
SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution)

SRM Nagar, Kattankulathur – 603 203

DEPARTMENT OF INFORMATION TECHNOLOGY

QUESTION BANK

IV SEMESTER

1908401 – PRINCIPLES OF COMPILER DESIGN

Regulation – 2019

Academic Year 2022 – 2023 EVEN

Prepared by

Dr. S.SEKAR, Assistant Professor / IT

Ms. S. KIRUTHIKA, Assistant Professor / IT

 SRM VALLIAMMAI ENGNIEERING COLLEGE
 (An Autonomous Institution)

 SRM Nagar, Kattankulathur – 603203.

 DEPARTMENT OF INFORMATION TECHNOLOGY

QUESTION BANK

 SUBJECT : 1908401 – PRINCIPLES OF COMPILER DESIGN

SEM / YEAR : IV / II

UNIT I -INTRODUCTION TO COMPILERS

Phases of a compiler – Lexical Analysis – Role of Lexical Analyzer – Input Buffering – Specification

of Tokens – Recognition of Tokens – Lex – Finite Automata – Regular Expressions to Automata –

NFA to DFA- Minimizing DFA.

PART-A (2 - MARKS)

Q. No QUESTIONS Competence BT Level

1. Define tokens, patterns and lexemes. Remember BTL1

2. Classify approach would you use to recover the errors in lexical

analysis phase?

Apply BTL3

3. Write the three address code for the assignment statement

a=b+c*60.

Apply BTL3

4. Point out why is buffering used in lexical analysis? Analyze BTL4

5. Define transition diagram for an identifier. Remember BTL1

6. Compare kleen closure and positive closure. Analyze BTL4

7. State prefix, suffix, proper prefix, and proper suffix with an

example.

Evaluate BTL5

8. Define buffer pair. Remember BTL1

9. Differentiate the features of DFA and NFA. Understand BTL2

10. Identify the interactions between the lexical analyzer and the

parser.

Remember BTL1

11 State parse tree and construct a parse tree for –(id + id) Evaluate BTL5

12. Name the operations on languages. Remember BTL1

13. List out the phases of a compiler. Remember BTL1

14. Generalize the advantage of having sentinels at the end of each

buffer halves in buffer pairs.

Create BTL6

15. Analyze the role of sematic analyzer. Analyze BTL4

16. Illustrate the rules for three address code generation. Understand BTL2

17. Develop the Structure of lex program. Create BTL6

18. Apply a grammar for branching statements. Apply BTL3

19. Express the main idea of NFA? And discuss with examples (a/b)* Understand BTL2

20. Define lex and give its execution steps. Understand BTL2

21 Differentiate interpreters and compilers Analyze BTL4

22 Apply the parse tree for the statement z:= x+y*130. Apply BTL3

23 Outline the role of lexical analysis in compiler design. Understand BTL2

24 Criticize the use of Input Buffering with simple examples. Evaluate BTL5

PART-B (13- MARKS)

1. Describe the various phases of compiler with suitable example (13) Remember BTL1

2 (i)Give the structure of compiler.

(ii)Create Transition diagram for unsigned integer and

relational operator.

(7)

(6)

Analyze BTL4

3. (i).Discuss in detail about the role of Lexical analyzer with the

possible error recovery schemes.

(ii)Describe in detail about issues in lexical analysis.

(7)

(6)

Understand BTL2

4 (i)Describe the Input buffering techniques in detail.

(ii)Discuss about the recognition of tokens with example

(7)

(6)

Remember BTL1

5 Summarize in detail about how the tokens are specified by the

compiler with suitable example.

(13) Understand BTL2

6 Define Finite Automata. Differentiate Deterministic Finite

Automata and Non-Deterministic Finite Automata with

examples.

(13) Understand BTL2

7 Solve the given regular expression into NFA using Thompson

construction

i) (a/b)* abb (a/b)*.

ii) ab*/ab

(7)

(6)

Apply BTL3

8 Create DFA the following regular expression.(a/b)*abb. (13) Create BTL6

9 (i)Illustrate the algorithm for minimizing the number of states

of a DFA

(ii)Minimize the following states of DFA

(8)

(5)

Apply

BTL3

10. (i).Construct DFA which accepts all the string over an alphabet

∑={a,b} where length of the string=2 and length >=2. (7)

(ii). Construct DFA which accepts all the string over an alphabet

∑={0,1} when string starts with ‘01’.and ends with ‘01’ (6)

Remember BTL1

11 Define Lex and Lex specifications. How lexical analyzer is

constructed using lex? Give an example.

(13)

Remember BTL1

12 (i)Explain the lex program for tokens.

(ii) Describe in detail the tool for generating lexical analyzer.

(7)

(6)

Evaluate BTL5

13 Find the NFA for the given regular expression and find the

minimized DFA for the constructed NFA..(a/b)*(a/b)

(13)

Analyze BTL4

14 (i) Analyze the various operations on Languages with an

Example

(ii) Discuss the finite automata, explain the 5 elements to

represent the model with an example (6)

(7) Analyze BTL4

15 Discuss in detail about the output of each phase of compiler for

the expression a:=b+c*50.

(13) Understand BTL2

16 Demonstrate the role of lexical analyzer in detail with

necessary diagrams

(13) Apply BTL3

17 Determine the minimum -state DFA for the regular expression

d(a/b)*b.

(13) Evaluate BTL5

PART-C (15- MARK)

1. (i) Create languages denoted by the following regular

expressions

 a) (a|b)*a(a|b)(a|b)

 b) a*ba*ba*ba*

 (ii) Write regular definitions for the following languages:

 a)All strings of lowercase letters that contain the five vowels

 in order.

 b)All strings of lowercase letters in which the letters are in

 ascending lexicographic order.

(9)

(6)

Create BTL6

2. Find transition diagrams for the following regular expression

and regular definition.

a(a|b)*a

((ε|a)b*)*

All strings of digits with at most one repeated digit.

All strings of a's and b's that do not contain the substring abb.

All strings of a's and b's that do not contain the subsequence

abb.

(15) Evaluate BTL5

3. Evaluate that the following regular expressions are equivalent

by showing that the minimum state DFA's are same

 (a/b)*a/b.

(15)

Evaluate BTL5

4. Explain in detail the tool for generating Lexical-Analyzer with

an example program.

(15) Evaluate BTL5

5 Develop the Lex Program to recognize the identifiers,

constants and operators

(15)

Create BTL6

UNIT II SYNTAX ANALYSIS

Role of Parser – Grammars – Error Handling – Context-free grammars – Writing a grammar – Top

Down Parsing - General Strategies Recursive Descent Parser Predictive Parser-LL(1) Parser-Shift

Reduce Parser-LR Parser-LR (0)Item Construction of SLR Parsing Table -Introduction to LALR

Parser - Error Handling and Recovery in Syntax Analyzer-YACC.

PART-A (2 - MARKS)

1. Eliminate the left recursion for the grammar.

S → Aa | b

A →Ac | Sd |ε

 Create BTL6

2. Define handle pruning. Remember BTL1

3. Compute FIRST and FOLLOW for the following grammar

S → AS

S →b

A →SA

A → a

 Apply BTL3

4. State the concepts of Predictive parsing . Remember BTL1

5. Differentiate Top Down parsing and Bottom Up parsing? Understand BTL2

6. Define Recursive Descent Parsing. Remember BTL1

7. State the different error recovery methods of predictive

parsing.

 Remember BTL1

8. Write an algorithm for finding FOLLOW. Analyze BTL4

9. What is the main idea of Left factoring? Give an example. Understand BTL2

10. Define LL(1) Grammar. Remember BTL1

11. Difference between ambiguous and unambiguous grammar. Analyze BTL4

12. Define parser. Explain the advantages and disadvantages of LR

parsing?

 Evaluate BTL5

13. Define Augmented Grammar with an example. Remember BTL1

14. Evaluate the conflicts encountered while parsing? Evaluate BTL5

15. Point out the categories of shift reduce parsing. Analyze BTL4

16. How to create an input and output translator with YACC. Create BTL6

17. Give the four possible actions of LR Parsing. Understand BTL2

18. Solve the following grammar is ambiguous: S→aSbS / bSaS /

€

 Apply BTL3

19. Discuss when Dangling reference occur? Understand BTL2

20. Illustrate various types of recursion wirh example. Apply BTL3

21. Give the comparison between various LR parsers Evaluate BTL5

22. Write down the structure of YACC file Analyze BTL4

23. Differentiate Lex and yacc Understand BTL2

24. Write about Closure Operation Apply BTL3

PART-B (13- MARKS)

1. (i)Explain left recursion and Left Factoring.

(ii)Eliminate left recursion and left factoring for the following

grammar.

E → E + T | E - T | T

T → a | b | (E).

(7)

(6)

Analyze BTL4

2. (i)Parse the input string 000111 for the grammar S-> 0S1| 01

(ii)Construct a parse tree for the input string cad using top

down parser .

S->cAd

A->ab|a

(6)

(7)

Create BTL6

3. Analyze the given grammar to construct predictive parser

S→ +SS | *SS | a with the string “+*aaa.

(13)

Analyze BTL4

4. (i)Evaluate predictive parsing table for the following grammar

 E→E+T | T

 T→T*F | F

(9)

Evaluate BTL5

 F→(E) | id

(ii) Parse the string id+id*id

(4)

5. Solve the following grammar for the predictive parser and

parse the string 000111

S>0S1

S->01

(13) Analyze BTL2

6. (i).Describe on detail about the various types of parser

(ii)Discuss about the context-free grammar.

(7)

(6)

Remember BTL1

7. (i).Discuss in detail about the role of parser.

(ii).What are the Error recovery techniques used in Predictive

parsing? Explain in detail.

(7)

(6)

Remember BTL1

8. (i)Give the predictive parser table for the following grammar.

 S→ (L) | a

 L→ L, S | S

 (ii)Parse the string (a, (a, a)) .

(8)

(5)

Understand BTL2

9. Construct the Shift Reduce Parser for the following Grammar

and show the moves made by the parser for input strings.

(i). ((id+id)*id) (8)

(ii).((id+id)**(id*id) (5)

And the grammar is

EE+E|(E)

EE*E

Eid

 Analyze BTL4

10. (i)Define YACC parser generator. List out the Errors recovery

actions in YACC.

(ii) Define SLR (1) parser. Describe the Steps for the SLR

parser.

(8)

(5)

Remember BTL1

11 Evaluate predictive parsing table for the following grammar

 SiEts/iEtSeS/a

 Eb

Parse the string: ibtaea

(13)

Apply BTL3

12. Solve the following grammar to generate the SLR parsing

table.

E→E+T | T

T→T*F | F

F→F*| a| b

(13) Understand BTL2

13. (i)Consider the following grammar

 S →AS|b

A→SA|a.

Construct the SLR parse table for the grammar.

(ii)Show the actions of the parser for the input string “abab”.

(10)

(3)

Apply BTL3

14. Construct the Shift Reduce Parser for the following Grammer

and show the moves made by the parser for input strings.

(i) cdcd (8)

(ii) dddc (5)

And the grammar is

SCC

CcC

 Understand BTL2

Cd

15. Examine the following grammar using canonical parsing table.

S->CC

C->cC|d

(13) Remember BTL1

16. Explain SLR parser.Construct SLR parse for the given

grammar.

S->L=R

S->R

L->*R

L->id

 R->L

(13) Evaluate BTL5

17. Show the bottom up parser for the following

The input aaa*a++ for the grammar

S->SS+

S->SS*

S->a

(13) Apply BTL3

PART-C (15 -MARKS)

1. (i)What is Leftmost derivation and Rightmost derivation .

Draw leftmost derivation and Rightmost derivation for the

following. E->E+E|E*E| id

(ii)What is an ambiguous and unambiguous grammar? Identify

the following grammar is ambiguous or not.

 E→E+E | E*E | (E)|-E |id for the sentence id +id*id

(8)

(7)

Create BTL6

2 Explain in detail about the various types of parsing. (15) Evaluate

BTL5

3 Evaluate the LR parsing algorithm with an example (15) Evaluate BTL5

4 (i)What is CFG .Explain in detail about the Context-Free

Grammar

(ii)Construct Stack implementation of shift reduce parsing for

the grammar

 E->E+E

 E->E*E

 E->(E)

 E->id and the input string id1+id2*id3 .

(8)

 (7)

Evaluate BTL5

5. Discuss in detail about YACC Parser - Generator with an

example program

(15) Create BTL6

UNIT-III INTERMEDIATE CODE GENERATION

Syntax Directed Definitions, Evaluation Orders for Syntax Directed Definitions, Intermediate

Languages: Syntax Tree, Three Address Code, Types and Declarations, Translation of Expressions,

Type Checking.

PART-A (2 - MARKS)

1. List out the two rules for type checking. Remember BTL1

2. Compare synthesized attributes and inherited attributes. Analyze BTL4

3. What is Annotated parse tree? Remember BTL1

4. Define Type checker. Remember BTL1

5. What is a syntax tree? Draw the syntax tree for the assignment

statement a := b * -c + b * -c

 Create BTL6

6. Define type systems. Remember BTL1

7. Express the rule for checking the type of a function. Understand BTL2

8. Define Syntax directed definition of a simple desk calculator. Remember BTL1

9. Identify the different types of intermediate representation. Evaluate BTL5

10. Give the difference between syntax-directed definitions and

translation schemes.

 Understand BTL2

11. State the type expressions. Remember BTL1

12. Illustrate the methods of implementing three-address

statements.

 Apply BTL3

13. Differentiate S-attribute and L-attribute definitions. Analyze BTL4

14. Create postfix notation for the given expression a+b*c. Create BTL6

15. Translate the conditional statement if a<b then 1 else 0 into

three address code.

 Understand BTL2

16. Test whether the following rules are L-attribute or not?

Semantic rules

A.s = B.b;

B.i = f(C.c,A.s)

 Evaluate BTL5

17. What are the methods of representing a syntax tree? Understand BTL2

18. Constrct the syntax directed definition for if-else statement Analyze BTL4

19. Examine the usage of syntax directed definition Apply BTL3

20. Show the three address code sequence for the assignment

statement. d=(a-b)+(a-c)+(a-c)

 Apply BTL3

21. Give the evaluation order of a SDD Evaluate BTL5

22 What is translation scheme? Understand BTL2

23. How will you evaluate semantic rules? Analyze BTL4

24. Illustrate how to construct syntax tree for an expression Apply BTL3

PART-B (13- MARKS)

1. Discuss the following in detail about the Syntax Directed

Definitions.

(i)Inherited Attributes and Synthesized attributes.

(ii) Evaluate SDD of a parse tree.

(7)

(6)

Understand BTL2

2.

Identify the annotated parse tree for the following expression

(i)(3+4)*(5+6)n

(ii)1*2*3*(4+5)n

Using the given SDD

Production Semantic Rules

D —>TL L.inh = T.type

T —> int T.type =integer

T —> float T.type = float

L —> L1, id L1.inh = L.inh

addType (id.entry, Linh)

(6)

(7)

Evaluate BTL5

3. Suppose that we have a production A→BCD. Each of the four

non terminal A, B, C and D have two attributes: S is a

synthesized attribute and i is an inherited attribute. Analyze

For each of the sets of rules below tell whether

(i)the rules are consistent with an S-attributed definition

(ii) the rules are consistent with an L-attributed definition and

(13) Analyze BTL4

(iii) whether the rules are consistent with any evaluation order

at all?

A.s = B.i + C.s

A.s = B.i + C.s and D.i = A.i + B.s.

4. Illustrate in detail about the various instructions forms of three

address instruction with suitable examples

(13) Apply BTL3

5. Discuss in detail about

(i)Dependency graph

(ii)Ordering Evaluation of Attributes.

(10)

(3)

Understand BTL2

6. Create variants of Syntax tree. Explain in detail about it with

suitable examples.

(13) Create BTL6

7. (i).Analyse the common three address instruction forms.

(ii). Explain the two ways of assigning labels to the following

three address statements

Do i=i+1;

While (a[i]<v);

(7)

(6)

Analyze

BTL4

8. Describe.in detail about

(i) Quadruples

(ii) Triples.

(7)

(6)

Remember BTL1

9. (i) Describe in detail about addressing array Elements.

(ii) Discuss in detail about Translation of array reference.

(6)

(7)

Remember BTL1

10.

Describe in detail about types and declaration with suitable

examples.

(13) Remember BTL1

11. Compare three address code for expression with the

Incremental translation.

(13) Analyze BTL4

12. Show the intermediate code for the following code segment

along with the required syntax directed translation scheme

while (i < 10)

if (i % 2 == 0)

evensum = evensum + i

else

oddsum = oddsum + i

(13) Understand BTL2

13. (i)State the rules for type checking with example.

(ii) Give an algorithm for type inference and polymorphic

function.

(7)

(6)

Remember BTL1

14. Illustrate an algorithm for unification with its operation. (13) Apply BTL3

15. Write down the SDD for constructing syntax tree for the

expression a+b*5

(13) Understand BTL2

16. Illustrate in detail about Bottom-up evaluation of S-attribute

definitions

(13) Apply BTL3

17. Explain the evaluation order for SDD (13) Evaluate BTL5

PART-C(15 -MARKS)

1. Create the following into the arithmetic expression

 a+- (b+c)* into

(i)Syntax tree

(15) Create BTL6

(ii)Quadruples

(iii)Triples

(iv)Indirect Triples

2. Explain what is SDD and examine syntax-directed definition

to differentiate expressions formed by applying the arithmetic

operators + and * to the variable x and constants ; expression :

x * (3 * x + x * x)

(15) Evaluate BTL5

3. Generate an intermediate code for the following code segment

with the required syntax-directed translation scheme.

(i)if (a > b)

 x = a + b

else

x = a – b

(ii) p>q AND r<s OR u>r

(7)

(6)

Create BTL6

4. What is Type conversion? What are the two types of type

conversion? Formulate the rules for the type conversion.

(15)

Evaluate BTL5

5. Explain the specification of a simple Type Checkers (15) Evaluate BTL5

UNIT IV- RUN-TIME ENVIRONMENT AND CODE GENERATION

Storage Organization, Stack Allocation Space, Access to Non-local Data on the Stack, Heap

Management - Issues in Code Generation - Design of a simple Code Generator.

PART-A (2 -MARKS)

1. List out limitations of the static memory allocation. Remember BTL1

2.
How the storage organization for the run-time memory is

organized?

 Apply BTL3

3. What is heap allocation? Remember BTL1

4. How the activation record is pushed onto the stack. Apply BTL3

5. Analyze the storage allocation strategies. Analyze BTL4

6. State the principles for designing calling sequences. Remember BTL1

7. List out the dynamic storage techniques. Remember BTL1

8. Define the non-local data on stack. Remember BTL1

9. Define variable data length on the stack. Remember BTL1

10. Differentiate between stack and Heap allocation Analyze BTL4

11. Distinguish between static and dynamic storage allocation. Understand BTL2

12. Discuss the main idea of Activation tree. Understand BTL2

13. Give the fields in an Activation record. Understand BTL2

14. Compose space efficiency and program efficiency. Create BTL6

15.
Construct typical memory hierarchy configuration of a

computer.

 Evaluate BTL5

16.
How would you solve the issues in the design of code

generators?

 Apply BTL3

17. Evaluate Best-fit and Next-fit object placement. Evaluate BTL5

18.

Prepare optimal code sequence for the given sequence

t=a+b

t=t*c

t=t/d

 Create BTL6

19. Analyze the different forms of machine instructions. Analyze BTL4

20. Discuss the four principle uses of registers in code generation. Understand BTL2

21 Examine what is the input to code generator. Analyze BTL4

22
What are the advantages and disadvantages of register

allocation and assignments?

 Understand BTL2

23 How the use of registers is subdivided into 2 sub-problems? Evaluate BTL5

24 Organize the contents of activation record. Apply BTL3

PART-B (13- MARKS)

1. (i)Illustrate the storage organization memory in the perspective

of compiler writer with neat diagram.

(ii)Compare static versus dynamic memory allocation.

(8)

(5)

Apply BTL3

2. Explain in detail about the various issues in code generation

with examples.

(13)

Evaluate BTL5

3. (i)Develop a quicksort algorithm to reads nine integers into an

array a and sorts them by using the concepts of activation tree.

(ii)Give the structure of the action record.

(9)

(4)

Create BTL6

4. How to a design a call sequences and analyzes the principles of

activation records with an example.

(13) Analyze BTL4

5. Discuss in detail about the activation tree and activation record

with suitable example

(13) Understand BTL2

6. (i) Analyze the data access without nested procedure and the

issues with nested procedure.

(ii)Give the version of quicksort in ML style using nested

procedure.

(7)

(6)

Analyze BTL4

7. (i)Discuss in detail about heap manager.

(ii)Describe in detail about the memory hierarchy of a

computer

(7)

(6)

Understand BTL2

8. Define fragmentation? Describe in detail about how to reduce

the fragment.

(13) Remember BTL1

9. Write short notes on the following

i. Best fit and next object placement.

ii. Managing and coalescing free space

(7)

(6)

Remember BTL1

10. Examine the problems with manual deallocation of memory

and explain how the conventional tools are used to cope with

the complexity in managing memory.

(13) Remember BTL1

11. Explain in detail about instruction selection and register

allocation of code generation.

(13) Analyze BTL4

12. Illustrate in detail about the code generation algorithm with an

example.

(13) Apply BTL3

13. Discuss usage of stack in the memory allocation and discuss in

detail about stack allocation space of memory.

(13) Understand BTL2

14. Describe the heap management of memory manager and

locality of programs in detail.

(13) Remember BTL1

15 Explain the problem that occurs in code generation with

example

(13) Evaluate BTL5

16 Illustrate the function of code generation algorithm in detail (13) Analyze BTL3

17 Discuss in detail about access links, manipulation of access (13) Understand BTL2

links and access links for procedure

PART-C (15-MARKS)

1. Suppose the heap consists of seven chunks, starting at address

0. The sizes of the chunks, in order, are 80, 30, 60, 50, 70, 20,

40 bytes. When we place an object in a chunk, we put it at the

high end if there is enough space remaining to form a smaller

chunk (so tha t the smaller chunk can easily remain on the

linked list of free space). However, we cannot tolerate chunks

of fewer that 8 bytes, so if an object is almost as large as the

selected chunk,we give it the entire chunk and place the object

at the low end of the chunk.If we request space for objects of

the following sizes: 32, 64, 48, 16, in that order, what does the

free space list look like after satisfying the requests, if the

method of selecting chunks is a) First fit.b) Best fit.

(15) Evaluate BTL5

2. Explain the stack and heap allocation of memory in detail with

suitable examples.

(15) Evaluate BTL5

3. Generate code for the following sequence assuming that n is in

a memory location

 s=0

i=0

L1 : if I > n goto L2

 s=s+i

 i=i+1

 goto L1

L2 :

(15) Create BTL6

4. Create following assignment statement into three address code

D:=(a-b)*(a-c)+(a-c)

Apply code generation algorithm to generate a code sequence

for the three address statement.

(15) Create BTL6

5 The following program is used to compute Fibonacci numbers

recursively. Suppose that the activation record for f includes

the following elements in order: (return value, argument n,

local s, local t); there will normally be other elements in the

activation record as well. The questions below assume that the

initial call is f(5).

int f(int n) {

 int t, s;

 if (n < 2) return 1;

 s = f(n-1);

 t = f(n-2);

 return s+t;

}

a)Show the complete activation tree.

b)What does the stack and its activation records look like the

first time f(1) is about to return?

c)What does the stack and its activation records look like the

fifth time f(1) is about to return?

(15) Evaluate BTL5

UNIT V- CODE OPTIMIZATION

Principal Sources of Optimization – Peep-hole optimization - DAG- Optimization of Basic Blocks

Global Data Flow Analysis - Efficient Data Flow Algorithm.

PART-A (2 -MARKS)

1. List out the examples of function preserving transformations. Remember BTL1

2. Illustrate the concepts of copy propagation. Apply BTL3

3. State the use of machine Idioms. Remember BTL1

4. Show the flow graph for the quicksort algorithm Apply BTL3

5. Apply Apply BTL3

6. Identify the constructs for optimization in basic block. Remember BTL1

7. List out the properties of optimizing compilers. Remember BTL1

8. Define the term data flow analysis. Remember BTL1

9. How is liveness of a variable calculated? Identify it. Analyze BTL4

10. What is DAG? Point out advantages of DAG. Analyze BTL4

11. Give the uses of gen and Kill functions Understand BTL2

12. Discuss the concepts of basic blocks and flow graphs. Understand BTL2

13. Give the main idea of constant folding. Understand BTL2

14. Prepare the three address code sequence for the assignment

statement.

d:= (a- b) + (a-c) + (a-c).

 Create BTL6

15. Construct and explain the DAG for the follow basic block.

 d:= b * c

 e:= a+ b

 b:= b*c

 a:= e-d.

 Evaluate BTL5

16. What role does the target machine play on the code generation

phase of the compiler? Analyze it.

 Analyze BTL4

17. Draw the DAG for the statement a= (a*b+c) – (a*b+c) and

evaluate it.

 Evaluate BTL5

18. Develop the code for the follow C statement assuming three

registers are available.

x = a / (b + c) – d * (e + f)

 Create BTL6

19. Point out the characteristics of peephole optimization. Analyze BTL4

20. Define algebraic transformations. Give an example Understand BTL2

21 What is a flow graph? Remember BTL1

22 What is dead code elimination? Give example. Understand BTL2

23 Show an example for code motion. Apply BTL3

24 How the strength reduction is applied in code optimization? Evaluate BTL5

PART-B(13 MARKS)

1. Explain briefly about the principal sources of optimization. (13) Evaluate BTL5

2. (i).Explain in detail about optimization of basic blocks.

(ii).Construct the DAG for the following Basic block &

explain it.

t1: = 4 * i

t2:= a [t1]

t3: = 4 * i

(5)

(8)

Analyze BTL4

t4:= b [t3]

t5:=t2*t4

t6:=Prod+t5

Prod:=t6

t7:=i+1

i:= t7

if i<= 20 goto (1).

3. Discuss the following in detail

(i)Semantic preserving transformation

(ii)Global Common subexpression

(7)

(6)

Understand BTL2

4. Write about the following in detail

(i)copy propagation

(ii)Dead code Elimination

(iii)code motion

(5)

(5)

(3)

Remember BTL1

5. Explain in detail about the data-flow schemas on basic block

and the transfer equations for reaching definitions with

example

(13) Analyze BTL4

6. (i) Illustrate the Iterative algorithm for reaching definitions

(ii)Discuss the live variable analysis

(7)

(6)

Apply BTL3

7. Analyze Peephole optimization with suitable examples. (13) Analyze BTL4

8. Demonstrate optimization of Basic Blocks with an example. (13) Apply BTL3

9. (i)Discuss in detail about how to find Local Common Sub

expressions.

(ii)Discuss in detail about the Use of Algebraic Identities.

(8)

(5)

Understand BTL2

10. (i)Describe in detail about the flow of control optimization.

(ii)Identify the methods to eliminate the unreachable code,

load and store data.

(7)

(6)

Remember BTL1

11. (i)Give an example to identify the dead code in the DAG.

(ii)Describe the representation of array using DAG with

example.

(5)

(8)

Remember BTL1

12. Summarize in detail about the dataflow analysis of available

expression with suitable example.

(13) Understand BTL2

13. (i)Formulate steps to identify the loops in the basic block.

(ii) Describe about induction variable and end reduction in

strength

(7)

(6)

Create BTL6

14. Describe the efficient data flow algorithms in detail. (13) Remember BTL1

15 Explain in detail about optimization method performed on a

small set of compiler generated instructions
(13)

Evaluate BTL5

16 Discuss in detail about structure preserving transformation in

detail
(13)

 Understand BTL2

17 Illustrate in detail about DAG Representation of basic block

and Write algorithm for DAG Construction.
(13)

 Apply BTL3

PART-C(15 MARKS)

1. Create DAG and three – address code for the following C

program. (15)

 i = 1; s = 0;

 while (i<= 10)

 {

(15) Create BTL6

 s = s+ a[i] [i];

 i = i + 1;

 }

2.

Identify the loops of the flow graph

Identify the global common sub expression for each loop

Identify Induction variables for each loop

Identify loop invariant computation for each loop

(15) Create BTL6

3.

Compute the grn and Kill sets for each Block

(15) Evaluate BTL5

In and Out sets for each block

Compute e_gen and e_kill

4. Evaluate the available expressions on the following code by

converting into basic blocks and compute global common sub

–expression elimination. (15)

i = 0

a:= n-3

if i < a then loop else end

label loop

b:= i -4

c:= p + b

d:= M[c]

e:=d-2

f:=i-4

g:=p+f

m[g]:=e

i:=i+1

a:=n-3

if i < a then loop else end

label end

(15) Evaluate

 BTL5

5. Evaluate the Depth-first Ordering in iterative Algorithm and

structure -Base Data flow Analysis in detail

(15) Evaluate BTL5

