SRM VALLIAMMAI ENGINEERING COLLEGE

SRM Nagar, Kattankulathur – 603 203.

DEPARTMENT OF

ELECTRICAL AND ELECTRONICS ENGINEERING

QUESTION BANK

IV SEMESTER

1905402 - Electrical Machines-II

Regulation - 2019

Academic Year 2022 – 2023 (Even)

Prepared by

Mr.P.Tamilarasan-Assistant Professor (O.G)/EEE

SRM VALLIAMMAI ENGINEERING

COLLEGE SRM Nagar, Kattankulathur – 603 203.

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

QUESTION BANK

SUBJECT: 1905402 / Electrical Machines-II

SEM / YEAR: IV / 2022-2023 (EVEN)

UNIT I - THREE PHASE INDUCTION MOTOR

Constructional details – Types of rotors – Principle of operation – Slip – cogging and crawling – Equivalent circuit – Torque-Slip characteristics - Condition for maximum torque – Losses and efficiency – Load test - no load and blocked rotor tests - Circle diagram – Separation of losses – Double cage induction motors Induction generators – Synchronous induction motor.

PART -A

Q.No	Questions	BT Level	Competence	Course Outcome
1.	Demonstrate why the stator core of induction motor made of silicon content steel stamping.	BTL 3	Apply	CO 1
2.	Why are the slots on the cage rotor of induction motor usually skewed.	BTL 2	Understand	CO 1
3.	Classify the two types of 3-phase induction motor.	BTL 2	Understand	CO 1
4.	Describe why an induction motor is called a 'rotating transformer'.	BTL 1	Remember	CO 1
5.	Why is it objectionable to start large three phase induction motor by switching it directly on the line?	BTL 6	Create	CO 1
6.	A 3-phase induction motor is wound for 4 poles and is supplied from 50 Hz system. Calculate the speed at which the magnetic field of the stator is rotating.	BTL 4	Analyze	CO 1
7.	Why an induction motor will never run at its synchronous speed?	BTL 2	Understand	CO 1
8.	Define Pullout torque.	BTL 1	Remember	CO 1
9.	Describe cogging in an induction motor.	BTL 1	Remember	CO 1
10.	What measure can be taken for minimizing the effect of crawling in a 3-phase induction motor?	BTL 4	Analyze	CO 1
11.	Explain the power development stages in an induction motor.	BTL 3	Apply	CO 1
12.	Identify the condition of maximum torque developed in three phase induction motor.	BTL 1	Remember	CO 1
13.	Explain why an induction motor, at no-load, operates at very low power factor.	BTL 3	Apply	CO 1
14.	Describe how do change in supply voltage and frequency affect the performance of a 3-phase induction motor.	BTL 2	Understand	CO 1
				1

15.	Generalize why staring torque of a squirrel cage induction motor cannot be altered when the applied voltage is constant.	BTL 6	Create	CO 1
16.	State the merits and demerits of double squirrel cage induction machines.	BTL 1	Remember	CO 1
17.	Explain the purpose of conducting blocked rotor test.	BTL 4	Analyze	CO 1
18.	Draw the torque-slip double-cage induction motor.	BTL 5	Evaluate	CO 1
19.	List the applications of 3-phase induction motor.	BTL 1	Remember	CO 1
20.	Explain about an induction generator.	BTL 5	Evaluate	CO 1
21.	Explain slip in induction machine.	BTL 4	Analyze	CO 1
22.	Generalize about fixed losses in induction generator.	BTL 6	Create	CO 1
23.	Explain how harmonics effects performance of 3 phase induction motor.	BTL 3	Apply	CO 1
24.	Why maximum torque line differs with change in rotor resistance.	BTL 2	Understand	CO 1
	PART – B			
1.	Describe the construction and working principle of 3phase induction motor. (13)	BTL 1	Remember	CO 1
2.	(15)		Understand	CO 1
3.	Discuss the phenomena of Cogging or Magnetic locking and crawling in an induction motor. (13)	BTL 2	Understand	CO 1
4.	Explain in detail about equivalent circuit of synchronous motor. (13)	BTL 4	Analyze	CO 1
5.	Explain in detail about region of torque slip characteristics of 3phase induction motor. (13)	BTL 4	Analyze	CO 1
6.	Draw and explain RMF principle in 3phase induction motor. (13)	BTL 5	Evaluate	CO 1
7.	Derive the expression for torque under running condition of A 3-phase induction motor and obtain the condition for maximum torque. (13)	BTL 1	Remember	CO 1
8.	Discuss the different power stages of an induction motor with losses. (13)	BTL 2	Understand	CO 1
9.	A 50 HP, 6–Pole, 50 Hz, slip ring IM runs at 960 rpm on full load with a rotor current of 40 A. Allow 300 W for copper loss in S.C. and 1200 W for mechanical losses, find R2 per phase of the 3- phase rotor. (13)	BTL 1	Remember	CO 1
10.	 (i). Point out the effect of change in supply voltage on starting torque, torque and slip. (ii). Point out the effect of variation of rotor resistance and rotor reactance on maximum torque, efficiency and power 	BTL 3	Apply	CO 1
	factor of an induction motor. (13)			

12.	Describe the following: i) induction generator ii) double	BTL 1	Remember	CO 1
	cage rotor induction motors. (6+7)			
13.	100kW, 330V, 50Hz, 3 phase, star connected induction motor has a synchronous speed of 500 rpm. The full load slip is 1.8% and full load power factor 0.85. Stator copper loss is 2440W, iron loss is 3500W, and rotational loss is 1200W. Calculate (i) rotor copper loss, (ii) the line current and (iii) the full load efficiency. (5+4+4)	BTL 3	Apply	CO 1
14.	Generalize about Synchronous-induction motor and different methods of DC excitation of rotor winding. (13)	BTL 6	Create	CO 1
15.	Generalize about power flow diagram of 3phase induction motor. (13)	BTL 6	Create	CO 1
16.	Describe about no load and blocked rotor test on 3 phase induction motor. (13)	BTL 1	Remember	CO 1
17.	Explain in detail the construction and operation of an Induction generator. (13)	BTL 4	Analyze	CO 1
	PART – C			
1.	Explain how the rotating magnetic field is produced in an induction motor. (15)	BTL 5	Evaluate	CO 1
2.	Develop an equivalent circuit for three phase induction motor. State the difference between exact and approximate equivalent circuit. (15)	BTL 6	Create	CO 1
3.	A 3-phase, 400 V induction motor gave the following test reading: No-load: 400 V, 1250 W, 9 A Short circuit: 150 V, 4 kW, 38 A Draw the circle diagram. If the normal rating is 14.9 kW, find from the circle diagram, the full-load value of current, power factor and slip. (15)	BTL 6	Create	CO 1
4.	Analyze the effect of harmonics in performance of 3phase induction motor. (15)	BTL 5	Evaluate	CO 1
5.	Explain about Synchronous-induction motor and different methods. (15)	BTL 5	Evaluate	CO 1
U	NIT II - STARTING AND SPEED CONTROL OF THRE	E PHASE I	NDUCTION MO	DTOR
Contro	or starting – Types of starters – DOL, Rotor resistance, Autotr l – Voltage control, Frequency control and pole changing – Ca recovery scheme - Braking of three phase induction motor: Pl g. PART – A	ascaded con	nection - V/f cont	rol – Slip
0.35		DT -		
Q.No	Questions	BT Level	Competence	Course Outcome
1.	What is the need of starter for induction motor?	BTL 1	Remember	CO 2
2.	Identify the cheapest method of starting a 3phase induction motor?		Remember	CO 2
3.	Express the relationship between staring torque and full load torque of DOL Starter?	BTL 2	Understand	CO 2

4.	List the advantages of rotor resistance starter-based induction	BTL 1	Remember	CO 2
5.	motor starting. Illustrate Auto transformer starting of 3-phase Induction	BTL 3	Apply	CO 2
	motor.			
6.	Describe about the star-delta starter.	BTL 1	Remember	CO 2
7.	Give the typical magnitude of starting current & torque for induction motor?	BTL 2	Understand	CO 2
8.	What are the different methods of speed control employed in three phase cage induction motor?	BTL 1	Remember	CO 2
9.		BTL 5	Evaluate	CO 2
10.	Summarize the different methods of speed control from rotor side of induction motor.	BTL 2	Understand	CO 2
11.	Criticize "is speed control by changing the applied voltage is simpler".	BTL 5	Evaluate	CO 2
12.	What if "the number of poles of an induction motor Increases".	BTL 6	Create	CO 2
13.	Show the cascade connections of induction motor	BTL 3	Apply	CO 2
14.	Illustrate the advantages and disadvantages of V/F speed	BTL 3	Apply	CO 2
15.	control of an induction motor.Generalize how is super-synchronous speed achieved, while controlling the speed of an induction motor.	BTL 6	Create	CO 2
16.	Discuss the advantages of slip power scheme. And also mention the types.	BTL 2	Understand	CO 2
17.		BTL 4	Analyze	CO 2
18.	What type of braking is employed during deceleration of induction motor?	BTL 1	Remember	CO 2
19.	What are the conditions for regenerative braking of an induction motor to be possible?	BTL 4	Analyze	CO 2
20.	Compare Plugging and Regenerative braking.	BTL 4	Analyze	CO 2
21.	Explain Dynamic braking.	BTL 3	Apply	CO 2
22.	Discuss merits of slip power recovery scheme.	BTL 2	Understand	CO 2
23.	Formulate equation to calculate rotor resistance starter.	BTL 5	Evaluate	CO 2
24.	What are the types of slip power recovery scheme.	BTL 1	Remember	CO 2
	PART-B	1		I
1.	Discuss auto transformer and rotor resistance methods of induction. (13)		Remember	CO 2
2.	Describe why starters are necessary for starting 3-phase induction motors? (13)	BTL 1	Remember	CO 2
3.	With neat diagrams explains the working of any two types of starters used for squirrel cage type 3 phase induction motor with neat diagrams explain the working of any two types of starters used for squirrel cage type 3 phase induction motor.(13)		Analyze	CO 2
4.	Discuss the following starters for three phase induction motor:(i)Pole changing method.(ii)Star-Delta Starter. (7)	BTL 2	Understand	CO 2

5.	Describe V/F method for a 3-phase slip ring induction mo	tor.E	BTL 2	Understand	CO 2
6.	Illustrate the rotor rheostat control of 3 phase slip ring		BTL 3	Apply	CO 2
7.	Discuss the cascade operation of induction motors to obta		BTL 2	Understand	CO 2
8.	Explain briefly the various speed control schemes of induction motor. (13) E	BTL 4	Analyze	CO 2
9.	Explain in detail the scherbius system of speed control. (1	13) E	3TL 4	Analyze	CO 2
10.	Illustrate in detail the static kramer system of speed contro	ol. E 13)	BTL 3	Apply	CO 2
11.	A 400 V induction motor runs at a speed of 1440 rpm who supplied from a 50 Hz source. Find its speed at 30 Hz who the load torque is constant. (1		3TL 1	Remember	CO 2
12.	Generalize the following: (i) Rotor Resistance Starter for starting Slipring Induction Motor. (ii) Speed Control of an induction motor by changing the frequency and Poles. (1	BTL 6	Create	CO 2
13.	A 15 H.P., three phase, 6 pole, 50 Hz, 400 V, delta connect IM runs at 960 rpm on full load. If it takes 86.4A on direc starting. Calculate the ratio of starting torque to full-load torque with a star- delta starter. Full load efficiency and po	ctedE t	3TL 3	Apply	CO 2
14.	Draw comparison between starting and full load torque in auto transformer starting.	E 13)	BTL 5	Evaluate	CO 2
15.	Summarize steps of rotor resistance starter and enumerate resistance for each step.	E (13)	BTL 2	Understand	CO 2
16.	Describe starting to full load torque ratio for star-delta star (rter.E	BTL 1	Remember	CO 2
17.	A 4 pole, 50 hz, 3phase induction motor as rotor resistance 0.2 Ω per phase and rotor standstill reactance of 1 Ω per ph . On full load it is running with a slip of 4%. Calculate the extra resistance required in rotor circuit per phase to red the speed to 1260 r.p.m, on the same load condition.	nase e luce	3TL 3	Apply	CO 2
	PART-C				
1.		nase 15)	BTL 5	Evaluate	CO 2
2.	Explain the different methods of slip power recovery schemes. (15) E	BTL 5	Evaluate	CO 2
3.		(15)	BTL 5	Evaluate	CO 2
4.	A 3 phase 50 Hz, 12 pole, 200 kW slip-ring induction motor drives a fan whose torque is proportional to the square of speed. At full load, the motor slip is 0.045. The rotor resistance measured between any two slip-rings is $61 \text{ m}\Omega$. Invent what resistance should be added in the ro- circuit to reduce the fan speed to 450 rpm?		3TL 6	Create	CO 2
5.			BTL 6	Create	CO 2
			RATOR		

Constructional details – Types of rotors – winding factors - emf equation – Synchronous reactance – Armature reaction – Phasor diagrams of non-salient pole synchronous generator connected to infinite bus - Synchronizing and parallel operation – Synchronizing torque - Change of excitation and mechanical input - Voltage regulation – EMF, MMF, ZPF and A.S.A methods – steady state power-angle characteristics – Two reaction theory – slip test - short circuit transients - Capability Curves.

	PART-A				
Q.No	Questions	BT Level	Competence	Course Outcome	
1	Identify the type of synchronous generators that are used in Hydroelectric.	BTL 1	Remember	CO 3	
2.	What are the advantages of salient pole type construction used for synchronous machines?	BTL 2	Understand	CO 3	
3.	Why is the field system of an alternator made as a rotor?	BTL 3	Apply	CO 3	
4.	Differentiate single layer and double layer winding.	BTL 4	Analyze	CO 3	
5.	Summarize winding factors of an alternator.	BTL 5	Evaluate	CO 3	
6.	Explain the role of damper winding in synchronous generator.	BTL 5	Evaluate	CO 3	
7.	Describe about pitch factor.	BTL 3	Apply	CO 3	
8.	What is the necessity of chording in the armature winding of a synchronous machine?	BTL 4	Analyze	CO 3	
9.	Distinguish between the 'Synchronous reactance' and the 'Potier reactance' of a synchronous generator.	BTL 6	Create	CO 3	
10.	Tell, what is meant by armature reaction in an alternator?	BTL 1	Remember	CO 3	
11.	Express what is meant by alternator on infinite bus-bars?	BTL 2	Understand	CO 3	
12.	Demonstrate the conditions to be satisfied for parallel operation of alternators.		Apply	CO 3	
13.	Write the equation for frequency of emf induced in an alternator.	BTL 6	Create	CO 3	
14.	alternators.	BTL 2	Understand	CO 3	
15.	What is synchronizing power of an alternator?	BTL 1	Remember	CO 3	
16.	Explain the causes of voltage drop in an alternator when loaded.	BTL 4	Analyze	CO 3	
17.	Define voltage regulation.	BTL 1	Remember	CO 3	
18.	List the various methods to determine the voltage regulation.	BTL 1	Remember	CO 3	
19.	Why the concept of Two reaction theory is applied only to salient pole	BTL 2	Understand	CO 3	
20.	Distinguish between transient and sub-transient reactance's.	BTL 1	Remember	CO 3	
21.	List the effect of harmonic components in induced emf.	BTL 6	Create	CO 3	
22.	Explain armature leakage reactance.	BTL 4	Analyze	CO 3	
23.	Demonstrate voltage equation of alternator.	BTL 3	Apply	CO 3	
24.	Explain synchronizing current.	BTL 5	Evaluate	CO 3	
	PART-B	1	1	I	
1.	Define armature reaction and explain the effect of armature reaction on different power factor loads of synchronous generators. (13)	BTL 1	Remember	CO 3	

2.	Derive the EMF equation of a 3-phase synchronous machine. (13)	BTL 1	Remember	CO 3
3.	Describe how the direct and quadrature-axis reactance's of a salient-pole synchronous machine can be estimated by means of slip test. (13)		Analyze	CO 3
4.	Explain phasor diagram of one phase of a synchronous generator and describe the features of synchronous impedance. (13)	BTL 3	Apply	CO 3
5.	A 3-phase, 50 Hz, star-connected alternator with 2-layer winding is running at 600 rpm. It has 12 turns/coil, 4 slots/pole/phase and a coil-pitch of 10 slots. If the flux/pole is 0.035 Wb sinusoidally distributed, find the phase and line emf's induced. Assume that the total turns/phase are series connected. (13)		Analyze	CO 3
6.	Describe the parallel operation of three phase alternators with help of a neat diagram. (13)	BTL 1	Remember	CO 3
7.	Define the terms synchronous reactance and voltage regulation of alternator. Explain synchronous impedance method for determining regulation of an alternator. (13)	BTL 4	Analyze	CO 3
8.	Predict the full load voltage regulation of a 3-phase star connected, 1000kVA, 11,000V alternator has rated current of 52.5A. The ac resistance of the winding per phase is 0.45Ω . The test results are given below: OC Test: field current = 12.5A, voltage between lines=422V SC Test: field current = 12.5A, line current = 52.5A (i) For 0.8 pf lagging and (ii) 0.8 pf leading. (6+7)	BTL 2	Understand	CO 3
9.	Sketch and explain the open-circuit and short-circuit characteristics of synchronous machines and explain its parameters in details. (13)	BTL 4	Analyze	CO 3
10.	Describe the principle and construction of slow speed operation generator with neat diagram. (13)	BTL 1	Remember	CO 3
11.		BTL 1	Remember	CO 3
12.	 (i)What is meant by Synchronizing? List the conditions for paralleling alternator with infinite busbars. (6) (ii)Point out the assumptions made in the potier method and explain the effect of these assumptions on the accuracy of the voltage regulation. (7) 		Create	CO 3
13.	Summarize the two-reaction theory of salient pole alternator. (13)	BTL 3	Apply	CO 3
14.	Generalize the EMF & MMF methods of determining the regulation of an alternator. (13)	BTL 4	Analyze	CO 3
15.	Summarize the discussion on capability curve with its boundaries of synchronous machine. (13)	BTL 5	Evaluate	CO 3
16.	Explain in detail about method of synchronization of alternators. (13)	BTL 5	Evaluate	CO 3
17.	Analyze in detail about synchronous alternator connected to constant load and variable excitation. (13)	BTL 2	Understand	CO 3
	PART-C			I

1.							, alternator st readings		Evaluate	CO 3
	If(A)	10	20	25	30	40	50			
	Voc(V)	800	150	176	200	235	2600			
	Ì		0	0	0	0				
	Isc(A)	-	200	250	300	-	-			
	The arma	ture eff	ective re	esistance	per phas	e s 0.2 Ω	. Draw the			
	character					1	0			
	regulation	1 at (i) (0.8 p.f la	ugging, (i	i) 0.8 p.f	leading	by MMF			
	method.						(15)			
2.	Develop 1	the Equ	ivalent o	circuit an	d phasor	diagram	is of a	BTL 6	Create	CO 3
	Synchron	ous gei	nerator.				(15)			
3.	Formulate	e clearl	y the A	S A meth	nod of de	terminin	g the	BTL 6	Create	CO 3
	regulation						(15)			
4.	Explain s	lip test	in detail	for volta	age regul	ation.	(15)	BTL 5	Evaluate	CO 3
5.	Develop a	and equ	ation fo	r synchro	onizing to	orque for	•	BTL 6	Create	CO 3
	synchron	ous gen	erator.				(15)			
			<u>U</u>	NIT IV	/ - SYN	CHRC	DNOUS I	MOTO	<u>R</u>	

Principle of operation – Torque equation – Operation on infinite bus bars - V and Inverted V curves – Power input and power developed equations – Starting methods – Current loci for constant power input, constant excitation and constant power developed - Hunting – natural frequency of oscillations – damper windings – synchronous condenser.

PART -	– B
--------	-----

Q.No	Questions	BT Level	Competence	Course Outcome
1	List the main parts of synchronous motor.	BTL 1	Remember	CO 4
2.	Show the two fundamental characteristics of a rotating magnetic field.	BTL 2	Understand	CO 4
3.	Point out why synchronous motor is not a self-starting motor.	BTL 4	Analyze	CO 4
4.	Why a 3-phase synchronous motor will always run at synchronous speed?	BTL 5	Evaluate	CO 4
5.	Discuss how can we change the operating speed of synchronous motor.	BTL 2	Understand	CO 4
6.	Write down the significance of V and inverted V curves.	BTL 5	Evaluate	CO 4
7.	Discuss about 'Torque angle'.	BTL 2	Understand	CO 4
8.	Develop voltage equation of synchronous motor.	BTL 6	Create	CO 4
9.	Illustrate the typical torque angle characteristics of synchronous machine.	BTL 3	Apply	CO 4
10.	Name the various torques associated with a synchronous motor.	BTL 1	Remember	CO 4
11.	Name the starting methods of synchronous motor.	BTL 1	Remember	CO 4
12.	How does a change of excitation affect its power factor?	BTL 1	Remember	CO 4
13.	A 3-phase synchronous motor driving a constant load torque draws power from infinite bus at leading power factor. How power angle and power factor will change if the excitation is increased?	BTL 2	Understand	CO 4
14.	Invent what happens when the load on the synchronous motor is changed.	BTL 6	Create	CO 4

15.	What is hunting.	BTL 1	Remember	CO 4
16.	Express the causes of hunting.	BTL 2	Understand	CO 4
17.	Explain the methods of reducing the space harmonics in a machine.	BTL 4	Analyze	CO 4
18.	What for damper windings are provided in a synchronous machine?	BTL 3	Apply	CO 4
19.	How the synchronous motor can be used as synchronous condenser.	BTL 4	Analyze	CO 4
20.	List the inherent disadvantages of synchronous motor.	BTL 1	Remember	CO 4
21.	Explain the condition for excitation when motor develops maximum power.	BTL 4	Analyze	CO 4
22.	List the methods to start synchronous motor.	BTL 1	Remember	CO 4
23.	Write down the emf equation for synchronous motor.	BTL 6	Create	CO 4
24.	Express the phasor diagram between Eph and Vph at no load.	BTL 2	Understand	CO 4
	PART – B			
1	Explain briefly the features and principle of operation of three-phase synchronous motor. (13)	BTL 2	Understand	CO 4
2.	Describe how the behavior of a synchronous motor differ from that of a 3-phase induction motor. (13)		Remember	CO 4
3.	 (i) Show that the synchronous motor is a variable power factor motor. (ii) List the advantages of salient pole in synchronous motor. (7) 	BTL 1	Remember	CO 4
4.		BTL 1	Remember	CO 4
5.	Examine the effect of loading in synchronous motor at various Power. (13)	BTL 1	Remember	CO 4
6.	 (i)Derive the mechanical power developed per phase of a synchronous motor. (6) (ii) Derive the expression for maximum torque developed per phase of synchronous motor. 	BTL 2	Understand	CO 4
7.		BTL 4	Analyze	CO 4
8.	Explain in detail the V curve and inverted V curve of a synchronous motor. (13)	BTL 5	Evaluate	CO 4
9.	Explain in detail the method of starting of synchronous motor. (9)	BTL 5	Evaluate	CO 4
10.		BTL 4	Analyze	CO 4

	uctional details of single-phase induction motor – Double field alent circuit – No load and blocked rotor test – Performance ar ion motors – Capacitor-start capacitor run induction motor - S	nalysis – Sta	rting methods of	
	NIT V – SINGLE PHASE INDUCTION MOTORS			
T 7 N	synchronous motor with its equivalent circuit. (15)			
5.	a synchronous motor.(15)Write down in detail about construction and operation of	BTL 6	Create	CO 4
4.	What if, the effect of varying field current and load change or		Evaluate	CO 4
3.	Formulate the power flow equations for a synchronous motor (15)		Create	CO 4
	per phase of 18 ohms. It operates at a leading power factor of 0.707 when drawing 800 kW from the mains. Calculate its excitation emf. (15)	f		
2.	motor in terms of load angle (α). (15) A 3300V, delta connected motor has a synchronous reactance		Evaluate	CO 4
1	Deduce the expression for power delivered by a synchronous		Create	CO 4
	PART – C			
17.	Explain in detail about importance of synchronization with infinite bus bar. what is the condition for synchronous motor to operate for pf improvement. (13)	BTL 5	Evaluate	CO 4
16.	With phasor diagram illustrate how synchronous motor can be used as a synchronous condenser.(13)			
15.	Illustrate the phenomenon of hunting and the use of damper winding with the help of dynamic equations. (13)	BTL 3	Apply	CO 4
14.	A 1000 kVA, 11000 V, 3–phase star-connected synchronous motor has an armature resistance and reactance per phase of 3.5 Ω and 40 Ω respectively. Determine the induced emf and angular retardation of the rotor when fully loaded at 0.8 p.f. lagging and 0.8 p.f. leading. (13)		Evaluate	0 4
13.	current and power factor of synchronous motor. (13) A 1000 kVA, 11000 V, 3–phase star-connected synchronous		Evaluate	CO 4
13.	constant load.(13)Examine in detail the effect of varying excitation on armature	BTL 3	Apply	CO 4
12.	losses of the machine are 3200W. find (i) Emf induced (ii) output power (iii) Efficiency of the machine. (5+4+4) Generalize the effect of changing field current excitation at	BTL 6	Create	CO 4
	A 6600V, 3 phase, star connected synchronous motor draws a full load current of 80A at 0.8pf leading. The armature resistance is 2.2Ω and reactance of 22Ω per phase. If the stray	7	Understand	CO 4

Distinguish the terms rotating and pulsating magnetic fields. BTL 4

3.

CO 5

Analyze

4.	Identify the inherent characteristics of plain 1-phase induction motor.	BTL 1	Remember	CO 5
5.	Show the no load vector diagram for single phase induction motor.	BTL 3	Apply	CO 5
6.	Develop the Speed torque characteristics of single-phase induction motor.	BTL 6	Create	CO 5
7.	Name the two windings of a single-phase induction motor.	BTL 1	Remember	CO 5
8.	Examine why centrifugal switches are provided in many 1- phase induction motors	BTL 4	Analyze	CO 5
9.	Design the capacitor rating required for an induction motor	BTL 6	Create	CO 5
10.	Illustrate why capacitor-start induction motors are advantageous.	BTL 4	Analyze	CO 5
11.	Explain how the direction of a capacitor-start motor can be reversed.	BTL 4	Analyze	CO 5
12.	Summarize the advantages of capacitor start induction motor over split-phase induction motor.		Understand	CO 5
13.	What is the role of 'magnetic bridges' in the operation of a shaded pole induction motor?	BTL 1	Remember	CO 5
14.	State the limitations of shaded pole motors.	BTL 2	Understand	CO 5
15.	Predict the type of motor that is used for ceiling fan.	BTL 1	Remember	CO 5
16.	Specify the use of single-phase induction motor.	BTL 1	Remember	CO 5
17.	What is the principle of operation of a linear induction motor.	BTL 1	Remember	CO 5
18.	What is the necessity of having laminated yoke in an ac series motor?	BTL 4	Analyze	CO 5
19.	Discuss the working principle of repulsion motor.	BTL 2	Understand	CO 5
20.	What is the principle of reluctance motor?	BTL 5	Evaluate	CO 5
21.	Examine magnetic-levitation.	BTL 3	Apply	CO 5
22.	List applications of DC linear motor.	BTL 2	Understand	CO 5
23.	What are the advantages of linear synchronous motor.	BTL 3	Apply	CO 5
24.	How does a servo motor works.	BTL 2	Understand	CO 5
	PART – B			
1	Give the classification of single-phase motors. Explain any two types of single-phase induction motors. (13)	BTL 2	Understand	CO 5
2.	Using double field revolving theory, compose why a single phase induction motor is not self-starting. Also obtain the equivalent circuit of single-phase induction motor with necessary equations. (13)	BTL 6	Create	CO 5
3.	Illustrate the operation of single-phase induction motor with double field revolving theory.(13)	BTL 3	Apply	CO 5
4.	Describe the no-load test and blocked rotor test for obtaining the equivalent circuit parameters of a single-phase induction motor. (13)	BTL 3	Apply	CO 3

5.	Describe the no-load test and blocked rotor test for obtaining	BTL 3	Apply	CO 5
	the equivalent circuit parameters of a single-phase induction		11.5	
	motor. $R1m = 2.4 \Omega$, $X1m = 3.2 \Omega R2' = 4.7 \Omega$, $X2' = 2.8 \Omega$			
	and $Xm = 90 \Omega$. Examine (i) Input current (2) (ii) Power			
	Factor (3) (iii) Developed power (3) (iv) Output power and			
	(3) (v) Efficiency for a slip of 0.04. (2)			
6.	List in detail the operation of capacitor start and run	BTL 1	Remember	CO 5
0.		DILI	Kemember	05
7.	Explain with suitable diagram the working principle of split-	BTL 4	Analyze	CO 5
	phase induction motor. (13)			
8.	Explain the working of linear induction motor and also write	BTL 5	Evaluate	CO 5
	its applications. (13)			
9.		BTL 3	Apply	CO 5
).	Demonstrate offerty about the Repulsion motor. (15)	DILJ	rppry	005
10.	Discuss the construction, operation and characteristics of	BTL 1	Remember	CO 5
	servo motor. (13)			
11.		BTL 4	Analyze	CO 5
	linear induction motor. (13)			
10			Apple	CO 5
12.	Write down the construction, operation and characteristics of AC acriss mater (12)	כדום	Apply	05
1.0	AC series motor. (13)			96.5
13.		BTL 2	Understand	CO 5
	DC series motor to make it to work with single phase AC			
	supply. State the applications of AC series motors. (13)			
14.	Formulate the constructional details, principle of operation	BTL 3	Apply	CO 5
	and the application of Hysteresis motor. (13)		11.0	
15.	Demonstrate the construction and working principle of the	BTL 5	Evaluate	CO 5
10.	following special Machines:(i) Stepper motors. (ii)		Liturate	
	Shaded pole induction motor. (6+7)			
16		BTL 5	Evaluate	CO 5
16.				
17.	Develop in detail about applications of stepper, AC linear	BTL 6	Create	CO 5
	Induction, stepper and AC series motor. (13)			
	PART-C			
1	Summarize the constructional details, principle of operation	BTL 5	Evaluate	CO 5
*	and the application of Hysteresis motor and AC Series			
	motor. (15)			
2			Create	CO 5
2.	Demonstrate briefly the determination of Steady state	BTL 6	Create	CO 5
	equivalent circuit parameters of Single-Phase Induction			
	motor from No-load and Blocked rotor Tests.			
	(15)			
3.	Generalize about Magnetic Levitation Systems. (15)	BTL 5	Evaluate	CO 5
4.	A 220 V, single phase induction motor gave the following	BTL 5	Evaluate	CO 5
	test results: Blocked rotor test: 120V, 9.6 A, 460 W; No-load			
	test: 220V, 4.6 A, 125 W. The Stator winding resistance is			
	1.5 Ω , and during the blocked rotor test, the starting winding			
	is open. Prepare the Equivalent circuit parameters, core,			
	friction and windage losses. (15)			
5			Create	CO 5
5.	Demonstrate the constructional details, principle of	BTL 6	Create	CO 5
	operation and the application of brushless DC machines.			
	(15)	1		1