SRM VALLIAMMAI ENGINEERING COLLEGE

SRM Nagar, Kattankulathur – 603 203.

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

QUESTION BANK

BE-Electrical and Electronics Engineering IIIst Year SEMESTER VI 1905604- ADVANCED CONTROL SYSTEM

Regulation -2019

Academic Year 2022–23

Prepared by

Dr.R.Arivalahan, Professor/EEE,

UNIT I STATE VARIABLE ANALYSIS

Introduction- concepts of state variables and state model-State model for linear continuous time systems, Diagonalisation- solution of state equations- Concepts of controllability and observability.

PART A

Q.No.	Questions	BTL	Domain		
		Level			
1.	Examine the general form of the state space model for continuous	BTL 5	Evaluating		
	system. And also write the state diagram.				
2.	Define the following terms such as (i) State (ii) State Variable (iii)	BTL 1	Remembering		
	State Vector (iv) State Space Model.				
3.	Give any two approach to convert the transfer function approach to	BTL 1	Remembering		
	the state space model.				
4.	What is the state transition matrix ? List any two methods for	BTL 1	Remembering		
	finding state transition matrix.				
5.	Quote the formula for the solution of the state equation in time	BTL 1	Remembering		
	domain?				
6.	Evaluate the general form of state space model for continuous	BTL 5	Evaluating		
	system.				
7.	What is state transition matrix and identify how it is related to state	BTL 2	Understanding		
	of a system?				
8.	Illustrate the concept of Diagonalization of the matrix.	BTL 3	Applying		
9.	Examine How the state transition matrix e ^{At} is computed by	BTL 2	Understanding		
	canonical transformation.				

10.	What is meant by duality of the system. Develop the expression by	BTL 2	Understanding
	Kalman's Method.		
11.	Obtain the state space model for the given differential equation solve and obtain the transfer function model	BTL 3	Applying
	$\frac{d^{3}Y}{dt^{2}} + 6\frac{d^{2}Y}{dt^{2}} + 11\frac{dY}{dt} + 6Y = U(t)$		
12.	Consider a system whose transfer function is given by Y(S)/U(S)	BTL 3	Applying
	$= 10(S+1)/S^3 + 6s^2 + 5s + 10$. Calculate state model for this system.		
13.	A discrete time system is described by the difference equation	BTL 3	Applying
	Y(K+2)+5Y(K+1)+6Y(K) = U(K). Solve and find the transfer		
	function of the system.		
14.	State the condition for observability by kalman's method.	BTL 1	Remembering
15.	Derive and explain the transfer function model of a LTI system whose state equation is given by	BTL 4	Analyzing
	$X = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix} X + \begin{pmatrix} 1 \\ -1 \end{pmatrix} U$ $Y = \begin{pmatrix} 1 & 1 \end{pmatrix} X$		
16.	Explain the solution of homogeneous state equations.	BTL 4	Analyzing
17.	Formulate the state transition matrix by Matrix Exponential	BTL 5	Evaluating
	$A = \begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix}$		
18.	Judge any 2-methods for the conversion of transfer functional	BTL 5	Evaluating
	model into state space model.		
19.	Define the duality of the system between controllability and	BTL 1	Remembering
	observability concept?		

20.	The given state space model	BTL 5	Evaluating
	$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} -2 & 1 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 4 \\ 5 \end{bmatrix} U ; y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$		
	Examine whether the given is controllable.		
21.	Examine the need for Controllability test and observability test?	BTL 5	Evaluating
22.	Evaluate the condition for controllability and observability by Gilbert's method.	BTL 5	Evaluating
23.	Formulate the condition for controllability and observability by Kalman's method	BTL 6	Creating
24.	Analyze how the state transition matrix e ^{At} is computed using Cayley- Hamilton theorem?	BTL 4	Analyzing
	PART – B		
1.	Evaluate the state space model for the mechanical system as shown in Fig Where u(t) is input and y(t) is output. Also derive the transfer function from the state space equations.		Evaluating
2.	Design explain (i) Armature control of DC Motor (ii) Field Control of DC Motor. And also draw the (i) Block diagram (ii) State diagram and state space model for the system. (13)		Creating

3.	The given state space model	BTL 4	Analyzing
	$\begin{vmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{vmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 3 \end{bmatrix} U; y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} $ Check whether the		
	given is controllable and observable or not. And also Point out the duality by Kalman's approach and Gilbert's method. (13)		
4.	The given state space model $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \vdots \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} U;$	BTL 4	Analyzing
	y=[3 4 1] $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ Check whether the given is controllable and		
	observable or not. And also Point out the duality by Kalman's approach. (13)		
5.	Illustrate the expression for the state space model for the	BTL3	Applying
	continuous system and also draw the state diagram for it. (13)		
6.	Illustrate the expression for the Controllability and Observability	BTL3	Applying
	in (i) Kalman's Method (ii) Gilbert's Method. (13)		
7.	Solve the state space model for the given system(i) $Y(S)/U(S)=10/S^3+4S^2+2S+1$ by the method of (i) Laplace Transform (ii) Signal Flow Graph Method. (13)		Applying
8.	Evaluate the state space model for the given differential equation	BTL 5	Evaluating
	$\frac{d^3Y}{dt^2} + 6\frac{d^2Y}{dt^2} + 11\frac{dY}{dt} + 6Y = U(t)$ by Canonical form or companion		
	form method and also draw the state diagram for it. (13)		
9.	Formulate the state transition matrix by (i) Matrix Exponential	BTL 6	Creating
	Method (ii)Laplace Transform method. (13)		
	$A = \begin{bmatrix} 0 & 5 \\ -1 & -2 \end{bmatrix}$		

10.	Evaluate the value of e ^{At} by (i) Trial and Error Method (ii) Cayley BTL 1 Remembering	,
	Hamilton's Theorem. $A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$ (13)	
11.	Analyze the value of state transition matrix or e ^{At} by using (a) BTL 3 Applying	
	Laplace Transform Method (b) Cayley Hamilton's Theorem	
	$(c)A^{10} \text{ in which } A = \begin{bmatrix} 0 & 1 \\ -12 & 7 \end{bmatrix} $ (13)	
12.	The given matrix $A = \begin{bmatrix} -1 & 1 & 1 \\ 0 & -1 & 1 \\ 0 & 0 &1 \end{bmatrix}$; Calculate the state BTL 3 Applying	
	transition matrix by using Laplace transform method. (13)	
13.	Analyze the value of state transition matrix or e^{At} by using (a) BTL 3 Applying Laplace Transform Method (b) Cayley Hamilton's Theorem $A = \begin{bmatrix} 0 & 1 \\ -6 & -5 \end{bmatrix}; B = [1;1] \text{ with initial condition} = [1;2] $ (13)	
14.	Create the state space model by using signal flow graph for the given problem(i)Y(S)/U(S)= $10/(S^3+5S^2+4S+10)$ (13)	
15.	Illustrate the expression by (i) Matrix Exponential Method (ii) BTL 3 Applying Laplace Transform Method for state transition of matrix. (13)	
16.	Obtain the state space Model $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 4 \end{bmatrix} U ; y=[1\ 0\ 0] \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ Convert the state space model into canonical form state space model. And also calculate the value of state transition matrix. (13)	

17.	The given state space model	BTL 5	Evaluating
	$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ -1 & -5 & -6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 10 \end{bmatrix} U ; y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$		
	Check and discuss whether the given is controllable and	l	
	observable or not. And check the duality by Kalman's approach	n	
	and Gilbert's method. (13)		
	PART C		
1.	Create the expression for the following Methods for State	BTL 6	Creating
	Transition Matrix as follows (i) Trial and Error Method (iii)		
	Laplace Transform Method (iv) Canonical Form. (15)		
2.	The transfer function of the system $Y(S)/U(S)=3/S^3+6S^2+11S+6$.	BTL 4	Analyzing
	Check and express whether the system is controllable as well as		
	observable. And check the duality by Kalman's approach and		
	Gilbert's method. (15)		
3.	With the case study Summarize (i) Armature control of DC	BTL 5	Evaluating
	Motor (ii) Field Control of DC Motor. And also draw the (i)		
	Block diagram (ii) State diagram and state space model for the		
	system. (15)		
4.	The given state space model	BTL 4	Analyzing
	$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} -2 & 1 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 4 \\ 5 \end{bmatrix} U; y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$		
	Solve whether the given is controllability and observability. (15)		
5.	(i) Consider a system whose transfer function is given by	BTL 3	Applying
	$Y(S)/U(S) = 10(S+1)/S^3 + 6s^2 + 5s + 10$. Solve the $\mbox{ state model for }$		
	this system. (7)		
L		1	

(ii) The given state space model		
$\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_3 \end{bmatrix} = \begin{bmatrix} -5 & 1 & 1 \\ -1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 4 \\ 5 \end{bmatrix} U; y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ Point out whether the	BTL 4	Analyzing
given is controllable or observable or not. Also check the duality		
principle. (8)		

UNIT II STATE VARIABLE DESIGN

Introduction to state model: Effect of state feedback - Pole placement design: Necessary and sufficient condition for arbitrary pole placement, State regulator design Design of state observers-Separation principle- Design of servo systems: State feedback with integral control.

PART A Q.No. Questions Domain BTL Level BTL 1 Remembering 1. What is the state observer? Draw the diagram for State Observer and point out main features. Analyze the need for state observer for the system? BTL 1 Remembering 2. BTL 1Remembering 3. Summarize the following terms (i) Full-order observer (ii) Reducedorder observer (iii) Minimum-order state observer? BTL 1Remembering 4. What is the necessary condition to be satisfied for the design of state observer? BTL 1Remembering 5. Define the term Pole Placement of controller. BTL 1 Remembering 6. Formulate the Ackermann's formula to find the state feedback gain matrix, K. What is meant by pole placement of controller? BTL 2 Jnderstanding 7. BTL 2 Jnderstanding 8. Illustrate the general form of observable phase variable form of state model.

9.	Summarize the pole placement controller by state feedback?	BTL 2	Understanding
10.	How will you Evaluate the transformation matrix, Po to the state model to observable phase variable form?	BTL 2	Understanding
11.	How control system design is carried in state space and discuss with an suitable example.	BTL 3	Applying
12.	Quote the necessary condition to be satisfied for design using state feedback?	BTL 3	Applying
13.	Illustrate the block diagram of a system with state feedback concept for controller.	BTL 3	Applying
14.	Express the general form of controllable phase variable form of state model approach.	BTL 4	Analyzing
15.	What is meant by Control law?	BTL 4	Analyzing
16.	Illustrate how will you find the transformation matrix, Pc to transform the state model to controllable phase variable form using the characteristic equation?	BTL 3	Applying
17.	Sketch the diagram of full order observer for linear system.	BTL 3	Applying
18.	Write the Ackermann's formula to identify the state observer gain matrix, G.	BTL 5	Evaluating
19.	What is the necessary condition to be satisfied for the design of state observer.	BTL 6	Creating
20.	Write the observable phase variable form of state space model.	BTL 6	Creating
21.	Draw the block diagram of Full order observer for state feed back system.	BTL 5	Evaluating
22.	Draw the block diagram of a system with state feedback.	BTL 5	Evaluating

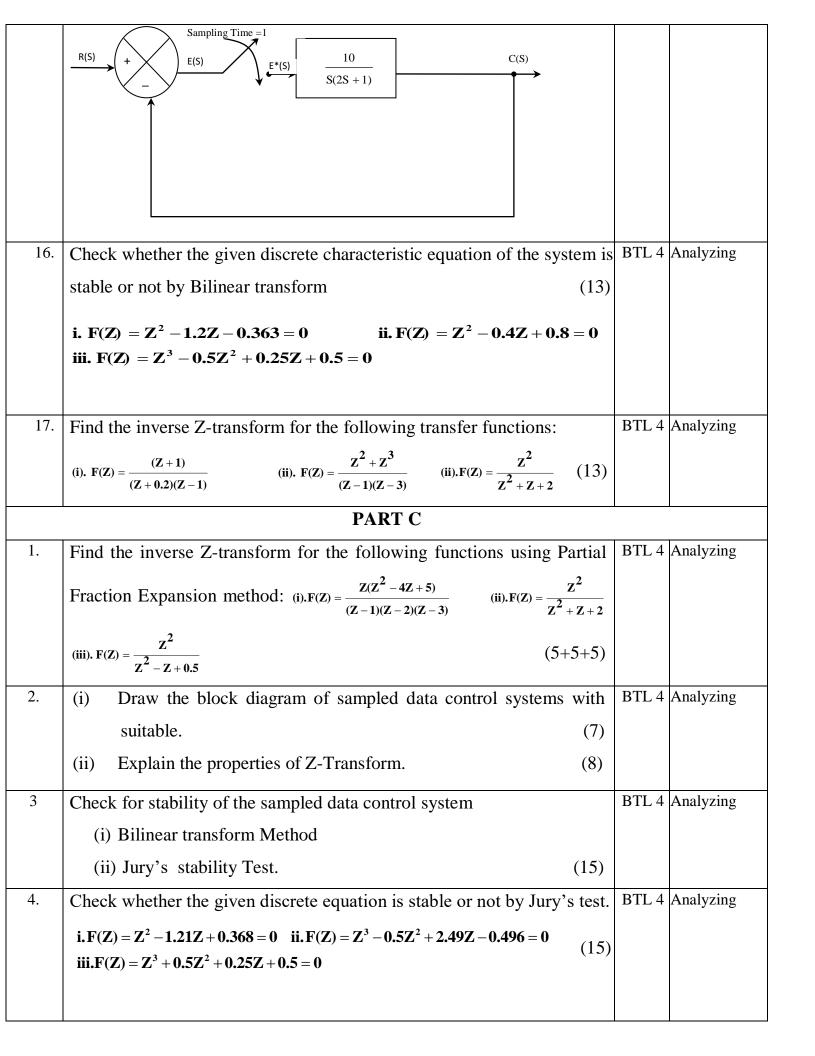
23.	Draw the block diagram of reduced order observer for state feed back	BTL 6 Creating
	system	
24.	What is the effect of pole zero cancellation in transfer function?	BTL 6 Creating
	PART – B	
1.	Consider a system with state space model is given below.	BTL 3 Applying
	$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \vdots \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} U ; y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$	
	Point out that the system is observable. The design of a state observer desired eigen values. Find the value of observable gain G. (13)	
2.	Consider the state space model described by $\dot{X}(t) = AX(t)$ Y(t) = CX(t)	BTL 3 Applying
	$A = \begin{bmatrix} -1 & 1 \\ -1 & -2 \end{bmatrix}$; $C = \begin{bmatrix} 1 & 0 \end{bmatrix}$. Design and examine a full-order state observer. The desired Eigen values for the observer matrix	
	$ \mu_1 = -5; \mu_2 = -5. $ (13)	
3.	What is meant by pole placement of controller? derive the expression for pole placement of controller? (13)	BTL 4Analyzing
4.	Obtain and analyze the expression for (i) Full order observer (ii) Reduced Order Observer (iii) Pole Placement of Controller. (13)	BTL 5 Evaluating
5.	Describe the effect of feedback on the concept of Controllability and Observability of the system. (13)	BTL 3 Applying

6.	Describe in detail the concept of state space model for full order observer and reduced order observer. (13)	BTL 5	Evaluating
7.	Derive the expression for the state observer gain for the state space model. (13)	BTL 4	Analyzing
8.	Derive the expression the state space model for the linear continuous system. (13)	BTL 3	Applying
9.	What is meant by state observer? Draw and analyze the state diagram and explain with an example for state space with feed back (i) Full Order (ii) Reduced Order Observer. (13)	BTL 2	Understanding
10.	Consider a system with state space model is given below. $ \begin{bmatrix} \dot{x_1} \\ \dot{x_2} \\ \dot{x_3} \end{bmatrix} = \begin{bmatrix} 1 & 2 & 0 \\ 3 & -1 & 1 \\ 0 & 2 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} U ; y=[0 \ 0 \ 1] \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} $ Point out that the system is observable. The design of a state observer so	BTL 3	Applying
	the eigen values of the matrix at -4,-3+i,-3-i. Find the value of observable gain G. (13)		
11.	Illustrate the effect of state feedback gain by pole placement(i) Open loop state space without feedback gain (ii) Closed loop state feedback gain with control law for obtaining gain K by any one of the method with necessary condition. (13)		Applying
12.	Derive the expression of (i) State Space Model (ii) Pole Placement of Controller. (13)	BTL 4	Analyzing
13.	What is meant by observer? How the observer concept related with Observability. Examine the following types of observer (i) Full Order Observer (ii) Reduced Order Observer. (13)	BTL 5	Evaluating

14.	Consider a linear system described by the transfer function	BTL 6	Creating
	Y(S)/U(S)=10/S(S+1)(S+2). Design a feed back controller with a state		
	feedback so that the closed loop poles are placed at -2,-1+j, -1-j. (13)		
15	Illustrate the following type of observer with suitable diagram and mathematical expression :	BTL 3	Applying
	(i) Full Order Observer (7)		
	(ii) Reduced Order Observer (6)		
16	Derive the expression for the control system design via pole placement by state feedback. (13)	BTL 4	Analyzing
17	Consider a system with state space model is given below.	BTL 5	Evaluating
	$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -5 & -6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} U; y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$		
	Point out that the system is controllable. The desired poles are S=-2+j4,		
	-2-j4 ,-10 with state feedback control U =- Kx . Find the state feedback		
	gain matrix K. (13)		
	PART – C		
1	What is meant by pole placement of controller? derive the expression	BTL 3	Applying
	for pole placement of controller? (15)		
2	Consider the state space model described by $\dot{X}(t) = AX(t)$; $Y(t) = CX(t)$; $A = \begin{bmatrix} 0 & 20.6 \\ 1 & 0 \end{bmatrix}$, $B = [0;1]$; $C = [0 \ 1]$. Design and examine a full-order state observer. The desired Eigen values for the observer matrix $\mu_1 = -1.8 + j2.4$; $\mu_2 = -1.8 - j2.4$. (15)	BTL 4	Analyzing
	$\mu_1 = -1.8 + j2.4; \mu_2 = -1.8 - j2.4. \tag{15}$		

3 Consider a system with state space model is given below.	BTL 5 Evaluating
$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \vdots \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 0 \\ 3 & -1 & 1 \\ 0 & 2 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} U ; y = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$	
Design a Full order obser the system. The design of a state observer so	
the eigen values of the matrix at -4,-3+i,-3-i. Find the value of	
observable gain G. (15)	
4 Consider a system with state space model is given below.	BTL 4 Analyzing
$\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \\ \dot{x_3} \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 1 & -2 & 0 \\ 2 & 1 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 10 \\ 1 \\ 0 \end{bmatrix} U; y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$	
Point out that the system is controllable. The desired poles are S=-1+j2,	
-1-j2,-6 with state feedback control U=-Kx. Find the state feedback	
gain matrix K. (15)	
What is meant by state observer? Draw the block diagram of Full	BTL 3 Applying
Order Observer, Derive the expression and obtain the State observer	
Gain G. (15)	

UNIT III SAMPLED DATA ANALYSIS


Introduction to sampling theorem spectrum analysis of sampling process signal reconstruction difference equations The Z-transform function, the inverse Z transform function, response of Linear discrete system, the Z-transform analysis of sampled data control systems, response between sampling instants, the Z and S domain relationship. Stability analysis-Jury's test, Bilinear transform and compensation techniques.

	PART A		
Q.No.	Questions	BTL Level	Domain

1.	What is sampled data control system?	BTL 1	Remembering
2.	State Shanon's sampling theorem.	BTL 1	Remembering
3.	What is meant by quantization ?	BTL 1	Remembering
4.	Draw the block diagram of sampled data control system.	BTL 1	Remembering
5.	Define discrete transfer function of the system.	BTL 1	Remembering
6.	Express the terms sampler and holder.	BTL 1	Remembering
7.	Define the term Z-Transform.	BTL 1	Remembering
8.	Define one sided and two sided Z-Transform.	BTL 1	Remembering
9.	What is meant by quantization ?	BTL 2	Understanding
10.	What is meant by Holder ?	BTL 1	Remembering
11.	Mention any 2-methods to find inverse Z-Transform.	BTL 1	Remembering
12.	How the Z-Plane is related with S-Plane?	BTL 3	Applying
13.	Find the Z-Transform (i) Impulse Input (ii) Step Input.	BTL 3	Analyzing
14.	State initial and final value theorem for Z-Transform.	BTL 3	Applying
15.	Find the Z-Transform for (i) a^k (ii) e^{-akt} .	BTL 3	Applying
16.	What is meant by Region of Convergence(ROC)?	BTL 4	Analyzing
17.	What is holder in sampled data control system ?	BTL 5	Evaluating
18.	Express the following types of Holder (i) Zero Order Holder(ZOH) (ii) First Order Holder.	BTL 5	Evaluating
19.	What is the equivalent representation of pulse sampler with ZOH ?	BTL 6	Creating
20.	Express the condition the sampled data system to be stable.	BTL 6	Creating

21.	Mention the methods to find the stability analysis of sampled data	BTL 3	Analyzing
	control system.		
22.	Express the necessary conditions to be satisfied for the stability	BTL 3	Applying
	analysis of sampled data control system ?		
23.	What is bilinear transform ?	BTL 1	Remembering
24.	Mention the necessary condition for Jury's stability analysis.	BTL 1	Remembering
	PART – B		
1.	Find the Z-Transform for the input signals (i) Step Input Signal (ii)	BTL 1	Remembering
	Impulse Input Signal (iii) Ramp Input Signal (iv) Parabolic Input		
	Signal. (13)		
2.	Derive the Discrete Input for (i) Discrete Sinusoidal Input (ii) Discrete	BTL 1	Remembering
	Sinusoidal Input. (13)		
3.		BTL 4	Analyzing
	(ii) Evaluate the Inverse z-transform of		
4.	$X(z) = z/[3z^2-4z+1], ROC z >1, z <1/3, 1/3< z <1.$ (6) (i) Find the Z-transform and analyze its associated ROC	BTL 4	Analyzing
	for the following discrete time signal		
	$x[n] = \left[\frac{-1}{5}\right]^n u(n) + 5\left[\frac{1}{2}\right]^{-n} u(-n-1) $ (7)		
	(ii) Explain the properties of Z-transform. (6)		
5.	(i) Find x(n) by convolution for	BTL 3	Applying
	$X(z) = \frac{1}{(1 - 0.5z^{-1})(1 + 0.25z^{-1})} \tag{6}$		
	(ii) Using scaling property, determine the z-transform of		
6.	the sequence $x(n) = \alpha^n \cos w_0 n$ (7) Draw the basis block diagram of sampled data central system. Explain	DTI 2	Annlying
0.	Draw the basic block diagram of sampled data control system. Explain (i) Sampler (ii) Holder (iii) Shannon's Sampling Theorem. (13)		Applying
7.	Find the inverse Z-transform for the following transfer functions:	BTL 3	Applying
	(i). $F(Z) = \frac{(Z+1)}{(Z+0.2)(Z-1)}$ (ii) $F(Z) = \frac{Z^2}{Z^2+Z+2}$ (13)		
8.	(i)Explain the following types of Holder (i) Zero Order Holder (ii) First	BTL 3	Applying
	Order Holder. (7)		

	(ii) How the s-plane is related with z-plane explain it. (6)		
9.	Obtain the unit step response of the system is as shown in Fig (13) $ \begin{array}{c} R(S) \\ \hline & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	BTL 3	Applying
10.	Solve the differential equation $Y(n+2) + 3Y(n+1) + 2Y(n) = U(n)$, where $Y(0) = 0$, $Y(1) = 1$ and the applied input is step. (13)	BTL 4	Analyzing
11.	Find the inverse Z-transform for the following transfer functions: (i). $\mathbf{F}(\mathbf{Z}) = \frac{\mathbf{Z}}{3\mathbf{Z}^2 - 4\mathbf{Z} + 1}$ in which the ROC of $\mathbf{i} \mathbf{Z} > 1$ ii. $ \mathbf{Z} < \frac{1}{3}$ (7) (ii). $\mathbf{F}(\mathbf{Z}) = \frac{\mathbf{Z}^2 + \mathbf{Z}}{\mathbf{Z}^2 - 2\mathbf{Z} + 1}$ in which the ROC of $\mathbf{i} \mathbf{Z} > 1$ ii $ \mathbf{Z} < \frac{1}{2}$ (6)	BTL 4	Analyzing
12.	Find the inverse Z-transform for the following functions using Partial Fraction Expansion method: (i). $F(Z) = \frac{Z^3}{(Z-2)(Z-1)^2}$ (ii). $F(Z) = \frac{Z^2}{Z^2 - Z + 0.5}$ (13)	BTL 4	Analyzing
13.	Check for stability of the sampled data control system: (i) Bilinear transform Method (ii) Jury's Test . (13)	BTL 1	Remembering
14.	Check whether the given discrete equation is stable or not by Jury's test. i.F(Z) = $Z^2 - 1.21Z + 0.368 = 0$ ii.F(Z) = $Z^3 - 0.5Z^2 + 2.49Z - 0.496 = 0$ (13) iii.F(Z) = $Z^4 + 1.5Z^3 + 3Z^2 + 1.25Z + 0.25 = 0$	BTL 4	Analyzing
15.	Find the pulse transfer function and stability analysis By (i) Jury's test ii) Bilinear transform for the sampled data control system is as shown in Fig. with sampling time i)T=0.1 Second ii) T=2 Seconds. (13)		Analyzing

5. Check whether the give	en discrete characteristic equa	ation of the system is BTL 4 Analyzing
stable or not by Bilinea	r transform	(15)
i. $F(Z) = Z^2 - 1.2Z - 0$ iii. $F(Z) = Z^3 - 0.5Z^2$	` '	$Z^2 - 0.4Z + 0.8 = 0$

UNIT IV NONLINEAR SYSTEMSSTATE FEEDBACK CONTROL AND STATE ESTIMATOR

PART A

BTL

Domain

Remembering

Remembering

BTL 1

BTL 1

Introduction, common physical non linearites, The phase plane method: concepts, singular points, stability of non linear systems, construction of phase trajectories system analysis by phase plane method. The describing function method, stability analysis by describing function method, Jump resonance, Limit cycle.

Questions

Q.No.

8.

9.

What is singular point?

What is meant by autonomous system?

		Level	
1.	What is meant by Linear and Non-Linear System? Give	BTL 4	Analyzing
	Example for each.		
2.	What is meant by frequency entrainment?	BTL 1	Remembering
3.	What is meant by asynchronous quenching?	BTL 1	Remembering
4.	How the nonlinearity can be classified? Give example for each.	BTL 1	Remembering
5.	Write describing function for nonlinear system.	BTL 1	Remembering
6.	What is hysteresis and backlash?	BTL 6	Creating
7.	Mention any 2-methods used for the stability analysis of nonlinear system.	BTL 1	Remembering

10.	Define the terms (i) Phase plane trajectory (ii) Phase portrait.	BTL 2	Understanding
11.	Write the describing function of ideal relay.	BTL 1	Remembering
12.	How the phase plane is distinguished with describing function method.	BTL 3	Applying
13.	Discuss the terms (i) Asymptotic stability (ii) Stable in Large.	BTL 2	Understanding
14.	What is meant by Jump resonance ?	BTL 4	Analyzing
15.	Illustrate the term autonomous system.	BTL 3	Applying
16.	What is meant by saturation ? Give example for each.	BTL 1	Remembering
17.	Express the term Phase Plane.	BTL 1	Remembering
18.	Mention any 2-properties of Non Linear system.	BTL 2	Understanding
19.	Write the Duffling's equation for nonlinear system,	BTL 6	Creating
20.	Define Describing function.	BTL 6	Creating
21.	What is meant by Limit cycles ?	BTL 4	Analyzing
22.	What is isocline of nonlinear system?	BTL 3	Applying
23.	Express the term subharmonic oscillation.	BTL 1	Remembering
24.	Write the slope equation for phase plane trajectory?	BTL 1	Remembering
	PART – B		
1.	Express the difference between Linear system and Non- Linear System. Explain the different characteristics of the Nonlinear system. (13)	BTL 6	Creating
2.	Explain the phase plane trajectory formation by delta method. (13)	BTL 4	Analyzing

3.	Explain the following Non-Linear Properties (i) Frequency	BTL 4	Analyzing
	Amplitude Dependance (ii) Jump Resonance (iii) Sub		
	Harmonic Oscillations (iv) Limit Cycle. (13)		
4.	A servo system used for positioning a load has the	BTL 4	Analyzing
	backlash(K_N) $G(S)=K/S(S+1)(S+2)$ in which $X=$		
	Maximum value of input sinusoidal signal to nonlinearity		
	using Polar Plot approach. (13)		
5.	Draw the block diagram of describing function for the	BTL 2	Understanding
	nonlinear system. Express with suitable diagram and		
	mathematical expression with an example. (13)		
6.	Explain the following physical nonlinearity with suitable	BTL 1	Remembering
	diagram (i) Saturation (ii) Dead Zone (iii) Friction (iv)		
	Hysteresis. (13)		
7.	Explain the following Nonlinear concepts with example:	BTL 2	Understanding
	(i) Jump Resonance		
	(ii) Limit Cycle(iii) Frequency Entertainment. (13)		
8.	What is singular point ? Explain the Types of Singular	RTI 3	Applying
	point and draw the trajectory. (13)		
9.	Describe the describing function analysis of the nonlinear	BTL 4	Analyzing
	systems with the general mathematical expression for		
	each. (13)		
10.	Explain the concept of Phase plane trajectory for nonlinear		Evaluating
	system with suitable example. (13)		

11.	A linear second order servo system described by the	BTL 3	Applying
	equation e''+2Zwne'+w _n 2 where Z=0.15, wn=1 rad/sec,		
	e(0)=1.5,e'(0)=0 Determine the singular point. Construct		
	the phase trajectory using isocline method. (13)		
12.	Explain the nonlinearity function of relay using	BTL 6	Creating
	describing function method. (13)		
13.	Explain the general design procedure for the phase plane	BTL 1	Remembering
	trajectories for nonlinear systems. (13)		
14.	Construct a phase trajectory by delta method for a	BTL 2	Understanding
	nonlinear system represented by the differential equation		
	$\ddot{x} + 4 \dot{x} \dot{x} + 4x = 0$. Choose the initial conditions as $x(0)=1.0$		
	and $x(0)=1.0, \dot{x}(0)=0.$ (13)		
15.	Explain the basic concept and mathematical expression	BTL 3	Applying
	for Describing function for Nonlinear system stability		
	analysis. (13)		
16.	Explain the following types of Nonlinertity Properties :	BTL 4	Analyzing
	(i) Jump Resonance (5)		
	(ii) Limit Cycle (4)		
	(ii) Limit Cycle (4) (iii) Frequency amplitude dependance (4)		
17.	•	BTL 4	Analyzing
17.	(iii) Frequency amplitude dependance (4)	BTL 4	Analyzing
17.	(iii) Frequency amplitude dependance (4) Explain the following Methods for the stability analysis	BTL 4	Analyzing
17.	(iii) Frequency amplitude dependance (4) Explain the following Methods for the stability analysis of Nonlinear Systems:	BTL 4	Analyzing
17.	 (iii) Frequency amplitude dependance (4) Explain the following Methods for the stability analysis of Nonlinear Systems: (i) Describing Function Method (7) 	BTL 4	Analyzing
17.	(iii) Frequency amplitude dependance (4) Explain the following Methods for the stability analysis of Nonlinear Systems: (i) Describing Function Method (7) (ii) Isocline Method (6) PART C	RTI 4	Analyzing
	 (iii) Frequency amplitude dependance (4) Explain the following Methods for the stability analysis of Nonlinear Systems: (i) Describing Function Method (7) (ii) Isocline Method (6) 	RTI 4	
	(iii) Frequency amplitude dependance (4) Explain the following Methods for the stability analysis of Nonlinear Systems: (i) Describing Function Method (7) (ii) Isocline Method (6) PART C	BTL 4	

(15)

Entertainment (vi) Asynchronous Quenching.

2.	A servo system used for positioning a load has the	BTL 4	Analyzing
	$backlash(K_N) G(S){=}K/S(S{+}1)(0.5S{+}1) in which X{=}$		
	Maximum value of input sinusoidal signal to		
	nonlinearity using Polar Plot approach. (15)		
3.	Explain the following types of physical nonlinearity (i)	BTL 2	Understanding
	Saturation (ii) Dead Zone (iii) Friction (iv) Hysteresis		
	(v) Backlash. (15)		
4.	Construct a phase trajectory by delta method for a	BTL 3	Applying
	nonlinear system represented by the differential equation		
	$\ddot{x} + 4 \dot{x} \dot{x} + 4x = 0$. Choose the initial conditions as $x(0)=1.0$		
	and $x(0)=1.0, \dot{x}(0)=0.$ (15)		
5.	Derive the expression using Describing function method	BTL 6	Creating
	for (i) Relay (ii) Saturation nonlinearity. (7+8)		

UNIT V OPTIMAL CONTROL

Introduction: Classical control and optimization, formulation of optimal control problem, Typical optimal control performance measures - Optimal state regulator design: Lyapunov equation, Matrix Riccati equation - LQR steady state optimal control – Application examples.

PART A

Q.No.	Questions	BTL Level	Domain
1.	What is meant by Performance Index ?	BTL 1	Remembering
2.	Explain the following error criteria (i) ISE (ii) IAE (iii) ITAE (iv)ITSE.	BTL 2	Understanding
3.	Define positive definiteness of scalar functions. Give an example?	BTL 1	Remembering
4.	Point out Lyapunov's asymptotic stability.	BTL 5	Evaluating
5.	Formulate the expression for the quadratic performance	BTL 1	Remembering

	index.		
6.	Formulate the expression for the integral square error for performance index.	BTL 5	Evaluating
7.	Examine what is meant by autonomous system?	BTL 3	Applying
8.	Write the formulae sufficient condition for Hessian Matrix.	BTL 2	Understanding
9.	Illustrate the Lyapunov's instability theorem.	BTL 3	Applying
10.	Define positive semi definiteness of scalar functions. Give an example?	BTL 1	Remembering
11.	Draw and quote graphical representation of stable, asymptotic stable and unstable equilibrium states with their trajectory.		Remembering
12.	Show that the following quadratic form is + ve definite.	BTL 3	Applying
	$V(X)=10x_1^2 + 4x_2^2 + x_3^2 + 2x_1x_2 - 2x_2x_3 - 4x_1x_3$		
13.	Determine whether the following quadratic form is – ve definite.	BTL 2	Understanding
	$V(X) = -x_1^2 - 3x_2^2 - 11x_3^2 + 2x_1x_2 - 4x_2x_3 - 2x_1x_3$		
14.	What is meant by optimization ?	BTL 4	Analyzing
15.	Express the term output regulator problem.	BTL 4	Analyzing
16.	Invent the necessary and sufficient condition for stability analysis?	BTL 6	Creating
17.	What reduced matrix Riccati equation ?	BTL 6	Creating
18.	List out various methods for stability analysis of non linear system.	BTL 1	Remembering
19.	What is meant by infinite time regulator problem?	BTL 1	Remembering
20.	How the optimization concept can be done by Matrix Riccati equation?	BTL 1	Remembering
21.	Express the term Optimal state regulator.		

22.	Write the Formulae for Matrix Riccati equation.		
23.	Why the LQR concept is preferred for optimization?		
24.	Express the term LQR steady state optimal control concept.		
	PART – B		
1.	Explain the state regulator problem for Discrete Time	BTL 1	Remembering
	Systems with an example. (13)		
2.	Explain the Lyapunov's stability criteria with	BTL 4	Analyzing
	diagrammatic representation (i) Asymptotically stable (ii)		
	Stable (iii) Unstable. (13)		
3.	Examine Lyapunov's stability analysis for (i) Linear time	BTL 3	Applying
	invariant system (ii) Nonlinear Continuous system. (13)		
4.	Explain the Lyapunov's criterion stability analysis for (i)	BTL 5	Evaluating
	Continuous system (ii) Discrete time systems. (13)		
5.	Explain the following optimal control concept with an example:	BTL 2	Understanding
	(i) Matrix Riccati equation (7)		
	(ii) LQR steady state optimal Control Method (6)		
6.	Summarize direct method of Lyapunov's function how it can be applicable for the nonlinear continuous time system. (13)	BTL 2	Understanding
7.	Examine Lyapunov's direct method of Lyapunov for Continuous time autonomous system. (13)	BTL 1	Remembering
8.	Explain with an example for optimal control concept of:	BTL 1	Remembering
	(i) Matrix Riccati equation (7)		
	(ii) LQR steady state optimal control (6)		
9.	Design and determine if the following matrix is positive definite.	BTL 6	Creating

V	$f(X)=10x_1^2 + 4x_2^2 + x_3^2 + 2x_1x_2 - 2x_2x_3 - 4x_1x_3 $ (13))	
10. Estimat	e direct method of Lyapunov's function how it ca	n BTL 2	Understanding
	icable for nonlinear continuous time system. (13		
11. Illustrat	e the following methods for stability analysis	BTL 3	Applying
(i)Kraso	vskii Method (ii) Variable-Gradiant Method with		
suitable	example. (13)		
12. Describ	e Lyapunov's Method Stability analysis with	BTL 1	Remembering
suitable	example:		
	Linear System (7)		
	Non-Linear System. (6)		
	the expression for the optimal control problem by	BTL 4	Analyzing
	function approach. (13)	DTI 4	Analysia
	the expression for the optimal control problem by		Analyzing
	riable approach. (13) he expression for the Matrix Riccati Equation.(13)		Applying
			11.0
	with an example for LQR steady state optimal	BTL 1	Remembering
control.	(13)	DOT 4	
	the concept of optimal state regulator by Matrix		Analyzing
Riccati	Equation. (13) PART C		
1 711		DET 0	1. 1.
1. Illustrat	e the following stability concepts (I) Lyapunov's	BTL 3	Applying
Method	stability at origin (ii) Lyapunov's Method		
stability	in stable boundary (iii) Lyapunov's Method for		
unstable	condition. (15)		
2. Explain	the state regulator problem for (i) Discrete Time	BTL 2	Understanding
Systems	(ii) Continuous Time Systems. (15)		
3. Evaluate	e the expression for LQR steady state optimal	BTL 5	Evaluating
control.	(15)		
4. Derive	the expression for the Matrix Riccati Equation	BTL 4	Analyzing
and exp	lain with suitable case study for it. (15)		
5. Evaluate	e the expression for the parameter optimization for	BTL 5	Evaluating
Servo M	Mechanism or Tracking Problem. (15)		