SRM VALLIAMMAI ENGINEERING COLLEGE

(Autonomous Institution)

DEPARTMENT OF
ELECTRICAL AND ELECTRONICS ENGINEERING
QUESTION BANK

I<mark>V S</mark>EMEST<mark>ER</mark>

1905405 ELECTROMAGNETIC THEORY

Regulation - 2019

Academic Year 2022-2023

Prepared by

Mr.S.Padhmanabha Iyappan, Assistant Professor(Sel.G)

SRM VALLIAMMAI ENGINEERING COLLEGE

SRM Nagar, Kattankulathur – 603 203.

DEPARTMENT OF ELECRICAL AND ELECTRONICS ENGINEERING $\underline{\textbf{QUESTION BANK}}$

SUBJECT: 1905405 ELECTROMAGNETIC THEORY

SEM / YEAR: IV/II

UNIT I - ELECTROSTATICS - I

Sources and effects of electromagnetic fields – Coordinate Systems – Vector fields – Gradient, Divergence, Curl – theorems and applications - Coulomb's Law – Electric field intensity – Field due to discrete and continuous charges – Gauss's law and applications.

	PART – A			
Q.No	Questions	BT Level	Competence	
1.	Points P and Q are located at (0,2,4) and (-3,1,5). Determine the distance vector from P to Q.	BTL 3	Applying	CO1
2.	State Stoke's Theorem.	BTL 1	Remembering	CO1
3.	List the sources of electromagnetic fields.	BTL 1	Remembering	CO1
4.	Apply in matrix form the unit vector transformation from the rectangular to cylindrical coordinate system	BTL 3	Applying	CO1
5.6.	Two vectorial quantities $\bar{A} = 4\bar{\imath} + 3\bar{\jmath} + 5\bar{k}$ and $\bar{B} = \bar{\imath} - 2\bar{\jmath} + 2\bar{k}$ are known to be oriented in two unique directions. Determine the angular separation between them. State the conditions for a vector A to be (a) solenoidal (b)	BTL 2 BTL 1	Understanding Remembering	CO1
7.	irrotational. State Divergence Theorem.	BTL 1	Remembering	CO1
8.	State the electric flux density.	BTL 1	Remembering	CO1
9.	Define divergence and its physical meaning.	BTL 1	Remembering	CO1
		BTL 3		CO1
10. 11.	What are the practical applications of electromagnetic fields? Mention the criteria for choosing an appropriate coordinate system for solving a field problem easily. Explain with an example.	BTL 4	Applying Analysing	CO1
12.	When a vector field is solenoid and irrotational.	BTL 6	Creating	CO1
13.	Give the practical examples of diverging and curl field.	BTL 2	Understanding	CO1
14.	Obtain the unit vector in the direction from the origin towards the point P (3,-3,2).	BTL 5	Evaluating	CO1
15.	Give the differential displacement and volume in spherical co- ordinate system.	BTL 2	Understanding	CO1
16.	How can a vector field be expressed as the gradient of scalar field?	BTL 5	Evaluating	CO1
17.	Determine the curl of $\overline{P} = x^2 yz \overline{a_x} + xz \overline{a_z}$	BTL 4	Analysing	CO1
18.	Verify the vector $\overline{A}=4$ $\overline{a_x}-2\overline{a_y}+2\overline{a_z}$, $\overline{B}=-6$ $\overline{a_x}+3\overline{a_y}-3$ $\overline{a_z}$ are parallel to each other.	BTL 6	Creating	CO1

19.	Find the unit vector extending from the origin toward the point P (3,-1,-2)		BTL 4	Analysing	CO1
20.	Determine the electric field intensity in free space if $\vec{D} = 30 d_m C/m^2$		BTL 2	Understanding	CO1
21.	Transform the cartesian coordinates (2,1,3) into spherical coordinates.		BTL 4	Analysing	CO1
22.	Express the value of differential volume in rectangular coordinate and cylindrical coordinate system.		BTL 2	Understanding	CO1
23.	Find the distance from A (1,23) to B (2,0, -1) in rectangular coordinates.		BTL 5	Evaluating	CO1
24.	Name a few applications of Gauss's law in electrostatics.		BTL 3	Applying	CO1
	PART – B				
1.	i)Show that over the closed surface of a sphere of radius B,ds =0	(4)			
	ii)Show that the vector $E = (6 xy + z^3) a_x + (3x^2 - z) a_y + (3xz^2 - y) a_z$ is Irrotational and find its scalar potential.	(9)	BTL 3	Applying	CO1
2.	Express the vector B in Cartesian and cylindrical systems. Given B= $\frac{10}{r} \overrightarrow{a_r} + r \cos\theta \overrightarrow{a_\theta} + \overrightarrow{a_\phi}$. then find B at (-3, 4, 0) and (5, π /2,-2).	(13)	BTL 2	Understanding	CO1
3.	i)Generalize the classification of vector fields. ii) If $B = y \vec{a}_x + (x + z) \vec{a}_y$ and a point Q is located at (-2, 6, 3), express (1) the point Q in cylindrical and spherical coordinates; (2) \vec{B} in spherical coordinates.	(8)	BTL 6	Creating	CO1
4.	Analyse the divergence of these vector fields. i)P = x^2 yz \vec{a}_x + xz \vec{a}_z ii)Q = $\rho \sin \phi \vec{a}_{p+}$ $\rho^2 z \vec{a}_{\phi} + z \cos \phi \vec{a}_z$ iii) T = $\left\{\frac{1}{r^2}\right\} \cos \theta \vec{a}_r + r \sin \theta \cos \phi \vec{a}_{\theta} + \cos \theta \vec{a}_{\theta}$	(13)	BTL 4	Analysing	CO1
5.	 i) Given point P (-2,6,3) and \$\bar{A} = y\bar{\bar} + (x + z)\bar{\bar{\bar{\bar{\bar{\bar{\bar{	(6) (7)	BTL 2	Understanding	CO1
6.	i) Find the electric field at a point P(0,0,6) due to a point charge Q1 of 0.35 μ C placed at (0,5,0) and Q2 of -0.6 μ C placed at (5,0,0). ii) Prove the identity $\nabla X \nabla X H = \nabla (\nabla H) - \nabla^2 H$ Where the H is a vector.	(7)	BTL 3	Applying	CO1

7.	i) State and describe divergence theorem.	(9)			
	ii) Show that in Cartesian coordinates for any vector A, $\nabla \cdot (\nabla^2 A) = \nabla^2 (\nabla \cdot A)$	(4)	BTL 1	Remembering	CO1
8.	 i) With neat diagram, explain the spherical system with coordinates(R,Θ,φ). ii) Apply Coulomb's law to find the electric field intensity at any point P due to a straight, uniformly charged wire of linear charge 	(13)	BTL 4	Analysing	CO1
9.	density ρ_l C/m. The point P is at a distance of 'L' m above the wire. Write short notes on gradient, divergence, curl and stokes theorem.	(13)	BTL 1	Remembering	CO1
10.	i)Verify the divergence theorem for a vector field	(9)			
10.	$D = 3x^2a_x + (3y + z)a_y + (3z - x)a_z$ in the region bounded by the		BTL 1	Remembering	
	cylinder $x^2+y^2=9$ and the planes $x=0$, $y=0,z=2$	(4)	DILI	Remembering	CO1
	ii) A novel printing technique is based upon electrostatic deflection principal. Justify.				
11.	i) If $\overrightarrow{B} = y \overrightarrow{a_x} + (x + z) \overrightarrow{a_y}$ and a point Q is located at (-2,6,3), express	(9)			
	 a) The point Qin cylindrical and spherical co ordinates. b) in spherical co ordinates. 		BTL 2	Understanding	CO1
	ii) Derive coulomb's law of force.	(4)			
12.	i)By means of Gauss's law. Determine the electric field intensity at a	(6)			
	point P distant 'L' m from an infinite line of uniform charge ρ_l C/m.		BTL 4	Analysing	CO1
	ii) Explain the divergence of a vector field and Divergence theorem.	(7)			
13.		(7)			CO1
	ii) Discover an expression for electric field due to a charged circular disc.	(6)	BTL 1	Remembering	COI
14.	Given that $\vec{F} = (x^2 + y^2)\vec{\imath} - 2xy\vec{\jmath}$ evaluate both sides of stokes				CO1
	theorem for a rectangular path bounded by the lines x=0, a, y=0, y=b, z=0 z=c.	(13)	BTL 5	Evaluating	
15.	Prove that divergence of a curl of a vector is zero, using stoke's theorem.	(13)	BTL 4	Analysing	CO1
16.	State and verify divergence theorem for the vector $\vec{A} = 4x\vec{i} - 2y^2\vec{j} + z^2\vec{k}$				CO1
	taken over the cube bounded by x=0, x=1, y=0,y=1.	(13)	BTL 5	Evaluating	
17.	Find the total electric field at the origin due to 10^{-8} C charge located at P (0,4,4) m and -0.5 x 10^{-8} C charge at Q (4,0,2) m.	(13)	BTL 6	Creating	CO1
	PART C		<u> </u>	I	

1.	Given that $\mathbf{A} = 30e^{-r}\mathbf{a}_{r} - 2z\mathbf{a}_{z}$ in cylindrical coordinates evaluate both sides of divergence theorem for the volume enclosed by $r = 2$, $z = 0$ and $z = 5$.	(15)	BTL 5	Evaluating	CO1
2.	Given that $D = 5r^2/4\vec{a_r}$ C/m ² . Evaluate both the sides of divergence theorem for the volume enclosed by r= 4m and $\theta = \pi/4$	(15)	BTL 5	Evaluating	CO1
3.	Design & validity of the divergence theorem considering the field $D=2xya_{xy}^{\rightarrow}+x^{2}a_{yy}^{\rightarrow}$ C/m^{2}	(15)	BTL 6	Creating	CO1
4.	Analyse the electric field intensity produced by a point charge distribution at P $(1,1,1)$ caused by four identical 3nc point charges located at P ₁ $(1,1,0)$, P ₂ $(-1,1,0)$,P ₃ $(-1,-1,0)$ and P ₄ $(1,-1,0)$	(15)	BTL 4	Analysing	CO1
5.	A positive point charge 100×10^{-12} C is located in air at $x=0,y=0.1$ m and another charge at $x=0,y=-0.1$ m. What is the magnitude and the direction of E at $x=0.2$ m, $y=0$?	(15)	BTL 6	Creating	CO1
	UNIT II - ELECTROSTATICS – II		I	I	
factor streng	ric potential – Electric field and equipotential plots, Uniform and N r – Electric field in free space, conductors, dielectrics - Dielect gth - Electric field in multiple dielectrics – Boundary condition ions, Capacitance, Energy density, Applications.	ric po	olarization	1 - Dielectric	
	PART – A				
Q.No	Questions		BT Level	Competence	
1.	Define electrical potential.		BTL 1	Remembering	CO2
2.	Mention the properties of electric flux lines.		BTL 1	Remembering	CO2
3.	State the electrostatic boundary conditions at the interface between two dielectrics.		BTL 1	Remembering	CO2
4.	State the properties of electric flux lines.		BTL 1	Remembering	CO2
5.	A dielectric slap of flat surface with relative permittivity 4 is disposed with its surface normal to a uniform field with flux density 1.5c/m ² . The slab is uniformly polarized. Determine polarization in the slab.		BTL 3	Applying	CO2
6.	A parallel plate capacitor has a charge of 10 ⁻³ C on each plate while the potential difference between the plates is 1000v. Evaluate the value of capacitance.		BTL 5	Evaluating	CO2
7.	What is the practical significance of Lorentz Force?		BTL 1	Remembering	CO2
8.	Define electric dipole moment.		BTL 1	Remembering	CO2
9.	Write Poisson's equation for a simple medium.		BTL 6	Creating	CO2
10.	What is conservative field?		BTL 6	Creating	CO2
11.	Define dielectric strength.		BTL 2	Understanding	CO2
12.	What is meant by dielectric breakdown?		BTL 2	Understanding	CO2
13.	A uniform line charge with ρ_1 =5 μ C/m lies along the x-axis. Find \vec{E} at (3, 2, 1).		BTL 5	Evaluating	CO2

14.	Prepare the electric field intensity at a distance of 20 cm from a charge of 2 in vacuum.		BTL 3	Applying	CO2
15.	Write the expression for the energy density in electrostatic field.		BTL 2	Understanding	CO2
16.	State the properties of electric flux lines.		BTL 2	Understanding	CO2
17.	Define energy density.		BTL 3	Applying	CO2
18.	Write the equation for capacitance of coaxial cable.		BTL 4	Analysing	CO2
19.	Give the significant physical differences between Poisson's and Laplace's equations.		BTL 4	Analysing	CO2
20.	Evaluate the electric field intensity in free space if D=30 \mathbf{a}_{x} C/m ³ .		BTL 4	Analysing	CO2
21.	Give the relationship between potential gradient and electric field.		BTL 2	Understanding	CO2
22.	Define polarization in dielectric material.		BTL 2	Understanding	CO2
23.	Find the electric potential at a point (4,3) m due to a charge of 10 ⁻⁹ C located at the origin in free space.		BTL 3	Applying	CO2
24.	Find the energy stored in a parallel plate capacitor of 0.5 m by 1 m has a separation of 2 cm and a voltage difference of 10 V.		BTL 4	Analysing	CO2
	PART – B			,	
1.	Deduce an expression for the capacitance of parallel plate capacitor having two identical media.	(13)	BTL 4	Analysing	CO2
2.	 (i) State and derive electric boundary condition for a dielectric to dielectric medium and a conductor to dielectric medium. (ii)Derive the expression for energy density in electrostatic field. 	(6) (7)	BTL 1	Remembering	CO2
3.	(i)State and explain coulomb's law and deduce the vector form of force equation between two-point charges. (ii) At an interface separating dielectric medium $1(\epsilon_{r_1})$ and dielectric medium $2(\epsilon_{r_2})$ show that the tangential component of \vec{l} is continuous across the boundary, whereas the normal component of \vec{l} is discontinuous at the boundary.	(2)	BTL 1	Remembering	CO2
4.	i)A circular disc of radius 'a' m is charged uniformly with a charge	(6)			
	density of ρ_s C/m ² . Find the electric potential at a point P distant 'h' m from the disc surface along its axis.		BTL 4	Analysing	CO2
	ii) Find the value of capacitance of a capacitor consisting of two parallel metal plates of 30cm x 30cm surface area, separately by 5mm in air. What is the total energy stored by capacitor is charged to a potential difference of 1000v? What is the energy density?	(7)			
5.	i)Find the potential at r A = 5 m with respect to r B = 15 m due to point charge Q=500 Pc at the origin and zero reference at infinity. ii) Find the capacitance of a parallel plate capacitor with dielectric ϵ_{r_1} = 1.5 and ϵ_{r_2} = 3.5 each occupy one half of the space between the plates of area 2 m² and d= 10^{-3} m.	(6)	BTL 3	Applying	CO2
6.	Find the potential at any point along the axis of a uniformly charged disc.	(13)	BTL 4	Analysing	CO2

7.	Interpret the expression for energy stored and energy density in electro static fields.	(13)	BTL 3	Applying	CO2
8.	i) In spherical coordinates V= -25 V on a conductor at $r=2$ cm and V= 150 V at $r=35$ cm. The space between the conductor is a dielectric of $\epsilon r=3.12$, Find the surface charge densities on the conductor.	(10)	BTL 2	Understanding	CO2
	ii) Define Laplace and Poisson's equation.	(3)			
9.	Point charges 1 mC and -2 mC are located at (3,2,-1) and (-1, -1,4) respectively. Calculate the electric force on a 10nC charge located at (0,3,1) and the electric field intensity at the point.	(13)	BTL 2	Understanding	CO2
10.	The relative permittivity ε_r of linear, homogeneous, isotropic dielectric material is 3.6 and the material is covering the space between z=0 and z=1. If v = -6000z volts in the material. Find (1)E, (2)P,(3) ρ_v .	(13)	BTL 5	Evaluating	CO2
11.	 i)A positive point charge 100*10⁻¹² C is located in air at x=0,0.01m and another such charge at x=0, y=-0.1m. What is the magnitude and direction of E? ii) Obtain an expression for the capacitance of a parallel plate capacitor with two dielectrics of relative permittivity ∈₁ and ∈₂ respectively interposed between the plates. 	(4)	BTL 1	Remembering	CO2
12.	i)Explain briefly the polarization in dielectrics. ii) Derive Laplace's and Poisson's equation from Gauss's law for a	(13)	BTL 1	Remembering	CO2
13.	Distinguish between electric potential and electric potential difference. Two point charges -4 micro coulomb and 5 micro coulomb are located at (2,-1,3) and (0,4,-2) respectively. Find the potential at (1,0,1) assuming zero potential at infinity.	(13)	BTL 2	Understanding	CO2
14.	i) Two point charges -4μ C and 5μ C are located at $(2,-1,3)$ and $(0,4,-2)$ respectively. Find the potential at $(1,0,1)$ assuming zero potential at infinity. ii) A Parallel plate capacitor has a plate separation t. The capacitance with air only between the plates is C. When a slab of thickness t' and relative permittivity ε ' is placed on one of the plates, the capacitance is C' show that $\frac{C'}{C} = \frac{\varepsilon'}{(t' + \varepsilon'(t - t'))}$	(13)	BTL 6	Creating	CO2
15.	A parallel plate capacitance has free space between the plates. Compare the voltage gradient in this case to that in the free space. When a sheet of mica, $\epsilon_r = 5.4$, fills 20 % of the distance between the plates. Assume the same applied voltage in each case.	(13)	BTL 4	Analysing	CO2

16.	Two capacitors $C_1=1~\mu F$ and $C_2=2~\mu F$ are connected in parallel across a 1000V dc supply. Find the charge on capacitors.	(13)	BTL 6	Creating	CO2
17.	Two parallel plate capacitors of unknown capacitance when connected in series are known to have an equivalent capacitance of 66.667 μ F. When the same two capacitors are connected end to end, the equivalent capacitance is found to be 300 μ F. What are the two unknown capacitances?	(13)	BTL 5	Evaluating	CO2
	PART C				
1.	A capacitor consists of squared two metal plates each 100 cm side placed parallel and 2 mm apart. The space between the plates is filled with a dielectric having a relative permittivity of 3.5. A potential drop of 500 V is maintained between the plates. Evaluate (i) The capacitance, (ii) The charge of capacitor, (iii) The electric flux density, (iv) The potential gradient.	(15)	BTL 5	Evaluating	CO2
2.	Analyse the vector $V=x^2Y+10Z+2\log(x^2+y^2)$ find V, E, D and ρ_v at (1,2,3).	(15)	BTL 4	Analysing	CO2
3.	Step by Step, develop a condition between (i) Conductor and Dielectric (ii) Dielectric and Dielectric	(15)	BTL 4	Analysing	CO2
4.	Solve one dimensional LAPLACE equation to obtain the field inside a parallel plate capacitor, and Evaluate the expression for the surface charge density at two plates.	(15)	BTL 5	Evaluating	CO2
5.	If a potential $V = x^2yz + Ay^3z$. Find the value of A so that Laplace's equation is satisfied and electric field at $(2, -2, 1)$.	(15)	BTL 6	Creating	CO2
	UNIT III - MAGNETOSTATICS				
conduc magne	tz force, magnetic field intensity (H) – Biot–Savart's Law - Ampere's ectors, circular loop, infinite sheet of current, Magnetic flux density (Betic materials – Magnetization, Magnetic field in multiple media – Betic potential, Poisson's Equation, Magnetic force, Torque, Inductance, En) – B ounda	in free sp ry condit	pace, conductor, ions, scalar and	
	PART – A				
Q.No	Questions		BT Level	Competence	
1.	Distinguish between magnetic scalar potential and magnetic vector potential.		BTL 4	Analysing	CO3
2.	What is Lorentz law of force?		BTL 1	Remembering	CO3
3.	Write the expression for magnetic field H at the centre of a circular coil carrying a current of I amperes. The radius of the coil is a 'm'.		BTL 6	Creating	CO3

4.	Determine the value of magnetic field intensity at the centre of a circular loop carrying a current of 10 A. The radius of the loop is 2 m.		BTL 3	Applying	CO3
5.	Expression for the magnetic force between an electromagnet and an armature to be attracted.		BTL 2	Understanding	CO3
6.	Establish the inductance per unit length of a long solenoid of N turns and having a length 'L 'mtrs. Assume that it carries a current of I amperes.		BTL 3	Applying	CO3
7.	State Ampere's circuital law.		BTL 1	Remembering	CO3
8.	State Biot savarts law.		BTL 1	Remembering	CO3
9.	What is the total force acting on a moving charge Q in the presence of both electric and magnetic fields.		BTL 3	Applying	CO3
10.	Define the terms: magnetic moment and magnetic permeability.		BTL 1	Remembering	CO3
11.	What is vector magnetic potential?		BTL 1	Remembering	CO3
12.	Define Magnetostaic energy density.		BTL 1	Remembering	CO3
13.	Design the BH curve for classifying magnetic materials.		BTL 5	Evaluating	CO3
14.	Estimate the mutual inductance of the two inductively coupled coils with self inductance of 25mH and 100 mH.		BTL 2	Understanding	CO3
15.	Illustrate self inductance and mutual inductance.		BTL 2	Understanding	CO3
16.	A current of 3A flowing through an inductor of 100mH. Interpret the energy stored in the inductor?		BTL 4	Analysing	CO3
17.	Distinguish between diamagnetic, paramagnetic and ferromagnetic materials.		BTL 4	Analysing	CO3
18.	Sketch Gauss law for the magnetic field.		BTL 5	Evaluating	CO3
19.	What is the practical significance of Lorentz's Force?		BTL 2	Understanding	CO3
20.	Compare magnetic scalar potential and magnetic vector potential		BTL 6	Creating	CO3
21.	Define magnetic flux density.		BTL 2	Understanding	CO3
22.	List the applications of Ampere's circuital law.		BTL 4	Analysing	CO3
23.	Give an equation of torque on a solenoid.		BTL 5	Evaluating	CO3
24.	A circular coil of radius 2 m carries a current of 4 A. What is the value of magnetic field intensity at the centre?		BTL 3	Applying	CO3
	PART – B				
1.	State and explain Ampere's circuit law and show that the field strength at the end of a long solenoid is one half of that at the centre.	(12)	DTI 1	Domonik oring	CO3
2.	a) State and explain Bio-savarts law.	(13)	BTL 1	Remembering	CO3
	b) Derive an expression for the force between two long straight parallel current carrying conductors.	(7)	BTL 1	Remembering	
3.	Derive a general expression for the magnetic flux density B at any point along the axis of a long solenoid. Sketch the variation of B from point to point along the axis.	(13)	BTL 2	Understanding	CO3

4.	i)Obtain an expression for the magnetic field intensity due to straight finite conductor carrying current I amperes using Biot Savart's law ii)State and Prove Ampere's law	(8)	BTL 2	Understanding	CO3
5.	i) Show by means of Biot Savarts law that the flux density produced by an infinitely long straight wire carrying a current I at any point distant a normal to the wire is given by μ 0 μ 1/2 π a. ii) State and prove magnetic boundary conditions.	(5)	BTL 2	Understanding	СО3
6.	i)Derive Biot Savart's law and ampere law using the concept of magnetic vector potential. ii) The core of a toroid is of 12 cm 2 area and is made of material with μ_r =200. If the mean radius of the toroid is 50cm. Calculate the number of turns needed to obtain an inductance of 2.5H.	(6)	BTL 1	Remembering	CO3
7.	i)Quote the expression for the magnetic field intensity inside and outside a co- axial conductor of inner radius 'a' and outer radius 'b' and carrying a current of I ampers in the inner and outer conductor. ii) Calculate the self inductance of infinitely long solenoid	(6)	BTL 1	Remembering	CO3
8.	 i) Quote the expression for the magnetic vector potential in the cases of an infinitely long straight conductor in free space. ii) Consider the boundary between two media. Show that the angles between the normal to the boundary and the conductivities on either side of the boundary satisfy the relation. 	(6)	BTL 3	Applying	СО3
9.	Obtain the expression for energy stored in the magnetic field and also derive the expression for magnetic energy density.	(13)	BTL 3	Applying	CO3
10.	 i)Derive and explain the expression for coefficient of coupling in terms of mutual and self inductance of the coils. ii) An iron ring with a cross sectional area of 8cm² and a mean circumference of 120cm is wound with 480 turns of wire carrying a current of 2 A. the relative permeability of the ring is 1250. Calculate the flux established in the ring. 	(6)	BTL 4	Analysing	CO3
11.	 i) Categorize the classification of magnetic materials in detail and draw a typical magnetization (B-H) curve. ii) What is 'Magnetization'? Explain the classification of magnetic materials. 	(7) (6)	BTL 4	Analysing	CO3
12.	i) Obtain an expression for magnetic flux density and magnetic field intensity at any point along the axis of a circular coil.ii) Distinguish between scalar and vector magnetic potential.	(10)	BTL 4	Analysing	CO3
13.	 i) An air co-axial transmission line has a solid inner conductor of radius 'a' and a very thin outer conductor of inner radius 'b'. Organise the inductance per unit length of the line. ii) Compare the different magnetic materials 	(9)	BTL 5	Evaluating	CO3
14.	 i)Prepare an expression for magnetic field intensity and magnetic flux density at any point due to finite length conductor. ii) Prepare an expression for inductance and torque on a long solenoid coil. 	(9)	BTL 6	Creating	CO3

16.	Calculate the magnetic flux density due to circular coil of 100			Analysing	
	ampere turns and area of 70 cm ² on the axis of the coil at 10 cm from the center.	(13)	BTL 5	Evaluating	CO3
17.	A wire carrying a current of 100 A is bent in to the form of a circle of diameter 10 cm. Calculate (i) Flux density at the center of the coil (ii) Flux density at a point on the axis of the coil and 12 cm from it.	(13)	BTL 6	Creating	CO3
	PART C				
1.	Evaluate the loop inductance per km of a single-phase transmission				
	circuit comprising two parallel conductor spaced 1 m apart and with diameters 0.5 cm and 0.8 cm respectively	(15)	BTL 5	Evaluating	СОЗ
2.	By means of Biot-Savart's law, derive an expression for the				
	magnetic field intensity at any point on the line through the centre	(15)	BTL 5	Evaluating	
	AA'	(15)	BIL 3	Evaluating	CO3
	at a distance 'h'from the centre and perpendicular to the plane of a				
	circular loop of radius 'p'and carrying current 'I'				
3.	An iron ring,0.2 m in diameter and 10cm*cm sectional area of the core is uniformly wound with 250 turns of wire. The wire carries a current of 4A.The wire carries a current of 4A.The relative permeability of iron is 500.Determine the value of self inductance and the stored energy.	(15)	BTL 5	Evaluating	CO3
4.	A solenoid consisting of 1000 turns of wire wound on a former of length 100 cm and diameter 3 cm is placed coaxially within another solenoid of the same length and number of turns but with a diameter of 6cm. Evaluate the mutual inductance and the coupling coefficient of the arrangement	(15)	BTL 5	Evaluating	CO3
5.	Two coils are connected in series and their total inductance is 4.4 m H. When one coil is reversed, the total inductance is 1.6 mH. All the flux due to first coil links the second coil, but only 40 % of the flux due to second coil links the first coil. Find the self-inductance of each coil and their mutual inductance.	(15)	BTL 5	Evaluating	СО3
	UNIT IV - ELECTRODYNAMIC FIELDS				
- Maxv	etic Circuits - Faraday's law — Transformer and motional EM well's equations (differential and integral form) — Relation between — Applications.				
	PART – A				
Q.No	Questions		BT Level	Competence	

1.	State the Faraday's law.		BTL1	Remembering	CO4
2.	State the Faraday's law for the moving charge in a constant magnetic field		BTL1	Remembering	CO4
3.	State Lenz's law.		BTL1	Remembering	CO4
4.	Define displacement current density.		BTL1	Remembering	CO4
5.	What are electric field and the power flow in the co-axial cable?		BTL1	Remembering	CO4
6.	Define reluctance and permeability.		BTL1	Remembering	CO4
7.	Write the Maxwell's equation from ampere's law both in integral and point forms.		BTL2	Understanding	CO4
8.	Write down the Maxwell's equation from electric gauss's law in integral and point forms.		BTL2	Understanding	CO4
9.	Illustrate mutual inductance and self inductance.		BTL3	Applying	CO4
10.	Write down the Maxwell's equation from magnetic gauss's law in integral and point form.		BTL2	Understanding	CO4
11.	Write the Maxwell's equations from Gauss's law in integral form.		BTL2	Understanding	CO4
12.	Estimate Maxwell's equations in integral form.		BTL4	Analysing	CO4
13.	Differentiate transformer and motional emf.		BTL2	Understanding	CO4
14.	Find the characteristics impedance of the medium whose relative permittivity is 3 and relative permeability is 1		BTL3	Applying	CO4
15.	Calculate the emf induced in a conductor of length 1m moving with a velocity of 100m/s perpendicular to a field of 1 Tesla.		BTL3	Applying	CO4
16.	Distinguish between conduction and displacement currents		BTL4	Analysing	CO4
17.	Explain why $\nabla .B = 0$		BTL5	Evaluate	CO4
18.	Judge ▼ .D=0		BTL6	Creating	CO4
19.	In material for which σ =5.0 s/m, ϵ_r =1 and ϵ = 250 sin 10 ¹⁰ t		BTL6	Creating	CO4
20.	(v/m). Find conduction & displacement current densities. Moist soil has conductivity of 10^{-3} S/m and $\epsilon_r = 2.5$, estimate the displacement current density if E=6.0 *10 ⁻⁶ sin 9.0 * 10^{-9} t (V/m)		BTL2	Understanding	CO4
21.	Write the point form of continuity equation and explain its significance.		BTL3	Applying	CO4
22.	Write down the Maxwell's equations in integral phasor form.		BTL4	Analysing	CO4
23.	Explain why $\nabla \times E = 0$.		BTL5	Evaluate	CO4
24.	What is the equation for total emf due to motion or transformer action?		BTL2	Understanding	CO4
	PART – B	1	<u> </u>	1	
1.	Derive the Maxwell's equations both in integral and point forms.	(13)	BTL5	Evaluate	CO4

 (ii) A sinusoidal plane wave is transmitted through a medium whose electric field strength is 10KV/m and relative permittivity of the medium is 4. Determine the mean rms power flow/unit area. (i) Explain the concept of emf induction in static and time varying magnetic field. (ii) In a material for which σ =5.0S/m and ε_r= 1 with E = 250 sin 10¹⁰ t. Find J_c and J_D and also the frequency at which they equal magnitudes. 	(8)	BTL4	Analysing	CO4
varying magnetic field. (ii) In a material for which σ =5.0S/m and ϵ_r = 1 with $E = 250 \sin 10^{10} t$. Find J_c and J_D and also the frequency at		BTL4	Analysing	
$E = 250 \sin 10^{10} t$. Find J _c and J _D and also the frequency at	(5)			
which they equal magnitudes.				CO4
Derive the set of Maxwells equations in integral form from fundamental laws for a good conductor.	(13)	BTL5	Evaluate	CO4
Explain how the circuit equation for a series RLC circuit is derived from the field relations	(13)	BTL4	Analysing	CO4
i)A parallel plate capacitor with plate area of 5cm*cm and plate eparation of 3 mm has a voltage of 50sin 10³t V applied to its	(7)			
plates. Calculate the displacement current assuming $\varepsilon = 2\varepsilon_0$.				
ii)The magnetic circuit of an iron ring with mean radius of 10cm		BTL3	Applying	CO4
has a uniform cross section of 10 ⁻³ m ² . The ring is wound with two				
irst coil with 200 turns	(6)			
i)Explain the relation between field theory and circuit theory and	(7)			
thus obtain an expression for ohm's law.		BTL5	Evaluate	CO4
ii)) Compare and explain in detail conduction and displacement currents.	(6)			
Describe the relationship between field theory and circuit theory.	(13)	BTL2	Understanding	CO4
Show that the ratio of the amplitudes of the conduction current	(13)			
lensity and displacement current density is $\sigma/\omega \varepsilon$, for the applied		BTL4	Analysing	CO4
**	(13)			
	(13)			
		BTL2	Understanding	CO4
500.Calculate the flux established in the ring.				
Derive Maxwell's equation in both point and integral form for	(13)	BTL2	Understanding	CO4
	explain how the circuit equation for a series RLC circuit is derived from the field relations i) A parallel plate capacitor with plate area of 5cm*cm and plate eparation of 3 mm has a voltage of $50\sin 10^3$ t V applied to its lates. Calculate the displacement current assuming $\varepsilon = 2\varepsilon_0$. ii) The magnetic circuit of an iron ring with mean radius of 10cm as a uniform cross section of 10^{-3} m ² . The ring is wound with two oils. If the circuit is energised by a current $t_1 = 3\sin 100\pi t$ A in the first coil with 200 turns i) Explain the relation between field theory and circuit theory and thus obtain an expression for ohm's law. ii) Compare and explain in detail conduction and displacement turrents. Describe the relationship between field theory and circuit theory. whow that the ratio of the amplitudes of the conduction current ensity and displacement current density is $\sigma/\omega\varepsilon$, for the applied $\varepsilon = \text{Em cos}\omega t$. Assume $\mu = \mu_0$, what is the amplitude ratio, if the applied field is $\varepsilon = \text{Em } e^{-\tau/\tau}$ where τ is real? In iron ring with a cross sectional area of 3 cm*cm and a mean incumference of 15 cm is wound with 250 turns of wire carrying a turrent of 0.3 A. The relative permeability of the ring is 500. Calculate the flux established in the ring.	Explain how the circuit equation for a series RLC circuit is derived from the field relations (13) A parallel plate capacitor with plate area of 5cm*cm and plate eparation of 3 mm has a voltage of $50\sin 10^3$ t V applied to its lates. Calculate the displacement current assuming $\varepsilon=2\varepsilon_0$. (14) The magnetic circuit of an iron ring with mean radius of 10cm as a uniform cross section of 10^{-3} m². The ring is wound with two oils. If the circuit is energised by a current $i_1 = 3\sin 100\pi t$ A in the first coil with 200 turns (15) Explain the relation between field theory and circuit theory and thus obtain an expression for ohm's law. (16) Explain the relationship between field theory and circuit theory. (17) The magnetic circuit is energised by a current $i_1 = 3\sin 100\pi t$ A in the first coil with 200 turns (18) Explain the relation between field theory and circuit theory and thus obtain an expression for ohm's law. (19) Compare and explain in detail conduction and displacement currents. (19) Describe the relationship between field theory and circuit theory. (19) Chow that the ratio of the amplitudes of the conduction current ensity and displacement current density is $\sigma/\omega\varepsilon$, for the applied $\varepsilon=\varepsilon$ Em $\varepsilon=\varepsilon$. where τ is real? (19) In the circuit is energised by a current ε is real? (19) Chow that the ratio of the amplitudes of the conduction current ensity and displacement current density is $\sigma/\omega\varepsilon$, for the applied $\varepsilon=\varepsilon$ Em cos $\omega\varepsilon$. Assume $\varepsilon=\varepsilon$ where ε is real? (19) In the circuit is energised by a current ε is real? (19) Compare and explain in detail conduction and displacement current ensity and displacement current density is $\sigma/\omega\varepsilon$, for the applied $\varepsilon=\varepsilon$ and $\varepsilon=\varepsilon$ is real? (19) Chow that the ratio of the amplitudes of the conduction current ensity and displacement current density is $\sigma/\omega\varepsilon$, for the applied $\varepsilon=\varepsilon$ and $\varepsilon=\varepsilon$ is real? (19) Chow that the ratio of the amplitudes of the conduction of the ensity and displacement current density and displacement current density and displacement curre	Explain how the circuit equation for a series RLC circuit is derived from the field relations (13) BTL4 from the field relations (14) A parallel plate capacitor with plate area of 5cm*cm and plate exparation of 3 mm has a voltage of $50\sin 10^3 t$ V applied to its lates. Calculate the displacement current assuming $\varepsilon = 2\varepsilon_0$. (15) The magnetic circuit of an iron ring with mean radius of 10cm as a uniform cross section of 10^{-3} m². The ring is wound with two oils. If the circuit is energised by a current $i_1 = 3\sin 100\pi t$ A in the irst coil with 200 turns (16) Explain the relation between field theory and circuit theory and thus obtain an expression for ohm's law. (17) BTL5 (18) Describe the relationship between field theory and circuit theory. (18) BTL2 (19) Compare and explain in detail conduction and displacement turrents. (19) Describe the relationship between field theory and circuit theory. (19) BTL5 (19) BTL5 (19) BTL5 (19) BTL2 (19) BTL4 (19) BTL3 (19) BTL4 (19) BTL3 (19) BTL4 (19) BTL4 (19) BTL5 (19) BTL4 (1	Explain how the circuit equation for a series RLC circuit is derived from the field relations (13) BTL4 Analysing Analysing Analysing Analysing Analysing Analysing Analysing Analysing Applying A

12.	State and derive the Maxwell's equations for free space in integral form and point form for time varying field	(13)	BTL3	Applying	CO4
13.	(i)A circular loop of wire is placed in a uniform magnetic field of flux density 0.5wb/m². The wire has 200turns and frequency of rotation of 1000 revolution/minute. If the radius of the coil is 0.2m, determine (1) the induced emf, when the plane of the coil is 60° to the flux lines and (2) the induced emf when the plane of the coil is perpendicular to the field. (ii) Explain in detail about the difference between conduction and displacement currents.	(6)	BTL5	Evaluate	CO4
14.	Derive the set of Maxwell's equations in integral form from fundamental laws for a free space.	(13)	BTL6	Creating	CO4
15.	In free space, $H = 0.2\cos(\omega t - \beta x)\vec{a_x}$ A/m. Find the total power passing through a circular disc of radius 5 cm.	(13)	BTL5	Evaluate	CO4
16.	Given the conduction current density in a lossy dielectric as $J_C=0.02\sin 10^9 t$ A/m². Find the displacement current density if $\sigma=10^3$ mho/m and $\epsilon_r=6.5$.	(13)	BTL6	Creating	CO4
17.	The magnetic field intensity in free space is given as $H = H_0 \sin \theta \overline{a_y}$ A/m, where $\theta = \omega t - \beta z$ and β is a constant quantity. Determine the displacement current density.	(13)	BTL4	Analysing	CO4
	PART C				
1.	State Faraday's law. What are the different ways of emf generation? Explain with governing equation and suitable example for each.	(15)	BTL 5	Evaluating	CO4
2.	Obtain the expression for energy stored in the magnetic field and develop the expression for magnetic energy density.	(15)	BTL 6	Creating	CO4
3.	State and prove boundary conditions by the application of Maxwell's equations.	(15)	BTL 5	Evaluating	CO4
4.	Show that the ratio of the amplitudes of the conduction current density and displacement current density is amplitude ratio if the applied field is $E = E_m e^{-\frac{E}{\lambda}}$ where λ is real.	(15)	BTL 5	Evaluating	CO4
5.	The conduction current flowing through a wire with conductivity $\sigma = 3 \times 10^7$ s/m and relative permeability $\varepsilon_r = 1$ is given by $I_c = 3 \sin \omega t (mA)$. If $\omega = 10^8 rad$ / sec. Find the displacement current.	(15)	BTL 6	Creating	CO4
	UNIT V - ELECTROMAGNETIC WAVES	<u> </u>			
Electromagnetic wave generation and equations — Wave parameters; velocity, intrinsic impedance, propagation constant — Waves in free space, lossy and lossless dielectrics, conductors- skin depth - Poynting vector — Plane wave reflection and refraction.					
PART – A					
1711(17)					

Q.No	Questions		BT Level	Competence	
1.	Define intrinsic impedance.		BTL2	Understanding	CO5
2.	Describe the properties of uniform plane wave		BTL2	Understanding	CO5
3.	State the Poynting Theorem.		BTL2	Understanding	CO5
4.	Discuss the Brewster angle.		BTL5	Evaluate	CO5
5.	Can a magnetic field exist in a good conductor if it is static (or) time varying? Explain.		BTL4	Analysing	CO5
6.	What is the relationship between E and H or brief about intrinsic impedance for a dielectric medium		BTL2	Understanding	CO5
7.	What are Helmholtz equations or represent equation of electromagnetic wave in the phasor form?		BTL1	Remembering	CO5
8.	A plane wave travelling in air is normally incident on a block of paraffins with ϵ_r =2.3. Find the reflection coefficient.		BTL3	Applying	CO5
9.	What is phase velocity?		BTL1	Remembering	CO5
10.	If a plane wave is incident normal from medium 1 to medium 2, write the reflection and transmission coefficients.		BTL4	Analysing	CO5
11.	Develop the values of velocity and intrinsic impedance for free space.		BTL2	Understand	CO5
12.	Determine the velocity of a plane wave in a lossless medium having a relative permittivity 2 and relative permeability of unity.		BTL3	Applying	CO5
13.	Define skin depth or depth of penetration of a conductor.		BTL1	Remembering	CO5
14.	Determine the skin depth of copper at 60 Hz with 5.8 X 10^7 s/m. Given μ = 1.		BTL3	Applying	CO5
15.	Define linear, elliptical, and circular polarization?		BTL1	Remembering	CO5
16.	Define snell's law of refraction.		BTL1	Remembering	CO5
17.	Mention the Practical Importance of Skin Depth.		BTL1	Remembering	CO5
18.	Describe the propagation constant.		BTL2	Understanding	CO5
19.	Determine voltage reflection coefficient at the load end of a transmission.		BTL3	Applying	CO5
20.	State the properties of uniform plane wave.		BTL6	Creating	CO5
21.	State the pointing theorem.		BTL1	Remembering	CO5
22.	Define a wave.		BTL2	Understanding	CO5
23.	Can a magnetic field exist in a good conductor if it is static or time varying? Explain.		BTL3	Applying	CO5
24.	Find the skin depth at a frequency of 2 MHz is a aluminium where $\sigma = 38.2$ M s/m and $\mu_r = 1$.		BTL6	Creating	CO5
	PART – B			1	
1.	Deduce the equation of the propagation of the plane electromagnetic waves in free space.	(13)	BTL5	Evaluate	CO5
2.	State and prove Poynting theorem	(13)	BTL3	Applying	CO5
3.	Deduce the expression for electromagnetic wave equation for conducting and perfect dielectric medium.	(13)	BTL5	Evaluate	CO5

4.	A 6580 MHz uniform plane wave is propagating in a material medium of ϵ_r =2.25. If the amplitude of the electric field intensity of lossless medium is 500V/m. Calculate the phase constant, propagation constant, velocity, wave length and intrinsic impedance.	(13)	BTL3	Applying	CO5
5.	(i)Deduce the wave equations for conducting medium.(ii) Discuss group velocity, phase velocity and propagation constant of electromagnetic waves.	(6) (7)	BTL5	Evaluate	CO5
6.	Write the short notes on the following: i)Plane waves in lossless dielectrics	(7)	BTL3	Applying	CO5
	ii) Plane waves in free space.iii) Plane waves in good conductors.	(6)			
7.	i) The electric field intensity associated with a plane wave travelling in a perfect dielectric medium is given by E_x (z,t)=10 cos ($2\pi \times 10^7$ t-0.1 π z)V/m. What is the velocity of propagation? ii)Derive the Poynting theorem and state its significance.	(13)	BTL4	Analysing	CO5
8.	(i) Derive pointing theorem from Maxwells equation and explain. (ii) A uniform plane wave propagation in a medium has $E = 2e^{-\alpha z}\sin(10^8t - \beta z)a_y$ V/m. If the medium is characterized by $\varepsilon_r = 1$, $\mu_r = 20$ and $\sigma = 3$ S/m, Evaluate α , β and H.	(6)	BTL5	Evaluate	CO5
9.	Obtain an expression for electromagnetic wave propagation in lossy dielectrics	(13)	BTL6	Creating	CO5
10.	i)State pointing theorem and thus obtain an expression for instantaneous power density vector associated with electromagnetic field ii)A plane wave travelling in air normally incident on a block of paraffin with $\varepsilon_r = 2.2$. Find the reflection coefficient	(9)	BTL2	Understanding	CO5
11.	Describe the concept of electromagnetic wave propagation in a linear, isotropic, homogeneous, lossy dielectric medium.	(13)	BTL2	Understanding	CO5
12.	i) Find the velocity of a plane wave in a lossless medium having ϵ_r =5 and μ_r =1. ii) Show that the total power flow along a coaxial cable will be given by the surface integration of the pointing vector over any closed surface.	(3)	BTL3	Applying	CO5
13.	Define polarization. What are the different types of wave polarization? Explain them with mathematical expression.	(13)	BTL1	Remembering	CO5

A plane travelling electromagnetic wave has H= 0.008 A/m in free space. Compute energy density and the velocity of this wave in glass, whose relative permittivity of glass is 3.	(13)	BTL4	Analysing	CO5
Find the depth of penetration of a plane wave in copper at a power frequency of 60 Hz and at microwave frequency 10^{10} Hz. Given $\sigma = 5.8 \times 10^7$ mho/m.	(13)	BTL5	Evaluate	CO5
A 10 MHz plane wave travelling in free space has an amplitude E_0 = 50 μ V/m. What is the average and peak energy density of the wave?	(13)	BTL6	Creating	CO5
A uniform plane wave in a medium having $u - 10^{-3}$ s/m, $\varepsilon - 80\varepsilon_0$ and $\mu = \mu_0$ is having a frequency of 10 KHz. i) Verify whether the medium is good conductor ii) Calculate the following, 1) Attenuation constant 2) Phase constant 3) Propagation constant 4) Intrinsic impedance 5) Wave length 6) Velocity of propagation	(13)	BTL3	Applying	CO5
PART C				
A free space- silver interface has E(incident)=100V/m on the free space side. The frequency is 15MHz and the silver constants are ϵ_r $-\mu_r = 1$, $\sigma = 61.7$ MS/m. Evaluate E(reflected) and E(transmitted) at the interface.	(15)	BTL6	Creating	CO5
A plane wave travelling in +z direction in free space (z<0) is normally incident at z=0 on a conductor (z>0) for which σ =61.7MS/m, μ_r =1.the free space E wave has a frequency f=1.5MHz and an amplitude of 1.0V/m at the interface it is given by E(0,t) =1.0sin 2π ft a_y (V/m).Analyse the wave and predict magnetic wave H(z,t) at z>0.	(15)	BTL4	Analysing	CO5
Assume that E and H waves, travelling in free space, are normally incident on the interface with a perfect dielectric with ε_r =3. Evaluate the magnitudes of incident, reflected and transmitted E and H waves at the interface.	(15)	BTL5	Evaluating	CO5
A plane wave propagating through a medium $\varepsilon_r = 8$, $\mu_r = 2$ has E=0.5 $\sin(10^8 t - \beta z)^{\alpha z}$ v/m. Determine i) wave impedance, ii) Wave velocity iii) β iv) H field.	(15)	BTL3	Applying	CO5
	space. Compute energy density and the velocity of this wave in glass, whose relative permittivity of glass is 3. Find the depth of penetration of a plane wave in copper at a power frequency of 60 Hz and at microwave frequency 10 ¹⁰ Hz. Given σ = 5.8 x 10 ⁷ mho/m. A 10 MHz plane wave travelling in free space has an amplitude E ₀ = 50 μV/m. What is the average and peak energy density of the wave? A uniform plane wave in a medium having υ = 10 ⁻³ s/m, ε = 80ε0 and μ = μ ₀ is having a frequency of 10 KHz. i) Verify whether the medium is good conductor ii) Calculate the following, 1) Attenuation constant 2) Phase constant 3) Propagation constant 4) Intrinsic impedance 5) Wave length 6) Velocity of propagation PART C A free space- silver interface has E(incident)=100V/m on the free space side. The frequency is 15MHz and the silver constants are ε _r −μ _r = 1, σ =61.7MS/m. Evaluate E(reflected) and E(transmitted) at the interface. A plane wave travelling in +z direction in free space (z<0) is normally incident at z=0 on a conductor (z>0) for which σ=61.7MS/m, μ _r =1.the free space E wave has a frequency f=1.5MHz and an amplitude of 1.0V/m at the interface it is given by E(0,t) =1.0sin 2πft a _y (V/m).Analyse the wave and predict magnetic wave H(z,t) at z>0. Assume that E and H waves, travelling in free space, are normally incident on the interface with a perfect dielectric with ε _r =3.Evaluate the magnitudes of incident, reflected and transmitted E and H waves at the interface. A plane wave propagating through a medium ε _r =8, μ _r =2 has E=0.5 sin(10 ⁸ t −βz) ^{0/2} v/m. Determine i) wave impedance, ii)Wave	space. Compute energy density and the velocity of this wave in glass, whose relative permittivity of glass is 3. Find the depth of penetration of a plane wave in copper at a power frequency of 60 Hz and at microwave frequency 10 ¹⁰ Hz. Given σ = 5.8 x 10 ⁷ mho/m. A 10 MHz plane wave travelling in free space has an amplitude E ₀ = 50 μV/m. What is the average and peak energy density of the wave? A uniform plane wave in a medium having v = 10 ⁻³ s/m, ε = 80ε0 (13) and μ = μ ₀ is having a frequency of 10 KHz. i) Verify whether the medium is good conductor ii) Calculate the following, 1) Attenuation constant 2) Phase constant 3) Propagation constant 4) Intrinsic impedance 5) Wave length 6) Velocity of propagation PART C A free space- silver interface has E(incident)=100V/m on the free space side. The frequency is 15MHz and the silver constants are ε _τ -μ _τ = 1, σ = 61.7MS/m. Evaluate E(reflected) and E(transmitted) at the interface. A plane wave travelling in +z direction in free space (z<0) is normally incident at z=0 on a conductor (z>0) for which σ=61.7MS/m, μ _τ = 1.the free space E wave has a frequency f=1.5MHz and an amplitude of 1.0V/m at the interface it is given by E(0,t) = 1.0sin 2πft a _y (V/m). Analyse the wave and predict magnetic wave H(z,t) at z>0. Assume that E and H waves, travelling in free space, are normally incident on the interface with a perfect dielectric with ε _τ =3. Evaluate the magnitudes of incident, reflected and transmitted E and H waves at the interface. A plane wave propagating through a medium ε _τ =8, μ _τ =2 has E=0.5 sin(10 ⁸ t -βz) ^{αz/z} v/m. Determine i) wave impedance, ii) Wave	space. Compute energy density and the velocity of this wave in glass, whose relative permittivity of glass is 3. Find the depth of penetration of a plane wave in copper at a power frequency of 60 Hz and at microwave frequency 10 ¹⁰ Hz. Given σ = 5.8 x 10 ⁷ mho/m. A 10 MHz plane wave travelling in free space has an amplitude E ₀ (13) BTL6 = 50 μV/m. What is the average and peak energy density of the wave? A uniform plane wave in a medium having v − 10 ³ s/m, ε − 80ε0 (13) BTL3 and μ = μ ₀ is having a frequency of 10 KHz. i) Verify whether the medium is good conductor ii) Calculate the following, 1) Attenuation constant 2) Phase constant 3) Propagation constant 4) Intrinsic impedance 5) Wave length 6) Velocity of propagation PART C A free space- silver interface has E(incident)=100V/m on the free space side. The frequency is 15MHz and the silver constants are ε _r −μ _r = 1, σ = 61.7MS/m. Evaluate E(reflected) and E(transmitted) at the interface. A plane wave travelling in +z direction in free space (z<0) is normally incident at z=0 on a conductor (z>0) for which σ=61.7MS/m, μ _r =1.the free space E wave has a frequency f=1.5MHz and an amplitude of 1.0V/m at the interface it is given by E(0,t) =1.0sin 2πft a _y (V/m).Analyse the wave and predict magnetic wave H(z,t) at z>0. Assume that E and H waves, travelling in free space, are normally incident on the interface with a perfect dielectric with ε _x =3.Evaluate the magnitudes of incident, reflected and transmitted E and H waves at the interface. A plane wave propagating through a medium ε _x =8, μ _x =2 has E=0.5 (15) BTL3 sin(10 ⁸ t −βz) ⁰ (π/m). Determine i) wave impedance, ii)Wave	space. Compute energy density and the velocity of this wave in glass, whose relative permittivity of glass is 3. Find the depth of penetration of a plane wave in copper at a power frequency of 60 Hz and at microwave frequency 10 ¹⁰ Hz. Given σ = 5.8 x 10 ⁷ mb/σm. A 10 MHz plane wave travelling in free space has an amplitude E ₀ = 50 μV/m. What is the average and peak energy density of the wave? A uniform plane wave in a medium having ψ = 10 ⁻³ s/m, ψ = 80 ε ₀ (13) BTL3 Applying and μ = μ ₀ is having a frequency of 10 KHz. i) Verify whether the medium is good conductor ii) Calculate the following. 1) Attenuation constant 2) Phase constant 3) Propagation constant 4) Intrinsic impedance 5) Wave length 6) Velocity of propagation PART C A free space- silver interface has E(incident)=100V/m on the free space side. The frequency is 15MHz and the silver constants are ε _r = μ _r = 1 σ = 61.7MS/m. Evaluate E(reflected) and E(transmitted) at the interface. A plane wave travelling in +z direction in free space (z<0) is normally incident at z=0 on a conductor (z>0) for which σ=61.7MS/m, μ _r = 1.the free space E wave has a frequency f=1.5MHz and an amplitude of 1.0V/m at the interface it is given by E(0,t) = 1.0sin 2πt a _r (V/m).Analyse the wave and predict magnetic wave H(z,t) at z=0. Assume that E and H waves, travelling in free space, are normally incident on the interface with a perfect dielectric with ε _r =3.Evaluate the magnitudes of incident, reflected and transmitted E and H waves at the interface. A plane wave propagating through a medium ε _r =8, μ _r =2 has E=0.5 (15) BTL3 Applying sin (10 ⁸ t −βz) ^{αz} /m. Determine i) wave impedance, ii)Wave

5.	A free space conductor interface has H _i =1 A/m on the free space	(15)	BTL6	Creating	CO5
	side. The frequency is 31.8 MHz and the conductor constants are ε_r				
	$= \mu_r = 1$ and $\sigma = 1.26$ M S/m. Determine H _r and H _i and depth of				
	penetration of H _i .				

COURSE OUTCOMES:

- 1. Ability to understand the basic mathematical concepts related to electromagnetic vector fields
- 2. Ability to understand the basic concepts about electrostatic fields, electrical potential, energy density and their applications
- 3. Ability to acquire the knowledge in magneto static fields, magnetic flux density, vector potential and its applications
- 4. Ability to understand the different methods of emf generation and Maxwell's equations
- 5. Ability to understand the basic concepts electromagnetic waves and characterizing parameters

