SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution)

SRM Nagar, Kattankulathur – 603 203.

DEPARTMENT OF

ELECTRICAL AND ELECTRONICS ENGINEERING

QUESTION BANK

VIII SEMESTER

1905806 - Power Quality

Regulation – 2019

Academic Year 2022 – 2023 (Even)

Prepared by

Dr.K.Elango, Professor & Head-EEE

SRM

SRM VALLIAMMAI ENGINEERING COLLEGE

VALLI

(An Autonomous Institution)

SRM Nagar, Kattankulathur - 603 203.

QUESTION BANK

SUBJECT: 1905806-Power Quality

SEM / YEAR: VIII SEMESTER / ACADEMIC YEAR 2022-2023 (Even)

UNIT I - INTRODUCTION TO POWER QUALITY

Terms and definitions: Overloading - under voltage - over voltage. Concepts of transients - short duration variations such as interruption - long duration variation such as sustained interruption. Sags and swells - voltage sag - voltage swell - voltage imbalance - voltage fluctuation - power frequency variations. International standards of power quality. Computer Business Equipment Manufacturers Associations (CBEMA) curve. Power Quality issues of Grid connected Renewable Energy Sources.

PART – A				
Q.No	Questions	BT Level	Competence	Course Outcome
1.	Define Power Quality as per IEEE	1	Remember	CO 1
2.	Define Dc offset. Mention its sources in power system.	1	Remember	CO 1
3.	Define power frequency variation.	1	Remember	CO 1
4.	Define the power quality as per IEEE	1	Remember	CO 1
5.	What are the main components of power quality standards?	1	Remember	CO 1
6.	Define momentary interruption and components of waveform distortion	1	Remember	CO 1
7.	Comment" harmonics affect the electrical system"	2	Understand	CO 1
8.	Differentiate inter harmonic and sub harmonics	2	Understand	CO 1
9.	Illustrate about notching in power quality	2	Understand	CO 1
10.	Differentiate between voltage sag and voltage swell	2	Understand	CO 1
11.	Classify the types of power quality solutions available on the market today.	3	Apply	CO 1
12.	How are the power quality problems detected?	2	Understand	CO 1
13.	State the causes for Voltage Fluctuations	1	Remember	CO 1
14.	List out the need of power quality standards	4	Analyze	CO 1
15.	Comment transients or noise on the power line.	4	Analyze	CO 1
16.	What are the reasons voltage imbalances?	4	Analyze	CO 1
17.	Criticize "capacitor switching leads to overvoltage"	5	Evaluate	CO 1
18.	Distinguish sag and swell	5	Evaluate	CO 1
19.	Define Voltage Imbalance	1	Remember	CO 1

20.	List the effects of Voltage Swell	2	Understand	CO 1		
21.	Write about the under voltage and overvoltage Problem	2	Understand	CO 1		
22.	Find the harmonic distortion of a voltage waveform with following	3	Apply	CO 1		
	harmonic frequency make up: fundamental=114V, 3 rd harmonic=4V,					
	5 th harmonic=27V, 7 th harmonic=1.5V and 9 th harmonic=1V					
23.	What do you mean by power frequency variations in power	6	Create	CO 1		
24.	Plot the CBEMA curve	6	Create	CO 1		
	PART – B					
1.	Discuss about any four power quality issues, indicating more	1	Remember	CO 1		
	attention in power system. (13)					
2.	(i) Discuss the following characteristics of power quality issue (7)	1	Remember	CO 1		
	(a) Short duration variations					
	(b) Long duration variations					
	(ii)Discuss in detail about transients (6)	1	Remember			
3.	(i) Describe the CBEMA and ITI curve (7)	•				
	(ii)Define waveform distortion and explain the waveform	1	Remember	CO 1		
	distortion categories (6)	•		001		
4	White short notes on fallowing a power quality income					
4.	while short notes on ronowing power quality issues (15)					
	(i) Harmonics	1	Remember	CO 1		
	(ii) Power frequency variations					
5.	Discuss the source and effects of different categories of long					
	duration voltage variations that affect the power quality (13)	2	Understand	CO 1		
6.	Explain power quality and explain the reasons for increased	2	Understand	CO 1		
	concern in power quality (13)					
7.	Explain the sources of power quality problems and mention the	2	Understand	CO 1		
	international standards used for monitoring. (13)					
8.	Explain the various types of power quality disturbances in power					
	system and also explain the characteristics of each disturbance	3	Apply	CO 1		
0	(13)	2	Annly	<u>CO 1</u>		
у.	consumers (7)	3	white			
	(ii) Discriminate on over voltage and under voltage in rever					
	quality issue (6)	3	Apply	CO 1		
10.	Describe the objective of power quality standards and Discuss					
	about IEEE and IEC Standards used for power quality issues (13)	4	Analyze	CO 1		

11.	(i)Explain total harmonic distortion and total demand distortion(7)(ii)Discuss the standards of power quality(6)	4	Analyze	CO 1
12.	(i) Demonstrate the major reasons for the growing concern about			
	the quality of electric power by both electric utilities and			
	end users (7)	6	Create	CO 1
	(ii) Illustrate the principle phenomenon causing electric magnetic	Ū	Create	cor
	disturbance classified by International Electro technical			
	commission (6)			
13.	With a waveform sketch, explain the terms(13)			
	(a)Voltage sag			
	(b)Voltage interruption	-		CO 1
	(c)Voltage swells	5	Evaluate	01
	(d)Sag with harmonics			
14.	(i)Discuss about the Computer Business Equipment Manufactures			
	Associations (CBEMA) curve. Explain the events described in the			
	curve. (7)	•		GO 1
	Inval - Ve	2	Understand	COT
	ii)Differentiate between power quality, voltage quality and current			
	quanty (6)			
15.	Discuss about an over voltage and under voltage in power quality			
	Line with neat Waveforms. (13)	1	Remember	CO 1
16.	Write short notes on following power quality issues (13)			
	(i) Voltage Fluctuations	1	Remember	CO 1
	(ii) Voltage Imbalance			
17				
17.	Describe about the Computer Business Equipment Manufactures			
	Associations (CBEMA) curve. Explain the events described in the	2	Understand	CO 1
	$\mathbf{PART} - \mathbf{C} $			
			I	1
1	Draw the CBEMA Curve and explain the significance of the term used in it (15)	4	Analyze	CO 1
	Discuss in detail about transients and waveform distortion related			<u>CO 1</u>
2	to the power quality (15)	5	Evaluate	
	Explain briefly about international standard of power quality	4	Analyze	CO 1
3	(15)			
4	Explain the various types of power quality disturbances (15)	5	Evaluate	
5	Discuss the Power Quality issues of Grid connected Renewable Energy Sources.	5	Evaluate	CO 1

UNIT II - VOLTAGE SAGS AND SWELL

Estimating voltage sag performance. Thevenin's equivalent source- Analysis and calculation of various faulted condition. Estimation of the sag severity - Mitigation of voltage sags, Static transfer switches and fast transfer switches. Capacitor Switching-Lightning –Ferro resonance –Mitigation of voltage swell.

PART – A					
Q.No	Questions	BT Level	Competence	Cours e	
1.	When sag leads to interruption	1	Remember	CO 2	
2.	List out the causes of sag.	1	Remember	CO 2	
3.	List out the three levels of possible solutions to voltage sag and	1	Remember	CO 2	
	momentary interruption problems.		D	GO •	
4.	List some industry standards associated with voltage sags.	1	Remember	CO 2	
5.	What are the various factor affecting the sag magnitude due to faults at a certain point in the system.	1	Remember	CO 2	
6.	Classify different types of voltage sag.	2	Understand	CO 2	
7.	List out the faults in the Power System	1	Remember	CO 2	
8.	How to estimate voltage sag performance	3	Apply	CO 2	
9.	Describe the importance of voltage sag estimation	2	Understand	CO 2	
10.	Demonstrate how voltage sag can be mitigated and list the types to mitigation devices.	2	Understand	CO 2	
11.	Demonstrate the causes for voltage sags due to transformer.	1	Remember	CO 2	
12.	Write the use of static transfer switch.	2	Understand	CO 2	
13.	Explain static transfer switch.	3	Apply	CO 2	
14.	Design the active low pass filter to mitigate the voltage swell.	6	Create	CO 2	
15.	Name the different motor starting methods.	2	Understand	CO 2	
16.	Describe the Area of vulnerability	2	Understand	CO 2	
17.	Write the Procedure to assure compatibility between the supply	3	Apply	CO 2	
18.	Write about the lightning Phenomenon	2	Understand	CO 2	
19.	Summarize the main function of DSTATCOM	4	Analyze	CO 2	
20.	What are the main functions of DVR	5	Evaluate	CO 2	
21.	List the Causes of Ferro resonance	3	Apply	CO 2	
22.	Analyze the Capacitor Switching	5	Evaluate	CO 2	
23.	Define Voltage Swell	4	Analyze	CO 2	
24.	Analyze effects of Voltage Swell	6	Create	CO 2	
	PART – B		1		
1.	(i)Explain the sources of sags in power system (7)	1	Remember	CO 2	
	(ii) Discuss the sources of interruption to affect the power quality				
	(6)	1	Remember	CO 2	

2.	(i)Describe in detail about the sag performance	1	Remember	CO 2
		1	Domombon	
	i)Describe the methodology of estimating voltage sag	-	Remember	
3.	Explain the following causes of sag (13)			
	a)Voltage sag to motor	3	Apply	CO 2
	b) Voltage sag due to single line to line fault	•		
	c) Voltage sag due to single line to ground fault			
4.	(i) Explain various indexes used to estimate voltage sag (7)	2	Understand	CO 2
	(ii) Discuss some of the solutions for voltage sag and interruption (6)			
5.	Explain the causes of long interruptions and the principle of	2		
	regulating the voltage. (13)	Z	Understand	CO 2
6.	Analysis and calculation of power quality due various faulted	2	Understand	CO 2
	condition (13)			
7.	(1)Explain performance voltage sag due to starting of large			
	induction motor in distribution level (7)	4	Analyze	CO 2
	drives? (6)	6	Create	CO 2
8.	Explain the operation of Distribution Static Compensator			
	(DSTATCOM) used for sag mitigation (13)	4	Analyze	CO 2
9.	Explain how voltage sag performance is estimated in power	_		
10	system network. (13)	5	Evaluate	CO 2
10.	(1)Explain active series compensator to compensate the voltage sag occurs in power system (7)	3	Apply	CO 2
	(ii)Explain how ferro resonance transformer to improve the			
11	(b) (c) Explain the colid state transfer switch			
11.	with transfer operation (7)	_		
	(ii)Explain fast transfer switch with transfer operation (6)	3	Apply	CO 2
12.	(i)What are the different voltage sag mitigation techniques?			
	Explain the principle of operation of DVR used for sag mitigation (7)	6	Create	CO 2
	(ii)Analyze about estimating the cost of voltage sag events in the	1	Domombor	CO 2
	power system (6)	Ŧ	IX III III UCI	
13.	Explain any two voltage sag mitigation Techniques with	4	Analyze	CO 2
	necessary circuit diagram and waveform (13)			
14.	Explain the role of compensators in mitigation of voltage sags. (13)	5	Evaluate	CO 2

15.	Explain about the Series Active compensator with neat diagram (13)	4	Analyze	CO 2
16.	Discuss in detail about the Capacitor switching. (13)	4	Analyze	CO 2
17.	Discuss about the Lightning Phenomenon and also about the functions of lightning arrestor (12)	4	Analyze	CO2
	PART – C			
1	Describe the procedure for estimating motor switching voltage	5	Evoluoto	CO
	sag. (15)	3	Evaluate	
2	Discuss the effects of voltage sag and interruption on various electrical equipment. (15)	5	Evaluate	CO
3	What are the different voltage sag mitigation sag techniques?Explain in detail.(15)	5		CO
4	Briefly explain static transfer switches and fast transfer switches. (15)	4	Analyze	CO
5.	Explain about working principle of DSTATCOM (15)	5	Evaluate	CO
	ANENGINEERING		L	1

UNIT III- HARMONICS

Harmonic sources from commercial and industrial loads, locating harmonic sources. Power system response characteristics -Harmonics Vs transients. Effect of harmonics - harmonic distortion - voltage and current distortion - harmonic indices inter harmonics – resonance. Harmonic distortion evaluation. IEEE and IEC standards.

	PART – A				
Q.No	Questions	BT Level	Competence	Course Outcome	
1.	State the different between harmonics and transients	3	Apply	CO 3	
2.	Define point of common coupling (PCC).	1	Remember	CO 3	
3.	Mention the harmonic effects on devices and loads.	2	Understand	CO 3	
4.	Analyze the objectives of IEEE and IEC standards?	5		CO 3	
5.	Why even harmonics are normally absent in the power converters?	3	Apply	CO 3	
6.	Define harmonics.	1	Remember	CO 3	
7.	Interpret about Total Demand Distortion (TDD)?	2	Understand	CO 3	
8.	What are the sources of harmonic distortion?	3	Apply	CO 3	
9.	Define Total harmonic distortion	1	Remember	CO 3	
10.	Summarize the advantage of three phase converter	5	Evaluate	CO 3	
11.	Write the need of locating harmonic sources	1	Remember	CO 3	
12.	Point out the sources of harmonics from industrial loads	4	Analyze	CO 3	
13.	Interpret about Harmonic indices	2	Understand	CO 3	

14.	Differentiate between linear loads and nonlinear loads	2	Understand	CO 3
15.	Compose the difference between harmonics and inter harmonics	6	Create	CO 3
16.	Infer voltage and current distortion?	4	Analyze	CO 3
17.	Point out the effects of harmonics	4	Analyze	CO 3
18.	What is the significance of power quality indices	1	Remember	CO 3
19.	Differentiate between Harmonics and Transients	1	Remember	CO 3
20.	List out the devices employed for controlling the harmonics in the power system	1	Remember	CO 3
21.	Write down the few IEEE and IEC Standards for Power quality issues.	2	Understand	CO 3
22.	Examine the inter harmonics	4	Analyze	CO 3
23.	Prepare the IEEE standard for harmonic level in distribution system.	6	Create	CO 3
24.	Name the devices for controlling harmonic distortion	1	Remember	CO 3
	PART – B			
1.	Explain the methods to evaluate harmonic distortion (13)	4	Analyze	CO 3
2.	(i)Explain the IEEE and IEC standards on harmonics distortion.	3	Apply	CO 3
	(ii)What are the filters in harmonic analysis? Explain active and passive filters (6)	3	Apply	CO 3
3.	(i) Explain briefly how the phenomena of current distortion affects the voltage distortion under the presence of harmonics (7)	4	Analyze	CO 3
	(ii) Explain briefly about locating harmonic sources and characterization in power system (6)	4	Analyze	CO 3
4.	(i) Explain the power system response characteristics under the presence of harmonics. (7)	4	Analyze	CO 3
	(ii)What is the need of IEEE standards used in harmonics studies? Give their philosophy and objectives of these standards (6)	1	Remember	CO 3
5.	Explain briefly about the sources of harmonics generation and waveform distortion. (13)	4	Analyze	CO 3
6.	Discuss the effects of harmonics on electrical power components (13)	2	Understand	CO 3
7.	Write short note on IEEE and IEC standards in controlling harmonic distortion (13)	1	Remember	CO 3

8.	Explain how commercial and industrial loads are responsible for harmonic distortion. (13)	5	Evaluate	CO 3
9.	Determine the RMS and THD of the following waveform (13) $ \begin{array}{c} & f(t) \\ & +a & & & \\ & 0 & & & \\ & -a & & & & \\ & 0 & & & & & \\ & 0 & & & & & & \\ & 0 & & & & & & & \\ & 0 & & & & & & & & & \\ & 0 & & & & & & & & & & \\ & 0 & & & & & & & & & & & & \\ & 0 & & & & & & & & & & & & & & & \\ & 0 & & & & & & & & & & & & & & & & & $	3	Apply	CO 3
10.	Write the principle of controlling harmonics and explain the devices used for it.(13)	1	Remember	CO 3
11.	(i)Explain the waveform distortion due to different types of nonlinear loads(7)(ii) Write short notes on the following	4	Analyze	CO 3
	(i) Harmonic indices (ii)Inter harmonics	2	Understand	CO 3
12.	(i) Write short notes on THD and TDD. (3) (ii)Discuss the effects of harmonic distortion on transformers and motors. (10)	2 2	Understand Understand	CO 3 CO 3
13.	.What is meant by point of common coupling? Generalize the IEEE 519 standard and IEC 61000-3-2 standard with respect to harmonics. (13)	1	Remember	CO 3
14.	.(i) Demonstrate about evaluation of harmonic distortion (7) (ii) Define the following terms related with IEEE standards.	3	Apply	CO 3
	a) SCR b) Total harmonic distortion.	I	Remember	03
15.	Explain about the active filter in controlling harmonic distortion (13)	1	Remember	CO 3
16.	Write short notes on the following (13) (a) Arcing devices (b) Saturable Devices	1	Remember	CO 3
17.	Discuss the effect of harmonics Distortion due to nonlinear load in the power system. (13)	2	Understand	CO 3

	PART-C			
1.	What are the devices used for controlling harmonic distortion and explain their function(15)	5	Evaluate	CO 3
2.	Explain briefly about harmonic distortion and conduct an evaluation of study (15)	4	Analyze	CO 3
3.	Explain briefly about the phenomena of how current distortion affects the voltage distortion under the presence of harmonics (15)	6	Create	CO 3
4.	Explain in detail about commercial and industrial loads are responsible for harmonic distortion.			
5.	Explain IEEE and IEC standards for power quality issues (15)	5	Evaluate	CO 3

	UNIT IV - PASSIVE POWER COMPENSATORS			
Principle of Operation of Passive Shunt and Series Compensators, Analysis and Design of Passive Shunt Compensators Simulation and Performance of Passive Power Filters- Limitations of Passive Filters Parallel Resonance of Passive Filters with the Supply System and Its Mitigation. Fundamentals of load compensation – voltage regulation & power factor correction				
	PART-A			C
Q.No	Questions 7	BT Level	Competence	Course Outcome
1.		1	Remember	CO 4
	Describe the Reactive power in the transmission Network	_		
2.	Define Shunt Passive Compensation	1	Remember	CO 4
3.	Examine the Active and Passive VAR Control	1	Remember	CO 4
4.	Define the Series Compensation	1	Remember	CO 4
5.	Label the load Compensation	1	Remember	CO 4
6.	Summarize the System Compensation	2	Understand	CO 4
7.	Estimate voltage regulation & power factor correction.	2	Understand	CO 4

	-			
6.	Summarize the System Compensation	2	Understand	CO 4
7.	Estimate voltage regulation & power factor correction.	2	Understand	CO 4
8.	List out the factors that decide the rating of lossless passive shunt compensators	3	Apply	CO 4
9.	Express the limitations of the series compensation using lossless passive components	2	Understand	CO 4
10.	Discuss Main objective Of Power Passive filters	2	Understand	CO 4
11.	Examine Passive Power Filter	1	Remember	CO 4
12.	Classify the Passive Power Filter	2	Understand	CO 4
13.	What is Hybrid Passive Filters and classify its types	3	Apply	CO 4
14.	Show the Limitations of Passive Filters	3	Apply	CO 4

15.	Classify the factors on which the performance of a tuned passive shunt power filter depends	4	Analyze	CO 4
16.	Summarize Shunt and series Passive Filters	5	Evaluate	CO 4
17.	Generalize the value of quality factor of a tuned passive shunt	6	Create	CO 4
	power filter and on what factors it depends.	Ū		
18.	Deduce the lossless passive elements used for shunt and series compensation in an AC supply distribution system	5	Evaluate	CO 4
19.	Classify the passive ripple filters	4	Analyze	CO 4
20.	Design the tuned passive series power filter?	6	Create	CO 4
21.	Explain about the voltage regulation	2	Understand	CO 4
22.	Infer the power factor correction	3	Apply	CO 4
23.	Define Resonance condition in power system	1	Remember	CO 4
24.	Summarize the disadvantage of Passive power filter	5	Evaluate	CO 4
	PART – B			
1.	Examine Principle of Operation of Passive Shunt and Series	1	Remember	CO 4
	Compensators. (13)			
2.	Describe the general Classification of Passive Shunt and Series	1	Remember	CO 4
3.	Explain about the various types of Shunt and Series Compensation			
	based on the single phase and three Phase Load. (13)	2	Understand	CO 4
4.	Analysis of Shunt Compensators for Power Factor Correction. (13)	4	Analyze	CO 4
5.	Describe Classification of Passive Shunt and Series Compensators.	4	Analyze	CO 4
	(13)			
6.	Explain the Design Procedure of the Passive Shunt Compensators. (13)	4	Analyze	CO 4
7.	Analysis the Design methodology of Shunt Compensators for Zero Voltage Regulation (13)	6	Create	CO 4
	(10)			
8.	Describe the main Classification of Passive Filters. (13)	1	Remember	CO 4
9.	Examine the Principle of Operation of Passive Power Filters. (13)	3	Apply	CO 4
10.	Illustrate Classification of Passive Filters based on the Connection	3	Apply	CO 4
11.	Explain the following			
	(i) Sharpness of Tuning of Passive Filters (7)	2	Understand	CO 4
	(ii) Cost of Passive Filters (6)		Understand	04
12.	Explain about the Analysis and Design of Passive Power Filters.	5	Evaluate	CO 4
	(13)	U		
13.	Explain the Parallel Resonance of Passive Filters with the Supply System and Its Mitigation. (13)	2	Understand	CO 4
14.	Explain about the Fundamental of Load Compensation and its	3	Apply	CO 4
	classification. (13)			

15.	Explain about the voltage Regulation and power factor correction	ion (13)	3	Apply	CO 4
16.	Discuss in detail about the limitation of power passive filter. ((13)	2	Understand	CO 4
17.	Explain about the hybrid passive filter and write its classification	on	2	Understand	CO 4
		(13)			
	PART – C			L _:	
1	Design the Model and Performance of Passive Shunt and Series	s	6	Create	CO 4
1.	Compensators. ((15)			
2.	A single-phase load having $ZL = (4.0 + j1.0)$ put is fed from an .	AC			
	supply with an input AC voltage of 230 V at 50 Hz and a base				
	impedance of 4.15 Ω . It is to be realized as a unity power factor	r			
	load on the AC supply system using a shunt connected lossless				
	passive element (L or C) as shown in Fig. Calculate (a) the value	ue			
	of the compensator element (in farads or henries) and (b)				
	equivalent resistance (in ohms) of the compensated load. ((15)	6	Create	CO 4
	AC mains V_s jB_c Z_L Z_L Z_L U_s				
3.	Summarize the Classification of Passive Filters based on the				
	topology, connection, and the number of phases. ((15)	5	Evaluate	CO 4
4.	Generalize the Principle of Operation of Passive				
	Power Filters. (1	(15)	5	Evaluate	CO 4
5	Design the Load Compensator for voltage regulation and power	er			
	factor correction ((15)	5	Evaluate	CO 4

UNIT V - POWER QUALITY MONITORING & CUSTOM POWER DEVICES

Monitoring considerations - monitoring and diagnostic techniques for various power quality problems – quality measurement equipment - harmonic / spectrum analyzer - flicker meters - disturbance analyzer. Applications of expert systems for power quality monitoring. Principle& Working of DSTATCOM-DSTATCOM in Voltage Control mode, Current Control mode, DVR Structure-Rectifier supported DVR –DC Capacitor Supported DVR-Unified Power Quality.

Q.N 0	Questions	BT Level	Competence	Course Outcome
1.	What is the role of expert system in power quality studies	1	Remember	CO 5
2.	Define power quality monitoring	1	Remember	CO 5
3.	What is the need for power quality monitoring?	2	Understand	CO 5
4.	What is flicker meter?	1	Remember	CO 5
5.	Describe about signal processing tools for analyzing power quality issues	1	Remember	CO 5
6.	Interpret the benefits of power quality monitoring?	2	Understand	CO 5
7.	List some of the major power quality monitoring equipment's.	2	Understand	CO 5
8.	State and analyse the objectives of power quality monitoring	1	Remember	CO 5
9.	List out the various power quality monitoring steps	3	Apply	CO 5
10	Analyse the merits of digital power quality analyzers?	5	Evaluate	CO 5
11	What is spectrum analyzer?	4	Analyze	CO 5
12	Mention any two signal processing tools for analyzing power quality issues	5	Evaluate	CO 5
13	Infer the power quality disturbance analyzer.	3	Apply	CO 5
14	Describe about DSTATCOM	2	Understand	CO 5
15	Point out the different types of working modes in DSTATCOM	4	Analyze	CO 5
16	Define the structure of DVR.	1	Remember	CO 5
17	Analyse the Voltage Restoration.	4	Analyze	CO 5
18	Define the structure of SVC	1	Remember	CO 5
19	List the main functions of IPFC	2	Understand	CO 5
20	Write down the different types of custom power devices	2	Understand	CO 5
21	Define the structure of IPFC	2	Understand	CO 5
22	Describe the working and different configuration of UPQC	1	Remember	CO 5
23	List the main functions of UPQC	1	Remember	CO 5
24	Write any two IEEE standards to assess the power quality monitoring	6	Create	CO 5
	PART – B	L		-
1.	Explain different types of monitoring and diagnostic techniques for various power quality problems. (13)	2	Understand	CO 5
2.	Explain the flicker meter and flicker measurement techniques in details. (13)	3	Apply	CO 5
3.	Explain in detail with necessary diagram the working principleand functioning of power quality analyzers(13)	5	Evaluate	CO 5
4.	Briefly discuss the common objectives of power quality monitoring. (13)	2	Understand	CO 5

5.	(i) Bring out the important characteristics of power quality	2	Understand	CO 5
	(7)			
	(11) Explain the steps involved in power quality monitoring. What			CO 5
	are the information from monitoring site surveys?	1	Remember	05
	(0)	- 1	D I	CO 5
6.	(1) Explain the various instruments used for power quality measurements (7)	1	Remember	05
	(ii)What are the factors to be considered when selecting the			
	instruments? (6)		Domomhor	CO 5
7	Explain the features of spectrum analyzer and flicker meters		Apply	
1.	(13)	3	Арріу	005
8.	Design the block diagram of advanced power quality monitoring	4	Analyze	CO 5
	systems. Explain it in detail. (13)		· ·	
0	Discuss the emploations of export systems for newer quality	1	Domomhou	CO 5
9.	monitoring with block diagram (13)	1	Kemember	05
10	(i)Analyze the role and application of expert systems in power	2	Understand	CO 5
	quality monitoring (7)			
	(ii) Discuss briefly about the different features of harmonic			
	analyzer (6)			
11	Describe about the working principle of DSTATCOM and its	4	Analyze	CO 5
11	Application. (13)	-	1 ma iy 20	000
	SRM			
12	Explain about the different modes of control mode in		A	CO 5
10	$\frac{\text{DSTATCOM}}{\text{(13)}}$	4	Analyze	CO 5
13	Analyze about the working principle and Structure of DVR. (13)	6	Create	05
14	Explain about			
	(i) Postifier surregeted DVP (f)	2	Annly	CO 5
	(I) Rectifier supported DVR (6)	3	Арріу	003
	(ii) DC Capacitor Supported DVR (7)	3	Apply	CO 5
15	Design the block diagram of Interline power flow controller.	4	Analyze	CO 5
	Explain it in detail. (13)			
16	Describe about the working principle of UPFC and its Application.(13)	4	Analyze	CO 5
17	Discuss in detailed manner about the different types of custom	5	Evaluate	CO 5
17	power devices used in power quality. (13)	U	L'unuite	
	PART-C			
			1	
1	Explain monitoring requirement of different types of power	4	Analyze	CO 5
1	quality variation (15)			
2	Explain the steps involved in power quality monitoring. What are	5	Evaluate	CO 5
-	the information's from monitoring site survey? (15)	· ·		
3	Explain about the structure and different working modes of	5	Evaluate	CO 5
	DSTATCOM (15)			

4	Explain about the Configuration, Structure and Control of UPQC (15)	4	Analyze	CO 5
5	Explain about the Configuration, Structure and Control of IPFC (15)	4	Analyze	CO 5

