## SRM VALLIAMMAI ENGINEERING COLLEGE (An Autonomous Institution)

SRM Nagar, Kattankulathur - 603 203.

# DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

#### **QUESTION BANK**



#### VI SEMESTER

1905601 - SOLID STATE DRIVES

Regulation - 2019

**Academic Year 2022 – 2023 (EVEN)** 

Prepared by

Mr.V.Sudhagar, Assistant Professor (Sr.G) / EEE

# SRM

#### SRM VALLIAMMAI ENGINEERING COLLEGE

#### (An Autonomous Institution) SRM Nagar, Kattankulathur – 603 203.



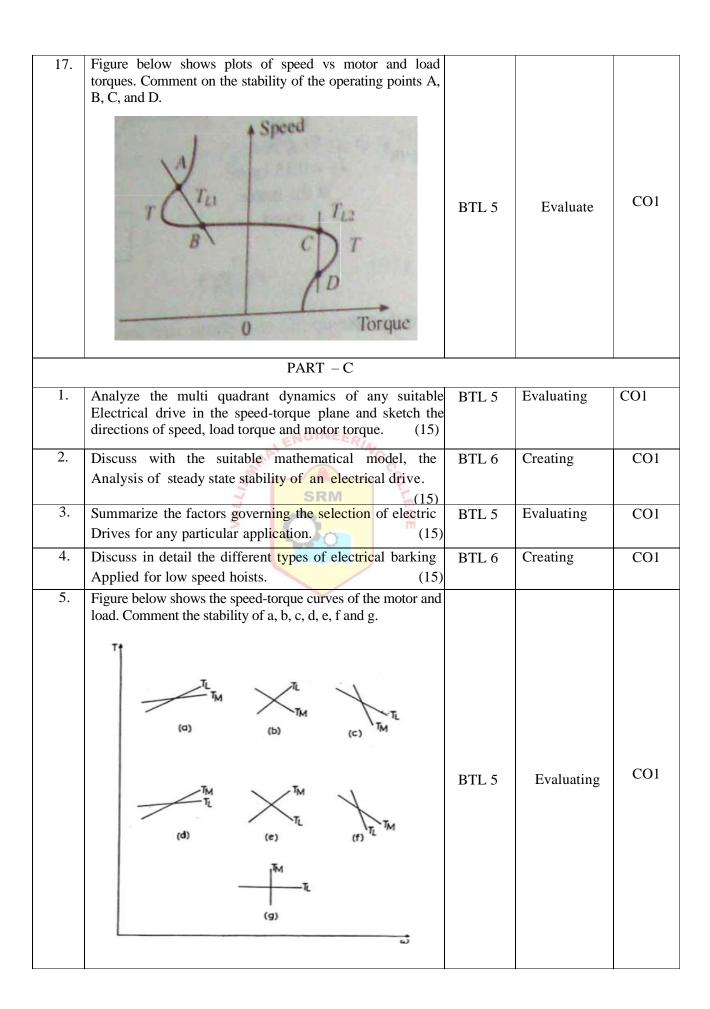
#### DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

#### **OUESTION BANK**

**SUBJECT:** 1905601-SOLID STATE DRIVES

SEM / YEAR: VI / III

#### UNIT I - DRIVE CHARACTERISTICS


Electric drive – Equations governing motor load dynamics – steady state stability – multi quadrant Dynamics: acceleration, deceleration, starting & stopping – typical load torque characteristics – Selection of motor, modes of operation.

#### PART - A

| Q.No | Questions                                                                                        | BT Level | Competence | Course outcome |
|------|--------------------------------------------------------------------------------------------------|----------|------------|----------------|
| 1.   | List the types of load torques.                                                                  | BTL 1    | Remember   | CO1            |
| 2.   | Compose the fundamental torque equation of motor load.                                           | BTL 6    | Create     | CO1            |
| 3.   | Explain the active load torques and passive load torques? Give example.                          | BTL 4    | Analyze    | CO1            |
| 4.   | Explain the typical Elements of an Electric Drive.                                               | BTL 4    | Analyze    | CO1            |
| 5.   | Define electrical drive                                                                          | BTL 1    | Remember   | CO1            |
| 6.   | Define regenerative braking.                                                                     | BTL 1    | Remember   | CO1            |
| 7.   | Compose the condition for steady state stability of motor                                        | BTL 6    | Create     | CO1            |
| 8.   | Draw the torque speed characteristics of a hoist load Mechanism.                                 | BTL 1    | Remember   | CO1            |
| 9.   | Define Dynamic Braking                                                                           | BTL 1    | Remember   | CO1            |
| 10.  | Classify the different loads? Give the examples.                                                 | BTL 3    | Apply      | CO1            |
| 11.  | Explain the Different mode of operation of an electric drive.                                    | BTL 4    | Analyze    | CO1            |
| 12.  | Discuss the necessary condition to obtain the three Modes of operation of an electric drive.     | BTL 2    | Understand | CO1            |
| 13.  | Discuss all the conditions to be satisfied for the Regenerative braking operation to take place. | BTL 2    | Understand | CO1            |
| 14.  | Explain the types of electric braking.                                                           | BTL 5    | Evaluate   | CO1            |
| 15.  | Give example is braking applicable for any type of motor.                                        | BTL 2    | Understand | CO1            |
| 16.  | Give and label the block diagram of electrical drive Systems.                                    | BTL 2    | Understand | CO1            |
| 17.  | Classify the multi quadrant dynamics in drive characteristics.                                   | BTL 3    | Apply      | CO1            |
| 18.  | Mention the different factors that are considered for the selection of an electrical drives.     | BTL 1    | Remember   | CO1            |
| 19.  | Illustrate a drive? How are they classified?                                                     | BTL 3    | Apply      | CO1            |

| 20. | Explain the speed – torque conventions used in multi Quadrant operation.                                                                                                                             | BTL 5 | Evaluate   | CO1 |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------|-----|
| 21. | List the advantages of an electric drives.                                                                                                                                                           | BTL 1 | Remember   | CO1 |
| 22. | Give the condition for acceleration of motor load system.                                                                                                                                            | BTL 3 | Apply      | CO1 |
| 23. | Justify about the action of drive system "If load is driven<br>by an electric motor, due to external disturbances, the<br>speed change occurs and motor torque becomes greater<br>than load torque." | BTL 5 | Evaluate   | CO1 |
| 24. | Justify about the action of drive system "If load is driven<br>by an electric motor, due to external disturbances, the<br>speed change occurs and load torque becomes greater than<br>motor torque." | BTL 5 | Evaluate   | CO1 |
|     | PART -B                                                                                                                                                                                              |       | 1          |     |
| 1.  | Label the essential parts of electric drive. Explain its Function. (13)                                                                                                                              | BTL 1 | Remember   | CO1 |
| 2.  | (i) Discuss the speed-torque characteristics of various types of loads with neat diagram. (7)                                                                                                        | BTL 2 | Understand | CO1 |
|     | (ii) Discuss in detail about the multi quadrant dynamics of electric drives. (6)                                                                                                                     | BTL 2 | Understand | CO1 |
| 3.  | Define how the following speed transitions are carried Out: (i) Increase in speed in same direction, (ii) Decrease in speed in same direction and (iii) Speed reversal. (13)                         | BTL 1 | Remember   | CO1 |
| 4.  | (i) Show a motor is coupled to a load having the following characteristics: $Motor: T_m = 15 - 0.6 \ \omega\alpha$                                                                                   | BTL 3 | Apply      | CO1 |
|     |                                                                                                                                                                                                      |       |            |     |
|     | electrical drive system. (6)                                                                                                                                                                         |       |            | CO1 |
| 5.  | Discuss the different modes of operation of an electrical drive. (13)                                                                                                                                | BTL 2 | Understand | CO1 |
| 6.  | (i)Explain the four quadrant operation of low speed                                                                                                                                                  | BTL 5 | Evaluate   | CO1 |
|     | hoist in detail. (6) (ii) Explain and derive an equation to find out equivalent Load torque in a motor load system with translational                                                                | BTL 5 | Evaluate   | CO1 |
| 7.  | and rotational motion. (7)  Compose the mathematical condition to obtain steady                                                                                                                      | BTL 6 | Create     | CO1 |
| /.  | State stability of equilibrium point. (13)                                                                                                                                                           | DILU  | Cicaic     | COI |
| 8.  | Explain in detail the multi quadrant operation of low Speed hoist in speed torque plane. (13)                                                                                                        | BTL 4 | Analyze    | CO1 |

|     | Solve a motor drives two loads. One has rotational Motion. It is coupled to the motor through a reduction gear with $a=0.1$ and efficiency of 90%. The load has a moment of inertia of 10 kg-m² and a torque of 10 N-m. Other load has translational motion and consists of 1000kg weight to be lifted up at a uniform speed of 1.5 m/s. coupling between this load and the motor has an efficiency of 85%. Motor has inertia of 0.2 kg-m² and runs at a constant speed of 1420 rpm. Determine equivalent inertia referred to the motor shaft and power developed by the motor. (13) | BTL 3          | Apply                 | CO1 |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------|-----|
| 10. | Define in detail about the braking of DC drives and AC Drives. (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BTL 1          | Remember              | CO1 |
| 11. | Explain the operation of electrical drives in three Different modes. (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BTL 4          | Analyze               | CO1 |
| 12. | (i) Derive the fundamental torque equations of Motor load system. (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BTL 3          | Apply                 | CO1 |
|     | (ii) Explain the multi quadrant operation of a motor driving                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                       | CO1 |
| 13. | a load. (7) (i) What are the factors governing selection of electric drives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BTL 4<br>BTL 2 | Analyze<br>Understand | CO1 |
|     | for any particular application? (7) (ii) Write equation governing motor load dynamics. (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |                       |     |
| 14. | Figure below shows the speed-torque curves of the motor and load in the four quadrants. Comment on the stability of the equilibrium points A, B, C, and D. (13)                                                                                                                                                                                                                                                                                                                                                                                                                      | BTL 1          | Remember              | CO1 |
| 15. | Discuss in detail the four quadrant dynamics in the speed –torque plane.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BTL 5          | Evaluate              | CO1 |
| 16. | List the possible forms of electrical drives and compare them.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BTL 2          | Understand            | CO1 |



#### UNIT II - CONVERTER / CHOPPER FED DC MOTOR DRIVE

Steady state analysis of the single and three phase converter fed separately excited DC motor drive-continuous and discontinuous conduction— Time ratio and current limit control -4 quadrant operation of converter / chopper fed drive- Effect of ripples on the DC motor performance.

| P | Δ | RT | Γ | _ | Δ |
|---|---|----|---|---|---|
|   |   |    |   |   |   |

| O No | Ougations                                                                                                     | ВТ    | Commenters | Course  |
|------|---------------------------------------------------------------------------------------------------------------|-------|------------|---------|
| Q.No | Questions                                                                                                     | Level | Competence | outcome |
| 1.   | List the drawbacks of AC-DC Converter (rectifier) fed DC drives.                                              | BTL 1 | Remember   | CO2     |
| 2.   | Is it possible to operate a semi converter fed DC drive in quadrant IV? Justify your answer.                  | BTL 3 | Apply      | CO2     |
| 3.   | Differentiate between continuous and discontinuous Conduction mode.                                           | BTL 4 | Analyze    | CO2     |
| 4.   | Evaluate the necessity of DC choke coil and freewheeling Diode in a converter circuit.                        | BTL 5 | Evaluate   | CO2     |
| 5.   | Compose the speed torque equation of single phase fully Controlled converter fed separately excited DC motor. | BTL 6 | Create     | CO2     |
| 6.   | Compose the speed torque equation of three phase fully Controlled converter fed separately excited DC motor.  | BTL 6 | Create     | CO2     |
| 7.   | Define the speed control methods of DC Motor                                                                  | BTL 1 | Remember   | CO2     |
| 8.   | Can a semi converter fed three phase DC drive operate in quadrant four? Justify your answer.                  | BTL 5 | Evaluate   | CO2     |
| 9.   | Explain the Operation of a three phase fully controlled converter fed separately excited dc motor.            | BTL 4 | Analyze    | CO2     |
| 10   | Explain the Operation of a single phase fully controlled Converter fed separately excited dc motor.           | BTL 4 | Analyze    | CO2     |
| 11.  | When is discontinuous conduction expected with the operation of converter fed dc drives.                      | BTL 1 | Remember   | CO2     |
| 12.  | Tell whether discontinuous conduction will occur in the Operation of chopper fed dc drives.                   | BTL 1 | Remember   | CO2     |
| 13.  | Illustrate the expression for the average output voltage of a Full converter fed dc drive.                    | BTL 3 | Apply      | CO2     |
| 14.  | Illustrate the speed torque equation of dc separately excited Motor fed drive.                                | BTL 3 | Apply      | CO2     |
| 15.  | Describe the advantages of chopper fed drive over converter Fed drive.                                        | BTL 4 | Understand | CO2     |
| 16.  | Summarize the control strategies of chopper.                                                                  | BTL 4 | Understand | CO2     |
| 17.  | What are the advantages in operating choppers at h i g h Frequency?                                           | BTL 1 | Remember   | CO2     |
| 18.  | Describe the advantages of chopper fed DC drive.                                                              | BTL 4 | Understand | CO2     |
| 19.  | Discuss the Electrical and mechanical characteristics of separately excited dc motors.                        | BTL 4 | Understand | CO2     |

| 20. | What are the applications of chopper fed DC drives?                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BTL 4 | Understand | CO2 |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------|-----|
|     | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DIL 4 | Understand | CO2 |
| 21. | Illustrate the expression for the average output voltage of a Three phase bridge converter fed dc drive.                                                                                                                                                                                                                                                                                                                                                                                                                         | BTL 3 | Apply      | CO2 |
| 22. | Illustrate the expression for the motor speed of a single phase Full converter fed dc drive.                                                                                                                                                                                                                                                                                                                                                                                                                                     | BTL 1 | Remember   | CO2 |
| 23. | Define the duty cycle of chopper.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BTL 4 | Understand | CO2 |
| 24. | Illustrate the expression for the average output voltage and motor speed of a three phase Full converter fed dc drive.                                                                                                                                                                                                                                                                                                                                                                                                           | BTL 1 | Remember   | CO2 |
|     | PART – B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |            |     |
| 1.  | Explain the steady state analysis of the single phase fully Controlled converter fed separately excited DC motor Drive for continuous current mode. Also explain its Operation in motoring and regenerative braking mode. (13)                                                                                                                                                                                                                                                                                                   | BTL 5 | Evaluate   | CO2 |
| 2.  | Solve a 450V separately excited dc motor has an armature Resistance of $4.5\Omega$ when driving a load at 600 r.p.m. with constant torque, the armature takes 40 A. This motor is controlled by a chopper circuit with a frequency of 400 Hz and an input voltage of 450 V. (i) What should be the value of the duty ratio if one desires to reduce the speed from 600 to 540 r.p.m. with the load torque maintained constant? (ii) Find out the value of duty ratio for which the per unit ripple current will be maximum. (13) | BTL 3 | Apply      | CO2 |
| 3.  | Describe about Electrical -mechanical characteristics of                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | Remember   | CO2 |
|     | Commonly used electric motors. (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BTL 1 |            |     |
| 4.  | Describe the steady state analysis of the single phase fully Controlled converter fed separately excited DC motor drive for continuous and discontinuous conduction mode. (13)                                                                                                                                                                                                                                                                                                                                                   | BTL 4 | Understand | CO2 |
| 5.  | (i) Explain in detail the single phase fully controlled rectifier control of dc separately excited motor with neat waveforms.  (6)                                                                                                                                                                                                                                                                                                                                                                                               | BTL 4 | Analyze    | CO2 |
|     | (ii) Solve a 440 V, 1500 rpm, 10 A separately excited DC motor has an armature resistance of. It is fed from a single phase fully controlled rectifier with a source voltage of 430 V 50 Hz. Assuming continuous load current. Compute (1) Motor speed at the firing angle of 30° and Torque of 5 Nm. (4) Developed Torque at the firing angle of 45° and speed of 1000 rpm. (7)                                                                                                                                                 | BTL 3 | Apply      | CO2 |
| 6.  | (i) Define in detail about the regenerative operation of three phase fully controlled rectifier control of separately excited DC motor. (7) (ii) Define in detail about the four quadrant operation of chopper fed drive. (6)                                                                                                                                                                                                                                                                                                    | BTL 1 | Remember   | CO2 |
|     | Compose the operation of single phase controlled converter Fed separately excited DC motor in continuous and Discontinuous modes with neat diagram, waveforms and Comment the steady state analysis. (13)                                                                                                                                                                                                                                                                                                                        |       | Create     | CO2 |

| 8.  | Explain the four quadrant operation of chopper fed DC Separately excited motor drive with necessary diagram. (13)                                                                                                                                                                                         | BTL 4          | Understand             | CO2        |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------|------------|
| 9.  | Define in detail about the operation of single phase fully-<br>Controlled converter fed dc separately excited motor in<br>Continuous and discontinuous conduction modes of operation<br>with Necessary waveforms and steady state analysis. (13)                                                          | BTL 1          | Remember               | CO2        |
| 10. | <ul><li>(i) Discuss the different control techniques of chopper in Detail.</li><li>(ii) Discuss the four quadrant operation of DC-DC converter.</li><li>(7)</li></ul>                                                                                                                                     | BTL 4<br>BTL 4 | Understand             | CO2        |
| 11. | (i)Explain the operation of four quadrant dc chopper drive.                                                                                                                                                                                                                                               |                |                        |            |
|     | (6) (ii)Solve a 440 V, 40 A, 1000 rpm separately excited dc motor has an armature resistance of 4.5 Ω. The motor is controlled by a step-down chopper with a frequency of 1 kHz. The input dc voltage to the chopper is 450V. Identify                                                                    | BTL 4<br>BTL 1 | Analyze<br>Remember    | CO2<br>CO2 |
|     | what will be the duty cycle of the chopper for the motor to operate at a speed of 600 rpm delivering the rated torque.  (7)                                                                                                                                                                               |                |                        |            |
| 12. | (i)A 400V, 875 rpm, 150A separately excited dc motor has An armature resistance of $0.06~\Omega$ . It is fed from a single phase fully controlled rectifier with an ac source voltage of 440V, 50Hz. Assuming continuous conduction, Calculate (i)Firing angle for rated motor torque and (-750) Rpm (ii) | BTL 3          | Apply                  | CO2        |
|     | Motor speed for α=160° and rated torque. (7) (ii) A chopper used to control the speed of a separately excited dc motor, has supply voltage of 430 V, Ton=15ms,                                                                                                                                            |                |                        |            |
|     | Toff=5ms. Assuming continuous conduction of motor current, Estimate the average load current when the motor speed is 3000rpm. Assume voltage constant Kv=0.5V/rad/sec and Ra=40hms. (6)                                                                                                                   | BTL 4          | Understand             | CO2        |
| 13. | <ul> <li>(i) Describe how regenerative braking is obtained in series</li> <li>Motor with chopper control.</li> <li>(ii) List the uses of phase controlled rectifiers in DC drives.</li> <li>(6)</li> </ul>                                                                                                | BTL 4<br>BTL 1 | Understand<br>Remember | CO2        |
| 14. | Draw and explain the operation of a single phase dual converter fed separately excited dc motor drive. (13)                                                                                                                                                                                               | BTL 3          | Apply                  | CO2        |
| 15. | Explain the ward – Leonard scheme of speed control of dc motor. (13)                                                                                                                                                                                                                                      | BTL 4          | Analyze                | CO2        |
| 16. | Compare the single phase full converter and three phase bridge converter fed dc motor drives.                                                                                                                                                                                                             | BTL 4          | Analyze                | CO2        |

| $R = 0.06\Omega$ , $L = 0.85$ mH is supplied from three phase, six phase Fully controlled converter. The line voltage connected to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Remember                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rated current, find SCR firing angle. (7) (ii) A 440V, 1500 rpm, 50A separately excited motor with armature resistance of $0.5\Omega$ is fed from a three phase fully controlled rectifier. Available ac source has a line voltage of 440V, 50Hz. A star delta connected transformer is used to feed the armature so that motor terminal voltage equals rated voltage when converter firing angle is zero. Calculate transformer turns ratio. Determine the value of firing angle when i) motor is running at 1400 rpm and rated torque, ii) when motor is running at (-800) rpm and twice the rated torque. Assume the continuous conduction. (6) | BTL 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Remember                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PART – C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Analyze the steady state analysis of single phase converter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BTL 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Evaluating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Fed DC motor drive for continuous mode of conduction. (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Discuss about the steady state analysis of three phase Converter fed DC motor drive for continuous mode of Conduction. (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BTL 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Creating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Summarize the methods of control of chopper fed DC drive.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BTL 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Evaluating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Discuss in detail the four-quadrant operation of chopper fed DC drive. (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BTL 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Creating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Discuss the operation of a three phase dual converter fed separately excited dc motor drive (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BTL 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Creating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $R=0.06\Omega$ , $L=0.85$ mH is supplied from three phase, six phase Fully controlled converter. The line voltage connected to the Converter is 148V and if the motor back emf is 160V at Rated current, find SCR firing angle. (7) (ii) A 440V, 1500 rpm, 50A separately excited motor with armature resistance of $0.5\Omega$ is fed from a three phase fully controlled rectifier. Available ac source has a line voltage of 440V, 50Hz. A star delta connected transformer is used to feed the armature so that motor terminal voltage equals rated voltage when converter firing angle is zero. Calculate transformer turns ratio. Determine the value of firing angle when i) motor is running at 1400 rpm and rated torque, ii) when motor is running at (-800) rpm and twice the rated torque. Assume the continuous conduction. (6) PART – C  Analyze the steady state analysis of single phase converter Fed DC motor drive for continuous mode of conduction. (15) Discuss about the steady state analysis of three phase Converter fed DC motor drive for continuous mode of Conduction. (15) Summarize the methods of control of chopper fed DC drive. (15) Discuss in detail the four-quadrant operation of chopper fed DC drive. (15) | $R=0.06\Omega$ , $L=0.85$ mH is supplied from three phase, six phase Fully controlled converter. The line voltage connected to the Converter is 148V and if the motor back emf is 160V at Rated current, find SCR firing angle. (7) (ii) A 440V, 1500 rpm, 50A separately excited motor with armature resistance of $0.5\Omega$ is fed from a three phase fully controlled rectifier. Available ac source has a line voltage of 440V, 50Hz. A star delta connected transformer is used to feed the armature so that motor terminal voltage equals rated voltage when converter firing angle is zero. Calculate transformer turns ratio. Determine the value of firing angle when i) motor is running at 1400 rpm and rated torque, ii) when motor is running at (-800) rpm and twice the rated torque. Assume the continuous conduction. (6)  PART – C  Analyze the steady state analysis of single phase converter Fed DC motor drive for continuous mode of conduction. (15)  Discuss about the steady state analysis of three phase Converter fed DC motor drive for continuous mode of Conduction. (15)  Summarize the methods of control of chopper fed DC drive. BTL 5  Discuss in detail the four-quadrant operation of chopper fed DC drive. (15)  Discuss the operation of a three phase dual converter fed BTL 6 | R = 0.06Ω, L=0.85mH is supplied from three phase, six phase Fully controlled converter. The line voltage connected to the Converter is 148V and if the motor back emf is 160V at Rated current, find SCR firing angle. (7) (ii) A 440V, 1500 rpm, 50A separately excited motor with armature resistance of 0.5Ω is fed from a three phase fully controlled rectifier. Available ac source has a line voltage of 440V, 50Hz. A star delta connected transformer is used to feed the armature so that motor terminal voltage equals rated voltage when converter firing angle is zero. Calculate transformer turns ratio. Determine the value of firing angle when i) motor is running at 1400 rpm and rated torque, ii) when motor is running at (-800) rpm and twice the rated torque. Assume the continuous conduction. (6)  PART − C  Analyze the steady state analysis of single phase converter Fed DC motor drive for continuous mode of conduction. (15)  Discuss about the steady state analysis of three phase Converter fed DC motor drive for continuous mode of Conduction. (15)  Summarize the methods of control of chopper fed DC drive. (15)  Discuss in detail the four-quadrant operation of chopper fed DC drive. (15)  Discuss the operation of a three phase dual converter fed BTL 6 Creating |

#### UNIT III - INDUCTION MOTOR DRIVES

Stator voltage control-energy efficient drive-v/f control-constant air gap flux-field weakening mode-Voltage / current fed inverter – closed loop control-slip power recovery scheme- vector control-Applications.

|      | PART – A                                                                                                     |             |            |                   |  |  |
|------|--------------------------------------------------------------------------------------------------------------|-------------|------------|-------------------|--|--|
| Q.No | Questions                                                                                                    | BT<br>Level | Competence | Course<br>Outcome |  |  |
| 1.   | Justify Why stator voltage control is suitable for speed Control of induction motors in fan and pump drives. | BTL 5       | Evaluate   | CO3               |  |  |
| 2.   | Summarize different methods of braking applied to induction motor.                                           | BTL 5       | Evaluate   | CO3               |  |  |
| 3.   | What are the advantages of induction motor over DC Motor                                                     | BTL 4       | Analyze    | CO3               |  |  |
| 4.   | Discuss different methods of speed control of induction motor.                                               | BTL 4       | Understand | CO3               |  |  |
| 5.   | Tell the drawbacks of stator voltage controlled Induction Motor drive.                                       | BTL 1       | Remember   | CO3               |  |  |
| 6.   | Define three regions in speed vs torque characteristics of induction motor.                                  | BTL 1       | Remember   | CO3               |  |  |
| 7.   | List any two applications of ac drives.                                                                      | BTL 1       | Remember   | CO3               |  |  |
| 8.   | Show the various applications of rotor resistance control.                                                   | BTL 5       | Apply      | CO3               |  |  |
| 9.   | Explain the soft start.                                                                                      | BTL 5       | Apply      | CO3               |  |  |
| 10.  | Discuss stator voltage control method.                                                                       | BTL 4       | Understand | CO3               |  |  |

| 11.      |                                                                                                                                                                                                          |                |                    |     |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------|-----|
| 11.      | What do you mean by field weakening mode control?                                                                                                                                                        | BTL 1          | Remember           | CO3 |
| 12.      | Compare CSI fed drives and VSI fed drives                                                                                                                                                                | BTL 4          | Analyze            | CO3 |
| 13.      | Discuss the advantages of PI controller used in closed loop<br>Control of induction motor drives.                                                                                                        | BTL 4          | Understand         | CO3 |
| 14.      | Compose the merits and demerits of voltage fed inverters<br>Controlled drives.                                                                                                                           | BTL 6          | Create             | CO3 |
| 15.      | Give the advantages of vector control method.                                                                                                                                                            | BTL 4          | Analyze            | CO3 |
| 16.      | What are the drawbacks of ward-Leonard system?                                                                                                                                                           | BTL 1          | Remember           | CO3 |
| 17.      | Write any two advantages of closed loop control system.                                                                                                                                                  | BTL 6          | Create             | CO3 |
| 18.      | Illustrate features from which slip controlled drive is developed.                                                                                                                                       | BTL 5          | Apply              | CO3 |
| 19.      | Discuss the slip controlled device.                                                                                                                                                                      | BTL 4          | Understand         | CO3 |
| 20.      | What are the applications of vector control method?                                                                                                                                                      | BTL 1          | Remember           | CO3 |
| 21.      | List the scherbius systems of speed control methods,                                                                                                                                                     | BTL 1          | Remember           | CO3 |
| 22.      | Give the applications of Kramer electrical drive.                                                                                                                                                        | BTL 2          | Understand         | CO3 |
| 23.      | List the advantages of v/f speed control of induction motor.                                                                                                                                             | BTL 4          | Analyze            | CO3 |
| 24.      | Illustrate the different speed control techniques employed for controlling the speed of an induction motor.                                                                                              | BTL 5          | Apply              | CO3 |
|          | PART - B                                                                                                                                                                                                 |                |                    |     |
|          | Discuss in detail with suitable diagrams and waveforms of                                                                                                                                                |                |                    |     |
| 1.       | the v/f control technique of speed control method of Induction motor. (13)                                                                                                                               | BTL 4          | Understand         | CO3 |
| 2.       | (Discussl Why a cyclo-converter fed induction motor drive is Preferred over inverter controlled synchronous motor drive for low speed applications. (13)                                                 | BTL 1          | Remember           | CO3 |
| 3.       | Explain the four modes of operation of a Static Scherbius Drive with diagram. (13)                                                                                                                       | BTL 4          | Analyze            | CO3 |
| 4.       | (i) Describe the VSI fed induction motor drive. (6)<br>(ii) What are the drawbacks of Stator Voltage Control<br>Method? (7)                                                                              | BTL 4          | Understand Analyze | CO3 |
|          | ` ^                                                                                                                                                                                                      |                | ,                  |     |
| 5.       | Explain in detail about the vector control for a three phase induction motor. (13)                                                                                                                       | BTL 5          | Evaluate           | CO3 |
| 6.       | <ul> <li>(i) Describe the concept of v/f control scheme. (7)</li> <li>(ii) Describe the variable frequency operation of induction</li> <li>Motor in closed loop with constant - gap flux. (6)</li> </ul> | BTL 1 BTL 1    | Remember           | CO3 |
|          | Describe the v/f control scheme of induction motor dive with a neat diagram. (13)                                                                                                                        | BTL 4          | Understand         | CO3 |
| 7.       | neat diagram. (13)                                                                                                                                                                                       |                |                    |     |
|          | (i) Explain the speed control scheme of induction motor drive                                                                                                                                            | BTL 5          | Apply              | CO3 |
| 7.<br>8. |                                                                                                                                                                                                          | BTL 5<br>BTL 4 | Apply Analyze      | CO3 |
|          | (i) Explain the speed control scheme of induction motor drive<br>With stator voltage control and state its advantages. (6)                                                                               |                |                    |     |

|     |                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | <u>,                                      </u> |     |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------|-----|
| 11. | (i)A 4.8 kW, 400 V, 50Hz, 4 pole, 570 rpm, delta connected squirrel cage induction motor has following parameters referred to the stator: Rs= $4\Omega$ , Rr`= $5\Omega$ , Xs=Xr`= $5\Omega$ , Xm= $80\Omega$ . Motor speed is controlled by stator voltage control. Estimate the motor terminal voltage, current and torque at 1400 rpm.                                                                                               | BTL 4 | Understand                                     | CO3 |
|     | (ii)Predict v/f control of induction motor drives. (6)                                                                                                                                                                                                                                                                                                                                                                                  |       |                                                |     |
| 12. | Describe the closed loop speed control of VSI fed and CSI fed induction motor drives. (13)                                                                                                                                                                                                                                                                                                                                              | BTL 1 | Remember                                       | CO3 |
| 13. | (i)Describe the working of static scherbius drive in detail. (7) (ii)Why the power factor of the slip power recovery scheme of speed control of induction motor is low?(6)                                                                                                                                                                                                                                                              | BTL 5 | Apply                                          | CO3 |
| 14. | <ul> <li>(i) Explain the operation of constant slip speed control.</li> <li>(ii) Explain the stator voltage control scheme for speed control of three phase induction motor.</li> <li>(7)</li> </ul>                                                                                                                                                                                                                                    | BTL 4 | Analyze                                        | CO3 |
| 15. | Show and explain with a neat diagram the field weakening mode control of induction motor drives. (13)                                                                                                                                                                                                                                                                                                                                   | BTL 4 | Analyze                                        | CO3 |
| 16. | Define in detail about the principle of vector control of Induction motor drive. (13)                                                                                                                                                                                                                                                                                                                                                   | BTL 1 | Remember                                       | CO3 |
| 17. | Discuss the static Kramer drive system of speed control of an induction motor. (13)                                                                                                                                                                                                                                                                                                                                                     | BTL 4 | Analyze                                        | CO3 |
| 1.  | A three phase 50Hz Induction motor has the following Parameters for its equivalent circuit $R1 = R4 = 0.04$ ohm and $X1 = X4 = 0.1$ ohm is to be operated at one half of its rated voltage and 45 Hz frequency. Calculate (i) the maximum torque at this reduced voltage and frequency operation in terms of its normal value and (ii) the starting torque at this reduced frequency and the voltage in terms of its normal value. (15) | BTL 5 | Evaluating                                     | CO3 |
| 2.  | Analyze the operation of Voltage source inverter fed Induction motor drives. (15)                                                                                                                                                                                                                                                                                                                                                       | BTL 6 | Creating                                       | CO3 |
| 3.  | Describe the closed loop control of speed of induction motor drive fed by current source Inverter. (15)                                                                                                                                                                                                                                                                                                                                 | BTL 5 | Evaluating                                     | CO3 |
| 4.  | Discuss various types of the speed control scheme of induction motor drive. (15)                                                                                                                                                                                                                                                                                                                                                        | BTL 6 | Creating                                       | CO3 |
| 5.  | Explain the closed loop control of static scherbius system of speed control with four possible modes of operation. (15)                                                                                                                                                                                                                                                                                                                 | BTL 4 | Analyze                                        | CO3 |

## UNIT IV-SYNCHRONOUS MOTOR DRIVES

V/f control and self-control of synchronous motor: Margin angle control and power factor control- Three phase voltage/current source fed synchronous motor- Applications, Effects of Harmonics.

|      | PART - A                                                                                                               |          |            |                   |
|------|------------------------------------------------------------------------------------------------------------------------|----------|------------|-------------------|
| Q.No | Questions                                                                                                              | BT Level | Competence | Course<br>Outcome |
| 1.   | Justify why a self controlled synchronous motor is free from hunting oscillations?                                     | BTL 5    | Evaluate   | CO4               |
| 2.   | Discuss why v/f ratio is kept constant up to base speed and V constant above base speed in variable frequency control. | BTL 4    | Understand | CO4               |
| 3.   | Explain self control of synchronous motor.                                                                             | BTL 4    | Analysis   | CO4               |
| 4.   | List any two applications of synchronous motor drives.                                                                 | BTL 1    | Remember   | CO4               |
| 5.   | Compose the merits and demerits of PMSM                                                                                | BTL 6    | Create     | CO4               |
| 6.   | Illustrate when a synchronous motor said to be self controlled?                                                        | BTL 1    | Remember   | CO4               |
| 7.   | Show the necessity of delay unit in an open loop v/f control of synchronous motor.                                     | BTL 5    | Apply      | CO4               |
| 8.   | Why is damper winding absent in self-controlled Synchronous motors?                                                    | BTL 5    | Apply      | CO4               |
| 9.   | Explain the modes of adjustable frequency control in synchronous motor drives.                                         | BTL 5    | Evaluate   | CO4               |
| 10.  | Explain when a synchronous motor can be load commutated.                                                               | BTL 4    | Analysis   | CO4               |
| 11.  | What are the different types of controls used in Synchronous motor drives?                                             | BTL 5    | Apply      | CO4               |
| 12.  | Formulate the expression for torque equation of salient pole synchronous motor.                                        | BTL 6    | Create     | CO4               |
| 13.  | Define torque angle                                                                                                    | BTL 1    | Remember   | CO4               |
| 14.  | What is slip power recovery scheme?                                                                                    | BTL 4    | Understand | CO4               |
| 15.  | Name the two controllers employed in the closed loop control of synchronous motor drives.                              | BTL 1    | Remember   | CO4               |
| 16.  | Discuss the disadvantages of load commutation in the CSI fed synchronous motor drive.                                  | BTL 4    | Understand | CO4               |
| 17.  | What are the types and advantages of permanent magnet AC synchronous motor drives?                                     | BTL 1    | Remember   | CO4               |
| 18.  | List the merits and demerits of VSI fed synchronous motor drives.                                                      | BTL 1    | Remember   | CO4               |
| 19.  | Define margin angle control of synchronous motor drive.                                                                | BTL 4    | Analysis   | CO4               |
| 20.  | What is meant by super synchronous operation?                                                                          | BTL 4    | Understand | CO4               |
| 21.  | Define the power factor control of synchronous motor drive.                                                            | BTL 4    | Analysis   | CO4               |
| 22.  | List the different harmonics injected to ac system when 6 pulse converter is used to control the speed of synchronous  | BTL 4    | Analysis   | CO4               |
| 23.  | Discuss the basic principle of synchronous motor.                                                                      | BTL 1    | Remember   | CO4               |

| 24.      | Explain synchronous reluctance motor.                                                                                                                                                                                                                                                                                                                                                                                                                                             | BTL 1 | Remember   | CO4 |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------|-----|
| PART - B |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |            |     |
| 1.       | (i)Discuss briefly separate controlled mode of synchronous motor in detail. (7)                                                                                                                                                                                                                                                                                                                                                                                                   | BTL 4 | Understand | CO4 |
|          | (ii) Explain self control of synchronous motor drive in detail. (6)                                                                                                                                                                                                                                                                                                                                                                                                               | BTL 4 | Analysis   | CO4 |
| 2.       | Explain margin angle control of synchronous motor drive. (13)                                                                                                                                                                                                                                                                                                                                                                                                                     | BTL 4 | Analysis   | CO4 |
| 3.       | (i)Explain Commutator less Dc motor. (6)                                                                                                                                                                                                                                                                                                                                                                                                                                          | BTL 4 | Analysis   | CO4 |
|          | (ii)Describe closed loop speed control of load commutated inverter synchronous motor drive and explain it. (7)                                                                                                                                                                                                                                                                                                                                                                    | BTL 1 | Remember   | CO4 |
| 4.       | (i)Describe the open loop v/f control of VSI fed synchronous motor in detail. (7)                                                                                                                                                                                                                                                                                                                                                                                                 | BTL 1 | Remember   | CO4 |
|          | (ii)Describe the CSI fed synchronous motor drive in detail. (6)                                                                                                                                                                                                                                                                                                                                                                                                                   | BTL 1 | Remember   | CO4 |
| 5.       | Describe the closed loop operation of permanent magnet synchronous motor drive in details. (13)                                                                                                                                                                                                                                                                                                                                                                                   | BTL 1 | Remember   | CO4 |
| 6.       | Discuss in detail the construction, Principle of operation and application of permanent magnet synchronous motor. (13)                                                                                                                                                                                                                                                                                                                                                            | BTL 4 | Understand | CO4 |
| 7.       | Discuss the Various application of three phase voltage source inverter fed synchronous motor drive. (13)                                                                                                                                                                                                                                                                                                                                                                          | BTL 1 | Remember   | CO4 |
| 8.       | A 5phase, 400V, 50Hz, 6pole star connected round rotor synchronous motor has $Zs=0+j4\Omega$ Load torque proportional to speed squared is 540Nm at rated synchronous speed. The speed of the motor is lowered by keeping v/f constant and maintaining unity power factor by field control of the motor. For the motor operation at 600 rpm, calculate a) supply voltage b) armature current c) excitation angle d) load angle e) pull out torque. Neglect rotational losses. (13) | BTL 5 | Apply      | CO4 |
| 9.       | A 7MW, three phase 14 kV star connected 6 pole 50Hz 0.9 leading power factor synchronous motor has Xs= 10Ω and Rs=0. The rated field current is 40A. The machine is controlled by variable frequency control at constant V/f ratio up to the base speed and at constant V above base speed. Evaluate (i) Torque (ii) The field current for the rated armature current 750rpm and 0.8 leading power factor. (13)                                                                   | BTL 5 | Evaluate   | CO4 |

| 10. | A 500kW, 5 phase, 5.5 kV, 50 Hz, 0.8 lagging power factor, 4 pole, star connected synchronous motor has the following parameters Xs=15Ω, Rs=0.Rated field current is 10A. Calculate armature current and power factor at half the rated torque and field current. (13)                                                                                                                                            | BTL 5 | Apply      | CO4 |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------|-----|
| 11. | Explain the constant marginal angle control technique of self controlled synchronous motor drive employing load commutated thyristor inverter. (13)                                                                                                                                                                                                                                                               | BTL 4 | Analysis   | CO4 |
| 12. | Compose the closed loop control of synchronous motor with neat block diagram (13)                                                                                                                                                                                                                                                                                                                                 | BTL 6 | Create     | CO4 |
| 13. | Describe using a diagram the working of a voltage source inverter fed synchronous motor Drive. (13)                                                                                                                                                                                                                                                                                                               | BTL 4 | Understand | CO4 |
| 14. | Explain using a circuit and phasor diagram how the speed of a synchronous motor is controlled in the true synchronous mode. (13)                                                                                                                                                                                                                                                                                  | BTL 4 | Analysis   | CO4 |
| 15. | Describe briefly the power factor angle control of synchronous motors with relevant vector diagram. (13)                                                                                                                                                                                                                                                                                                          | BTL 4 | Analysis   | CO4 |
| 16. | A 8 MW, 3 phase, 15 KV star connected 6 pole,0.9 leading power factor synchronous motor has Xs equal to 10 ohms and Rs equal to zero. The rated field current is 65 Amps. The motor is controlled by variable frequency control at constant V/f ratio upto base speed and at constant V above base speed. Identify the torque and field current for rated armature current, 750 rpm and 0.8 leading power factor. | BTL 4 | Analysis   | CO4 |
| 17. | Discuss the forced commutated CSI fed synchronous motor drive. (13)                                                                                                                                                                                                                                                                                                                                               | BTL 1 | Remember   | CO4 |
| 1.  | Explain the forward motoring and braking operation of open loop V/f control of multiple PMSM with relevant phasor diagram. (15)                                                                                                                                                                                                                                                                                   | BTL 5 | Evaluating | CO4 |
| 2.  | (i) Discuss using a block diagram the operation of a voltage source inverter fed synchronous motor in the true Synchronous mode.  (8)  (ii) Explain the self-control of Synchronous motor in detail. (7)                                                                                                                                                                                                          |       | Creating   | CO4 |
| 3.  | Compare in detail V/F control strategies of induction motor and synchronous motor drive. (15)                                                                                                                                                                                                                                                                                                                     | BTL 5 | Evaluating | CO4 |
| 4.  | Discuss in detail with help of block diagram the closed loop control load commutated inverter fed synchronous motor drive. (15)                                                                                                                                                                                                                                                                                   | BTL 6 | Creating   | CO4 |
| 5.  | Explain the margin angle control and power factor control of synchronous motor drives. (15)                                                                                                                                                                                                                                                                                                                       | BTL 5 | Evaluating | CO4 |

#### UNIT V - DESIGN OF CONTROLLERS FOR DRIVES

Transfer function for DC motor / load and converter - closed loop control with Current and speed feedback-armature voltage control and field weakening mode - Design of controllers; current controller and speed controller- converter selection and characteristics.

| PART - A |                                                                                    |          |            |                   |
|----------|------------------------------------------------------------------------------------|----------|------------|-------------------|
| Q.No     | Questions                                                                          | BT Level | Competence | Course<br>Outcome |
| 1.       | Discuss the roles of inner current control and outer speed control loops?          | BTL 4    | Understand | CO5               |
| 2.       | List the methods of speed sensing.                                                 | BTL 1    | Remember   | CO5               |
| 3.       | Write down the transfer function expression of converter.                          | BTL 5    | Apply      | CO5               |
| 4.       | Give the advantages of Pi controller.                                              | BTL 4    | Understand | CO5               |
| 5.       | Describe field weakening mode control.                                             | BTL 1    | Remember   | CO5               |
| 6.       | Name any four simulation software packages that can be used for electrical drives. | BTL 1    | Remember   | CO5               |
| 7.       | Give the real and reactive power equations of a balance 5 phase ac system.         | BTL 4    | Understand | CO5               |
| 8.       | List the advantages of closed loop speed control.                                  | BTL 1    | Remember   | CO5               |
| 9.       | Discuss the role of current limiter in the closed loop control of DC drives.       | BTL 4    | Understand | CO5               |
| 10.      | When can a synchronous motor be load commutated?                                   | BTL 1    | Remember   | CO5               |
| 11.      | Name any four simulation packages that can be used for electrical drives           | BTL 4    | Analysis   | CO5               |
| 12.      | Show the transfer function of DC motor load system.                                | BTL 5    | Apply      | CO5               |
| 13.      | Show the mechanical and electrical time constant of DC machines.                   | BTL 5    | Apply      | CO5               |
| 14.      | Explain how speed feedback achieved in speed controller design?                    | BTL 4    | Analysis   | CO5               |
| 15.      | Explain armature voltage control.                                                  | BTL 4    | Analysis   | CO5               |
| 16.      | What are the modes of adjustable frequency control in synchronous motor drives?    | BTL 5    | Evaluate   | CO5               |
| 17.      | Draw and label the basic block diagram of closed loop control system.              | BTL 1    | Remember   | CO5               |
| 18.      | What is the design procedure for a closed loop speed control system?               | BTL 6    | Create     | CO5               |
| 19.      | Write the transfer function expression for speed controller                        | BTL 5    | Evaluate   | CO5               |
| 20.      | Compose the disadvantages of phase controlled converter fed DC motor drives.       | BTL 6    | Create     | CO5               |
| 21.      | Give the transfer function relating speed and armature current of a dc motor.      | BTL 1    | Remember   | CO5               |
| 22.      | List the functions of feedback loops in an electrical drive.                       | BTL 2    | Understand | CO5               |

| 23. | Give the factors to be considered for the selection of controller.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BTL 2 | Understand | CO5 |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------|-----|
| 24. | List the factors controlling the speed of dc motor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BTL 5 | Evaluate   | CO5 |
|     | PART - B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |            |     |
| 1.  | Derive and explain from basic principles the transfer function for separately excited DC motor load system with converter fed armature voltage control. (13)                                                                                                                                                                                                                                                                                                                                                                                                                          | BTL 5 | Evaluate   | CO5 |
| 2.  | Explain the closed loop operation of armature voltage control method and field weakening mode control for Dc drive. (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BTL 4 | Analysis   | CO5 |
| 3.  | (i) Discuss the design procedure for current controller of an electric drive. (7) (ii) Mention the factors involved in converter selection and equations involved in controller characteristics. (6)                                                                                                                                                                                                                                                                                                                                                                                  | BTL 1 | Remember   | CO5 |
| 4.  | Give the design procedure for speed controller of an electrical drive system with necessary diagrams. (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BTL 6 | Create     | CO5 |
| 5.  | Discuss the use of simulation software package for design of controller for drives (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BTL 1 | Remember   | CO5 |
| 6.  | List the factors involved in converter selection and equations involved in controller characteristics. (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BTL 1 | Remember   | CO5 |
| 7.  | A 50KW, 440V, 1700 rpm separately excited DC motor is controlled by a converter. The field current is maintained at If=1.4A and the machine back EMF constant is Kv=.91VA rad/sec.The armature resistance is Rm=0.1Ω and thev is constriction constant is B=0.5Nm/rad/sec. The amplification of the speed sensor is K1=95mV/rad/sec and the gain of the power controller is K4=100. Calculate  (i)The reference voltage Vr to drive the motor at the rated speed.  (ii)If the reference voltage is kept unchanged, determine the speed at which the motor develops rated torque.  (6) | BTL 5 | Apply      | CO5 |
| 8.  | Describe the current controller design using  (i)P controller  (ii)PI controller for a separately excited dc motor drive systems.  (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                | BTL 1 | Remember   | CO5 |
| 9.  | Design a speed controller Dc motor drive maintaining the field flux constant. The motor parameters and ratings are as follows. 440V, 8.5A, 1470 rpm, Ra = $4\Omega$ , J = 0.0607 kg-m4, La = 0.074H,Bt = 0.0869 Nm/rad/sec, Kb = 1.46V/rad/sec The converter is supplied from 450V, 5phase AC at 60 Hz. The converter is linear and its maximum control input voltage is $\pm 10$ V. The tacho generator has the transfer function Gw(s) = $(0.065)/(1+0.004s)$ . The speed reference voltage has a maximum of 10V. The maximum current permitted in the motor is 40A. (13)           | BTL 4 | Understand | CO5 |

| 11. (i)Derive the transfer function of DC Motor-load system with armature voltage control.  (ii)How do you select the rating of the converter based on the drive application?  (ii) Write in detail about the design of controller.  (ii) Derive the closed loop transfer function of Dc motor with current feedback.  (7)  13. Derive the transfer function of separately excited dc motor with armature voltage control.  (13)  14. Design the speed controller of converter fed separately excited dc motor with inner current control and outer speed control loops.  (13)  15. Design a current controller for a small capacity constant speed drive.  16. Explain the step by step procedure of design of speed controller for closed loop control of separately excited de motor with armature voltage control.  17. Explain the design procedure and derive the transfer function of the current controller.  PART – C  1. Design a current controller for small capacity constant speed drive.  (15)  2. Explain the design procedure and derive the transfer function of the Speed and Current controller.  (15)  3. Summarize the factors involved in converter selection and equations involved in controller characteristics.  (15)  4. Derive the transfer function of Spearately excited dc motor.  (15)  Explain in detail the design of speed controller of closed loop speed control system of separately excited dc motor.  (15)  Explain in detail the design of speed controller of closed loop speed control system of separately excited dc motor.  (15)  Explain in detail the design of speed controller of closed loop speed control system of separately excited dc motor.  (15) | 10. | Using suitable block diagram explain the following control (i)Current limit control (ii)Closed loop torque control (iii)Closed loop speed control. (13) | BTL 4 | Analysis   | CO5 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------|-----|
| (ii)Derive the closed loop transfer function of Dc motor with current feedback.  (7)  13. Derive the transfer function of separately excited dc motor with armature voltage control.  (13)  14. Design the speed controller of converter fed separately excited dc motor with inner current control and outer speed control loops.  (13)  15. Design a current controller for a small capacity constant speed drive.  16. Explain the step by step procedure of design of speed controller for closed loop control of separately excited de motor with armature voltage control.  17. Explain the design procedure and derive the transfer function of the current controller.  PART – C  1. Design a current controller for small capacity constant speed drive.  (15)  2. Explain the design procedure and derive the transfer function of the Speed and Current controller.  (15)  3. Summarize the factors involved in converter selection and equations involved in controller characteristics.  (15)  4. Derive the transfer function of speed controller of closed loop  BTL 5 Evaluating  CO5  Explain in detail the design of speed controller of closed loop  BTL 6 Creating  CO5  Evaluating  CO5                                                                                                                                                                                                                                                                                                                                                                                          | 11. | with armature voltage control. (7) (ii)How do you select the rating of the converter based on                                                           | BTL 4 | Understand | CO5 |
| with current feedback. (7)  13. Derive the transfer function of separately excited dc motor with armature voltage control. (13)  14. Design the speed controller of converter fed separately excited dc motor with inner current control and outer speed control loops. (13)  15. Design a current controller for a small capacity constant speed drive.  16. Explain the step by step procedure of design of speed controller for closed loop control of separately excited de motor with armature voltage control.  17. Explain the design procedure and derive the transfer function of the current controller.  18. Design a current controller for small capacity constant speed drive.  19. PART – C  10. Design a current controller for small capacity constant speed drive.  10. Explain the design procedure and derive the transfer function of the current controller.  10. Design a current controller for small capacity constant speed drive.  10. Cos mandal capacity constant speed drive.  11. Design a current controller for small capacity constant speed drive.  12. Explain the design procedure and derive the transfer function of the Speed and Current controller.  13. Summarize the factors involved in converter selection and equations involved in controller characteristics.  14. Derive the transfer function of DC motor load system with Converter fed system.  15. Explain in detail the design of speed controller of closed loop  16. Explain in detail the design of speed controller of closed loop  17. Explain in detail the design of speed controller of closed loop  18. Evaluating Cos                                                                      | 12. | (i)Write in detail about the design of controller. (6)                                                                                                  |       |            |     |
| with armature voltage control. (13)  14. Design the speed controller of converter fed separately excited dc motor with inner current control and outer speed control loops. (13)  15. Design a current controller for a small capacity constant speed drive.  16. Explain the step by step procedure of design of speed controller for closed loop control of separately excited de motor with armature voltage control.  17. Explain the design procedure and derive the transfer function of the current controller.  PART – C  1. Design a current controller for small capacity constant speed drive. (15)  2. Explain the design procedure and derive the transfer function of the Speed and Current controller. (15)  3. Summarize the factors involved in converter selection and equations involved in controller characteristics. (15)  4. Derive the transfer function of DC motor load system with Converter fed system. (15)  5. Explain in detail the design of speed controller of closed loop  BTL 5 Evaluating CO5  Creating CO5  BTL 6 Creating CO5  BTL 6 Creating CO5  Explain in detail the design of speed controller of closed loop  BTL 6 Creating CO5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                                                                                                                                                         | BTL 5 | Apply      | CO5 |
| excited dc motor with inner current control and outer speed control loops.  15. Design a current controller for a small capacity constant speed drive.  16. Explain the step by step procedure of design of speed controller for closed loop control of separately excited de motor with armature voltage control.  17. Explain the design procedure and derive the transfer function of the current controller.  PART – C  1. Design a current controller for small capacity constant speed drive.  (15)  2. Explain the design procedure and derive the transfer function of the Speed and Current controller.  (15)  3. Summarize the factors involved in converter selection and equations involved in controller characteristics.  (15)  4. Derive the transfer function of DC motor load system with Converter fed system.  (15)  Evaluating CO5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13. |                                                                                                                                                         | BTL 4 | Analysis   | CO5 |
| drive.  16. Explain the step by step procedure of design of speed controller for closed loop control of separately excited de motor with armature voltage control.  17. Explain the design procedure and derive the transfer function of the current controller.  PART – C  1. Design a current controller for small capacity constant speed drive.  (15)  2. Explain the design procedure and derive the transfer function of the Speed and Current controller.  (15)  3. Summarize the factors involved in converter selection and equations involved in controller characteristics.  (15)  4. Derive the transfer function of DC motor load system with Converter fed system.  (15)  Explain in detail the design of speed controller of closed loop  BTL 5 Evaluating CO5  Explain in detail the design of speed controller of closed loop  BTL 5 Evaluating CO5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14. | excited dc motor with inner current control and outer speed                                                                                             | BTL 4 | Understand | CO5 |
| for closed loop control of separately excited de motor with armature voltage control.  17. Explain the design procedure and derive the transfer function of the current controller.  PART – C  1. Design a current controller for small capacity constant speed drive.  2. Explain the design procedure and derive the transfer function of the Speed and Current controller.  3. Summarize the factors involved in converter selection and equations involved in controller characteristics.  4. Derive the transfer function of DC motor load system with Converter fed system.  5. Explain in detail the design of speed controller of closed loop  BTL 5 Evaluating  CO5  Evaluating  CO5  Evaluating  CO5  Evaluating  CO5  Evaluating  CO5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15. |                                                                                                                                                         | BTL 6 | Creating   | CO5 |
| the current controller.  PART – C  1. Design a current controller for small capacity constant speed drive.  2. Explain the design procedure and derive the transfer function of the Speed and Current controller.  3. Summarize the factors involved in converter selection and equations involved in controller characteristics.  4. Derive the transfer function of DC motor load system with Converter fed system.  5. Explain in detail the design of speed controller of closed loop  BTL 5 Evaluating CO5  BTL 6 Creating CO5  Evaluating CO5  BTL 6 Creating CO5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16. | for closed loop control of separately excited de motor with                                                                                             | BTL 5 | Apply      | CO5 |
| 1. Design a current controller for small capacity constant speed drive.  2. Explain the design procedure and derive the transfer function of the Speed and Current controller.  3. Summarize the factors involved in converter selection and equations involved in controller characteristics.  4. Derive the transfer function of DC motor load system with Converter fed system.  5. Explain in detail the design of speed controller of closed loop  BTL 5 Evaluating  CO5  Evaluating  CO5  Evaluating  CO5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17. |                                                                                                                                                         | BTL 5 | Apply      | CO5 |
| drive. (15)  2. Explain the design procedure and derive the transfer function of the Speed and Current controller. (15)  3. Summarize the factors involved in converter selection and equations involved in controller characteristics. (15)  4. Derive the transfer function of DC motor load system with Converter fed system. (15)  5. Explain in detail the design of speed controller of closed loop  BTL 5 Evaluating CO5  CO5  Evaluating CO5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     | PART – C                                                                                                                                                |       |            |     |
| of the Speed and Current controller.  3. Summarize the factors involved in converter selection and equations involved in controller characteristics.  4. Derive the transfer function of DC motor load system with Converter fed system.  5. Explain in detail the design of speed controller of closed loop  BTL 5 Evaluating CO5  Explain in detail the design of speed controller of closed loop  BTL 5 Evaluating CO5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.  | 7 7 2                                                                                                                                                   | BTL 5 | Evaluating | CO5 |
| equations involved in controller characteristics. (15)  4. Derive the transfer function of DC motor load system with Converter fed system. (15)  5. Explain in detail the design of speed controller of closed loop BTL 5 Evaluating CO5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.  |                                                                                                                                                         | BTL 6 | Creating   | CO5 |
| Converter fed system. (15)  5. Explain in detail the design of speed controller of closed loop BTL 5 Evaluating CO5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.  |                                                                                                                                                         | BTL 5 | Evaluating | CO5 |
| Explain in detail the design of speed controller of closed loop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.  | I                                                                                                                                                       | BTL 6 | Creating   | CO5 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.  |                                                                                                                                                         | BTL 5 | Evaluating | CO5 |

## **Course Outcomes:**

| Cos | Course Outcome                                          |
|-----|---------------------------------------------------------|
| CO1 | Ability to understand drive characteristics.            |
| CO2 | Ability to understand chopper fed drive.                |
| CO3 | Ability to understand induction motor drives.           |
| CO4 | Ability to understand synchronous motor drives.         |
| CO5 | Ability to understand design of controllers for drives. |