

SRM VALLIAMMAI ENGINEERING COLLEGE (An Autonomous Institution) SRM Nagar, Kattankulathur – 603 203

DEPARTMENT OF INFORMATION TECHNOLOGY

QUESTION BANK

IV SEMESTER 1908401 – PRINCIPLES OF COMPILER DESIGN Regulation – 2019 Academic Year 2022 – 2023 EVEN

Prepared by Dr. S.SEKAR, Assistant Professor / IT Ms. S. KIRUTHIKA, Assistant Professor / IT

SRM VALLIAMMAI ENGNIEERING COLLEGE

(An Autonomous Institution) SRM Nagar, Kattankulathur – 603203.

DEPARTMENT OF INFORMATION TECHNOLOGY

QUESTION BANK

SUBJECT : 1908401 – PRINCIPLES OF COMPILER DESIGN

SEM / YEAR : IV / II

UNIT I -INTRODUCTION TO COMPILERS

Phases of a compiler – Lexical Analysis – Role of Lexical Analyzer – Input Buffering – Specification of Tokens – Recognition of Tokens – Lex – Finite Automata – Regular Expressions to Automata – NFA to DFA- Minimizing DFA.

	PART-A (2 - MARKS)		
Q. No	QUESTIONS	Competence	BT Level
1.	Define tokens, patterns and lexemes.	Remember	BTL1
2.	Classify approach would you use to recover the errors in lexical analysis phase?	Apply	BTL3
3.	Write the three address code for the assignment statement $a=b+c*60$.	Apply	BTL3
4.	Point out why is buffering used in lexical analysis?	Analyze	BTL4
5.	Define transition diagram for an identifier.	Remember	BTL1
6.	Compare kleen closure and positive closure.	Analyze	BTL4
7.	State prefix, suffix, proper prefix, and proper suffix with an example.	Evaluate	BTL5
8.	Define buffer pair.	Remember	BTL1
9.	Differentiate the features of DFA and NFA.	Understand	BTL2
10.	Identify the interactions between the lexical analyzer and the parser.	Remember	BTL1
11	State parse tree and construct a parse tree for $-(id + id)$	Evaluate	BTL5
12.	Name the operations on languages.	Remember	BTL1
13.	List out the phases of a compiler.	Remember	BTL1
14.	Generalize the advantage of having sentinels at the end of each buffer halves in buffer pairs.	Create	BTL6
15.	Analyze the role of sematic analyzer.	Analyze	BTL4
16.	Illustrate the rules for three address code generation.	Understand	BTL2
17.	Develop the Structure of lex program.	Create	BTL6
18.	Apply a grammar for branching statements.	Apply	BTL3
19.	Express the main idea of NFA? And discuss with examples (a/b)*	Understand	BTL2
20.	Define lex and give its execution steps.	Understand	BTL2
21	Differentiate interpreters and compilers	Analyze	BTL4
22	Apply the parse tree for the statement $z := x + y^* 130$.	Apply	BTL3

23	Outline the role of lexical analysis in compiler design.	Understand	BTL2
23		Evaluate	BTL2 BTL5
24	PART-B (13- MARKS)	Lvaluate	DILJ
1.	Describe the various phases of compiler with suitable example (13)	Remember	BTL1
2		Analyze	BTL1 BTL4
2	(ii)Create Transition diagram for unsigned integer and (6) relational operator.		DIL4
3.	 (i).Discuss in detail about the role of Lexical analyzer with the (7) possible error recovery schemes. (ii)Describe in detail about issues in lexical analysis. 	Understand	BTL2
4	(i)Describe the Input buffering techniques in detail.(7)(ii)Discuss about the recognition of tokens with example(6)	Remember	BTL1
5	Summarize in detail about how the tokens are specified by the(13) compiler with suitable example.	Understand	BTL2
6	Define Finite Automata. Differentiate Deterministic Finite(13) Automata and Non-Deterministic Finite Automata with examples.	Understand	BTL2
7	Solve the given regular expression into NFA using Thompsonconstructioni) (a/b)* abb (a/b)*.ii) ab*/ab(6)	Apply	BTL3
8	Create DFA the following regular expression. (a/b) *abb. (13)	Create	BTL6
9	(i)Illustrate the algorithm for minimizing the number of states (8) of a DFA (ii)Minimize the following states of DFA (5)	Apply	BTL3
10.	(i).Construct DFA which accepts all the string over an alphabet $\sum = \{a,b\}$ where length of the string=2 and length >=2. (7) (ii). Construct DFA which accepts all the string over an alphabe $\sum = \{0,1\}$ when string starts with '01' and ends with '01' (6)	Remember	BTL1
11	Define Lex and Lex specifications. How lexical analyzer is (13) constructed using lex? Give an example.	Remember	BTL1
12		Evaluate	BTL5
13		Analyze	BTL4

14			
	(i) Analyze the various operations on Languages with an (7) Example	Analyze	BTL4
	(ii) Discuss the finite automata, explain the 5 elements to		
	represent the model with an example (6)		
15	Discuss in detail about the output of each phase of compiler for (13) the expression a:=b+c*50.	3) Understand	BTL2
16	*	3)Apply	BTL3
17	Determine the minimum -state DFA for the regular expression (13) $d(a/b)*b$.	3)Evaluate	BTL5
	PART-C (15- MARK)		
1.	 (i) Create languages denoted by the following regular (9) expressions a) (a b)*a(a b)(a b) 	Create	BTL6
	 b) a*ba*ba*ba* (ii) Write regular definitions for the following languages: a)All strings of lowercase letters that contain the five vowels (6) in order. 		
	b)All strings of lowercase letters in which the letters are in ascending lexicographic order.		
2.	 Find transition diagrams for the following regular expression (15 and regular definition. a(a b)*a ((ε a)b*)* All strings of digits with at most one repeated digit. All strings of a's and b's that do not contain the substring abb. All strings of a's and b's that do not contain the subsequence abb. 	5)Evaluate	BTL5
3.	Evaluate that the following regular expressions are equivalent (15	5)Evaluate	BTL5
	by showing that the minimum state DFA's are same (a/b)*a/b.		
4.	(a/b)*a/b. Explain in detail the tool for generating Lexical-Analyzer with (15	j)Evaluate	BTL5
	(a/b)*a/b.	Create	
4.	 (a/b)*a/b. Explain in detail the tool for generating Lexical-Analyzer with (15 an example program. Develop the Lex Program to recognize the identifiers, 	Create	BTL5
4. 5 ole o own educ	 (a/b)*a/b. Explain in detail the tool for generating Lexical-Analyzer with (15 an example program. Develop the Lex Program to recognize the identifiers, constants and operators (15 UNIT II SYNTAX ANALYSIS of Parser – Grammars – Error Handling – Context-free grammars – Y Parsing - General Strategies Recursive Descent Parser Predictive P e Parser-LR Parser-LR (0)Item Construction of SLR Parsing Table - Error Handling and Recovery in Syntax Analyzer-YACC. 	Create) Writing a grammarser-LL(1) Par	BTL5 BTL6 nar – Top ser-Shift
4. 5 ole o own educ arser	(a/b)*a/b. Explain in detail the tool for generating Lexical-Analyzer with (15 an example program. Develop the Lex Program to recognize the identifiers, constants and operators (15 UNIT II SYNTAX ANALYSIS of Parser – Grammars – Error Handling – Context-free grammars – ' Parsing - General Strategies Recursive Descent Parser Predictive P e Parser-LR Parser-LR (0)Item Construction of SLR Parsing Table - Error Handling and Recovery in Syntax Analyzer-YACC. PART-A (2 - MARKS)	Create (j) Writing a grammarser-LL(1) Par -Introduction to	BTL5 BTL6 mar – Top ser-Shift D LALR
4. 5 ole o own educ	 (a/b)*a/b. Explain in detail the tool for generating Lexical-Analyzer with (15 an example program. Develop the Lex Program to recognize the identifiers, constants and operators (15 UNIT II SYNTAX ANALYSIS of Parser – Grammars – Error Handling – Context-free grammars – Y Parsing - General Strategies Recursive Descent Parser Predictive P e Parser-LR Parser-LR (0)Item Construction of SLR Parsing Table - Error Handling and Recovery in Syntax Analyzer-YACC. 	Create) Writing a grammarser-LL(1) Par	BTL5 BTL6 nar – Top ser-Shift

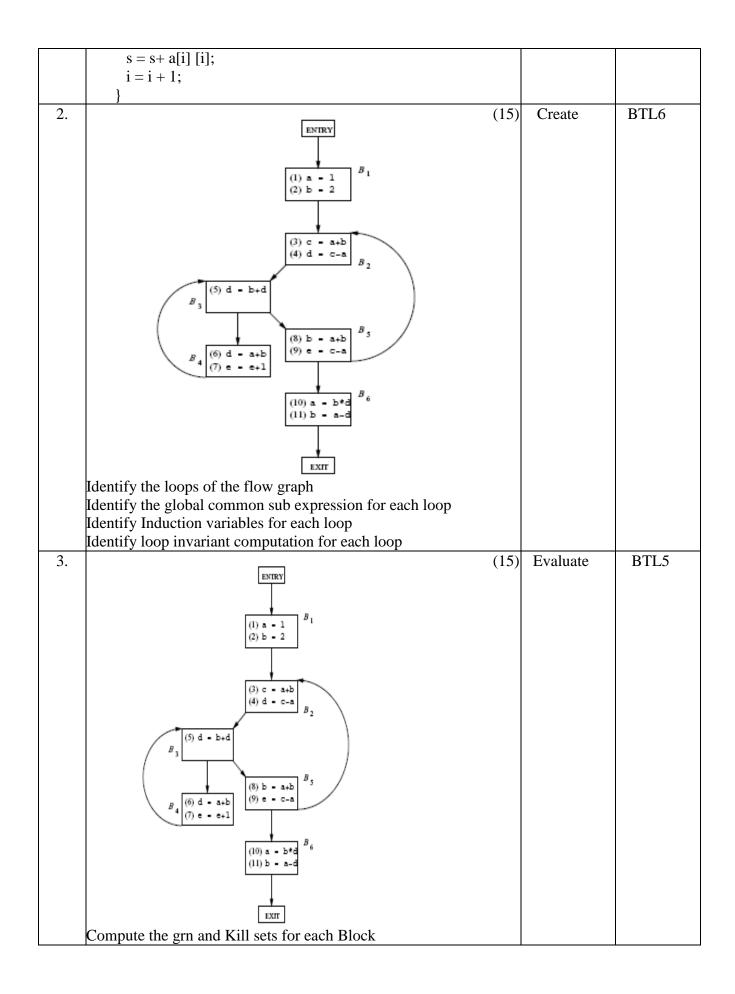
3.	Compute FIRST and FOLLOW for the following grammar	Apply	BTL3
5.	S \rightarrow AS	r ippiy	DILS
	$S \rightarrow b$		
	$\tilde{A} \rightarrow SA$		
	$A \rightarrow a$		
4.	State the concepts of Predictive parsing.	Remember	BTL1
5.	Differentiate Top Down parsing and Bottom Up parsing?	Understand	BTL2
6.	Define Recursive Descent Parsing.	Remember	BTL1
7.	State the different error recovery methods of predictive parsing.	Remember	BTL1
8.	Write an algorithm for finding FOLLOW.	Analyze	BTL4
9.	What is the main idea of Left factoring? Give an example.	Understand	BTL2
10.	Define LL(1) Grammar.	Remember	BTL1
11.	Difference between ambiguous and unambiguous grammar.	Analyze	BTL4
12.	Define parser. Explain the advantages and disadvantages of LR parsing?	Evaluate	BTL5
13.	Define Augmented Grammar with an example.	Remember	BTL1
14.	Evaluate the conflicts encountered while parsing?	Evaluate	BTL5
15.	Point out the categories of shift reduce parsing.	Analyze	BTL4
16.	How to create an input and output translator with YACC.	Create	BTL6
17.	Give the four possible actions of LR Parsing.	Understand	BTL2
18.	Solve the following grammar is ambiguous: S→aSbS / bSaS / €	Apply	BTL3
19.	Discuss when Dangling reference occur?	Understand	BTL2
20.	Illustrate various types of recursion wirh example.	Apply	BTL3
21.	Give the comparison between various LR parsers	Evaluate	BTL5
22.	Write down the structure of YACC file	Analyze	BTL4
23.	Differentiate Lex and yacc	Understand	BTL2
24.	Write about Closure Operation	Apply	BTL3
	PART-B (13- MARKS)	T	
1.	C 1	Analyze	BTL4
	(ii)Eliminate left recursion and left factoring for the following (6)		
	grammar.		
	$E \to E + T \mid E - T \mid T$		
	$T \rightarrow a \mid b \mid (E).$	~	
2.		Create	BTL6
	(ii)Construct a parse tree for the input string cad using top		
	down parser . (7)		
	S->cAd		
2	A - ab a	Anolyza	
3.	$S \rightarrow +SS \mid *SS \mid a \text{ with the string ``+*aaa.}$	Analyze	BTL4
4.	(i)Evaluate predictive parsing table for the following grammar (9) $E \rightarrow E+T \mid T$	Evaluate	BTL5
	$T \rightarrow T^*F \mid F$		

	$F \rightarrow (E) \mid id$			
	(ii) Parse the string id+id*id	(4)		
5.	Solve the following grammar for the predictive parser and parse the string 000111 S>0S1 S->01		Analyze	BTL2
6.	(i).Describe on detail about the various types of parser (ii)Discuss about the context-free grammar.	(7) (6)	Remember	BTL1
7.	(i).Discuss in detail about the role of parser.(ii).What are the Error recovery techniques used in Predictive parsing? Explain in detail.	(7) (6)	Remember	BTL1
8.	(i)Give the predictive parser table for the following grammar. $S \rightarrow (L) \mid a$ $L \rightarrow L, S \mid S$ (ii)Parse the string (a, (a, a)).	(8) (5)	Understand	BTL2
9.	Construct the Shift Reduce Parser for the following Grammar and show the moves made by the parser for input strings. (i). $((id+id)*id)$ (8) (ii). $((id+id)**(id*id)$ (5) And the grammar is $E \rightarrow E+E (E)$ $E \rightarrow E*E$ $E \rightarrow id$		Analyze	BTL4
10.	 (i)Define YACC parser generator. List out the Errors recovery actions in YACC. (ii) Define SLR (1) parser. Describe the Steps for the SLR parser. 	(8) (5)	Remember	BTL1
11	Evaluate predictive parsing table for the following grammar S→iEts/iEtSeS/a E→b Parse the string: ibtaea	(13)	Apply	BTL3
12.	Solve the following grammar to generate the SLR parsing table. $E \rightarrow E+T \mid T$ $T \rightarrow T^*F \mid F$ $F \rightarrow F^* \mid a \mid b$	(13)	Understand	BTL2
13.	(i)Consider the following grammar $S \rightarrow AS b$ $A \rightarrow SA a$. Construct the SLR parse table for the grammar. (ii)Show the actions of the parser for the input string "abab".	(10)	Apply	BTL3
14.	Construct the Shift Reduce Parser for the following Grammer and show the moves made by the parser for input strings. (i) cdcd (8) (ii) dddc (5) And the grammar is $S \rightarrow CC$ $C \rightarrow cC$	(-)	Understand	BTL2

	C→d		
15.	Examine the following grammar using canonical parsing table. (1	3)Remember	BTL1
	S->CC	,	
	C->cC d		
16.		3)Evaluate	BTL5
101	grammar.		2120
	S->L=R		
	S->R		
	L->*R		
	L->id		
	R->L		
17.		3)Apply	BTL3
17.	The input aaa $*a++$ for the grammar	e) pprj	2120
	S->SS+		
	S->SS*		
	S->a		
	PART-C (15 -MARKS)		
1.		8) Create	BTL6
1.	Draw leftmost derivation and Rightmost derivation for the	b) Cleate	DILO
	following. $E \rightarrow E + E E^* E $ id		
		7)	
	(ii)What is an ambiguous and unambiguous grammar? Identify ('	()	
	the following grammar is ambiguous or not. $E \rightarrow E + E + E = E + E + id$ for the center so id + id*id		
2	$E \rightarrow E + E \mid E * E \mid (E) \mid -E \mid id \text{ for the sentence id } + id^*id$	5) England	
Z	Explain in detail about the various types of parsing. (1	.5)Evaluate	BTL5
3	Evaluate the LR parsing algorithm with an example (1	5)Evaluate	BTL5
4	(i)What is CFG .Explain in detail about the Context-Free (,	BTL5
	Grammar	,	
	(ii)Construct Stack implementation of shift reduce parsing for (7)	
	the grammar	,	
	E->E+E		
	E->E*E		
	E->(E)		
	E->id and the input string id1+id2*id3 .		
5.	Discuss in detail about YACC Parser - Generator with an(1	5)Create	BTL6
0.	example program		2120
	UNIT-III INTERMEDIATE CODE GENERA	TION	
Svnta	x Directed Definitions, Evaluation Orders for Syntax Direct		Intermediat
•	ages: Syntax Tree, Three Address Code, Types and Declaration		
-	Checking.	<i>s, mansharron</i> or	Liprossione
1) p 0	PART-A (2 - MARKS)		
1.	List out the two rules for type checking.	Remember	BTL1
2.	Compare synthesized attributes and inherited attributes.	Analyze	BTL1 BTL4
<u> </u>		Remember	BTL4 BTL1
	What is Annotated parse tree?		
4.	Define Type checker.	Remember	BTL1
5.	What is a syntax tree? Draw the syntax tree for the assignment	Create	BTL6
	statement $a := b * -c + b * -c$		
6.	Define type systems.	Remember	BTL1

7.	Express the rule for checking the type of a function.	Understand	BTL2
8.	Define Syntax directed definition of a simple desk calculator.	Remember	BTL1
9.	Identify the different types of intermediate representation.	Evaluate	BTL5
10.	Give the difference between syntax-directed definitions and translation schemes.	Understand	BTL2
11.	State the type expressions.	Remember	BTL1
12.	Illustrate the methods of implementing three-address statements.	Apply	BTL3
13.	Differentiate S-attribute and L-attribute definitions.	Analyze	BTL4
14.	Create postfix notation for the given expression a+b*c.	Create	BTL6
15.	Translate the conditional statement if a b then 1 else 0 into three address code.	Understand	BTL2
16.	Test whether the following rules are L-attribute or not? Semantic rules A.s = B.b; B.i = f(C.c,A.s)	Evaluate	BTL5
17.	What are the methods of representing a syntax tree?	Understand	BTL2
18.	Constrct the syntax directed definition for if-else statement	Analyze	BTL4
19.	Examine the usage of syntax directed definition	Apply	BTL3
20.	Show the three address code sequence for the assignment statement. $d=(a-b)+(a-c)+(a-c)$	Apply	BTL3
21.	Give the evaluation order of a SDD	Evaluate	BTL5
22	What is translation scheme?	Understand	BTL2
23.	How will you evaluate semantic rules?	Analyze	BTL4
24.	Illustrate how to construct syntax tree for an expression	Apply	BTL3
	PART-B (13- MARKS)		
1.	Discuss the following in detail about the Syntax Directed Definitions. (i)Inherited Attributes and Synthesized attributes. (ii) Evaluate SDD of a parse tree.	(7) (6)	BTL2
2.	Identify the annotated parse tree for the following expression(i)(3+4)*(5+6)n(ii)1*2*3*(4+5)nUsing the given SDDProductionSemantic Rules $D \longrightarrow TL$ $L.inh = T.type$ $T \longrightarrow int$ $T \longrightarrow float$ $L = float$ $L \longrightarrow L1$, idL1.inh = L.inhaddType (id.entry, Linh)	Evaluate (6) (7)	BTL5
3.	Suppose that we have a production A→BCD. Each of the four non terminal A, B, C and D have two attributes: S is a synthesized attribute and i is an inherited attribute. Analyze For each of the sets of rules below tell whether (i)the rules are consistent with an S-attributed definition (ii) the rules are consistent with an L-attributed definition and	(13)Analyze	BTL4

	(iii) whether the rules are consistent with any evaluation order			
	at all?			
	A.s = B.i + C.s			
	A.s = B.i + C.s and $D.i = A.i + B.s$.			
	A.5 - D.1 + C.5 and $D.1 - A.1 + D.5$.			
4.	Illustrate in detail about the various instructions forms of three	(13)	Apply	BTL3
	address instruction with suitable examples	. ,		
5.	Discuss in detail about		Understand	BTL2
	(i)Dependency graph	(10)		
	(ii)Ordering Evaluation of Attributes.	(3)		
6.	Create variants of Syntax tree. Explain in detail about it with	(13)	Create	BTL6
0.	suitable examples.	(15)	Cicuto	DILO
7.	(i).Analyse the common three address instruction forms.	(7)	Analyze	BTL4
	(ii). Explain the two ways of assigning labels to the following	(6)		212.
	three address statements	(-)		
	Do i=i+1;			
	While (a[i] <v);< td=""><td></td><td></td><td></td></v);<>			
8.	Describe.in detail about		Remember	BTL1
	(i) Quadruples	(7)		
	(ii) Triples.	(6)		
9.	(i) Describe in detail about addressing array Elements.	(6)	Remember	BTL1
	(ii) Discuss in detail about Translation of array reference.	(7)		
	Describe in detail about types and declaration with suitable	(13)	Remember	BTL1
10.	examples.			
11.	Compare three address code for expression with the	(13)	Analyze	BTL4
	Incremental translation.		-	
12.	Show the intermediate code for the following code segment	(13)	Understand	BTL2
	along with the required syntax directed translation scheme			
	while (i < 10)			
	if (i % 2 == 0)			
	evensum = evensum + i			
	else			
	oddsum = oddsum + i			
13.	(i)State the rules for type checking with example.	(7)	Remember	BTL1
	(ii) Give an algorithm for type inference and polymorphic	(6)		
	function.	. /		
14.	Illustrate an algorithm for unification with its operation.	(13)	Apply	BTL3
15.	Write down the SDD for constructing syntax tree for the	(13)	Understand	BTL2
	expression a+b*5			
16.	Illustrate in detail about Bottom-up evaluation of S-attribute	(13)	Apply	BTL3
	definitions			
17.	Explain the evaluation order for SDD	(13)	Evaluate	BTL5
	PART-C(15 -MARKS)			
1.	Create the following into the arithmetic expression	(15)	Create	BTL6
	a+-(b+c)* into			
	(i)Syntax tree			


	(ii)Quadruples			
	(iii)Triples			
	(iv)Indirect Triples			
2.	Explain what is SDD and examine syntax-directed definition	(15)	Evaluate	BTL5
	to differentiate expressions formed by applying the arithmetic operators + and * to the variable x and constants ; expression :			
	x * (3 * x + x * x)			
3.	Generate an intermediate code for the following code segment		Create	BTL6
0.	with the required syntax-directed translation scheme.			2120
	(i) if $(a > b)$	(7)		
	$\mathbf{x} = \mathbf{a} + \mathbf{b}$			
	else			
	$\mathbf{x} = \mathbf{a} - \mathbf{b}$	$(\cap $		
	(ii) p>q AND r <s or="" u="">r</s>	(6)		
4.	What is Type conversion? What are the two types of type		Evaluate	BTL5
	conversion? Formulate the rules for the type conversion.	(15)		
5.	Explain the specification of a simple Type Checkers	(15)	Evaluate	BTL5
	UNIT IV- RUN-TIME ENVIRONMENT AND COD	E GI	ENERATION	
Storag	ge Organization, Stack Allocation Space, Access to Non-le	ocal	Data on the	Stack, Heap
Mana	gement - Issues in Code Generation - Design of a simple Code C	Bener	ator.	
	PART-A (2 -MARKS)		Γ	1
1.	List out limitations of the static memory allocation.		Remember	BTL1
2.	How the storage organization for the run-time memory is		Apply	BTL3
2	organized?		Dave avela av	DTI 1
3. 4.	What is heap allocation?How the activation record is pushed onto the stack.		Remember Apply	BTL1 BTL3
4. 5.	Analyze the storage allocation strategies.		Analyze	BTL3 BTL4
6.	State the principles for designing calling sequences.		Remember	BTL1
7.	List out the dynamic storage techniques.		Remember	BTL1
8.	Define the non-local data on stack.		Remember	BTL1
9.	Define variable data length on the stack.		Remember	BTL1
10.	Differentiate between stack and Heap allocation		Analyze	BTL4
11.	Distinguish between static and dynamic storage allocation.		Understand	BTL2
12.	Discuss the main idea of Activation tree.		Understand	BTL2
13.	Give the fields in an Activation record.		Understand	BTL2
14.	Compose space efficiency and program efficiency.		Create	BTL6
15.	Construct typical memory hierarchy configuration of a computer.		Evaluate	BTL5
16.	How would you solve the issues in the design of code generators?		Apply	BTL3
17.	Evaluate Best-fit and Next-fit object placement.		Evaluate	BTL5
	Prepare optimal code sequence for the given sequence		Create	BTL6
18.	t=a+b			
18.	t=t*c			
	t=t/d			

19.	Analyze the different forms of machine instructions.	Analyze	BTL4
20.	Discuss the four principle uses of registers in code generation.	Understand	BTL2
21	Examine what is the input to code generator.	Analyze	BTL4
22	What are the advantages and disadvantages of register	Understand	BTL2
	allocation and assignments?		
23	6 1	Evaluate	BTL5
24	Organize the contents of activation record.	Apply	BTL3
	PART-B (13- MARKS)	1	
1.	(i)Illustrate the storage organization memory in the perspective (8) of compiler writer with neat diagram.	Apply	BTL3
	(ii)Compare static versus dynamic memory allocation. (5)		
2.	Explain in detail about the various issues in code generation with examples. (13)	Evaluate	BTL5
3.	 (i)Develop a quicksort algorithm to reads nine integers into an (9) array a and sorts them by using the concepts of activation tree. (ii)Give the structure of the action record. (4) 		BTL6
4.	How to a design a call sequences and analyzes the principles of (13) activation records with an example.	Analyze	BTL4
5.	Discuss in detail about the activation tree and activation record(13) with suitable example	Understand	BTL2
6.	 (i) Analyze the data access without nested procedure and the (7) issues with nested procedure. (ii)Give the version of quicksort in ML style using nested (6) procedure. 	Analyze	BTL4
7.		Understand	BTL2
8.	Define fragmentation? Describe in detail about how to reduce(13) the fragment.	Remember	BTL1
9.	0	Remember	BTL1
10.	Examine the problems with manual deallocation of memory(13) and explain how the conventional tools are used to cope with the complexity in managing memory.	Remember	BTL1
11.	Explain in detail about instruction selection and register(13) allocation of code generation.	Analyze	BTL4
12.	Illustrate in detail about the code generation algorithm with an(13) example.	Apply	BTL3
13.	Discuss usage of stack in the memory allocation and discuss in(13) detail about stack allocation space of memory.	Understand	BTL2
14.	Describe the heap management of memory manager and(13) locality of programs in detail.	Remember	BTL1
15	Explain the problem that occurs in code generation with(13) example	Evaluate	BTL5
16	▲ ▲	Analyze	BTL3
17	Discuss in detail about access links, manipulation of access(13)		BTL2

	links and access links for procedure	
	PART-C (15-MARKS)	
1.	Suppose the heap consists of seven chunks, starting at address (15)Evaluate 0. The sizes of the chunks, in order, are 80, 30, 60, 50, 70, 20,	BTL5
	40 bytes. When we place an object in a chunk, we put it at the	
	high end if there is enough space remaining to form a smaller	
	chunk (so that the smaller chunk can easily remain on the linked list of free space). However, we cannot tolerate chunks	
	of fewer that 8 bytes, so if an object is almost as large as the	
	selected chunk, we give it the entire chunk and place the object	
	at the low end of the chunk. If we request space for objects of	
	the following sizes: 32, 64, 48, 16, in that order, what does the	
	free space list look like after satisfying the requests, if the	
2.	method of selecting chunks is a) First fit.b) Best fit.Explain the stack and heap allocation of memory in detail with(15) Evaluate	BTL5
۷.	suitable examples.	DILJ
3.	Generate code for the following sequence assuming that n is in (15) Create	BTL6
	a memory location	
	s=0	
	L1 : if $I > n$ goto L2 s=s+i	
	i=i+1	
	goto L1	
	L2 :	
4.	Create following assignment statement into three address code (15) Create	BTL6
	$D:=(a-b)^*(a-c)+(a-c)$	
	Apply code generation algorithm to generate a code sequence for the three address statement.	
5	The following program is used to compute Fibonacci numbers(15) Evaluate	BTL5
U	recur-sively. Suppose that the activation record for f includes	DILO
	the following elements in order: (return value, argument n,	
	local s, local t); there will normally be other elements in the	
	activation record as well. The questions below assume that the	
	initial call is f(5).	
	int f(int n) {	
	int t, s;	
	if $(n < 2)$ return 1;	
	s = f(n-1);	
	t = f(n-2);	
	return s+t;	
	a)Show the complete activation tree.	
	b)What does the stack and its activation records look like the	
	first time f(1) is about to return?	
	c)What does the stack and its activation records look like the	
	fifth time f(1) is about to return?	

	UNIT V- CODE OPTIMIZATION		
Princi	pal Sources of Optimization - Peep-hole optimization - DAG- Optim	ization of Bas	sic Blocks
Globa	l Data Flow Analysis - Efficient Data Flow Algorithm.		
	PART-A (2 -MARKS)		
1.	List out the examples of function preserving transformations.	Remember	BTL1
2.	Illustrate the concepts of copy propagation.	Apply	BTL3
3.	State the use of machine Idioms.	Remember	BTL1
4.	Show the flow graph for the quicksort algorithm	Apply	BTL3
5.	Apply	Apply	BTL3
6.	Identify the constructs for optimization in basic block.	Remember	BTL1
7.	List out the properties of optimizing compilers.	Remember	BTL1
8.	Define the term data flow analysis.	Remember	BTL1
9.	How is liveness of a variable calculated? Identify it.	Analyze	BTL4
10.	What is DAG? Point out advantages of DAG.	Analyze	BTL4
11.	Give the uses of gen and Kill functions	Understand	BTL2
12.	Discuss the concepts of basic blocks and flow graphs.	Understand	BTL2
13.	Give the main idea of constant folding.	Understand	BTL2
14.	Prepare the three address code sequence for the assignment statement.	Create	BTL6
	d := (a - b) + (a - c) + (a - c).		
15.	Construct and explain the DAG for the follow basic block. d:= b * c	Evaluate	BTL5
	e := a + b		
	b := b * c a:= e-d.		
16.		Analyze	BTL4
10.	What role does the target machine play on the code generation phase of the compiler? Analyze it.	Anaryze	DIL4
17.	Draw the DAG for the statement $a = (a*b+c) - (a*b+c)$ and evaluate it.	Evaluate	BTL5
18.		Create	BTL6
10.	Develop the code for the follow C statement assuming three registers are available.	Cleate	DILO
	x = a / (b + c) - d * (e + f)		
10	Point out the characteristics of peephole optimization.	Apolyzo	BTL4
19. 20.		Analyze Understand	BTL4 BTL2
-	Define algebraic transformations. Give an example		
21 22	What is a flow graph? What is dead acide alimination? Give example	Remember Understand	BTL1 BTL2
22	What is dead code elimination? Give example.		BTL2 BTL3
	Show an example for code motion.	Apply Evoluate	
24	How the strength reduction is applied in code optimization?	Evaluate	BTL5
1	PART-B(13 MARKS)	Evaluate	
1.	Explain briefly about the principal sources of optimization. (13)	Evaluate	BTL5
2.	(ii).Construct the DAG for the following Basic block & (8) explain it.	Analyze	BTL4
	$t_{1} = 4 * i_{1}$		
	$t_{2:=a}[t_{1}]$		
	t3: = 4 * i		

	4. h [42]				
	t4 = b[t3]				
	t5:=t2*t4				
	t6:=Prod+t5				
	Prod:=t6				
	t7:=i+1				
	i = t7				
	if i<= 20 goto (1).				
3.	Discuss the following in detail		Understand	BTL2	
	(i)Semantic preserving transformation	(7)			
	(ii)Global Common subexpression	(6)			
4.	Write about the following in detail	(5)	Remember	BTL1	
	(i)copy propagation	(5)			
	(ii)Dead code Elimination	(3)			
	(iii)code motion				
5.	Explain in detail about the data-flow schemas on basic block	(13)	Analyze	BTL4	
	and the transfer equations for reaching definitions with				
	example				
6.	(i) Illustrate the Iterative algorithm for reaching definitions	(7)	Apply	BTL3	
	(ii)Discuss the live variable analysis	(6)			
7.	Analyze Peephole optimization with suitable examples.		Analyze	BTL4	
8.	Demonstrate optimization of Basic Blocks with an example.	. ,	Apply	BTL3	
9.	(i)Discuss in detail about how to find Local Common Sub		Understand	BTL2	
	expressions.	(-)			
	(ii)Discuss in detail about the Use of Algebraic Identities.	(5)			
10.	(i)Describe in detail about the flow of control optimization.		Remember	BTL1	
10.	(ii)Identify the methods to eliminate the unreachable code,	(7)	Remember	DILI	
	load and store data.	(6)			
11.	(i)Give an example to identify the dead code in the DAG.		Remember	BTL1	
11.	(ii)Describe the representation of array using DAG with	(3)	Kennennoer	DILI	
	example.	(0)			
12.	Summarize in detail about the dataflow analysis of available	(12)	Understand	BTL2	
12.		(13)	Understand	DILL	
12	expression with suitable example.	(7)	Create		
13.	(i)Formulate steps to identify the loops in the basic block.	· · /	Create	BTL6	
	(ii) Describe about induction variable and end reduction in	(6)			
1.4	strength	(10)			
14.	Describe the efficient data flow algorithms in detail.	(13)	Remember	BTL1	
15	Explain in detail about optimization method performed on a	(13)	Evaluate	BTL5	
	small set of compiler generated instructions	(-)			
16	Discuss in detail about structure preserving transformation in	(13)	Understand	BTL2	
ļ	detail	(10)			
17	Illustrate in detail about DAG Representation of basic block	(13)	Apply	BTL3	
	and Write algorithm for DAG Construction.	(13)			
PART-C(15 MARKS)					
1.	Create DAG and three – address code for the following C	(15)	Create	BTL6	
	program. (15)				
	i = 1; s = 0;				
	while (i<= 10)				
	{				

	In and Out sets for each block		
	Compute e_gen and e_kill		
4.	Evaluate the available expressions on the following code by (15)) Evaluate	BTL5
	converting into basic blocks and compute global common sub		
	–expression elimination. (15)		
	$\mathbf{i} = 0$		
	a:= n-3		
	if $i < a$ then loop else end		
	label loop		
	b:= i -4		
	c := p + b		
	$d := \mathbf{M}[\mathbf{c}]$		
	e:=d-2		
	f:=i-4		
	g:=p+f		
	m[g]:=e		
	i:=i+1		
	a:=n-3		
	if $i < a$ then loop else end		
	label end		
5.	Evaluate the Depth-first Ordering in iterative Algorithm and (15)Evaluate	BTL5
	structure -Base Data flow Analysis in detail		