SRM VALLIAMMAI ENGINEERING COLLEGE

SRM Nagar, Kattankulathur – 603 203

DEPARTMENT OF

COMPUTER SCIENCE AND ENGINEERING

QUESTION BANK

IV SEMESTER

1904402 - DESIGN AND ANALYSIS OF ALGORITHMS

Regulation – 2019

Academic Year 2022 – 23

Prepared by

Dr. B. Muthu Senthil, Professor/CSE Dr. V. Dhanakoti , Professor/CSE Dr. L. Karthikeyan , Assistant Professor (Sel.Grade) / CSE

SRM Nagar, Kattankulathur – 603 203.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

QUESTION BANK

SUBJECT CODE/NAME: 1904402 DESIGN AND ANALYSIS OF ALGORITHMS

SEM / YEAR: IV/II

	UNIT I - INTRODUCTION		
Fundar	of an Algorithm – Fundamentals of Algorithmic Problem Solving mentals of the Analysis of Algorithmic Efficiency –Asymptotic Notatio work – Empirical analysis - Mathematical analysis for Recursive a ization	ns and their pro	operties. Analysis
	PART – A		
Q. No	Questions	BT Level	Competence
1.	Define algorithm and list the desirable properties of an algorithm.	Remember	BTL-1
2.	Define best, worst and average time complexity.	Remember	BTL-1
3.	How to measure the algorithm running time?	Understand	BTL-2
4.	List the steps to write an Algorithm.	Analyze	BTL-4
5.	Prove that if $f(n)=O(g(n))$ ad $g(n) = O(f(n))$, then $f(n)=\Theta g(n)$.	Apply	BTL-6
6.	Evaluate an algorithm for computing gcd(m,n) using Euclid's Algorithm	Evaluate	BTL-5
7.	Design the equality $gcd(m,n)=gcd(n,m \mod n)$ for every pair of positive integers m and n.	Create	BTL-6
8.	What do you mean by the "Worst Case efficiency" of an algorithm?	Remember	BTL-1
9.	Identify how you will measure input size of algorithms.	Remember	BTL-1
10.	Explain the various types of problems that can be solved using algorithm.	Analyze	BTL-4
11.	Apply the common technique for proving the correctness of an algorithm.	Apply	BTL-3
12.	How will you measure the total running time for a problem?		
13.	List the most important problem types.	Remember	BTL-3
14.	List the application of Graph problems	Remember	BTL-3

Under

15.	Define Big 'Theta' notation.	Apply	BTL-1
16.	Define Big 'Oh' notation.	Remember	BTL-1
17.	Define Big 'Omega' notation.	Remember	BTL-1
	Formulate the order of growth. Compare the order of growth n!	Create	BTL-6
	and 2 ⁿ .		
19.	Differentiate between Best, average and worst case efficiency.	Understand	BTL-2
20.	Discuss the concepts of asymptotic notations and its properties.	Understand	BTL-2
	Analyze the order of growth.	Analyze	BTL-4
20.	(i). $F(n) = 2n^2 + 5$ and $g(n) = 7n$. Use the $\Omega(g(n))$ notation.		
21.	Differentiate Algorithm VS Program.	Evaluate	BTL-5
22.	Express the recurrence relation for recursive algorithm.	Evaluate	BTL-5
23.	Discuss the General plan for analyzing efficiency of Non recursive & Recursive algorithms.	Understand	BTL-2
	Discuss the following questions by consider the definition based	Understand	BTL-2
24.	algorithm for adding two n by n matrices.		
	1. What is basic operation?		
	2. How many times it is performed as a function of the matrix order		
	n?		
	3. How many times it is performed as a function of the total number		
	of elements in the input matrices?		

	PART - B		
1.	Give the General Plan for Analyzing the Time Efficiency of Recursive Algorithms and use recurrence to find number of moves for Towers of Hanoi problem n	Remember	BTL-1
2.	 (i) Consider the following algorithm for the searching problem. (8) ALGORITHM Linear search (A[0,n-1],key) // Searches an array for a key value by Linear search. //Input: Array A [0n-1] of values and a key value to search. //Output: Returns index if search is successful. For i← 0 to n-1 do If [key== A[i]) Return i. a) Apply this algorithm to search the list 10, 92,38,74,56,19,82,37 for a key value 74. b) Is this algorithm efficient? c) When can this algorithm be used? 	Apply	BTL-3

	Write the asymptotic notations used for best case, worst case and		
	average case of algorithms. (7)		
	Create an algorithm to find the maximum element in an array. Give		
3.	best, worst and average case complexities. (6)	Create	BTL-6
4.	For each of the following algorithms,	Analyze	BTL-5
''	i) Compute n! (7)	7 mary 20	DILJ
	-		
	ii)Asses & find the largest element in a list of n numbers with		
	respect to the following conditions: (6)		
	(a). A natural size metric for its inputs.		
	(b). Its basic operation.		
	(c). Whether the basic operation count can be different for inputs of		
	the same sizes.		
_	Discuss various methods used for mathematic analysis for		Dm
5.	recursive and non-recursive algorithms. (13)	Understand	BTL-2
	What are the rules of manipulate Big Oh expressions and	Understand	BTL-2
6.	about the typical growth rates of algorithms? (13)		
7.	Illustrate briefly on Big oh Notation, Omega Notation and	Evaluate	BTL-3
<i>'</i> •	Theta Notations. Depict the same graphically and explain. (13)		DILS
8.	(i) Define a Mathematical analysis of recursive algorithms. (4)	Remember	BTL-1
	(ii) Examine the efficiency of factorial of some number n with		
	the help of General plan. (9)		
9.	(i)Define a Mathematical analysis of Non-recursive algorithms. (5)	Remember	BTL-1
	(ii) Tell about the efficiency of finding the element with		
	maximum value in a given Array with the help of General plan. (8)		
10.	(i) Define Towers of Hanoi problem. (3)	Remember	BTL-1
10.	(ii) Describe the time complexity of Towers of Hanoi problem. (1)	Kennennuer	DIL-I
	(10)		
11.	Explain in detail about Analysis Framework with a suitable (12)		
	Example (13)	Analyze	BTL-4
12.	Analyze the recursive and non-recursive versions of the		
	factorial function.		
	i) Examine how much each function requires as 'n'		
	becomes large (7)		
	i) Find the time complexity and space complexity (6)	Evaluate	BTL-3
13.	Evaluate the recurrence relations.		_
	(i). $x (n) = x (n-1) + 5$ for $n > 1$. (7)	A 1	
	(ii). X (n) = $x(n/3) + 1$ for n >1,x(1) =1. (Solve for n = 3k) (6)	Apply	BTL-4
14.	Discuss in detail about the fundamentals of algorithmic (12)	Understand	
	problem solving. (15)	Understand	BTL-2
15.	Examine the recurrence relation efficiency of converting		
	the bits in binary expansion. (13)	Analyze	BTL-5
16.	Evaluate the recurrence relation for finding fibonocci		
	series.	Apply	BTL-4
17.	Explain in detail basic asymptotic efficiency classes with	Understand	PTI 2
	its comments (13)	Understand	BTL-2

	PART C		
1.	Evaluate the following equalities are correct:	Evaluate	BTL-5
	$i)5n^2 - 6n = \Theta(n^2) \tag{4}$		
	$ii)n!=O(n^{n}) \tag{4}$		
	$\begin{array}{c} \text{iii} n^{3} + 10^{6} n^{2} = \Theta(n^{3}) \\ \text{iv} 2n^{2} 2^{n} + n \log n = \Theta(n^{2} 2^{n}) \end{array} \tag{4}$		
	$iv)2n^2 2^n + n \log n = \Theta(n^2 2^n) $ (3)		
2.	Evaluate the following recurrences completelyi) $T(n) = T(n/2) + 1$, where $n=2^k$ for all $k \ge 0$ (4)ii) $T(n) = T(n/3) + T(2n/3) + cn$, where 'c' is a(4)constant and 'n' is the input size.(4)iii) Explain the steps involved in problem solving(7)	Evaluate	BTL-5
3.	Design a consecutive integer checking algorithm and middle- school procedure algorithm. (15)	Create	BTL-6
4.	Design the steps of mathematical analysis for recursive and non- recursive algorithm with an example of each. (15)	Create	BTL-6
	Give the backward substitution plan to find the Time Efficiency of Recursive Algorithms and use recurrence to find number of moves for Toward of Hangi methan		
	for Towers of Hanoi problem. (15)	Create	BTL-6

UNIT II - BRUTE FORCE AND DIVIDE-AND-CONQUE Brute Force – Computing an – String Matching - Closest-Pair and Convex-Hull Problems - Exhaustive Search - Travelling Salesman Problem - Knapsack Problem - Assignment problem.

	PART – A				
Q.No	Questions	BT Level	Competence		
1.	State Brute force approach.	Remember	BTL-1		
2.	Examine a brute force algorithm for string matching problem.	Apply	BTL-3		
3.	Give an example of a text of length n and a pattern of length m that constitutes a worst case input for the brute force string matching algorithm. Formulate and find how many character comparisons will be made for such input.	Create	BTL-6		
4.	Define the term exhaustive search.	Remember	BTL-1		
5.	Examine a brute force algorithm for counting the number of vowels in a given text.	Apply	BTL-3		
6.	Give an example problem that cannot be solved by a Brute force approach and also how to decide?	Remember	BTL-1		
7.	Describe brute force approach. What are the advantages and disadvantages of this approach?	Analyze	BTL-4		

8.	Define closest pair problem.	Remember	BTL-1
9.	Define convex hull problem.	Remember	BTL-1
10.	Formulate is the length of the step-in jump search?	Create	BTL-6
11.	Analyze the objective of the knapsack problem?	Analyze	BTL-4
12.	Describe the concepts of Travelling Salesman Problem.	Analyze	BTL-4
13.	You are given a knapsack that can carry a maximum weight of 60. There are 4 items with weights {20, 30, 40, 70} and values {70, 80, 90, 200}. What is the maximum value of the items you can carry using the knapsack? of the following methods can be used to solve the Knapsack problem?	Understand	BTL-2
14.	What is the time complexity of the brute force algorithm used to solve the Knapsack problem?	Apply	BTL-3
15.	Define the Time complexity of knapsack 0/1 where n is the number of items and W is the capacity of knapsack.	Understand	BTL-2
16.	Give an example for knapsack problem.	Understand	BTL-2
17.	Evaluate the methods can be used to solve the Knapsack problem?	Evaluate	BTL-5
18.	Given items as {value,weight} pairs {{60,20},{50,25},{20,5}}. The capacity of knapsack=40. Find the maximum value output assuming items to be divisible and non-divisible respectively.	Evaluate	BTL-5
19.	Define Assignment problem.	Remember	BTL-1
20.	What is the advantage of recursive approach than an iterative approach?	Understand	BTL-2
21.	Give an example for a Assignment problem.	Understand	BTL-2
22.	Analyze the concpt of shorest hamiltonian circuit problem?	Apply	BTL-3
23.	Give the basic operation involved in finding the closest pair problem.	Understand	BTL-2
24.	Formulate Euclidean distance.		
	PART – B		
1.	Explain the concepts of the following.(7)(i)Brute force string matching Algorithm.(7)(ii)Closest pair and convex hull problems by brute force(6)	Evaluate	BTL-5
2.	Can you design a more efficient algorithm than the one based on the brute-force strategy to solve the closest-pair problem for n points x1, x2,,xn on the real line? (13) i)What is the closet pair problem? (3) ii)Explain the brute force approach to solve closest-pair with an	Understand	BTL-2
3.	example. (6) iii)Derive the time complexity.	Analyze	BTL-4
4.	What is brute force strategy and explain the sequential search with suitable example problem.(13)	Analyze	BTL-4

5.	Evamine in detail	about Exhaustiv	e search techniques.	(13)	Remember	BTL -1
	i)What is the conve		1	(13)	Kemember	DIL-I
	/	1	to solve convex-hull with	· · /		
	example.	approach		(6)		
6.	iii)Derive the time	complexity.		(4)	Remember	BTL-1
			er comparisons made by the	he brute-		
			ne pattern GANDHI in the			
	_					
	THERE_IS_MOR	RE_TO_LIFE_T	HAN_INCREASING_IT	S_SPEE		
	D					
		-	-it is 47 characters long-			
7.	known before the s			(13)	Create	BTL-6
	• •		essful and unsuccessful)			
0		•	in searching for each of th		D	
8.			t of one thousand zeros?	(13)	Remember	BTL-1
0			ind the two closest points		A 1	
9.	of n points in k-din		main a hunder from the 1	(13)	Apply	BTL-3
10.	Solve travelling sal	es man problem	using brute force techniq	ue. (13)		
	10	-				
		= 2				
	20	T				
	6 13	13 8 10				
	12	4				
	9					
					Apply	BTL-3
11.		iltonian circuit p	problem using brute force			
	technique.			(13)		
				~ /		
	A 10	В				
		0 [°]				
		ဝုံ				
					Angl	
		Ş			Apply	BTL-3
12	Explain the brute for	b Derce method for	the travelling sales man p			
12.	Explain the brute for and give the algorithm	b prce method for thm with your ov	wn example.	oroblem	Apply Understand	BTL-3 BTL-2
	Explain the brute for and give the algorithe brute for the brute for th	b prce method for thm with your ov	• •	problem d give	Understand	BTL-2
12. 13.	Explain the brute for and give the algorith Explain the brute for the algorithm.	borce method for thm with your over the porce method for	wn example. the knapsack problem and	problem d give (13)		
13.	Explain the brute for and give the algorith Explain the brute for the algorithm. (i)List out the proc	b prce method for thm with your over prce method for cedures to solve	wn example. the knapsack problem and travelling salesman proble	oroblem d give (13) em. (6)	Understand Understand	BTL-2 BTL-2
	Explain the brute for and give the algorith Explain the brute for the algorithm. (i)List out the proc (ii)Describe the Kn	b prce method for thm with your over prce method for redures to solve to apsack problem	wn example. the knapsack problem and travelling salesman probl by using Exhaustive sear	oroblem d give (13) em. (6)	Understand	BTL-2
13.	Explain the brute for and give the algorith Explain the brute for the algorithm. (i)List out the proc (ii)Describe the Kn Find and Analyze t	b prce method for thm with your over prce method for redures to solve apsack problem he optimal solut	wn example. the knapsack problem and travelling salesman proble	oroblem d give (13) em. (6) ch. (7)	Understand Understand	BTL-2 BTL-2
13.	Explain the brute for and give the algorith Explain the brute for the algorithm. (i)List out the proc (ii)Describe the Km Find and Analyze t problem given below	b prce method for thm with your ow prce method for edures to solve apsack problem the optimal solut ow.	wn example. the knapsack problem and travelling salesman proble by using Exhaustive sear ion for the assignment	oroblem d give (13) em. (6)	Understand Understand	BTL-2 BTL-2
13.	Explain the brute for and give the algorith Explain the brute for the algorithm. (i)List out the proc (ii)Describe the Kn Find and Analyze t	b prce method for thm with your over prce method for redures to solve apsack problem he optimal solut	wn example. the knapsack problem and travelling salesman probl by using Exhaustive sear	oroblem d give (13) em. (6) ch. (7)	Understand Understand	BTL-2 BTL-2
13.	Explain the brute for and give the algorith Explain the brute for the algorithm. (i)List out the proc (ii)Describe the Kn Find and Analyze the problem given belo Job 1 Job 2	b prce method for thm with your ow prce method for edures to solve apsack problem he optimal solut ow. Job 3	wn example. the knapsack problem and travelling salesman proble by using Exhaustive sear ion for the assignment Job 4	oroblem d give (13) em. (6) ch. (7)	Understand Understand	BTL-2 BTL-2
13.	Explain the brute for and give the algorith Explain the brute for the algorithm. (i)List out the proc (ii)Describe the Km Find and Analyze t problem given below	b prce method for thm with your ow prce method for edures to solve apsack problem the optimal solut ow.	wn example. the knapsack problem and travelling salesman proble by using Exhaustive sear ion for the assignment	oroblem d give (13) em. (6) ch. (7)	Understand Understand	BTL-2 BTL-2
13.	Explain the brute for and give the algorith Explain the brute for the algorithm. (i)List out the proce (ii)Describe the Km Find and Analyze the problem given below Job 1 Job 2 4 3	b prce method for thm with your ow prce method for edures to solve apsack problem he optimal solut ow. Job 3 8	wn example. the knapsack problem and travelling salesman proble by using Exhaustive sear ion for the assignment Job 4 6	oroblem d give (13) em. (6) ch. (7)	Understand Understand	BTL-2 BTL-2
13.	Explain the brute for and give the algorith Explain the brute for the algorithm. (i)List out the proc (ii)Describe the Kn Find and Analyze the problem given belo Job 1 Job 2	b prce method for thm with your ow prce method for edures to solve apsack problem he optimal solut ow. Job 3	wn example. the knapsack problem and travelling salesman proble by using Exhaustive sear ion for the assignment Job 4	oroblem d give (13) em. (6) ch. (7)	Understand Understand	BTL-2 BTL-2

Define Assignment problem. Examine the optimal solution for the Remember BTL-1 16. assignment problem with one example (13) Remember BTL-1 Give an example of the assignment problem whose optimal solution Evaluate BTL-5 17. does not include the smallest element of its cost matrix. (13) Evaluate BTL-5 PART – C 1. Solve using Brute force approach to evaluate and find whether the given string follows the specified pattern and return 0 or 1 accordingly. Evaluate BTL-5 Examples: I)Pattern "abab" input: "redblueredblue" should return 1 Evaluate BTL-5 Onsider the problem of counting, in a given text, the number of substrings that start with an A and end with a B. For example, there are four such substrings in CABAAXBYA. (15) Evaluate BTL-5 2. ii) Design a more efficient algorithm for this problem and determine its efficiency class. (8) 2. Evaluate BTL-6 Person Per job) and the problem to find an assignment with the minimum total cost. The assignment costs is given blow, solve 3. the assignment problem by exhaustive search. (15) Create BTL-6 Person 1 Person 2 Person 3 Person 4 Person 4 Person 4 Person 4 Person 4 Pe		-		1
Give an example of the assignment problem whose optimal solution does not include the smallest element of its cost matrix. (13) Evaluate BTL-5 PART - C 1. Solve using Brute force approach to evaluate and find whether the given string follows the specified pattern and return 0 or 1 accordingly. Examples: 1)Pattern "aaba" input: "redblueredblue" should return 1 2)Pattern "aaba" input: "adadasdasdasd" should return 1 3)Pattern "aaba" input: "xyzabcxyzabc" " should return 0 (15) Evaluate BTL-5 Consider the problem of counting, in a given text, the number of substrings that start with an A and end with a B. For example, there are four such substrings in CABAAXBYA. (). Design a brute-force algorithm for this problem and determine its efficiency class. (8) BTL-5 There are 4 people who need to be assigned to execute 4 jobs(one person per job) and the problem to find an assignment with the minimum total cost. The assignment costs is given below, solve 3. the assignment problem by exhaustive search. (15) Create BTL-6 Person 1 Formulate and give an example of a text of length n and a pattern of length m that constitutes a worst-case input for the brute-force string-matching algorithm. Exactly how many character comparisons will be made for such input? (15) Create BTL-6		• •		
17. does not include the smallest element of its cost matrix. (13) Evaluate BTL-5 PART – C 1. Solve using Brute force approach to evaluate and find whether the given string follows the specified pattern and return 0 or 1 accordingly. Examples: Evaluate BTL-5 1.)Pattern "abba" input: "redblueredblue" should return 1 2)Pattern "aabb" input: "syzabcxyzabc"" should return 1 BTL-5 2. Consider the problem of counting, in a given text, the number of substrings that start with an A and end with a B. For example, there are four such substrings in CABAAXBYA. (1) Evaluate BTL-5 2. ii) Design a brute-force algorithm for this problem and determine its efficiency class. (8) (8) Evaluate BTL-5 2. ii) Design a more efficient algorithm (7) Evaluate BTL-5 There are 4 people who need to be assigned to execute 4 jobs(one person per job) and the problem to find an assignment with the minimum total cost. The assignment costs is given below, solve BTL-6 3. the assignment problem by exhaustive search. (15) Create BTL-6 4. Formulate and give an example of a text of length n and a pattern of length m that constitutes a worst-case input for the brute-force string-matching algorithm. Exactly how many character comparisons will be made for such input? Create BTL-6 Doces a hamilton	16.		/	BTL-1
PART - C 1. Solve using Brute force approach to evaluate and find whether the given string follows the specified pattern and return 0 or 1 accordingly. Examples: I)Pattern "abba" input: "redblueredblue" should return 1 2)Pattern "abab" input: "asdasdasdasd" should return 1 3)Pattern "aaaa" input: "asdasdasdasd" should return 1 3)Pattern "aabb" input: "xyzabexyzabe" " should return 0 (15) Consider the problem of counting, in a given text, the number of substrings that start with an A and end with a B. For example, there are four such substrings in CABAAXBYA. i) Design a brute-force algorithm for this problem and determine its efficiency class. (8) (1) Design a more efficient algorithm (7) Evaluate BTL-5 There are 4 people who need to be assigned to execute 4 jobs(one person per job) and the problem to find an assignment with the minimum total cost. The assignment cost is given below, solve the assignment problem by exhaustive search. (15) Create BTL-6 Person 1 Person 2 (15) Create BTL-6 Person 3 (15) Create BTL-6 (15) Design and example of a text of length <i>n</i> and a pattern of length <i>m</i> that constitutes a worst-case input for the brute-force string-matching algorithm. Exactly how many character comparisons will be made for such input? (15) Does a hamiltonian path or circuit exists on the graph below Evaluate BTL-6				
1. Solve using Brute force approach to evaluate and find whether the given string follows the specified pattern and return 0 or 1 accordingly. Examples: Evaluate BTL-5 1. Solve using Brute force approach to evaluate and find whether the given string follows the specified pattern and return 0 or 1 accordingly. Examples: BTL-5 Evaluate BTL-5 1. Solve using Brute force approach to evaluate and return 0 or 1 accordingly. Examples: I)Pattern "aaab" input: "redblueredblue" should return 1 I)Pattern "aaab" input: "syadasdasdasd" should return 0 (15) IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	17.	does not include the smallest element of its cost matrix. (13)) Evaluate	BTL-5
1. Solve using Brute force approach to evaluate and find whether the given string follows the specified pattern and return 0 or 1 accordingly. Examples: Evaluate BTL-5 1. Solve using Brute force approach to evaluate and find whether the given string follows the specified pattern and return 0 or 1 accordingly. Examples: BTL-5 Evaluate BTL-5 1. Solve using Brute force approach to evaluate and return 0 or 1 accordingly. Examples: I)Pattern "aaab" input: "redblueredblue" should return 1 I)Pattern "aaab" input: "syadasdasdasd" should return 0 (15) IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		PART – C		1
the given string follows the specified pattern and return 0 or 1 accordingly. Examples: 1)Pattern "abaa" input: "redblueredblue" should return 1 2)Pattern "aaaa" input: "adasdasdasd" should return 1 3)Pattern "aabb" input: "xyzabcxyzabc" " should return 0 (15) Consider the problem of counting, in a given text, the number of substrings that start with an A and end with a B. For example, there are four such substrings in CABAAXBYA. i). Design a brute-force algorithm for this problem and determine its efficiency class. (8) 2. ii) Design a more efficient algorithm (7) Evaluate BTL-5 There are 4 people who need to be assigned to execute 4 jobs(one person per job) and the problem to find an assignment with the minimum total cost. The assignment costs is given below, solve 0. 3. the assignment problem by exhaustive search. (15) Create BTL-6 Person 1 2 7 8 BTL-6 Image: the and give an example of a text of length n and a pattern of length m that constitutes a worst-case input for the brute-force string-matching algorithm. Exactly how many character comparisons will be made for such input? Create BTL-6 Does a hamiltonian path or circuit exists on the graph below (15) Does a hamiltonian path or circuit exists on the graph below	1.		Evaluate	BTL-5
Examples: I)Pattern "abba" input: "redblueredblue" should return 1 2)Pattern "aaaa" input: "asdasdasdad" should return 1 3)Pattern "aabb" input: "xyzabcxyzabc" "should return 0 3)Pattern "aabb" input: "xyzabcxyzabc" should return 1 3)Pattern "aabb" input: "xyzabcxyzabc" should return 0 (15) Consider the problem of counting, in a given text, the number of substrings that start with an A and end with a B. For example, there are four such substrings in CABAAXBYA. i). Design a brute-force algorithm for this problem and determine its efficiency class. (8) 2. ii) Design a more efficient algorithm (7) Evaluate BTL-5 There are 4 people who need to be assigned to execute 4 jobs(one person per job) and the problem to find an assignment with the minimum total cost. The assignment costs is given below, solve (15) Create BTL-6 Person 1 2 3 Person 2 4 7 Person 3 5 8 Person 4 9 4 4. Formulate and give an example of a text of length n and a pattern of length m that constitutes a worst-case input for the brute-force string-matching algorithm. Exactly how many character comparisons will be made for such input? (15) Does a hamiltonian path or circuit exists on the graph below 15 <td></td> <td></td> <td></td> <td></td>				
1)Pattern "abba" input: "redblueredblue" should return 1 2)Pattern "aaaa" input: "asdasdasdasd" should return 1 3)Pattern "aabb" input: "xyzabcxyzabc"" should return 0 (15) Consider the problem of counting, in a given text, the number of substrings that start with an A and end with a B. For example, there are four such substrings in CABAAXBYA. i). Design a brute-force algorithm for this problem and determine its efficiency class. (8) 2. ii) Design a more efficient algorithm (7) Evaluate BTL-5 There are 4 people who need to be assigned to execute 4 jobs(one person per job) and the problem to find an assignment with the minimum total cost. The assignment costs is given below, solve BTL-6 Person 1 9 7 8 Person 2 6 3 7 Person 3 5 8 8 4. Formulate and give an example of a text of length n and a pattern of length m that constitutes a worst-case input for the brute-force string-matching algorithm. Exactly how many character comparisons will be made for such input? Create BTL-6 Does a hamiltonian path or circuit exists on the graph below (15) Create BTL-6		0,		
2)Pattern "aaaa" input: "asdasdasdasd" should return 1 3)Pattern "aabb" input: "xyzabcxyzabc" " should return 0 (15) Consider the problem of counting, in a given text, the number of substrings that start with an A and end with a B. For example, there are four such substrings in CABAAXBYA. i). Design a brute-force algorithm for this problem and determine its efficiency class. (8) 2. ii) Design a more efficient algorithm (7) Evaluate BTL-5 There are 4 people who need to be assigned to execute 4 jobs(one person per job) and the problem to find an assignment with the minimum total cost. The assignment costs is given below, solve 3. the assignment problem by exhaustive search. (15) Create BTL-6 Person 1 Person 2 4. Formulate and give an example of a text of length n and a pattern of length m that constitutes a worst-case input for the brute-force string-matching algorithm. Exactly how many character comparisons will be made for such input? (15) Create BTL-6 Does a hamiltonian path or circuit exists on the graph below [15] [2]		-		
3)Pattern "aabb" input: "xyzabcxyzabc" " should return 0 (15) Consider the problem of counting, in a given text, the number of substrings that start with an A and end with a B. For example, there are four such substrings in CABAAXBYA. i). Design a brute-force algorithm for this problem and determine its efficiency class. (8) 2. ii) Design a more efficient algorithm (7) Evaluate BTL-5 There are 4 people who need to be assigned to execute 4 jobs(one person per job) and the problem to find an assignment with the minimum total cost. The assignment costs is given below, solve BTL-6 3. the assignment problem by exhaustive search. (15) Create BTL-6 Person 1 2 7 8 8 Person 2 6 4 Formulate and give an example of a text of length n and a pattern of length m that constitutes a worst-case input for the brute-force string-matching algorithm. Exactly how many character comparisons will be made for such input? Create BTL-6 Does a hamiltonian path or circuit exists on the graph below 15) 0 0		-		
Consider the problem of counting, in a given text, the number of substrings that start with an A and end with a B. For example, there are four such substrings in CABAAXBYA. i). Design a brute-force algorithm for this problem and determine its efficiency class. (8) 2. ii) Design a more efficient algorithm (7) Evaluate BTL-5 There are 4 people who need to be assigned to execute 4 jobs(one person per job) and the problem to find an assignment with the minimum total cost. The assignment costs is given below, solve Create BTL-6 3. the assignment problem by exhaustive search. (15) Create BTL-6 Person 1 2 7 8 7 Person 2 4 3 7 8 7 Person 3 5 8 1 8 8 7 Person 1 9 7 8 7 8 7 Person 2 6 4 7 8 7 8 7 Person 3 5 8 1 8 7 8 7 8 7 7 8 7 7 8 7 8 7 7 8 8 1 8 7 8 7		-		
substrings that start with an A and end with a B. For example, there are four such substrings in CABAAXBYA. i). Design a brute-force algorithm for this problem and determine its efficiency class. (8) 2. ii) Design a more efficient algorithm (7) Evaluate BTL-5 There are 4 people who need to be assigned to execute 4 jobs(one person per job) and the problem to find an assignment with the minimum total cost. The assignment costs is given below, solve BTL-6 Job 1 Create BTL-6 Person 2 6 Person 2 7 8 Person 2 6 1 <		5)1 attern aabo input. xyzabexyzabe should return o (15)		
there are four such substrings in CABAAXBYA. i). Design a brute-force algorithm for this problem and determine its efficiency class. (8) 2. ii) Design a more efficient algorithm (7) Evaluate BTL-5 There are 4 people who need to be assigned to execute 4 jobs(one person per job) and the problem to find an assignment with the minimum total cost. The assignment costs is given below, solve BTL-6 Create BTL-6 Job 1 Job 2 Job 3		Consider the problem of counting, in a given text, the number of		
 i). Design a brute-force algorithm for this problem and determine its efficiency class. (8) 2. ii) Design a more efficient algorithm (7) Evaluate BTL-5 There are 4 people who need to be assigned to execute 4 jobs(one person per job) and the problem to find an assignment with the minimum total cost. The assignment costs is given below, solve 3. the assignment problem by exhaustive search. (15) Create BTL-6 Person 1 Person 2 Person 3 Person 4 Person 4 Person 4 Person 5 Person 6 Create BTL-6 				
its efficiency class. (8) 2. ii) Design a more efficient algorithm (7) Evaluate BTL-5 There are 4 people who need to be assigned to execute 4 jobs(one person per job) and the problem to find an assignment with the minimum total cost. The assignment costs is given below, solve Create BTL-6 It he assignment problem by exhaustive search. (15) Create BTL-6 It he assignment problem by exhaustive search. (15) Create BTL-6 It he assignment problem by exhaustive search. (15) Create BTL-6 It he assignment problem by exhaustive search. (15) Create BTL-6 It he assignment problem by exhaustive search. (15) Create BTL-6 It he assignment problem by exhaustive search. (15) Create BTL-6 It he assignment problem by exhaustive search. (15) Create BTL-6 It he assignment problem by exhaustive search. (15) Create BTL-6 It he assignment problem by exhaustive search search process input for the brute-force string-matching algorithm. Exactly how many character comparisons will be made for such input? (15) Does a hamiltonian path or circuit exists on the graph below (15) Create				
2. ii) Design a more efficient algorithm (7) Evaluate BTL-5 There are 4 people who need to be assigned to execute 4 jobs(one person per job) and the problem to find an assignment with the minimum total cost. The assignment costs is given below, solve Create BTL-6 3. the assignment problem by exhaustive search. (15) Create BTL-6 Person 1 1 1 1 1 Person 2 4 3 7 6 Person 3 5 6 4 8 Person 4 6 4 8 8 Person 3 6 4 8 8 Person 4 6 4 8 8 Person 3 6 4 8 8 Person 4 6 4 8 8 Person 3 6 4 8 8 Person 4 6 4 8 8 Person 5 8 8 8 8 Person 6 9 4 8 8 8 Person 6 9 4 8 8 8				
A. Formulate and give an example of a text of length <i>n</i> and a pattern of length <i>m</i> that constitutes a worst-case input for the brute-force string-matching algorithm. Exactly how many character comparisons will be made for such input? Create BTL-6	2		Evaluate	BTL-5
a. Formulate and give an example of a text of length n and a pattern of length m that constitutes a worst-case input for the brute-force string-matching algorithm. Exactly how many character comparisons will be made for such input? Create BTL-6 4. Formulate and give an example of a text of length n and a pattern of length m that constitutes a worst-case input for the brute-force string-matching algorithm. Exactly how many character comparisons will be made for such input? Create BTL-6	2.	(7) Design a more enterent argoritania (7)	Lvaluate	DIL-5
a. minimum total cost. The assignment costs is given below, solve Create BTL-6 3. the assignment problem by exhaustive search. (15) Create BTL-6 Job 1 Job 2 Job 3 Job 4 BTL-6 BTL-6 Person 1 9 2 7 8 BTL-6 Person 2 6 4 3 7 BTL-6 4. Formulate and give an example of a text of length n and a pattern of length m that constitutes a worst-case input for the brute-force string-matching algorithm. Exactly how many character comparisons will be made for such input? Create BTL-6 Does a hamiltonian path or circuit exists on the graph below 15 15 15		There are 4 people who need to be assigned to execute 4 jobs(one		
3. the assignment problem by exhaustive search. (15) Create BTL-6 Job 1 Job 2 Job 3 Job 4 Person 1 9 2 7 8 Person 2 6 4 3 7 Person 3 5 8 1 8 Person 4 6 9 4 7 Person 5 8 1 8 8 Person 4 6 9 4 7 Person 5 8 1 8 8 Person 6 9 4 7 8 4. Formulate and give an example of a text of length n and a pattern of length m that constitutes a worst-case input for the brute-force string-matching algorithm. Exactly how many character comparisons will be made for such input? (15) Create BTL-6 Does a hamiltonian path or circuit exists on the graph below 15 10 10 10				
Job 1 Job 2 Job 3 Job 4 Person 1 9 2 7 8 Person 2 6 4 3 7 Person 3 5 8 1 8 Person 4 6 9 4 1 4. Formulate and give an example of a text of length n and a pattern of length m that constitutes a worst-case input for the brute-force string-matching algorithm. Exactly how many character comparisons will be made for such input? Create BTL-6 Does a hamiltonian path or circuit exists on the graph below (15) Does Does	2			
Person 1 9 2 7 8 Person 2 6 4 3 7 Person 3 5 8 1 8 Person 4 7 6 9 4 4. Formulate and give an example of a text of length n and a pattern of length m that constitutes a worst-case input for the brute-force string-matching algorithm. Exactly how many character comparisons will be made for such input? Create BTL-6 Does a hamiltonian path or circuit exists on the graph below (15) Does Does	3.		Create	BIL-6
Person 2 6 4 3 7 Porson 3 5 8 1 8 Person 4 6 9 4 1 4. Formulate and give an example of a text of length n and a pattern of length m that constitutes a worst-case input for the brute-force string-matching algorithm. Exactly how many character comparisons will be made for such input? Create BTL-6 Does a hamiltonian path or circuit exists on the graph below (15) 0 0		JOD 1 JOD 2 JOD 3 JOD 4		
Person 3 5 8 1 8 Person 4 Formulate and give an example of a text of length n and a pattern of length m that constitutes a worst-case input for the brute-force string-matching algorithm. Exactly how many character comparisons will be made for such input? Create BTL-6 Does a hamiltonian path or circuit exists on the graph below (15) Does Does		Person 1 9 2 7 8		
Person 6 9 1 4. Formulate and give an example of a text of length n and a pattern of length m that constitutes a worst-case input for the brute-force string-matching algorithm. Exactly how many character comparisons will be made for such input? Create BTL-6 Does a hamiltonian path or circuit exists on the graph below (15) 0 0		Person 2 6 4 3 7		
4. Formulate and give an example of a text of length <i>n</i> and a pattern of length <i>m</i> that constitutes a worst-case input for the brute-force string-matching algorithm. Exactly how many character comparisons will be made for such input?CreateBTL-6Does a hamiltonian path or circuit exists on the graph below(15)0		Person 3 5 8 1 8		
of length <i>m</i> that constitutes a worst-case input for the brute-force string-matching algorithm. Exactly how many character comparisons will be made for such input?(15)Does a hamiltonian path or circuit exists on the graph below(15)		Person 4 7 6 9 4		
of length <i>m</i> that constitutes a worst-case input for the brute-force string-matching algorithm. Exactly how many character comparisons will be made for such input?(15)Does a hamiltonian path or circuit exists on the graph below(15)		D V		
of length m that constitutes a worst-case input for the brute-force string-matching algorithm. Exactly how many character comparisons will be made for such input?(15)Does a hamiltonian path or circuit exists on the graph below(15)				
string-matching algorithm. Exactly how many character comparisons will be made for such input?(15)Does a hamiltonian path or circuit exists on the graph below	4.	Formulate and give an example of a text of length <i>n</i> and a pattern	Create	BTL-6
comparisons will be made for such input?(15)Does a hamiltonian path or circuit exists on the graph below				
Does a hamiltonian path or circuit exists on the graph below				
		1 0 1		
A E				
D E		A 9		
		E		
		a / a		
В		В		
5. Create BTL-6	5.	of Vc	Create	BTL-6

UNIT III - DIVIDE-AND-CONQUER TECHNIQUE Divide and Conquer Methodology – Binary Search – Merge sort – Quick sort – Heap Sort -Multiplication of Large Integers– Closest-Pair and Convex - Hull Problems. PART – A

	PART – A		
Q. No	Questions	BT Level	Competence
1.	Define Divide and conquer methodology.	Remember	BTL-1
2.	List the sorting methods would be most suitable for sorting a list.	Remember	BTL-1
3.	Prove asymptotic complexity in terms of n.	Apply	BTL-3
4.	Evaluate total number of comparisons made in quick sort for sorting a file of size n.	Evaluate	BTL-5
5.	Design the correct order of the efficiency of the following sorting algorithms according to their overall running time comparison.	Create	BTL-6
6.	How do you measure the efficiency of an algorithm for divide and conquer method?	Remember	BTL-1
7.	Examine an algorithm for binary search.	Apply	BTL-3
8.	Identify The number of swapping's needed to sort the numbers 8, 22, 7, 9, 31, 19, 5, 13 in ascending order, using bubble sort.	Remember	BTL-1
9.	How many approaches can be applied to solve quick hull problem	Analyze	BTL-4
10.	Explain the various types of problems does quick hull belong.	Analyze	BTL-4
11.	Apply the common technique for proving to find the 'n' points that lie in a convex quadrilateral.	Apply	BTL-3
12.	Define space complexity of merge sort.	Remember	BTL-1
13.	Define worst case time complexity of merge sort.	Remember	BTL-1
14.	Formulate the Pattern of Problems in Divide and Conquer approach	Create	BTL-6
15.	Differentiate between Merge sort and Heap sort efficiency.	Understand	BTL-2
16.	Discuss the concepts of Quick sort and its properties.	Understand	BTL-2
17.	What is heap sort explain with example?	Apply	BTL-3
18.	Examine an recurrence relation for multiplication of large numbers.	Evaluate	BTL-5
19.	What is the first step of heap sort?	Understand	BTL-2
20.	Analyze quick sort with example?	Analyze	BTL-4
21.	Analyze the Run Time of Merge Sort .	Analyze	BTL-4
22.	Evaluate the Time Complexity of binary search tree.	Evaluate	BTL-5
23.	A machine needs a minimum of 200 sec to sort 1000 elements by Quick sort. What is the minimum time needed to sort 200 elements will be approximately	Understand	BTL-2
24.	Apply Quick sort on a given sequence 7 11 14 6 9 4 3 12. What is the sequence after first phase, pivot is first element?	Understand	BTL-2

	PART-B			
1	Explain in detail about the closest pair and convex hull problems by using Divide and conquer method.	13	BTL -1	Remember
2	Analyze in detail about divide and conquer strategy with a scenario.	13	BTL -3	Apply
3	What is divide and conquer strategy and explain the binary search with suitable example problem.	13	BTL -4	Analyze
4	What is divide and conquer strategy and explain the multiplication of large numbers with suitable example problem.	13	BTL -4	Analyze
5	Illustrate an algorithm for Quicksort and write its time complexity with example list are 5,3,1,9,8,2,4,7.	13	BTL -3	Apply
6	Describe in detail about the operation of binary search algorithm for the input -15, -6, 0, 7, 9, 23, 54, 82, 101,112, 125,131,142,151 if you are searching for the element 9.	13	BTL -2	Understand
7	Analyze the pros and cons of convex hull problem and the solution involved in detail.	13	BTL -4	Analyze
8	Discuss in detail and write an algorithm to sort a given list of elements using heap sort. Show the operation of the algorithm, on the list 14,12,9,8,7,10,8.	13	BTL -2	Understand
9	Write the algorithm for quicksort. Provide a complete analysis of quick sort for the given set of numbers 12,33,23,43,44,55,64,77 and 76.	13	BTL -5	Evaluate
10	Describe in details about the three processing steps in Quick sort.	13	BTL -1	Remember
11	Write the algorithm to perform the working of multiplication of large numbers with an example.	13	BTL -1	Remember
12	(i)Find the number of comparisons required to search for '6' in the given Sequence of numbers: 10, 19, 7, 9, 6, 15.(ii)Analyze the time efficiency and drawbacks of merge sort algorithm.	7	BTL -3	Apply
13	Write a program implementing the divide-conquer algorithm for the closest pair problem.	13	BTL -1	Remember
14	Write the mergesort algorithm and explain it with an example. Derive the worst case and average case time complexity.	13	BTL -2	Understand
15	(i) Multiply 23 * 14 using divide and conquer strategy(ii)Compute the complexity for multiplication of large numbers.	7 6	BTL -6	Create
16	Write the max-heap algorithm and explain it with an example. Derive the worst case and average case time complexity.	13	BTL -6	Create
17	Write a program implementing the divide-conquer algorithm for the convex-hull problem.	13	BTL -2	Understand

	PART – C		
1.	Solve heap-sort by applying the Divide and Conquer method and Analyze the time and space complexity of Divide and conquer methodology for the array having elements: 16, 10, 15, 9, 5, 12, 14.	Create	BTL-6
2.	Solve 2138×4967 by applying the Divide and Conquer method and Analyze the time and space complexity of Divide and conquer methodology	Evaluate	BTL-5

	Examine that the procedure SEARCH of binary search algorithm gives the Smallest possible expected search time if all elements in the universal set are equally likely to be sought. (15)	Evaluate	BTL-5
3.			
	(i) Design a Quick sort algorithm (7)	Create	BTL-6
	(ii) Develop Best, worst and Average case analysis for Quicksort		
4.	method. (8)		
5.		Create	BTL-6
	Discuss the topic on merge sort. Illustrate the algorithm with		
	numeric Example. Predict the complete analysis for the same.		
	Is merge sort stable sorting algorithm? Justify your answer. (15)		

UNIT IV - DYNAMIC PROGRAMMING AND GREEDY TECHNIQUE

Dynamic programming – Principle of optimality - Coin changing problem, Computing a Binomial Coefficient – Floyd's algorithm – Multi stage graph - Optimal Binary Search Trees – Knapsack Problem and Memory functions. Greedy Technique – Container loading problem - Prim's algorithm and Kruskal's Algorithm – 0/1 Knapsack problem, Optimal Merge pattern - Huffman Trees.

PART – A						
Q.						
No	Questions	BT Level	Competence			
1.	What is dynamic programming?	Remember	BTL-1			
2.	How is a transportation network represented?	Apply	BTL-3			
3.	Compare memorization method vs tabulation method.	Analyze	BTL-4			
4.	Estimate the space and time complexity of computing a Binomial Coefficient.	Understand	BTL-2			
5.	State the principle of optimality.	Remember	BTL-1			
6.	Define Transitive closure of a directed graph.	Remember	BTL-1			
7.	What is the constraint for binary search tree insertion?	Remember	BTL-1			
8.	Compare Divide & Conquer and Dynamic Programming.	Apply	BTL-3			
9.	Discover the pseudo code of the Warshall's algorithm.	Apply	BTL-3			
10.	Summarize feasible and optimal solution.	Understand	BTL-2			
11.	Contrast Greedy algorithm and Dynamic programming.	Apply	BTL-3			
12.	List the properties of Dynamic programming approach	Remember	BTL-1			
13.	Define the minimum spanning tree problem.	Remember	BTL-1			
14.	Explain how the Binomial coefficient is computed.	Evaluate	BTL-5			
15.	Estimate the time and space complexity for Warshall's algorithm.	Understand	BTL-2			
16.	Demonstrate the obstacles in constructing a minimum spanning	Apply	BTL-3			

	tree by an exhaustive search.		
17.	Estimate the space and time complexity of a prim's algorithm.	Understand	BTL-2
18.	Analyze the time complexity of optimal Binary search Tree algorithm.	Analyze	BTL-4
19.	Distinguish prim's and Kruskal's algorithm.	Understand	BTL-2
20.	Summarize Huffman trees and its applications	Evaluate	BTL-5
21.	Integrate Minimum spanning tree concepts and Prim's algorithm.	Create	BTL-6
22.	Develop an algorithm for memory function knapsack problem.	Create	BTL-6
23.	Analyze the time complexity for Binomial coefficient algorithm.	Analyze	BTL-4
24.	Analyze the time complexity of multi stage graph algorithm	Analyze	BTL-4

	a) Wri b) Ana distanc	ite the f lyze the e from	ollowing dista loyd's algor e shortest pa the source n each of the	ithm and ge th and the co ode to the d	orrespone orrespone	ding n node	stance matrix. (7) (6)	Analyze	BTL-4
2.	i) Illus	strate a	3 8 5 4 11-pair shorte	est path pro	5 4) orithm.	(4)	Apply	BTL-3
			matrix given		i probleli	i for the c	diagraph with (9)		
			a	b	с	d			
		a	0	α	3	α			
		b	2	0	α	α			
		c	Ā	7	0	1			
		d	6	α	α	0			
							,		

	Explain how multistage graph for finding the single-source shortest paths for the given graph. (13)							Understand	BTL-2		
		4	11	7	2 2 2 B	7	14	200			
•	Describe an $C(n, k) = C(n, k)$						nt by the	formula	(13)	Analyze	BTL-4
•	Analyze the probabilities	e algoritl	nm by a	applyi	ing th	e fol		eys and	(13)	Evaluate	BTL-5
	Key	A	В				D		1		
	-	0.1	0.1	2	0).4	0.3	3	-		
						-]		
	Construct t	T	_	5							
	ii) Constru algorithm t	to comp	ute the	roots	of op	tima	l sub tree	s.	(6)	Creata	
		to composite composi	ute the	$\frac{1}{2}$	of op the $0/1$	tima 1, kn	l sub tree	s. roblem gi	the (6)	Create	BTL-6
	algorithm t Plan the fo knapsack c	to composite composi	ute the instanc in W=	roots ce of t 5 usin	of op the $0/1$	tima 1, kn	l sub tree	s. roblem gi	the (6)	Create	BTL-6
	algorithm t Plan the fo knapsack c explain it. Item 1	llowing apacity	instance in W=: ght 4	roots ce of t 5 usin	of op he 0/1 g dyn alue	tima 1, kn	l sub tree	s. roblem gi	the (6)	Create	BTL-6
	algorithm t Plan the fo knapsack c explain it. Item 1 2	llowing apacity	instance in W=5 ght 4 3	roots ce of t 5 usin Va	of op he 0/1 g dyn alue 510 520	tima 1, kn	l sub tree	s. roblem gi	the (6)	Create	BTL-6
	algorithm t Plan the fo knapsack c explain it. Item 1	llowing apacity	instance in W=: ght 4	roots ce of t 5 usin Va \$	of op he 0/1 g dyn alue	tima 1, kn	l sub tree	s. roblem gi	the (6)	Create	BTL-6
	algorithm t Plan the fo knapsack c explain it. Item 1 2	Wei	ute the instance in W=3 ght 4 3 2 5 ree. List m's algo	roots ce of t 5 usin Va \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	of op he 0/1 g dyn alue 510 520 515 525 7pes of a. Cons	tima 1, kn amic f Enc struct	l sub tree apsack pr c program	s. roblem gi nming and	he (6) Even the d	Create	BTL-6 BTL-1
	algorithm t Plan the fo knapsack c explain it. Item 1 2 3 4 (i)Define Hi (ii)Write the	Wei uffman the ata and o	ute the instance in W=3 ght 4 3 2 5 ree. List m's algo	roots ce of t 5 usin Va \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	of op he 0/1 g dyn alue 510 525 70 cons man conservation	tima 1, kn amic f Enc struct	l sub tree apsack pr c program	s. roblem gi nming and	he (6) (ven the d) ree. (8) for the (5)		
· -	algorithm t Plan the fo knapsack c explain it. Item 1 2 3 4 (i)Define Hi (ii)Write the following da	Ilowing apacity Wei uffman tr e Huffma ata and o	ute the instance in W=5 ght 4 3 2 5 cee. List btain its	ve of t 5 usin Va \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	of op he 0/1 g dyn alue 510 525 7pes of a. Cons man c D	tima 1, kn amio	l sub tree apsack pr c program coding in H t the Huffi	s. roblem gi nming and Huffman ti nan's tree	he (6) (ven the d) ree. (8) for the (5)		
	algorithm t Plan the fo knapsack c explain it. Item 1 2 3 4 (i)Define Hi (ii)Write the following da	Ilowing apacity Wei uffman tr e Huffma ata and o r A ity 0.5 minimuti ison betw	ute the instance in W=4 ght 4 3 2 5 ree. List btain its B 0.35 m spann ween Pri	ve of t 5 usin Va \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	of op he 0/1 g dyn alue 10 20 525 /pes of . Cons man c D 0.1 ee usin	tima 1, kn aamio f Enco structo ode. E 0.4 ng K uskal	l sub tree apsack pi c program coding in H t the Huffi (Unde 0 ruskal's al	s. roblem gi nming and Huffman tr man's tree erscore)	he (6) iven the d ree. (8) for the (5) vith an (7)		

(ii)Describe minimum spanning tree using Prim's algorithm. (8) $ \begin{array}{c} $		
11. (i)List out the short notes on optimal binary search tree. (7) (ii) Label the optimization technique used for optimal binary search algorithm. (6)	Remember	BTL-1
Explain the steps in building Huffman Tree.Find the codes for the alphabets given below according to the frequency. Let _(Space)= 4 A= 2 , E = 5 , H = 1, I = 2, L = 2, M = 2 , P = 212. $R = 1, S = 2 , X = 1$ (13)13. (i) Examine Coin changing problem with a suitable example (ii)Illustrate how the problem can be solved by dynamic 	Analyze Apply	BTL-4 BTL-3
 Compare memorization method vs tabulation method with an example. Explain 0/1 knapsack problem using dynamic programming 	Apply	BTL-3
 approach in detail. Explain multistage graph and explain memory functions problem in detail. (13) 	Understand	BTL-2
16. detail.(13)Illustrate how the problem of optimal merge pattern can be solved17. using dynamic programming approach.	Apply Apply	BTL-3 BTL-3
PART – C		I
1. Asses and solve all-pair shortest path problem for the digraph with the weight matrix given below: (15) $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Evaluate	BTL-5
(ii)How greedy method is useful to obtain an optimal merge pattern.	4) (6) (5) Evaluate	BTL-5
3. Apply Warshall's algorithm to find the transitive closure of the	Create	BTL-6

	digraph defined by the following adjacency matrix		
	$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$		
	 i) Prove that the time efficiency of Warshall's algorithm is cubic (7) ii) Explain why the time efficiency of Warshall's algorithm is inferior to that of the traversal-based algorithm for sparse graphs represented by their adjacency lists. 		
4.	Apply the greedy technique to find the minimum spanning treeusing Prim's algorithm for the given graph.(15)	Create	BTL-6
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
5.	Apply the technique to reduce the size of the given message using huffman coding technique. (Fized size & Variable Size) Message : BCCABBDDAECCBBAEDDCC	Create	BTL-6

20. Give sontenetten Notes OP Prendra WINPH FOR EALINITATIONS OF ALGOR LINEARS POWER

Lower - Bound Arguments - P, NP NP- Complete and NP Hard Problems. Backtracking – n-Queen problem - Hamiltonian Circuit Problem – Subset Sum Problem. Branch and Bound – LIFO Search and FIFO search - Assignment problem – Knapsack Problem – Travelling Salesman Problem - Approximation Algorithms for NP-Hard Problems – Travelling Salesman problem – Knapsack problem.

	$\mathbf{PART} - \mathbf{A}$						
Q. No	Questions	BT Level	Competence				
1.	What are tractable and non-tractable problems?	Remember	BTL-1				
2.	Compare class P and class NP.	Analyze	BTL-4				
3.	Define NP hard problem.	Remember	BTL-1				
4.	Discuss the principle of backtracking.	Understand	BTL-2				
5.	How is the accuracy of approximation algorithm measured ?	Evaluate	BTL-5				
6.	State Hamiltonian Circuit problem.	Remember	BTL-1				
7.	What are the additional items required for branch and bound? compare backtracking technique.	Analyze	BTL-4				
8.	Point out some examples of lower bound.	Analyze	BTL-4				
9.	Describe the term state space tree.	Remember	BTL-1				
10.	Define Knapsack problem.	Remember	BTL-1				
11.	Discuss the term best first branch bound.	Understand	BTL-2				
12.	State whether backtracking always produces optimal.	Create	BTL-6				
13.	Decide the termination point of the search path in a state space tree of branch and bound algorithm.	Evaluate	BTL-5				
14.	Show formal definition of the n-queens problem.	Understand	BTL-2				
15.	Describe the term state space tree.	Understand	BTL-2				
16.	What is Hamiltonian path? Generalize that Hamiltonian cycle is an undirected graph.	Create	BTL-6				
17.	What does NP-hard mean? Demonstrate approximation algorithm for NP hard problem.	Apply	BTL-3				
18.	How is lower bound found by problem reduction?	Understand	BTL-2				
19.	Examine the subset sum problem.	Analyze	BTL-4				
20.	Define NP complete problem.	Evaluate	BTL-5				
21.	Compare polynomial time vs Exponential time.	Apply	BTL-3				
22.	How maximum matching is done in a Bipartie graph?	Remember	BTL-1				
23.	Describe stable marraige problem.	Apply	BTL-3				
24.	State 8 Queens problem.	Apply	BTL-3				

	PART-B			
1.	Explain in detail about the Backtracking with an example.	13	Remember	BTL-1
2.	 (i) Evaluate the subset sum problem with set as {3, 5, 6, 7, 2} and the sum =15.Derive all the subsets. (ii) 	7 6	Evaluate	BTL-5
3.	 (i) Identify an example for the best-case input for the branch and bound algorithm for the assignment problem. (ii) Describe NP-hard and NP-completeness. 	7 6	Apply	BTL-3
4.	Using Back-Tracking enumerate how can you solve the following problems. (i)4-queens problem. (ii)Hamiltonian circuit problem.	7 6	Apply	BTL-3
5.	Find the optimal solution using Branch and Bound for the following assignment problem. Job1 Job 2 Job 3 Job 4 A 9 2 7 8 B 6 4 3 7 C 5 8 1 8 D 7 6 9 4	13	Apply	BTL-3
6.	Consider the travelling salesperson instance defined by the following cost matrix.	13	Understand	BTL-2
7.	 (i)Explain how to implement an algorithm for Knapsack problem using NP-Hard approach. (ii)Distinguish between the P and NP problems. 	7 6	Analyze	BTL-4
8.	Describe about the following:(i)Approximation algorithms for the knapsack problem.(ii) Approximation algorithms for Traveling sales man problem.	6 7	Remember	BTL-1
9.	(i)Explain the backtracking problem.(ii) Analyze and explain elaborately on backtracking algorithm.	7 6	Analyze	BTL-4
10.	Write an algorithm for subset sum and explain with an example.	13	Apply	BTL-2
11.	Explain in detail about assignment problem using branch and bound technique.	13	Remember	BTL-1
12.	Apply Branch and Bound algorithm to solve the travelling salesman problem for	13	Create	BTL-6

13.	With an example, summarize how the branch and bound technique is used to solve 0/1 knapsack problem.	13	Evaluate	BTL-5
14.	There are 5 distinct numbers {1,2,5,6,8}. Identify the combinations of these numbers such that the sum is 9. Use the backtracking model to arrive at the solution.	13	Understand	BTL-2
15.	With an example, Exaplin how the backtracking approach is used to solve Hamiltonian circuit problem.	13	Analyze	BTL-4
16.	Explain in detail about the LIFO and FIFO search.	13	Remember	BTL-1
17.	Write down the difference between Backtracking and Brach and Bound.	13	Understand	BTL-2

	PART-C			
1.	Explain the 4-Queen's problem using backtracking. Write the algorithms. Give the estimated cost for all possible solutions of 4-Queen's problem. Specify the implicit and explicit constraints.	15	Create	BTL-6
2.	Find a Hamiltonian circuit or disprove its existence in the graph given below.	15	Evaluate	BTL-5
3.	Solve the following instance of Knapsack problem by branch and bound algorithm. Item weight profit 1 5 \$40 2 7 \$35 3 2 \$18 W=15 4 5 \$10 6 1 \$2	15	Create	BTL-6
4.	Let w={5,7,10,12,15,18,20} and m=35. Compute all possible subset of w whose sum is equivalent to m. Draw the portion of state space tree for this problem.	15	Evaluate	BTL-5
5.	Evaluate the following instance of the knapsack problem using the branch and bound algorithm. Knapsack capacity W=10. Item Weight Value 1 4 \$40 2 7 \$42 3 5 \$25 4 3 \$12	15	Evaluate	BTL-5