SRM VALLIAMMAI ENGINEERING COLLEGE (An Autonomous Institution)

SRM Nagar, Kattankulathur – 603 203

DEPARTMENT OF

ELECTRONICS AND COMMUNICATION ENGINEERING

QUESTION BANK

VI SEMESTER

1906005- VLSI Design

Regulation - 2019

Academic Year 2022 – 23(Even Semester)

Prepared by

Dr. V. Suresh Kumar, Assistant Professor (Sl. G) /ECE

Mr. S. Senthilmurugan, Assistant Professor (Sl. G) /ECE

Mr. C. Saravanakumar, Assistant Professor (Sl. G) /ECE

SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution)

SRM Nagar, Kattankulathur – 603 203.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

QUESTION BANK

SUBJECT: 1906005 - VLSI Design

SEM / YEAR: VI / III

UNIT I - INTRODUCTION TO MOS TRANSISTOR

MOS Transistor, CMOS logic, Inverter, Pass Transistor, Transmission gate, Layout Design Rules, Gate Layouts, Stick Diagrams, Long-Channel I-V Charters tics, C-V Charters tics, Non ideal I-V Effects, DC Transfer characteristics, RC Delay Model, Elmore Delay, Linear Delay Model, Logical effort, Parasitic Delay, Delay in Logic Gate, Scaling.

PART - A

Q. No	Questions	BTL	Competence
1.	Write the functions of gate terminal in MOS transistor.	BTL 1	Remembering
2.	Why nMOS devices conduct strong zero and weak one?	BTL 4	Analyzing
3.	How do you calculate gate capacitance of a MOSFET?	BTL 1	Remembering
4.	Differentiate enhancement and depletion mode devices.	BTL 2	Understanding
5.	Draw the 3-input NOR gate using CMOS logic with truth table.	BTL 3	Applying
6.	Draw the structure of MOS transistor.	BTL 2	Understanding
7.	Sketch the transmission gate or pass gate.	BTL 3	Applying
8.	List out the set of design rules for layouts with two metal layers.	BTL 4	Analyzing
9.	What is stick diagram?	BTL 3	Applying
10.	Name the different operating modes of transistor and its current.	BTL 1	Remembering
11.	Write the equation for describing the channel length modulation effect in nMOS transistor.	BTL 2	Understanding
12.	List the Non ideal I-V effects of MOS transistor.	BTL 1	Remembering
13.	Design a CMOS inverter circuit.	BTL 3	Applying
14.	Why pMOS transistors are wider than nMOS transistors?	BTL 4	Analyzing
15.	Draw a RC ladder for Elmore delay with its propagation delay time, t_{pd} .	BTL 3	Applying
16.	Define body effect and write the threshold equation including the body effect.	BTL 1	Remembering
17.	Outline the features of logical effort of a gate.	BTL 2	Understanding
18.	What is meant by Parasitic delay of a gate?	BTL 1	Remembering
19.	Compare constant field scaling and constant voltage scaling.	BTL 4	Analyzing

20.	Formulate the various critical parameters of Transistor scaling.	BTL 4	Analyzing
21.	Define Threshold Voltage for a MOSFET	BTL 2	Understanding
22.	What is body effect in MOSFETs	BTL 2	Understanding
23.	What are the advantages of CMOS over NMOS	BTL 4	Analyzing
24.	Determine whether an NMOS transistor with a threshold	BTL 3	Applying
	voltage of 0.7V is operating in the saturation region if $V_{GS} =$		
	$2V$ and $V_{DS} = 3V$.		
	PART – B		<u> </u>
1.	Explain the operation of NMOS enhancement transistor with	BTL 1	Remembering
	necessary diagram. (13)		
2.	Demonstrate about the modes of operation in MOS transistor	BTL 2	Understanding
2.	with neat diagram. (13)	2122	Chacistananig
		DET 0	
3.	Describe the equation for source to drain current in the three	BTL 3	Applying
	regions of operation of a MOS transistor. (13)		
4.	Examine about the Non ideal I-V effects of MOS transistors	BTL 4	Analyzing
	with neat diagram. (13)		
5.	Explain in detail about Long-Channel I-V Charterstics of	BTL 4	Analyzing
	MOS transistor. (13)	212 .	1 211111 / 211119
	A. C.	DTI A	TT 1 4 1'
6.	Summarize about stick diagram and rules with an example.	BTL 2	Understanding
	$\mathbf{SRM} \tag{13}$		
7.	Describe the second order effects in MOS transistor with neat	BTL 4	Analyzing
	diagram. (13)		
8.	Explain in detail about the DC transfer characteristics of	BTL 3	Applying
	CMOS inverter. (13)		
9.	Write about the following MOS model with necessary	BTL 2	Understanding
7.	equations.	DIL 2	Chacistanang
	(i) Simple MOS capacitance model. (7)		
	(ii) Detailed MOS gate capacitance and diffusion capacitance		
	model. (6)		
10.	Analyze about the impact of RC Delay model and Elmore	BTL 4	Analyzing
	delay model in CMOS design. (13)		
11.	Describe in detail about various regions of current versus	BTL 1	Remembering
	input characteristics of CMOS inverter. (13)		8
12.	Write short notes on:	BTL 1	Remembering
12.	(i) Transistor scaling (7)	DILI	Kemembering
	(ii) Interconnect scaling. (6)		
13.	Elaborate about the CV characteristics of MOS transistor	BTL 4	Analyzing
	along with neat sketches. (13)		
1 /	Design a sympholic diagram and stick diagram for 2 in a f	DTI 2	A molecies s
14.	Design a symbolic diagram and stick diagram for 2 input	BTL 3	Applying
	NAND gate. (13)		
			<u> </u>

15.	Design a symbolic diagram and stick diagram for 2 input NOR gate. (13)	BTL 3	Applying
16.	Explain the operation of PMOS enhancement transistor with necessary diagram. (13)	BTL 1	Remembering
17.	An NMOS transistor has a nominal threshold voltage of 0.16V. Determine the shift in threshold voltage caused by body effect using the following data. The NMOS transistor is operating at a temperature of 300°K with the following parameters: gate oxide thickness $(t_{ox}) = 0.2 * 10^{-5}$ cm, relative permittivity of gate oxide $(\epsilon_{ox}) = 3.9$, relative permittivity of silicon $(\epsilon_{si}) = 11.7$, substrate bias voltage = 2.5V, intrinsic electron concentration $(N_i) = 1.5 * 10^{10}/\text{cm}^3$, impurity concentration in substrate $(N_A) = 3 * 10^{16}/\text{cm}^3$. Given Boltzmann's constant = 1.38 * 10^{-23} J/°K, electron charge = $1.6 * 10^{-19}$ Columb and permittivity of free space = $8.85 * 10^{-14}$ F/cm.	BTL 2	Understanding
	PART – C		
1.	Explain in detail about Layout design rules and design for CMOS inverter with neat layout design rules. (15)	BTL 3	Applying
2.	 (i) Consider an NMOS having electron mobility of μn =540 cm²/V–Sec. Calculate the process trans conductance for the gate oxide thickness of 12 nm and 8 nm. (7) (ii) An nMOS transistor has the following parameters: gate oxide thickness= 10nm, relative permittivity of gate oxide=3.9, electron mobility= 520 cm²/V-sec, threshold voltage= 0.7 V, permittivity of free space= 8.85 x 10⁻¹⁴ F/cm and (W/L) =8. Calculate the drain current when (V_{GS} = 2V and V_{DS} =1.2 V) and also compute the gate oxide capacitance per unit area. Note that W and L refer to the width and length of the channel respectively. (8) 	BTL 4	Analyzing
3.	For a resistive load inverter circuit with $V_{DD}=5V$, $K_n'=20\mu A/V^2$, $V_{to}=0.8V$, $R_L=200k\Omega$ and $W/L=2$. Calculate the critical voltages on the voltage transfer characteristics and find the noise margins of the circuit. (15)	BTL 4	Analyzing
4.	Discuss on the characteristics and working of the following with neat diagram, (i) Pass transistors (7) (ii) Transmission gate. (8)	BTL 2	Understanding
5.	Explain the following delay models: (i) RC delay model (ii) Linear and Parasitic delay model (iii) Logical effort and delay in logic gate (5)	BTL 2	Understanding

UNIT II – COMBINATIONAL LOGIC CIRCUITS

Circuit Families: Static CMOS, Ratioed Circuits, Cascode Voltage Switch Logic, Dynamic Circuits, Pass Transistor Logic, Transmission Gates, Domino, Dual Rail Domino, CPL, DCVSPG, DPL, Circuit Pitfalls.

Power: Dynamic Power, Static Power, Low Power Architecture.

-		ъ		
P.	Δ	ĸ	_	Δ

Q. No	Questions	BTL	Competence
1.	Write about static CMOS circuits.	BTL 1	Remembering
2.	What is meant by bubble pushing?	BTL 1	Remembering
3.	How will you calculate the logical effort in HI-skew inverter?	BTL 3	Applying
4.	Write short note about the Multiple threshold voltages for CMOS.	BTL 1	Remembering
5.	What is the importance of pseudo-nMOS logic gates?	BTL 2	Understanding
6.	Sketch the symmetric 2-input NOR gate with its truth table.	BTL 3	Applying
7.	Draw the schematic of Source follower Pull-up logic.	BTL 3	Applying
8.	Plot the recharge and evaluation modes of dynamic gates timing diagram.	BTL 2	Understanding
9.	Draw the footed Inverter.	BTL 4	Analyzing
10.	Compare the static CMOS, Pseudo-nMOS inverters.	BTL 4	Analyzing
11.	What is the advantage of the Multiple Output Domino Logic (MODL)?	BTL 1	Remembering
12.	Design a 2-input NAND gate with its truth table.	BTL 3	Applying
13.	Define Keeper circuit.	BTL 1	Remembering
14.	Outline about Dual-rail Domino Logic.	BTL 2	Understanding
15.	Why CMOS gates are very much power-efficient?	BTL 3	Applying
16.	How to calculate the power dissipation in CMOS circuits?	BTL 3	Applying
17.	Write the static dissipation equation in CMOS inverter.	BTL 2	Understanding
18.	Mention the methods used for dynamic power reduction.	BTL 1	Remembering
19.	How to calculate the average dynamic power dissipation?	BTL 4	Analyzing
20.	Justify that CPL is an improvement of CVSL.	BTL 4	Analyzing
21.	List the drawbacks of ratioed logic.	BTL 2	Understanding
22.	Why single phase dynamic logic structure cannot be cascaded? Justify	BTL 4	Analyzing
23.	What is the influence of voltage scaling on power and delay?	BTL 4	Analyzing
24.	What is mean by PDP?	BTL 2	Understanding
	PART – B		
1.	Explain in detail about static CMOS logic (or) complementary CMOS logic. (13)	BTL 4	Analyzing
2.	Illustrate the following circuits in detail. (i) Pseudo-nMOS, (ii) Ganged CMOS. (8) (5)	BTL 2	Understanding

3.	Classify the various Ratioed circuits for CMOS circuits and explain in detail. (13)	BTL 1	Remembering
4.	Assess the design of Differential Cascode Voltage Switch with Pass Gate (DCVSPG). (13)	BTL 4	Analyzing
5.	Explain in detail about the working of Cascode Voltage Switch Logic (CVSL) with neat diagram. (13)	BTL 3	Applying
6.	Discuss the structure and working of pass transistor logic with neat diagram. (13)	BTL 3	Applying
7.	Demonstrate about the structure and working of CMOS with transmission gates. (13)	BTL 2	Understanding
8.	Summarize about the working of Complementary pass transistor logic (CPL) with neat diagram. (13)	BTL 2	Understanding
9.	Explain in detail about the working of Differential pass transistor logic (DPL) with neat diagram. (13)	BTL 1	Remembering
10.	Describe the properties and operation of dynamic CMOS logic with neat diagram. (13)	BTL 1	Remembering
11.	Examine about the cascading of 2 dynamic gates with neat diagram. (13)	BTL 4	Analyzing
12.	Describe the basic principle of operation of Domino logic with neat diagrams. (13)	BTL 1	Remembering
13.	Classify the types of power dissipation and derive the equation each parameter. (13)	BTL 4	Analyzing
14.	Discuss the following power dissipation techniques and its impact in CMOS inverter circuits. (i) Static dissipation, (ii) Dynamic dissipation. (7)	BTL 4	Analyzing
15.	Design a CMOS compound gate(or) static gate for the Boolean expression $F = \overline{DE + A \bullet (B + C)}$ (13)	BTL 3	Applying
16.	Implement the Boolean function using CMOS logic gates $Z = \overline{AB + AC + BD}$ (13)	BTL 3	Applying
17.	Explain the Dual Rail Domino Logic families with necessary diagrams. (13)	BTL 2	Understanding
	PART – C		
1.	Compare the circuit families in a tabular form. (15)	BTL 4	Analyzing
2.	(i) Draw the CMOS logic circuit for the Boolean expression $Z = \overline{(A+B)(A+C)(B+D)}$ (7) (ii) Realize the function $F = (A+B+C)D$ using static CMOS logic. (8)	BTL 4	Analyzing

3.	Explain the following static CMOS logic.	BTL 2	Understanding
	(i) Bubble pushing. (5)		
	(ii) Compound gates. (5)		
	(iii) Skewed gates. (5)		
4		DET A	TT 1 . 1'
4.	Explain in detail about circuit pitfalls with neat diagram. (15)	BTL 2	Understanding
5.	What are the sources of power dissipation in CMOS and	BTL 2	Understanding
	discuss various design techniques to reduce power dissipation		
	in CMOS? (15)		

UNIT III - SEQUENTIAL CIRCUIT DESIGN

Static latches and Registers, Dynamic latches and Registers, Pulse Registers, Sense Amplifier Based Register, Pipelining, Schmitt Trigger, Monostable Sequential Circuits, Astable Sequential Circuits. **Timing Issues:** Timing Classification Of Digital System, Synchronous Design.

Circuits	. Timing Issues: Timing Classification Of Digital System, Sync	hronous	Design.
	PART – A	Γ	
Q. No	Questions	BTL	Competence
1.	Define Bistability principle.	BTL 1	Remembering
2.	State the approaches used to accomplish the bistable circuit.	BTL 1	Remembering
3.	List the modes of operation of low voltage static latches.	BTL 2	Understanding
4.	Outline the timing properties of Master-slave registers.	BTL 4	Analyzing
5.	Outline the working of dynamic positive edge-triggered register when Clk = 0.	BTL 4	Analyzing
6.	Implement a Multiplexer-based nMOS latch.	BTL 2	Understanding
7.	Write the operation of C ² MOS register.	BTL 2	Understanding
8.	Write about True Single-Phase Clocked Register (TSPCR).	BTL 2	Understanding
9.	State the role of transistor sizing in TSPC Edge-Triggered Register.	BTL 1	Remembering
10.	Mention the advantages of pipelined operation.	BTL 1	Remembering
11.	What is meant by sense-amplifier based registers?	BTL 2	Understanding
12.	Sketch the circuit of latch-based pipeline using C ² MOS latches.	BTL 4	Analyzing
13.	State the operation modes for NORA logic style.	BTL 1	Remembering
14.	List out the timing parameters of the sequential circuit in synchronous design.	BTL 1	Remembering
15.	Assess the properties of Schmitt trigger.	BTL 3	Applying
16.	Analyse the importance of voltage-controlled oscillator based on current-starved inverters.	BTL 4	Analyzing
17.	List the applications of Schmitt trigger.	BTL 3	Applying
18.	Point out the use of address transition detection (ATD) circuit.	BTL 3	Applying
19.	Enumerate the scenarios of positive and negative clock skew.	BTL 3	Applying
20.	Sketch the sense amplifiers based CMOS circuit.	BTL 4	Analyzing
21.	What is the difference between latches and flip flops based designs?	BTL 4	Analyzing

22.	What are synchronizers?	BTL 2	Understanding
23.	Define max delay failure in sequential circuits.	BTL 3	Applying
24.	Define min delay failure in sequential circuits.	BTL 3	Applying
	PART-B		
1.	Explain in detail about static latches and registers. (13)	BTL 1	Remembering
2.	State Bistability principle and explain in detail about the two different approaches used in this. (13)	BTL 1	Remembering
3.	Summarize about Multiplexer-Based Latches with neat diagram. (13)	BTL 2	Understanding
4.	Elaborate about the concept of static RS flip flops with truth table. (13)	BTL 1	Remembering
5.	Explain in detail about dynamic latches and registers. (13)	BTL 4	Analyzing
	Discuss in detail about dynamic transmission gate edge		, <u> </u>
6.	triggered registers. (13)	BTL 2	Understanding
7.	Explain about True Single-Phase Clocked (TSPC) latches. (13)	BTL 2	Understanding
8.	Examine about the operation of TSPC positive Edge- Triggered Register (TSPCR). (13)	BTL 3	Applying
9.	Elaborate about the working of dual edge register with neat	BTL 1	Remembering
	diagram. (13)		
1.0	Illustrate the following Alternative Register styles.	BTL 3	Applying
10.	(i) Pulse Registers. (7)		
	(ii) Sense-Amplifier-Based Registers. (6)	DTI 2	A 1 '
11.	Explain the concept of timing issues and pipelining in sequential circuits. (13)	BTL 3	Applying
	(i) Write about Schmitt trigger and its properties. (4)	BTL 4	Analyzing
12.	(ii) Describe Schmitt trigger and its CMOS implementation		· ······
	with neat diagram. (9)		
10	With necessary diagram, explain the Monostable sequential	BTL 4	Analyzing
13.	circuits. (13)		
14.	Evaluate the various sources of skew and jitter and explain it.	BTL 3	Applying
	(13)		
15.	Explain the operation of Astable Circuits with a neat	BTL 3	Applying
	diagram. (13)	D	
16.	Derive the equation for Max – Delay Constraints for	BTL 4	Analyzing
17	sequential circuits. (13)	DET 4	A 1 .
17.	Derive the equation for Min – Delay Constraints for	BTL 4	Analyzing
	sequential circuits. (13)		
	PART-C	DTI 2	A
1	Draw and explain about Master-Slave Edge-Triggered	BTL 3	Applying
1.	register with its timing properties and Non-ideal clock		
	signals. (15)		

2	Design a C^2MOS Register with $CLK-\overline{CLK}$ clocking	BTL 3	Applying
2.	approach. (15)		
	Analyse the basics of synchronous timing, clock skew, clock	BTL 4	Analyzing
3.	jitter and combined impact of skew and jitter.		
	(15)		
4.	Explain in detail about the synchronous pipelining	BTL 2	Understanding
4.	approaches to optimize sequential circuits. (15)	DILZ	Onderstanding
	Write in detail about the asynchronous pipelining to optimize	BTL 2	Understanding
5.	sequential circuit. (15)	DIL Z	Understanding

UNIT IV - DESIGN OF ARITHMETIC BUILDING BLOCKS AND SUBSYSTEM

Arithmetic Building Blocks: Data Paths, Adders, Multipliers, Shifters, ALUs, power and speed trade-offs, Case Study: Design as a trade-off.

Designing Memory and Array structures: Memory Architectures and Building Blocks, Memory Core, Memory Peripheral Circuitry.

	PART-A		
Q. No	Questions	BTL	Competence
1.	Obtain the critical path delay of 4 bit ripple carry adder,	BTL 4	Analysing
2.	Write about carry propagation delay and its effect in circuits.	BTL 4	Analysing
3.	List out the components of Data path.	BTL 1	Remembering
4.	Why is barrel Shifters very useful in the designing of arithmetic circuits?	BTL 3	Applying
5.	Deduce a partial product selection table using modified 3-bit booth's recoding multiplication.	BTL 4	Analysing
6.	What is one time programmable memories?	BTL 1	Remembering
7.	Draw the structure of 6- transistor SRAM cell.	BTL 3	Applying
8.	Mention the advantages and disadvantages of full adder design using static CMOS.	BTL 1	Remembering
9.	Outline the concept of Dynamic voltage scaling and list its advantages.	BTL 4	Analyzing
10.	Define Clock gating.	BTL 1	Remembering
11.	Draw the schematic for Sleep transistors used on both supply and ground.	BTL 4	Analysing
12.	Identify the need for VTCMOS.	BTL 4	Analyzing
13.	Mention the applications of CAM.	BTL 2	Understanding
14.	Assess about the inverting property of full adder.	BTL 4	Analysing
15.	How to design a column multiplexer with separate decoder circuit?	BTL 3	Applying
16.	Write the full adders output in terms of propagate and generate.	BTL 2	Understanding

17.	Mention the power optimization techniques for latency and throughput constrained design.	BTL 1	Remembering
18.	Write the charge-share equation for DRAM.	BTL1	Remembering
19.	Design a one transistor DRAM cell.	BTL 3	Applying
20.	State the Concept of large SRAMs.	BTL 2	Understanding
21.	What is meant by bit sliced data path organisation?	BTL 2	Understanding
22.	Which factors determine the performance of a programmable shifter?	BTL 3	Applying
23.	Determine the propagation delay of a n – bit carry select adder	BTL 3	Applying
24.	What is ripple carry adder?	BTL 2	Understanding
	PART-B		
1.	Discuss the data paths in digital processor architectures. (13)	BTL 2	Understanding
	(i)Explain the operation of a basic 4 bit binary adder. (10)	BTL 1	Remembering
2.	(ii)Describe the different approaches of improving the speed of		
	the adder. (3)	DEL 1	D 1 '
3.	Describe the working of ripple carry adder and derive the expression for worst case delay. (13)	BTL 1	Remembering
4.	Describe the operation and working of 4-bit Brent-kung Adder. (13)	BTL 3	Applying
5.	Write short notes on Static CMOS adders. (13)	BTL 4	Analyzing
6.	Explain the operation of Carry Bypass adders with neat diagram. (13)	BTL 4	Analyzing
7.	Discuss in detail about carry select adder with neat diagram.	BTL 2	Understanding
	White the equations governing the decign of course skin adden	BTL 2	I Indonstandina
8.	Write the equations governing the design of carry skip adder and explain its working. (13)	DIL 2	Understanding
9.	Construct 4 X 4 array type multiplier and find its critical path delay. (13)	BTL 4	Analyzing
10.	Design a multiplier for 5 bit by 3 bit. Explain its operation and summarize the number of adders. Discuss it over Wallace multiplier. (13)	BTL3	Applying
11.	Illustrate the working of 4x4 carry save multiplier with neat diagram. (13)	BTL 4	Analyzing
12.	Explain the working of power and speed trade-offs with suitable case study. (13)	BTL 1	Remembering
13.	Examine the working of Multi-ported SRAM and Register file CMOS logic circuit. (13)	BTL3	Applying
14.	Explain about the DRAM sub array and open bit lines architecture. (13)	BTL 1	Remembering
		l .	

15.	What is mirror adder? List its characteristics, advantages and	BTL 4	Analyzing	
	disadvantages. (13)			
16.	Describe the Manchester carry chain adder with a neat	BTL 2	Understanding	
	diagram and supporting equations. (13)			
17.	Describe the operation of Carry Select Adder with a block	BTL 2	Understanding	
	diagram. (13)			
	PART-C			
1.	Elaborate about 4 input and 4 output barrel shift adder using	BTL 4	Analyzing	
	NMOS logic. (15)			
2.	Derive the necessary expressions of a 4-bit carry look ahead	BTL3	Applying	
	adder and realize the carry out expressions using dynamic			
	CMOS logic. (15)			
3.	Analyse the operation of booth multiplication with suitable	BTL 4	Analyzing	
	examples. (15)			
4.	Draw and explain the architecture of large memory array with	BTL 2	Understanding	
	sub array memory circuitry. (15)			
5.	Write short notes on	BTL 2	Understanding	
	(i) Linear carry select adder. (8)			
	(ii) Square root carry select adder. GINEE (7)			

UNIT V - IMPLEMENTATION STRATEGIES AND TESTING

FPGA Building Block Architectures, FPGA Interconnect Routing Procedures. Design for Testability: *Ad Hoc* Testing, Scan Design, BIST, IDDQ Testing, Design for Manufacturability, Boundary Scan.

PART-A			
Q.	Questions	BT	Competence
No	Questions	Level	
1.	What is fault model?	BTL 1	Remembering
2.	Point out the common techniques of adhoc testing.	BTL 4	Analyzing
3.	List out the different approaches of Design for testability.	BTL 1	Remembering
4.	Brief about stuck-at faults and state their uses.	BTL 2	Understanding
5.	Mention the types of stuck-at faults.	BTL 3	Applying
6.	Write a note on short circuit and open circuit faults.	BTL 2	Understanding
7.	State the features of boundary scan method.	BTL 1	Remembering
8.	Differentiate between observability and controllability.	BTL 4	Analyzing
9.	Write about ATPG design scan.	BTL 1	Remembering
10.	Define Fuse based FPGA.	BTL 1	Remembering
11.	Name the two different types of routing in FPGA.	BTL 2	Understanding
12.	Develop a PRSG logic circuit for BIST test.	BTL 4	Analyzing
13.	Draw the block diagram of test data register.	BTL 4	Analyzing
14.	Compare serial and parallel scan in adhoc testing.	BTL 4	Analyzing
15.	Summarize the functions of Programmable Interconnect	BTL 4	Analyzing

	points in FPGA.		
16.	Give an example circuit for delay fault CMOS logic circuit.	BTL 2	Understanding
17.	Find out the power supply of CMOS logic circuit using IDDQ fault test.	BTL 3	Applying
18.	Examine the Test Access Port connection details.	BTL 3	Applying
19.	Outline the steps for CMOS circuit IDDQ test.	BTL 2	Understanding
20.	Write about various ways of routing procedure.	BTL 1	Remembering
21.	What are feed through cells? State their uses.	BTL 3	Applying
22.	State the features of full custom design	BTL 3	Applying
23.	What is DFT?	BTL 2	Understanding
24.	What are the types of faults detected by IDDQ testing.	BTL 3	Applying
PART-B			
1.	Explain the manufacturing test principle with an example of digital logic circuits. (13)	BTL1	Remembering
2.	Describe the various types of adhoc testing techniques with neat diagram. (13)	BTL 2	Understanding
3.	(i) List out the common testing technique for ad hoc test. (8) (ii) Outline the need of Observability for ICs. (5)	BTL 1	Remembering
4.	Illustrate the concepts of short circuit and open circuit fault. (13)	BTL 3	Applying
5.	Explain the architecture of parallel scan testing method. (13)	BTL 4	Analyzing
6.	Examine the boundary scan architectures and explain how to test the circuit board level and system level. (13)	BTL 4	Analyzing
7.	Describe briefly about the BIST block structure along its components. (13)	BTL 1	Remembering
8.	Discuss the types of FPGA routing techniques. (13)	BTL 2	Understanding
9.	Elaborate the small finite state machine of TAP architecture. (13)	BTL 4	Analyzing
10.	Compare two types of Ad hoc scanning methods with suitable example. (13)	BTL 4	Analyzing
11.	Draw and explain the building blocks of FPGA. (13)	BTL 2	Understanding
12.	Draw the block diagram of BILBO\BIST and explain each unit operation. (13)	BTL 3	Applying
13.	Evaluate the steps involved in design for manufacturability to increase the yield of optimized circuit. (13)	BTL 3	Applying
14.	Write short notes on TAP controller of Boundary Scan Technique. (13)	BTL 1	Remembering
15.	Illustrate the basic types of programmable elements of FPGA. (13)	BTL 2	Understanding
16.	Give a short note on stuck-at faults model. (13)	BTL 3	Applying

17.	Describe an instruction register of Boundary Scan. (13)	BTL 2	Understanding		
	PART-C				
1.	With neat sketch explain the CLB, IOB and programmable	BTL 3	Applying		
	interconnects of an FPGA device. (15)				
2.	Draw and explain the building blocks of FPGA with different	BTL 4	Analyzing		
	fusing technologies. (15)				
3.	(i) Explain about building block architecture of TAP. (10)	BTL 4	Analyzing		
	(ii) Write short notes on routing procedures involved in FPGA				
	interconnect. (5)				
4.	Discuss in detail about different types of scan design method	BTL 2	Understanding		
	and explain with neat diagram. (15)				
5.	Describe about the Boundary Scan in detail with supporting	BTL 2	Understanding		
	diagrams	DIL 2			

