}(0,-4,3)$ is a	BTL-3	Applying
1/.	basis for R^3		

18	The set of solutions to the system of linear equations $x_1-2x_2+x_{3=0}$, $2x_1-3x_2+x_{3=0}$ is a subspace of \mathbb{R}^3 . Find a basis for this subspace	BTL-4	Analyzing
	PART-C		
	Determine whether the vectors $v_1=(1,-2,3), v_2=(5,6,-1), v_3=(3,2,1)$ form a linearly	BTL-4	Analyzing
1	dependent or linearly independent set in \mathbb{R}^3 .		g
2	Prove that the upper triangular matrices form a subspace of $M_{mxn}(F)$.	BTL-4	Analyzing
3	Decide whether or not the set $S = \{x^3 + 3x - 2, 2x^2 + 5x - 3, -x^2 - 4x + 4\}$ is	a BTL-2	Understanding
4	Determine whether the set of vectors $X_{1-}(1,1,2)$, $X_{2-}(1,0,1)$ and $X_{3-}(2,1,3)$ span \mathbb{R}^{3}	BTL-3	Applying
-	Determine whether the vector $\begin{pmatrix} 1 & 0 \end{pmatrix}$ is in the energy of	BTL-4	Analyzing
5	Determine whether the vector $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ is in the span of		
C	$S = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$		
UNT	TILLINEAR TRANSFORMATION AND DIAGONALIZATION		1
Linea	r transformations – Null space-Range- Matrix representation of a linear transformation-	Eigen valu	ues and Eigen
vecto	rs –Diagonalization	U	C
	PART -A		
O N		Bloom's	
Q.N	Question	Taxonom	Domain
U		y Level	
1.	Define linear transformation of a function	BTL-3	Applying
2.	If $T: V \to W$ be a linear transformation then prove that $T(-v) = -v$ for $v \in V$	BTL-3	Applying
3.	If $T: V \to W$ be a linear transformation then prove that $T(x - y) = x - y$ for all	BTL-3	Applying
4	$x, y \in V$ Prove that the transformation T is linear if and only if $T(cx + y) = cT(x) + T(y)$	BTL-3	Applying
-	Illustrate that the transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T(a_1, a_2) = (2a_1 + a_2, a_2)$	BTL-2	Understanding
5.	is linear		
6	Evaluate that the transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by	BTL-5	Evaluating
0.	T(x, y, z) = (x, 0, 0) a linear transformation.		
7.	Describe explicitly the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ such that $T(2,3) =$	BTL-1	Remembering
	(4,5) and $T(1,0) = (0,0)$	DITL A	TT 1 / 1
8.	Illustrate that the transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by T(u, v) = (u + 1, 2v, u + v) is not linear	BTL-2	Understanding
	I(x, y) = (x + 1, 2y, x + y) is not linear Is there a linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ such that $T(1, 0, 3) = (1, 1)$ and	BTI -5	Evaluating
9.	T(-2,0,-6) = (2,1)?	DIL-J	
10.	Define null space .	BTL-1	Remembering
11.	Define matrix representation of T relative to the usual basis {e _i }	BTL-1	Remembering
12.	Find the matrix $[T]_e$ whose linear operator is $T(x, y) = (5x + y, 3x - 2y)$	BTL-2	Understanding
13.	Find a basis for the null space of the matrix $A = \begin{pmatrix} 5 & 2 \\ 1 & 0 \end{pmatrix}$	BTL-2	Understanding
14.	Define diagonalizable of a matrix with linear operator T.	BTL-1	Remembering
15.	Find the matrix representation of usual basis $\{e_i\}$ to the linear operator $T(x, y, z) =$	BTL-2	Understanding
10.	(2y + z, x - 4y, 3x)		
16.	Define Eigen value and Eigen vector of linear operator T.	BTL-1	Remembering
17.	State Cayley-Hamilton Theorem	BTL-1	Kemembering
18.	Find the Eigenvalue of the matrix $A = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix}$	BIL-2	Understanding

19.	Find the matrix A whose minimum polynomial is $t^3 - 5t^2 + 6t + 8$.	BTL-2	Understanding
20.	State the dimension theorem for matrices.	BTL-1	Remembering
21.	Define Range	BTL-1	Remembering
22.	Write the properties of an Eigen vector	BTL-1	Remembering
23.	Find the Eigenvalue of the matrix $A = \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix}$	BTL-2	Understanding
24.	Find the sum and product of the eigenvalues of the matrix $\begin{pmatrix} 1 & 2 & -2 \\ 1 & 0 & 3 \\ -2 & -1 & -3 \end{pmatrix}$	BTL-2	Understanding
25.	If 2 and 3 are eigenvalues of A= $\begin{pmatrix} 3 & 10 & 5 \\ -2 & -3 & -4 \\ 3 & 5 & 7 \end{pmatrix}$, find the third eigenvalue	BTL-3	Applying
	PART –B		
1. a)	For each of the following linear operators T on a vector space V and ordered basis β , compute $[T]_{\beta}$, and determine whether β is a basis consisting of eigenvectors of T.V=R ² , $T\binom{a}{b} = \binom{10a-6b}{17a-10b}, \beta = \{\binom{1}{2}, \binom{2}{3}\}$ NGINEER.	BTL-3	Applying
1.b)	Let $T: P_2(R) \to P_3(R)$ be defied by $T[f(x)] = 2f'(x) + \int_0^x 3f(t)dt$. Prove that T is linear, find the bases for $N(T)$ and $R(T)$. Compute the nullity and rank of T. Determine whether T is one-to-one or onto.	BTL-2	Understanding
2.b)	Let $T: P_2(R) \to P_3(R)$ be defined by $T[f(x)] = xf(x) + f'(x)$ is linear. Find the bases for both $N(T)$, $R(T)$, nullity of T, rank of T and determine whether T is one –to-one or onto	BTL-2	Understanding
3.	Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation defined by $T(x, y, z) = (x + 2y - z, y + z, x + y - 2z)$. Evaluate a basis and dimension of null space N(T) and range space R(T) and range space R(T). Also verify dimension theorem	BTL-5	Evaluating
4.	Find a linear map $T: \mathbb{R}^3 \to \mathbb{R}^4$ whose image is generated by (1,2,0,-4) and (2,0,-1,-3)	BTL-2	Understanding
5.	Point out that T is a linear transformation and find bases for both N(T) and R(T). Compute nullity rank T. Verify dimension theorem also verify whether T is one – to-one or onto where $T: P_2(R) \rightarrow P_3(R)$ defined by $T[f(x)] = xf(x) + f'(x)$	BTL-4	Analyzing
6.	For each of the following linear operators T on a vector space V and ordered basis β , compute $[T]_{\beta}$, and determine whether β is a basis consisting of eigen vectors of T.V=P ₁ (R), T(a+bx)=(6a-6b)+(12a-11b)x and β ={3+4x,2+3x}	BTL-3	Applying
7.	Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be defined by $T(x, y) = (x + 3y, 0, 2x - 4y)$. Compute the matrix of the transformation with respect to the standard bases of \mathbb{R}^2 and \mathbb{R}^3 . Find N(T) and R(T). Is T one –to-one ? IsT onto. Justify your answer.	BTL-4	Analyzing
8.	Let T be the linear operator on R ³ defined by $T(x, y, z) = (2x - 7y - 4z, 3x + y + 4z, 6x - 8y + z)$ (i) Find the matrix of T in the basis { $f_1=(1,1,1)$, $f_2=(1,1,0)$ $f_3=(1,0,0)$ and (ii) Verify $[T]_f [T]_v = [T(v)]_f$ for any vector $v \in R^3$	BTL-2	Understanding
9.	For the given matrix Evaluate all Eigen values and a basis of each Eigenspace . $A = \begin{pmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{pmatrix}$	BTL-5	Evaluating
10.	Let $\alpha = \{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \}$ $\beta = \{1, x, x^2\}$ and $\gamma = \{1\}$, Define T:M _{2x2} (F) \rightarrow M _{2x2} (F) by T(A)=A ^{T.} Compute [T] _{α} .	BTL-3	Applying

11.	Let $T: p_2(R) \to p_2(R)$ be defined as $T(f(x)) = f(x) + (x+1)f'(x)$ FInd eigen values and corresponding eigen vectors of T with respect to standard basis of $p_2(R)$.	BTL-5	Evaluating
12.	Let V be the space of 2X 2 matrices over R and let $M = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$. Let T be linear operator defined by T(A)=MA .Find the trace of T.	BTL-2	Understanding
13.	Let V and W be vector spaces over F,and suppose that $\{v_1, v_2, \dots, v_n\}$ is a basis for V, For w_1, w_2, \dots, w_n in W Prove that there exists exactly one linear transformation $T: V \to W$ such that $T(v_i) = w_i$ for $i=1,2,n$	BTL-3	Applying
14.	Consider the basis $S=\{v_1,v_2,v_3\}$ for \mathbb{R}^3 where $v_1=(1,1,1)$, $v_2=(1,1,0)$ and $v_3=(1,0,0)$. Let $T:\mathbb{R}^3 \rightarrow \mathbb{R}^2$ be the linear transformation such that $T(v_1)=(1,0)$, $T(v_2)=(2,-1)$ and $T(v_3)=(4,3)$. Find the formula for $T(x_1,x_2,x_3)$, then use this formula to compute $T(2,-3,5)$	BTL-4	Analyzing
15.	Find the eigen values and eigen vectors of the matrix $A = \begin{pmatrix} 6 & -6 & 5 \\ 14 & -13 & 10 \\ 7 & -6 & 4 \end{pmatrix}$	BTL-3	Applying
16.	Diagonalise the matrix $A = \begin{pmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{pmatrix}$ using similarity transformation.	BTL-4	Analyzing
17	For each of the following matrices $A \in M_{nxn}(R)$ test A for diagonalizability and if A is diagonalizable find an invertible matrix Q and a diagonal matrix D such that $Q^{-1}AQ = D, A = \begin{pmatrix} 1 & 4 \\ 3 & 2 \end{pmatrix}$.	BTL-5	Evaluating
18	Find the eigen values and eigen vectors of the matrix $A = \begin{pmatrix} 2 & 1 & -1 \\ 1 & 1 & -2 \\ -1 & -2 & 1 \end{pmatrix}$	BTL-3	Applying
	PART-C		
1	Let T be a linear operator $T(a, b, c) = (-4a + 3b - 6c, 6a - 7b + 12c, 6a - 6b + 11c)$, β be the ordered basis then find $[T]_{\beta}$ which is a diagonal matrix	BTL-2	Understanding
2	Let $A = \begin{pmatrix} 1 & 4 \\ 3 & 2 \end{pmatrix}$ Point out all eigen values of A and corresponding Eigen vectors find an invertible matrix P such that P ⁻¹ AP is diagonal.	BTL-3	Applying
3	For each of the following matrices $A \in M_{nxn}(R)$ test A for diagonalizability and if A is diagonalizable find an invertible matrix Q and a diagonal matrix D such that $Q^{-1}AQ = D, A = \begin{pmatrix} 3 & 1 & 1 \\ 2 & 4 & 2 \\ -1 & -1 & 1 \end{pmatrix}$	BTL-5	Evaluating
4	Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be defined by $T(x, y, z) = (2x - y, 3z)$ verify whether T is linear or not. Find N(T) and R(T) and hence verify the dimension theorem	BTL-3	Applying
5	Diagonalise the matrix $A = \begin{pmatrix} 10 & -2 & -5 \\ -2 & 2 & 3 \\ -5 & 3 & 5 \end{pmatrix}$ using similarity transformation	BTL-4	Analyzing

UNIT III –INNER PRODUCT SPACE

Inner product and norms - Gram Schmidt Orthonormalization process - Orthogonal Complement - Least square approximation.

	PART -A				
Q. No.	Questions	Bloom's Taxonomy Level	Domain		
1.	Define inner Product Space and give its axioms.	BTL-1	Remembering		
2.	Define orthogonal	BTL-1	Remembering		
3.	Find the norm of $v = (3,4) \in \mathbb{R}^2$ with respect to the usual product.	BTL-2	Understanding		
4.	In $c([0,1])$ let $f(t) = t$, $g(t) = e^t$ Evaluate $\langle f, g \rangle$.	BTL-5	Evaluating		
5.	If <i>x</i> , <i>y</i> and <i>z</i> are vector of inner product space such that $\langle x, y \rangle = \langle x, z \rangle$ then prove that $y = z$.	BTL-3	Applying		
6.	Normalize $u = (2, 1, -1)$ in Euclidean space R^2 .	BTL-2	Understanding		
7.	Prove that the norm in a inner product space satisfies $ v \ge 0$ and $ v = 0$ if and only if $v = 0$.	BTL-3	Applying		
8.	Find the norm of $v = (1,2) \in R^2$ with respect to the inner product $\langle u, v \rangle$ = $x_1y_1 - 2x_1y_2 - 2x_2y_1$.	BTL-2	Understanding		
9.	Define unit vector	BTL-1	Remembering		
10.	Let $S = \{(1,0,i)(1,2,1)\}$ in c^3 Pointout S^{\perp}	BTL-4	Analyzing		
11.	Let W= span ({i,0,1}) in c^3 find the orthonormal bases of w and w^{\perp}	BTL-2	Understanding		
12.	What is an adjoint of linear operator.	BTL-3	Applying		
13.	Let T be a linear operator on v, β is an orthonormal basis then prove that $[T^*]_{\beta} = [T]_{\beta}$	BTL-3	Applying		
14.	Let S and T be linear operators on V then prove that $(S + T)^* = S^* + T^*$	BTL-3	Applying		
15.	Let $V=R^2$, $T(a,b)=(2a+b,a-3b) \times =(3,5)$ find T^* at the given vector in V, when T is a Linear operator.	BTL-2	Understanding		
16.	Let V be avector space of polynomials with inner product defined by $\langle f(x), g(x) \rangle = \int_0^1 f(x)g(x)dx$. If $f(x) = x^2 + x - 4$, $g(x) = x-1$, then find $\langle f, g \rangle$	BTL-3	Applying		
17.	Let $g: v \to f$ be the linear transformation, find a vector y such that $g(x) = \langle x, y \rangle$ for all $x \in v$ such that $V = R^3 g(a_1, a_2, a_3) = a_1 - 2a_2 + 4a_3$	BTL-2	Understanding		
18.	Show that $I^*=I$ for every $u, v \in v$	BTL-3	Applying		
19.	Define orthonormal.	BTL-1	Remembering		
20 .	What is an adjoint of linear operator.	BTL-3	Applying		
21.		BTL-2	Remembering		
22.	Find the norm of $v = (3, -4, 0) \in R^3(R)$ with the standard inner product	BTL-2	Understanding		
23.	Find the value of x so that $(x,-3,-4)$ and $(x,-x,1)$ are orthogonal in R^3 with standard inner product	BTL-2	Understanding		
24.	Find the distance between the vectors $(7,1)$, $(3,2)$ in \mathbb{R}^2 with standard inner product	BTL-2	Understanding		
25.	Find the norm of $v = (-2,5) \in \mathbb{R}^2$ with respect to the usual product.	BTL-2	Understanding		
1	PART-B				

1.	Let V be an inner product space. Prove that (a) $ x \pm y ^2 = x ^2 \pm 2R < x, y > + y ^2$ for all x, $y \in V$, where $R < x, y >$ denotes the real part of the complex number $< x, y >$. (b) $ x - y ^2 \le x - y $ for all x, $y \in V$.	BTL-3	Applying
2.	Let V be an inner product space, for x, y, $z \in V$ and $C \in F$, checkwhether the following are true. (i) $\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$ (ii) $\langle x, cy \rangle = \overline{c} \langle x, y \rangle$ (iii) $\langle x, 0 \rangle = \langle 0, x \rangle = 0$ (iv) $\langle x, x \rangle = 0$ if and only if x=0. (v) $\langle x, y \rangle = \langle x, z \rangle$ for all x \in V then y=z	BTL-4	Analyzing
3.	In $C([0, 1])$, let $f(t) = t$ and $g(t) = e^t$. Compute $\langle f, g \rangle$, $ f $, $ g $ and $ f + g $. Then verify both the Cauchy-Schwarz inequality and the triangle inequality.	BTL-4	Analyzing
4.	Let P ₂ be a family of polynomials of degree 2 atmost. Define an inner product on P ₂ As $\langle f(x), g(x) \rangle = \int_0^1 f(x)g(x)dx$. Let {1,x, x ² } be a basis of the inner product space P ₂ . Find out an orthonormal basis from this basis.	BTL-5	Evaluating
5.	Evaluate by the Gram Schmidt Process to the given subset $S = \{(1, -2, -1, 3), (3, 6, 3, -1), (1, 4, 2, 8)\}$ and $x = (-1, 2, 1, 1)$ of the inner product space $V = R^4$ to obtain an orthogonal basis for span(S). Then normalize the vectors in this basis to obtain an orthonormal basis β for span(S), and compute the Fourier coefficients of the given vector relative to β .	BTL-5	Evaluating
6.	Apply the Gram-Schmidt process to the vectors $u_1=(1,0,1)$, $u_2=(1,0,-1)$, $u_3=(0,3,4)$ to obtain an orthonormal basis for $\mathbb{R}^3(\mathbb{R})$ with standard inner product.	BTL-4	Analyzing
7.	Evaluate by applying the Gram Schmidt Process to the given subset with the inner product $\langle f(x), g(x) \rangle = \int_0^1 f(t)g(t)dt$, $S = \{1, x, x^2\}$, and $h(x) = 1 + x$ of the inner product space $V = P_2(R)$ to obtain an orthogonal basis for span(S). Then normalize the vectors in this basis to obtain an orthonormal basis β for span(S), and compute the Fourier coefficients of the given vector relative to β .	BTL-2	Understanding
8.	Let V=C({-1,1}) with the inner product $\langle f, g \rangle = \int_{-1}^{1} f(t)g(t)dt$, and let W be the subspace $P_2(R)$, viewed as a space of functions. Use the orthonormal basis obtained to compute the "best"(closet) second degree polynomial approximation of the function h(t)= e^t on the interval [-1,1]	BTL-2	Understanding
9.	Compute $< x, y > $ for $x = (1-i, 2+3i)$ and $y = (2+i, 3-2i)$	BTL-3	Applying
10.	For each of the sets of data that follows, use the least squares approximation to find the best fits with both (i) a linear function and Compute the error E in both cases. $\{(-3, 9), (-2, 6), (0, 2), (1, 1)\}$	BTL-2	Understanding
11.	Consider the system $x + 2y - z = 1$; $2x + 3y + z = 2$; $4x + 7y - z = 4$; find the minimal solution	BTL-2	Understanding

12.	For each of the following inner product spaces V and linear operators Ton V, evaluate T* at the given vector in V. $V = R^2$, $T(a,b) + (2a + b, a - 3b)$, $x = (3,5)$	BTL-5	E	valuating	
13.	Let V be an inner product space, and let T and U be linear operators on V. then verify(a) $(T+U)^*=T^*+U^*$; (b) $(cT)^*=\bar{c}T^*$ for any $c \in F$; (c) $(TU)^*=U^*T^*$;(d) $T^{**}=T$; $I^*=I$	BTL-4	A	Analyzing	
14.	For each of the sets of data that follows, use the least squares approximation to find the best fits with linear function and Compute the error E in both cases. $\{(-2, 4), (-1, 3), (0, 1), (1, -1), (2, -3)\}$	BTL-4	A	Analyzing	
15.	Find the minimal solution to the following system of linear equation $x+2y-z=12$	BTL-3	1	Applying	
16.	Let P ₂ have the inner product $\langle p, q \rangle = \int_{-1}^{1} p(x)q(x)dx$. Find the angle between p and q, where p=x and q=x ² with respect to the inner product on P ₂ .	BTL-4	A	Analyzing	
17.	Let $x=(1,1,0), y=(1,-1,1), z=(-1,1,2)$ be the vectors in \mathbf{F}^3 obtain the orthonormal set	BTL-4	A	Analyzing	
18.	Using least square approximation determine the best linear fit for the data $\{(1,2),(2,3),(3,5),(4,7)\}$	BTL-2	Un	derstanding	
	Part-C				
1.	Let $x = (2, 1+i, i)$ and $y = (2-i, 2, 1+2i)$ be vectors in C ³ . Compute $\langle x, y \rangle \cdot \ x\ $, $\ y\ $ and $\ x + y\ $. Then verify both the Cauchy Schwarz inequality and the triangle inequality.	BTL-1	Re	membering	
2.	Find the minimal solution of to the following system of linear equations $x+2y+z = 4$, $x-y+2z=-11$, $x+5y=19$	BTL-3	1	Applying	
3.	Let A and B be $n X n$ matrices. Then prove that (a) $(A + B)^* = A^* + B^*$ (b) $(cA)^* = \overline{c}A^*$ for all $c \in F$ (c) $(AB)^* = B^*A^*(d) A^{**} = A$ (e) $I^* = I$	BTL-3	1	Applying	
4.	For each of the following inner product spaces V and linear operators T on V, evaluate T* at the given vector in V. $V = P_1(R)$ with $\langle f, g \rangle = \int_{-1}^{1} f(t)g(t)dt.T(f) = f' + 3f, f(t) = 4 - 2t$	BTL-5	Evaluating		
5.	Find Least square solution to the inconsistent system $x+5y=3,2x-2y=2,x+y=5$. Also find the least square error.	BTL-3	1	Applying	
	UNIT IV-NUMERICAL SOLUTION OF LINEAR SYSTEM OF EQUATIONS Solution of linear system of equations – Direct method: Gauss elimination method – Pivoting – Gauss-Jordan method - LU decomposition method – Cholesky decomposition method - Iterative methods: Gauss-Jacobi and Gauss-Seidel.				
	PART- A				
0		Bloor	m's		
No	Question	Taxon Lev	omy el	Domain	
1.	State the order and condition for Convergence of Iteration method.	BTL	-2	Understanding	
2.	State the principle used in Gauss Jordon method.	BTL	-2	Understanding	
3.	Solve the following equations by Gauss Jordan method $x + y=2, 2x+3y=5$	BTL	-3	Applying	

4.	Solve by Gauss Elimination method $2x + 3y = 5$ and $3x-y=2$	BTL -2	Understanding
5.	Distinguish the advantages of iterative methods over direct method of solving a system of linear algebraic equations.	BTL -4	Analyzing
6.	Solve by Gauss Elimination method $2x + y = 3$ and $7x-3y=4$.	BTL -3	Applying
7.	Compare Gauss Elimination, Gauss Jordan method.	BTL -4	Analyzing
8.	State the condition for the convergence of Gauss Seidel iteration method for solving a system of linear equation.	BTL -2	Understanding
9.	Compare Gauss Seidel method, Gauss Jacobi method.	BTL -4	Analyzing
10.	Which of the iterative methods is used for solving linear system of equations it converges fast? Why?	BTL -1	Remembering
11.	Compare Gauss Seidel method, Gauss Elimination method.	BTL -4	Analyzing
12.	Write down the condition for the convergence of Gauss Jacobi iteration method for solving a system of linear equation.	BTL -2	Understanding
13.	Solve by Gauss Elimination method $5x - 2y = 1$ and $4x + 28y = 23$.	BTL -4	Analyzing
14.	Write a sufficient condition for Gauss Seidel method will converge	BTL -3	Applying
15.	Write the necessary conditions for Cholesky decomposition of a matrix.	BTL -1	Remembering
16.	Find the Cholesky decomposition of $\begin{pmatrix} 4 & 2 \\ 2 & 10 \end{pmatrix}$	BTL -2	Understanding
17.	Give two indirect methods to solve a system of linear equations.	BTL -2	Understanding
18.	Define LU decomposition method	BTL -1	Remembering
19.	Solve by Gauss Elimination method $4x - 3y = 11$ and $3x + 2y = 4$.	BTL -2	Understanding
20.	Solve by Gauss jordan method $2x + y = 3$ and $7x-3y=4$.	BTL -2	Understanding
21.	State the principle used in Gauss Jordan method.	BTL -1	Remembering
22.	Solve by Gauss Elimination method $x + y = 2$ and $2x+3y=5$.	BTL -4	Analyzing
23.	State a sufficient condition for Gauss Seidel method will converge.	BTL -1	Remembering
24.	Solve by Gauss Elimination method $x - 2y = 0$ and $2x + y = 5$.	BTL -4	Analyzing
25.	What type of eigen value can be obtained using power method?	BTL-3	Applying
	Solve by Gauss Elimination method $3x + y - z = 3$; $2x - 8y + z = -5$;	ס דידם	Applying
1	x - 2y + 9z = 8	BIL-3	Appiying

2	Solve by Gauss Jordan method $10x + y + z = 12$; $x+10y + z = 12$; $x + y + 10z = 12$	BTL -3	Applying
3	Solve by Gauss Jacobi method $14x - 5y = 5.5$; $2x + 7y = 19.3$.	BTL -3	Applying
	Apply Gauss Seidel method to solve system of equations	BTL-3	Applying
4.	10x - 5y - 2z = 3; $4x - 10y + 3z = -3$; $x + 6y + 10z = -3$	DIL J	rippijing
5.	Solve by Gauss Elimination method $2x + 4y+z = 3$; $3x + 2y - 2z = -2$; $x - y + z = -6$	BTL-2	Understanding
6.	Solve by Gauss Jacobi method $8x - 3y + 2z = 20$; $4x + 11y - z = 33$; $6x + 3y + 12z = 35$.	BTL-2	Remembering
7.	Find the Cholesky decomposition of the matrix $\begin{bmatrix} 4 & 2i & 2 \\ -2i & 10 & 1-i \\ 2 & 1+i & 9 \end{bmatrix}$	BTL -2	Understanding
8.	Solve by Gauss Jordan method $10 x + y + z = 12$; $2x + 10y + z = 13$; $x + y + 5z = 7$.	BTL -3	Applying
9.	Solve by Gauss Elimination method $x + 5y + z = 14$; $2x + y + 3z = 13$; 3x+y+4z = 17	BTL -3	Applying
10.	Apply Gauss seidel method to solve system of equations x - 2y + 5z = 12; $5x + 2y - z = 6$; $2x + 6y - 3z = 5$ (Do up to 6 iterations)	BTL -3	Applying
11.	Solve by Gauss Elimination method $6x - y + z = 13$; $x + y + z = 9$; $10x + y - z = 19$	BTL -3	Applying
12.	By Gauss seidel method to solve system of equations x + y + 54z = 110; 27x + 6y - z = 85; 6x + 15y - 2z = 72.	BTL -4	Analyzing
13.	Solve by Gauss Elimination method 3x + 4y+5z = 18 ; 2x - y + 8z = 13 ;5x -2y + 7z =20	BTL -3	Applying
14.	Solve by using Gauss-Seidal method $8x - 3y + 2z = 20, \ 4x + 11y - z = 33, \ 6x + 3y + 12z = 35$.	BTL -5	Evaluating
15.	Find the Cholesky decomposition of the matrix $\begin{pmatrix} 4 & 2i & -i \\ -2i & 10 & 1 \\ i & 1 & 9 \end{pmatrix}$	BTL -2	Understanding
16.	Apply Gauss Seidel method to solve system of equations $8x + y + z = 8$; 2x - 0y + 3z = -3; $x + 6y + 10z = -3$	BTL -3	Applying
17.	Solve by Gauss Jacobi method $10x - 2y - 2z = 6$; $-x - 10y - 2z = 7$; x $-y + 10z = 8$.	BTL -5	Evaluating

18.	Solve by Gauss Jordan method 4x - y - z =-7 ; x - 5y + z =-10; x + 2y + 6z =9.	BTL	-5 Evaluating	
	Part-C			
1	Solve by Gauss Jordan method $10 x + y + z = 12$; $2x + 10y + z = 13$; $x + y + 5z = 7$.	BTL	-2 Understanding	
2	Solve by Gauss Elimination method $3x - y + 2z = 12$; $x+2y+3z = 11$; $2x - 2y - z = 2$.	BTL	-2 Understanding	
3	Solve the system of equations using Cholesky decomposition $4x_1 - x_2 - x_3 = 3$; $x_1 + 4x_2 - x_3 = -0.5$; $-x_1 - 3x_2 + 5x_3 = 0$.	BTL	-5 Evaluating	
4	Solve the linear system $6x + 18y + 3z = 3,2x + 12y + = 19,4x + 15y + 3z = 0$ by LU decomposition method.	BTL	-2 Understanding	
5.	Solve by using Gauss-Seidal method $28x + 4y - z = 32$, $x + 3y + 10z = 24$, $2x + 17y + z = 35$.	BTL	-5 Evaluating	
IN Eig QR	VERSES en value Problems: Power method – Jacobi 's rotation method – Conjugate gra decomposition - Singular value decomposition method- Singular value decor	adient met nposition	hod –	
Q. No	Question	Bloom's Taxono my Level	Domain	
1.	Define Eigen value	BTL -2	Understanding	
2.	Find the sum and product of all Eigen values of $\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$	BTL -5	Evaluating	
3.	Find the sum and product of all Eigen values of $\begin{bmatrix} 1 & 2 & -2 \\ 1 & 0 & 3 \\ -2 & -1 & -3 \end{bmatrix}$	BTL -5	Evaluating	
4.	Define singular matrix with an example.	BTL -2	Understanding	
5.	Find the all Eigen values of $\begin{bmatrix} 2 & 3 \\ 5 & 1 \end{bmatrix}$	BTL -5	Evaluating	
6.	If the sum of two eigenvalues and trace of a 3x3 matrix A are equal find the value of A	BTL -2	Understanding	
7.	Define Jacobi rotation method	BTL -2	Understanding	
8.	Let $A = \begin{pmatrix} 1 & 1 \\ 1 & 3 \end{pmatrix} = A_1$. Compute A ₂ using QR algorithm.	BTL -5	Evaluating	
9.	Find eigen values of the matrix $A = \begin{bmatrix} 3 & 5 \\ 2 & 4 \end{bmatrix}$.	BTL -3	Applying	

10.	Define the generalized Eigen vector, chain of rank m, for a square matrix.	BTL -2	Understanding
11.	Find the eigen values of $\begin{bmatrix} 15 & 1 \\ 0 & 1 \end{bmatrix}$	BTL -5	Evaluating
12.	Find the determinant value of A if $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$	BTL4	Analyzing
13.	Give the nature of quadratic form without reducing into canonical form $x_1^2 - 2 x_1 x_2 + x_2^2 + x_3^2$	BTL -4	Analyzing
14.	Find the eigen values of $\begin{bmatrix} -1 & 1 \\ 9 & 1 \end{bmatrix}$	BTL-4	Analyzing
15.	Write short note on Singular value decomposition of complex matrix A.	BTL-1	Remembering
16.	State Singular value decomposition theorem	BTL-1	Remembering
17.	If A is a nonsingular matrix, then what is A ⁺ ?	BTL -2	Understanding
18.	Define conjucate gradient method	BTL-1	Remembering
19.	Write the numerical example of a conjucate gradient method	BTL-1	Remembering
20.	Find the generalized inverse of $\begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$	BTL-3	Applying
21.	Explain Power method to find the dominant Eigen value of a square matrix A	BTL -2	Understanding
22.	How will you find the smallest Eigen value of a matrix A.	BTL-1	Remembering
23.	Find the dominant Eigen value of $A = \begin{pmatrix} 2 & 3 \\ 5 & 4 \end{pmatrix}$ by power method upto 1 decimal place accuracy. Start with $X^{(0)} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$	BTL-4	Analyzing
24.	Define orthogonal Vectors.	BTL-1	Remembering
25.	Find the dominant eigen value of $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ by power method.	BTL-3	Applying
	Part-B		
1	Find the dominant eigen value and vector of $A = \begin{pmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$ using Power method.	BTL-4	Analyzing
2	Find the largest Eigen value and Eigen vector of A = $\begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$ using power method	BTL-4	Analyzing
	[1 1 1]		
3	Find the QR factorization of A = $\begin{bmatrix} 1 & 1 & -1 \\ 1 & 0 & 0 \\ 1 & 0 & -2 \\ 1 & 1 & 1 \end{bmatrix}$	BTL-4	Analyzing
4	Evaluate the singular value decomposition of $\begin{bmatrix} 5 & 5\\ -1 & 7 \end{bmatrix}$	BTL-5	Evaluating

5	Evaluate the dominant Eigen value and vector of $A = \begin{pmatrix} 3 & 2 & 4 \\ -1 & 4 & 10 \\ 1 & 3 & -1 \end{pmatrix}$ using	BTL-5	Evaluating
	Power method.		
6	Find the QR decomposition of A = $\begin{bmatrix} 1 & 1 & -1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$	BTL-4	Analyzing
7	Consider the decomposition of $A = \begin{bmatrix} 12 & -51 & 4 \\ 6 & 167 & -68 \\ -4 & 24 & -41 \end{bmatrix}$	BTL-4	Analyzing
8	Find the singular value decomposition of A= $\begin{bmatrix} 2 & -1 \\ -2 & 1 \\ 4 & -2 \end{bmatrix}$	BTL-4	Analyzing
9	Using Power method, Identify all the eigen values of $A = \begin{pmatrix} 5 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & 5 \end{pmatrix}$	BTL-3	Applying
10	Get the singular value decomposition of $\begin{pmatrix} 2 & 2 \\ -1 & 1 \end{pmatrix}$	BTL-3	Applying
11	Find the dominant Eigen value and corresponding eigen vector of $A = \begin{pmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$ using Power method.	BTL-3	Applying
12	Find the conjucate gradient method of $5x+y=2$ and $x+2y=2$	BTL-3	Applying
13	Determine the largest eigenvalue and the corresponding eigenvectors of the matrix $\begin{pmatrix} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{pmatrix}$	BTL-3	Applying
14	Find the dominant Eigen value of $A = \begin{pmatrix} 2 & 3 \\ 5 & 4 \end{pmatrix}$ by power method up to 1 decimal place accuracy. Start with $X^{(0)} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$	BTL -3	Applying
15	Find the QR decomposition of A = $\begin{bmatrix} 1 & 1 & 2 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$	BTL -3	Applying
16	Find the singular value decomposition of $\begin{pmatrix} 1 & 1 & 3 \\ 1 & 1 & 3 \end{pmatrix}$	BTL -3	Applying
17	Find the dominant Eigen value and the corresponding eigenvectors of the matrix $\begin{pmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$	BTL -3	Applying

18	Find the singular value decomposition of A = $\begin{bmatrix} 2 & 2 & -2 \\ 2 & 2 & -2 \\ -2 & -2 & 6 \end{bmatrix}$	BTL -3	Applying
	Part-C		
1	Evaluate the dominant Eigen value and vector of $A = \begin{pmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{pmatrix}$ using Power method.	BTL-	-5 Evaluating
2	Obtain A ⁺ of A= $\begin{bmatrix} 2 & -1 \\ -1 & 1 \\ 4 & -3 \end{bmatrix}$ the generalized inverse.	BTL-	-3 Applying
3	Determine the largest eigenvalue and the corresponding eigenvectors of the matrix $\begin{pmatrix} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{pmatrix}$ by using Power method. NEEP	BTL-	-3 Applying
4	Find the singular value decomposition of $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$.	BTL	-3 Applying
5	Using Jacobi's method, Find all the eigen values and eigenvectors for the given matrix $A = \begin{pmatrix} 5 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & 5 \end{pmatrix}$	BTL-	.3 Applying
	A COO		