SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution) SRM Nagar, Kattankulathur – 603 203

DEPARTMENT OF MECHANICAL ENGINEERING

QUESTION BANK

VI SEMESTER

1909601- DESIGN OF TRANSMISSION SYSTEMS

Regulation – R 2019 Academic Year 2022-23

Prepared by:

Mr.R.Srinivasan, Assistant Professor (Sr.G)/Mechanical Mr.G.Rajesh, Assistant Professor (O.G)/ Mechanical

SRM VALLIAMMAI ENGINEERING COLLEGE (An Autonomous Institution) SRM NAGAR, KATTANKULATHUR-603203 DEPARTMENT OF MECHANICAL ENGINEERING

OUESTION BANK

UNIT I - DESIGN OF FLEXIBLE ELEMENTS				
Design o	Design of Flat belts and pulleys - Selection of V belts and pulleys – Selection of hoisting wire ropes and			
pulleys -	- Design of Transmission chains and Sprockets.			
	PART-A (2 Marks)			
Q.No	QUESTIONS	BT Level	Competence	
1	Distinguish between open drive and cross drive of a belt drive.	BT-1	Remembering	
2	In what ways the timing belts are superior to ordinary V-belts?	BT-2	Understanding	
3	Define the term "Crowning of pulley"	BT-1	Remembering	
4	List the desirable properties of a belt material.	BT-1	Remembering	
5	Classify belt drives used for power transmissions.	BT-2	Understanding	
6	What are the factors to be considered while design the belt drive?	BT-1	Remembering	
7	Write notes on Slack adjuster.	BT-2	Understanding	
8	Mention the losses in belt drives.	BT-2	Understanding	
9	Summarize the centrifugal effects on belts.	BT-1	Remembering	
10	List the belt materials used to fabricate the belts on transmission systems.	BT-2	Understanding	
11	Define maximum tension in a belt.	BT-2	Understanding	
12	Why slip is less in case of V-belts when compared to flat belts?	BT-4	Analysing	
13	Sketch the cross section of V-belt and label its important parts.	BT-1	Remembering	
14	How the wire ropes are designed? Write any four rope applications.	BT-2	Understanding	
15	Sketch and name the different types of compound wire ropes.	BT-1	Remembering	
16	Under what circumstances chain drives are preferred over V belt drives?	BT-4	Analysing	
17	List the factors that affect the working conditions of chain drive.	BT-2	Understanding	
18	Name four elements in a chain? Give any three applications of chain drive.	BT-1	Remembering	
19	Write notes on chordal action in chain drives.	BT-2	Understanding	
20	Define coefficient of friction. What do you meant by angle of friction?	BT-1	Remembering	
21	What is a power drive? Mention their types.	BT-1	Remembering	
22	State the -Law of Belting'	BT-2	Understanding	

23	Briefiy explain about friction and its applications.	BT-1	Remembering
24	Indicate some merits and demerits of belt-drive;	BT-1	Remembering
25	Explain creep in belts.	BT-2	Understanding

PART-B (13 Marks)			
Q.No	QUESTIONS	BT Level	Competence
1	Calculate the power capacity of the leather belt of 9mm x 250mm is		
	used to drive a CI pulley 900mm in diameter at 336rpm. If the active		
	arc on the smaller pulley is 120° and stress in tight side is 2Mpa. The	BT-5	Evaluate
	density of the leather may be taken as 980 kg/m ³ and coefficient		
	of friction of leather on CI is 0.35.		
2	Design a flat belt drive for a fan running at 360 rpm which is driven by		
	a 10 kW at1440 rpm motor. The belt drive is open type and the distance	BT-6	Creating
	between the pulley Centres is 2000 mm .The diameter of a driven	D1-0	Creating
	pulley is 1 m.		
3	Design a flat belt drive to transmit 20 kW at 720rpm. The centre		
	distance is 3m and the speed ratio is 3. Diameter of rolling pulley is	DT 6	Creating
	1.2 m.	D1-0	Creating
4	Design a flat belt drive to transmit 15 kW at 480rpm from an engine		
	to line shaft at 1200 rpm. The Centre distance between the pulleys is	BT 6	Creating
	2m .The diameter of engine pulley is 600 mm.	D1-0	
5	A flat belt drive is required to transmit 12 kW from a motor running		
5	at 720 rpm. The belt is 12 mm thick and has mass density of		
	0.001 gm/mm3. Permissible stress in the belt not exceed	BT-6	Creating
	2.5 N/mm ² . Diameter of driving pulley is 250 mm whereas the speed		C
	of driven pulley is 240 rpm. The two shafts are 1.25 m apart,		
	coefficient of friction is 0.25. Determine the width of the belt.		
6	Design a suitable V-belt for a centrifugal pump running at 340 rpm is		
	to be driven by 100 kW motor at 1440 rpm. The drive is to work at	BT 6	Creating
	least 20 hours every day. Centre distance is 1.2 m.	D1-0	Creating
7	Design a V-belt drive to transmit 10kW at 400 rpm. The speed ratio		
	is 3. Centre distance between the pulleys is 600 mm and the drive is	BT 6	Creating
	crusher.	D1- 0	Creating

8	Design a V-belt drive and calculate the actual belt tension and average		
	stress for the following data. Driven pulley diameter = 500 mm , driver	BT-6	Creating
	pulley diameter, $d=150$ mm, center distance C=925 mm, speed $N_1 = 1000$ rpm $N_2 = 300$ rpm and power $P = 7.5kW$		
	$1000 \text{ rpm}, \text{N}_2 = 500 \text{ rpm} \text{ and } \text{power}, \text{r} = 7.5 \text{ W}.$		
9	A centrifugal pump running at 340rpm is to be driven by a 100kW		
	motor running at 1440rpm. The drive is to work for at least 20 hours		
	every day. The centre distance between the motor shaft and the pump	BT-5	Evaluate
	shaft is 2000mm. Suggest a suitable multiple V-belt drive for this		
10	application. Also calculate the actual belt tensions and stress induced.		
10	A compressor is to run by a motor pulley running at 1440 rpm, speed		
	ratio is 2.5. Choose a flat belt crossed drive. Centre distances between		
	pulley is 3.6m take belt speed as 16m/s. Load factor is 1.3 and take 5	BT-5	Evaluate
	ply of flat belt. Power to be transmitted to be 12 kW. High speed		
	load rating is 0.0118kW/Ply/mm width at V=5		
	m/s .Determine the width and length of the belt.		
11	A truck equipped with 9.5 kW engine uses a roller chain of the final		
	drive to the rear axle. The driving sprocket runs at 900 rpm and driven	BT-6	Creating
	sprocket at 400 rpm with a center distance of approximately 600 mm.		C
	select a suitable the roller chain.		
12	A roller chain drive is used between a driver shaft running at 1440 rpm		
	and a driven shaft running approximately at 720rpm. The power		
	transmitted is 15kW. The drive is to be used for 2 shift /day with	BT-6	Creating
	8 hours /shift. The center distance is approximately 1000 mm and the		
	chain tension can be adjusted by moving the motor in the rails. Design		
	the drive.		
13	A work shop crank carries a load of 30 kN using wire ropes anda		
	hook. The hook weighs 15 kN. Diameter of the rope drum is 30 times	B1-6	Creating
	the diameter of the rope. The load is lifted with an accelerationof		
	1m/s ² . Find the diameter of the rope. FS = 6, $E_r = 80 \text{ kN/mm}^2$, $\sigma_u =$		
	180 kN/mm ² , cross section of the rope = $0.4x$ (Diameter of the rope) ² .		
	Design wire rope with suitable assumption.		
1/	At the construction site, 1 ton of steel is to be lifted up to a height of		
14	20 m with the help of 2 wire ropes of 6x 19 size, nominal diameter 12		
	mm and breaking load 78 kN. Determine the factor of safety if the	BT-5	Evaluate
	sheave diameter is 56d and if wire rope is suddenly stopped inone		
	second when travelling at a speed of 1.2 m/s. What is the factor		
	of safety if bending load is neglected?		

15	Design a rubber belt to drive a dynamo generating 20 kW at 2250		
15	r.p.m. and fitted with a pulley 200 mm diameter. Assume dynamo		
	efficiency to be 85%. Allowable stress for belt = 2.1 MPa; Density of	BT-5	Evaluate
	rubber = 1000 kg / m ³ ; Angle of contact for dynamo pulley = 165° ;		
	Coefficient of friction between belt and pulley $= 0.3$		
16	In a horizontal belt drive for a centrifugal blower, the blower is belt		
10	driven at 600 r.p.m. by a 15 kW, 1750 r.p.m. electric motor. The		
	centre distance is twice the diameter of the larger pulley. The density	BT-6	Creating
	of the belt material = 1500 kg/m^3 ; maximum allowable stress = 4		C
	MPa; $\mu_1 = 0.5$ (motor pulley); $\mu_2 = 0.4$ (blower pulley); peripheral		
	velocity of the belt = 20 m/s . Determine the following: 1. Pulley		
	diameters; 2. belt length; 3. cross-sectional area of the belt; 4.		
	minimum initial tension for operation without slip; and 5. resultant		
	force in the plane of the blower when operating with an initial tension		
	50 per cent greater than the minimum value.		
17	A V-belt is driven on a flat pulley and a V-pulley. The drive transmits		
17	20 kW from a 250 mm diameter V-pulley operating at 1800 r.p.m. to		
	a 900 mm diameter flat pulley. The centre distance is 1 m, the angle	BT-5	Evaluate
	of groove 40° and $\mu = 0.2$. If density of belting is 1110 kg /m ³ and		
	allowable stress is 2.1 MPa for belt material, what will be the number		
	of belts required if C-size V-belts having 230 mm ² cross-sectional		
	area are used.		
18	Design a chain drive to actuate a compressor from a10 kW electric		
10	motor at 960 r.p.m. The compressor speed is to be 350 r.p.m.		
	Minimum centre distance should be 0.5m. Motor is mounted on an	BT-5	Evaluate
	auxiliary bed compressor is to work for 8 hours/ day.		

	PART C (15 Marks)		
1	Design a flat belt drive to transmit 110 kW for a system consisting of		
	two pulleys of diameters 0.9 m and 1.2 m respectively, for a centre	BT-6	Creating
	distance of 3.6 m, belt speed of 20 m/s and coefficient of frictionis		croating
	0.3. There is a slip of 1.2% at each pulley and 5% friction loss at		
	each shaft with 20% over load.		
2	Designs a chain drive to actuate a compressor from a 12 kW electric		
	motor at 900 rpm, the compressor begin 250 rpm, Minimum centre	BT-4	Analyzing
	distance should be 1000 mm, the chain tension maybe adjusted by		
	shifting the motor on rails. The compressor is to work 8 hour/day.		
3	A 10 kW, 720 rpm motor is to drive a mixer at 180 rpm. The starting	BT-1	Understanding
	load is heavy and the service is intermittent. Select suitable drive and		
	determine the main dimensions of the drive.		
4	Design a chain drive to actuate a compressor from 15 kW electric		
	motor running at 1000 rpm, the compressor speed being 350 rpm.	DT 6	Creating
	The minimum centre distance is 500 mm. The compressor operates	D1-0	Creating
	15 hours per day. The chain tension may be adjusted by shifting the		
	motor.		
5	Two shafts whose centres are 1 metre apart are connected by a V-belt		
	drive. The driving pulley is supplied with 95 kW power and has an	BT-6	Creating
	effective diameter of 300 mm. It runs at 1000 r.p.m. while the driven	D 1-0	Creating
	pulley runs at 375 r.p.m. The angle of groove on the pulleys is 40° .		
	Permissible tension in 400 mm ² cross-sectional area belt is 2.1 MPa.		
	The material of the belt has density of $1100 \text{ kg} / \text{m}^3$. The driven pulley		
	is overhung, the distance of the centre from the nearest bearing being		
	200 mm. The coefficient of friction between belt and pulley rim is 0.28.		
	Estimate: 1. The number of belts required; and 2. Diameter of driven		
	pulley shaft, if permissible shear stress is 42 MPa.		

UNIT II SPUR GEARS AND PARALLEL AXIS HELICAL GEARS

Speed ratios and number of teeth-Force analysis – Tooth stresses – Dynamic effects – Fatigue strength – Factor of safety - Gear materials – Design of straight tooth spur & helical gears based on strength and wear considerations – Pressure angle in the normal and transverse plane- Equivalent number of teeth-forces for helical gears.

PART-A (2 Marks)				
Q.No	QUESTIONS	BT Level	Competence	
1	State the law of gearing.	BT-2	Understanding	
2	Name the profiles of spur gear. List the various methods of	BT-1	Remembering	
	manufacturing gears.			
3	Describe the following (i) Pressure angle (ii) Diametral pitch	BT-2	Understanding	
4	Classify the gear based on position of teeth on wheel.	BT-1	Remembering	
5	Describe backlash. What factors influence backlash.	BT-2	Understanding	
6	What is meant by undercutting in gears?	BT-2	Understanding	
7	Define module.	BT-1	Remembering	
8	Classify the main types of gear tooth failure.	BT-1	Remembering	
9	Why dedendum value is more than addendum value?	BT-3	Applying	
10	List the materials commonly used for gears.	BT-1	Remembering	
11	Differentiate involute and cycloid profiles	BT-4	Analyzing	
12	Mention the advantages of nonmetallic gears.	BT-1	Remembering	
13	What is virtual number of teeth in helical gears?	BT-2	Understanding	
14	How number of teeth affects the design of gears?	BT-4	Analyzing	
15	Describe circular pitch.	BT-1	Remembering	
16	Identify the forces and stresses that act on spur gear tooth? Give	BT-4	Analyzing	
	their expressions.			
17	Describe arc of contact on gear.	BT-1	Remembering	
18	State the advantages and disadvantages of helical and herringbone	BT-1	Remembering	
	Gear.			
19	Define velocity ratio.	BT-1	Remembering	
20	What is effect of increasing pressure angle in gears?	BT-1	Remembering	
21	Why are gear drives superior to belt drives or chain drives? The advantages of gear drives?	BT-3	Applying	
22	Specify the types of gears-failures.	BT-1	Remembering	
23	What factors influence backlash?	BT-1	Remembering	
24	What is meant by a corrected gear?	BT-1	Remembering	
25	Define form factor?	BT-1	Remembering	

PART-B (13 Marks)			
Q.No	QUESTIONS	BT Level	Competence
1	Design a pair of straight spur gear drive for a stone crusher, the		~ .
	gears are made of C40 steel. The pinion is to transmit 30 kW at	BT-6	Creating
	1200 rpm. The gear ratio is 3. The gear is to work 8 hours/day		
	6days in a week for 3 years.		
2	Design a spur gear pair to transmit 22.5 kW at 900 rpm. Speed		
	reduction ratio is 2.5. Material for pinion and wheel are C15 steel	BT-6	Creating
	and cast iron grade 30 respectively. Take pressure angle 20 degree	DIU	Croaning
	and working life of gear is 10,000 hours.		
3	Design a spur gear drive required to transmit 45 kW at pinion speed	0	
	of 800 rpm. The velocity ratio is 3.5:1. The teeth are 20° full depths	BT-6	Creating
	involute with 18 teeth on the pinion. Both the pinion and gear are	D1-0	Creating
	made of steel with a safe static stress of 180 N/mm ² .		1
	Assume medium shock condition.		-
4	Design a straight spur gear drive to transmit 8 kW. The pinion speed	f BT-6	177
	is 720 rpm and the speed ratio is 2. Both the gears are made of		Creating
	the same surface ha <mark>rdened</mark> carbon steel with 55RC and core	DIU	Creating
	hardness less than 350BHN. Ultimate strength is 720 N/mm ² and		111
	yield strength is 360 N/mm ² .		
5	Design a spur gear to transmit 2 kW at 1440 rpm. Desired speed		
	ratio is 3. Use C45 ste <mark>el for gear</mark> s.	BT-6	Creating
6	A 37.5 kW power is transmitted at 450 rpm to a shaft running at		
	approximately 112 rpm through a spur gear drive. The load is	BT 6	Creating
	steady and continuous. Design the gear drive and check the design.	D1-0	Creating
	Assume the following materials: Pinion-heat treated cast steel;		
	Gear-High grade cast iron.		
7	Design a spur gear drive for a heavy machine tool with moderate		
	shocks. The pinion is transmitting 18 kW at 1200 rpm with a gear	BT-6	Creating
	ratio of 3.5. Design the drive and check for elastic stress and plastic		
	deformation. Make a sketch and label important dimensions		
	arrived.		

8	A motor shaft rotating at 1500 rpm has to transmit 15kW to the		
0	shaft with a speed reduction of 3:1. The teeth are 20° involute with		
	25 teeth on the pinion. Both the pinion and gear are made of steel	BT-6	Creating
	with a maximum safe stress of 200 N/mm ² . A safe stress of 40		-
	N/mm^2 may be taken for the shaft on which the gear is mounted and		
	also for the key. Design a spur gear drive and assume		
	starting torque to be 25% higher than the running toque.		
0	Design a helical gear to transmit 15 kW at 1440 rpm to the		
9	following specification. Speed reduction is 3, Pressure angle is 20		
	degree and helix angle is 15 degrees. The material for both the	BT-6	Creating
	gears is C45 steel. Allowable static stress is 180 N/mm ² , Surface		6
	endurance limit is 800 N/mm ² and Young's Modulus of material is		
	$2 \ge 10^5 \text{ N/mm}^2$.		C
10	Design a helical gear for the following specification: Power-	1 6	
	12.5kW, Pinion speed-1200 rpm, Gear Ratio - 3.5, Pressureangle is	BT-6	Creating
	20 degrees, helix an <mark>gle is 15 degre</mark> es. Gear is expected to work		
	6hours/day for 10 years.		
11	A helical gear with 30 ° helix angle has to transmit 35kW at 1500		200
	rpm with a speed reduction ratio 2.5. If the pinion has 24 teeth		111
	determine the necessary module, pitch diameter and face width for	BT-5	Evaluate
	20-degree full d <mark>epth teeth</mark> . Assume 15Ni 2Cr 1 Mo15		
	material for both pinion and wheel.		
12	A helical gear speed up drive is required to drive a centrifugal	F	
12	compressor running at 3000 rpm. The helical gear speed up unit is		
	driven by an electric motor running at 1000rpm. The compressor	BT-5	Evaluate
	requires a nominal input power of 12.5 kW. The helix angle of 250		
	may be assumed for the gears. Standard involute profile 20° full		
	depth system will be used for the gear teeth. The gear pair is		
	required to last for at least 10,000 hrs. Design the gear drive for the		
	following materials. Pinion: Heat treated cast steel, Gear: High		
	Grade cast iron.		

	Design a pair of helical gears to transmit 37.5kW at 1750 rpm of the		
13	pinion. The drive is subjected to heavy shock loading. The speed		Curretine
	reduction ratio is 4 and the helix angle is 15 degrees. Select suitable	B1-0	Creating
	material and design the gears. Check for working stresses		
	and sketch the drive.		
14	Design a helical gear drive to transmit the power of 14.7kW. Speed		
	ratio is 6, pinion speed is 1200 rpm and helix angle is 25°. Select	BT-6	Creating
	suitable materials and design the gear.	DIU	Croating
15	A speed reducing unit using spur gear is to be designed power to		
	be transmitted is 60HP and is continuous with moderate shock	BT-6	Creating
	loads. The speed of the shafts are 720 r.p.m. and 144 r.p.m. The	DIU	croating
	centre distance is kept as small as possible. Select a suitable	5	
	material and design the gears. Give the details of gears.		S
16	Design a spur gear drive to transmitted 22 kW at 900 r.p.m. speed		1
	reduction is 2.5 material for pinion and wheel are C15 steel and cast	BT-6	Creating
	iron grade 30. Take pressure angle of 20° and working life of the		177
	gears as 10000 hours.		0
17	A pair of helical gears is to be designed to transmit 30 kW at a		-
17	pinion speed of 1500 r.p.m. The velocity ratio is 3. Selecting		Creating
	suitable materials, determine the dimension of the gears.	D1-0	Creating
18	Deign a helical gear drive to transmit the power of 20 HP. Speed		
	ratio 6, pinion speed 1200 rpm, helix angle is 25°. Select suitable	BT-6	Creating
	materials and design the gears.	210	crounng

PART C (15 Marks)			
1	Design a pair of spur gear to transmit 20 kW at a pinion speed of		
	1440 rpm. The transmission ratio is 4. Assume 15Ni2Cr1Mo15	BT-6	Creating
	for pinion and C45 for gears.		

2	For intermittent duty of an elevator, two cylindrical gears made of		
	alloys steel 40 Ni 2 Cr 1 Mo 28, and have to transmit12.5 kW at a		
	pinion speed of 1200 rpm. Design a gear pair for the following	BT-5	Evaluate
	specifications: Gear ratio: 3.5, pressure angle 20°, involute full		
	depth, helix angle 15°. Gears are expected to work 6 hrs a day for		
	10 years. Minimum number of teeth on pinion can be taken as 20		
	and IS quality 8.		
3	Design a pair of helical gears to transmit 10 kW at 1000 rpm of		
5	the pinion and wheel are made of C15 steel and cast iron grade 30	BT-6	Creating
	respectively. The pinion is to transmit 22 kW power at 900 rpm.		
	The gear ratio is 2.5, take pressure angle of 20° and helix angle is		
	15°. The material for the both gears is NI2Cr1Mo28. Give details		
	of drive in tubular form.		
4	A speed reducing unit using spur gear is to be designed. Power to		
	be transmitted is 60 hp and is continuous with moderate shaft		
	loads. The speeds of the shaft are 720 rpm and 144 rpm. The centre	BT-4	Analysing
	distance is kept as small as possible. Select a suitablematerial and		
	design the gears. Give the details of the gear.		
5	Design a helical gear drive to transmit a power of 15 kw at 1440		
	r.p.m. to the following specifications. Speed reduction is 3. Pressure		
	angle is 20°, helix angle is 15°. The material is both gears is C45	BT-4	Analysing
	steel allowable static stress is 180 N/mm ² . E=2x10 ⁵ N/mm ² .		

UNIT III BEVEL, WORM AND CROSS HELICAL GEARS

Straight bevel gear: Tooth terminology, tooth forces and stresses, equivalent number of teeth. Estimating the dimensions of pair of straight bevel gears. Worm Gear: Merits and demerits terminology. Thermal capacity, materials-forces and stresses, efficiency, estimating the size of the worm gear pair. Cross helical: Terminology-helix angles-Estimating the size of the pair of cross helical gears.

Q.No	QUESTIONS	BT Level	Competence
1	Under what situation bevel gears are used.	BT-2	Understanding
2	Write short notes on Crown gear and Miter gear.	BT-1	Remembering
3	Mention two characteristics of hypoid gear.	BT-1	Remembering
4	What is zerol bevel gear?	BT-2	Understanding
5	Define back cone distance for a bevel gear.	BT-1	Remembering
6	Define the following term (i) Cone distance (ii) Face angle	BT-1	Remembering
7	Illustrate reference angle? How is related to speed ratio of bevel gear?	BT-4	Analyzing
8	List the advantages of and disadvantages of worm gear drive.	BT-1	Remembering
9	Define nominal pitch of worm gear.	BT-1	Remembering
10	State the difference between angular gear and miter gear.	BT-1	Remembering
11	Describe in which gear drive self-locking is available.	BT-2	Understanding
12	Describe irreversibility in worm gear.	BT-2	Understanding
13	Why is the efficiency of worm gear drive comparatively low?	BT-2	Understanding
14	List the difference between bevel gear formation and other types of gears.	BT-1	Remembering
15	Summarize the helix angle of worm.	BT-2	Understanding
16	Name the contact occurred between the worm and wheel. How this does differs from other gears?	BT-2	Understanding
17	Differentiate between the spiral bevel gears and hypoid gears.	BT-4	Analyzing
18	List the materials used for the manufacture of worm and worm and wheel.	BT-1	Remembering
19	Why worm is made of harder material than worm wheel?	BT-4	Analyzing
20	State the reason why crossed helical gear drive is not used for power transmission?	BT-4	Analyzing

PART-A (2 Marks)

21	What are the various forces acting on a bevel gear?	BT-2	Understanding
22	When do we employ crossed helical gear?	BT-1	Remembering
23	Mention two characteristics of hypoid gear.	BT-2	Understanding
24	Usually worm is made of hard material and worm gear is made of softer material – justify.	BT-4	Analyzing
25	Define virtual or formative or equivalent number of teeth for bevel gears.	BT-1	Remembering

	PART-B (13 Marks)		
Q.No	QUESTIONS	BT Level	Competence
1	Design a pair of bevel gears to transmit 10 kW at 1440 rpm of the		
	pinion. The velocity ratio should be about 4. Material for gear is	BT-6	Creating
	1 5 N i 2 C r 1M o 1 5 Steel. The tooth profiles of the gears are of		
	20 ° composite form.		
2	Design a cast iron bevel gear drive for a pillar drilling machine to		
	transmit 1875 Watts at 800 rpm to a spindle at 400 rpm. The gear	BT-6	Creating
	is to work for 40 hrs /week for 3 years. Pressure angle is 20°.		
3	Design a Bevel gear drive to transmit 4 kW. Speed ratio = 4.		
	Driving shaft speed 225 rpm. The drive is non-reversible. Assume	BT-6	Creating
	a life of 25000 hours.	0	
4	A Pair of bevel gears is to be used to transmit 14 kW from a pinion	0	
	rotating at 400 rpm to a gear mounted on shaft which is running	BT-5	Evaluate
	at 200 rpm. The axes o <mark>f the two shafts are at 90°. Desi</mark> gn the pair	1	2
	of bevel gears.		-
5	Design a pair of bevel gears for two shafts whose axes are at right		177
	angle to transmit 10 kW at 1440 rpm. The speed of the gear is	BT-6	Creating
	720 rpm. Use Lewis a <mark>nd Buc</mark> kingham's equation.		-
6	Design a straight bevel gear drive between two shafts connected at		
	right angles to each ot <mark>her. Spee</mark> d of the pinion shaft is 360 rp <mark>mand</mark>		
	the speed of gear whe <mark>el shaft is</mark> 120 rpm. Pinion is made of steel	BT-6	Creating
	and wheel is made of cast iron. Each gear is expected to	ERI	
	work 2 hrs /day for 10 years.	Nº G	6
7	A hardened steel worm rotates at 1440 rpm and transmits 12 kW		200
	to a phosphor bronze gear. The speed of the worm wheel should	BT-6	Creating
	be $60 \pm 3\%$ rpm. Design the worm gear drive if an efficiency of		Tra
	at least 82% is desired.		9
8	A steel worm running at 240 rpm receives 1.5 kW from its shaft.		
	The speed reduction is 10:1. Design the drive so as to have an	BT-5	Evaluate
	efficiency of 80%. Also determine the cooling area required, if the		
	temperature rise is restricted to 450° C. Take overall heat transfer	/	
	coefficient as 10 W/m ² °C.	1	
9	Design the worm gear drive and determine the power loss by heat		
	generation of Hardened steel worm rotates at 1440 rpm and	BT-6	Creating
	transmits 12 kW to a phosphor bronze gear with gear ratio of 16.		

10	A hardened steel WORM rotates at 1260 rpm and transmits 8 kW		
	to a phosphor bronze gear with gear ratio of 18. Design the worm	BT-6	Creating
	gear drive and determine the power loss by heat generation.		
11	Design a worm gear drive to transmit 22.5kW at a worm speed of		
	1440 rpm. Velocity ratio is 24:1. An efficiency of at least 85% is	BT-6	Creating
	desired. The temperature raise should be restricted to 40°C.		
	Determine the required cooling area.		
12	Design a bevel gear drive, to transmit 10 kW power at 1440 rpm.		
	Gear ratio is 3, and life of gears 10,000 hrs. Pinion and gear are	BT-6	Creating
	made of C45 steel and minimum number of teeth as 20.		
13	A hardened steel work rotates at 1600 rpm and transmits 15 kW		
	phosphor bronze gear. The speed of the worm wheel shouldbe	BT-6	Creating
	$65 \pm 2\%$ rpm. Design a worm gear drive if an efficiency of at		
	least 82% is desired.		
14	Design a worm gear drive to transmit 22.5 kW at a worm speed of		
	1440 rpm. Velocity ratio is 24:1. An efficiency of at least 85% is	BT-5	Evaluating
	desired. The temperature raise should be restricted to 40°C.		
	Determine the required cooling area.		
15	Design worm and gear speed reducer to transmit 22 kW at a speed		
	of 1400 r.p.m. The desired velocity ratio is 24:1. An efficiency of	BT-5	Evaluating
	atleast 85% is desired. Assume that the worm is made of hardened		
	steel and the gear of phosphor bronze. Take the center distance as		
	100 mm.		
16	A pair of cast iron bevel gears connected two shafts at right angles.		
	The pitch diameters of the pinion and gear are 80mm and 100mm	BT-5	Evaluating
	respectively. The tooth profile of the gears is of 14 $^{1/20}$ and		
	composite form. The allowable static stress for both gears is 55		
	Mpa. If the pinion transmits 2.75Kw at 1100 r.p.m. find the module		
	and number of teeth on such gears and check the design. Take		
	surface endurance limit as check the design. Take surface		
	endurance limit as 630 Mpa and modulus of elasticity for cast iron		
	as 84 kN/mm ² .		

	Determine the required cooling area.	100	
	is desired. The temperature rise should be restricted to 40°C.	B1-2	Evaluating
18	Design a worm gear drive to transmit 22.5 Kw at a worm speed		
	on the gears.		
	r.p.m. determine (i) the pitch angle for the gears and (ii) the forces		
	20°, a face width of 40 mm and the gear shaft is to rotate at 120		
	have an outside pitch diameter of 200mm, a pressures angle of		
	the pinion shaft at an angle of 70°. Assuming that the pinion is to		
17	rotation at 360 r.p.m. to a gear mounted on a shaft which intersects	BT-5	Evaluating
17	A pair of bevel gears is to be used to transmit 12kW from a pinion		

SRM

	PART C (15 Marks)		
1	Design a bevel gear to transmit 3.5 kW with driving shaft speed		
	is 200 rpm. Speed ratio requires is 4. The drive is non- reversible.	BT-6	Creating
	Pinion is made of steel and wheel made of CI. Assume a life of		
	25,000 Hrs.		
2	Design a pair of right angled bevel gear to transmit 15kW at 750		
	rpm to another gear to run at 250 rpm. Not less than 20 teeth are to	BT-6	Creating
	be used on either gear. The pressure angle is 20°. Assume a		
	gear life of 12000 hrs.		
3	2 kW power is applied to a worm shaft at 720 rpm. The worm is		
	of quadruple start with 50mm as pitch circle diameter. The worm		
	gear has 40 teeth with 5mm module. The pressure angle in the	BT-5	Evaluate
	diametric plane is 20°.Determine (i) Lead angle of the worm		
	(ii) Velocity ratio (iii) Centre distance. Also calculate the		
	efficiency of worm gear drive and power lost in friction.		
4	A pair of straight tooth bevel gears has a velocity ratio of 4/3.		
	The pitch diameter of the pinion is 150 mm. The face width is		
	50mm. The pinion rotates at 240 rev/min. The teeth are 5mm	BT-5	Evaluate
	module, 14° Involutes. If 6 kW is transmitted, determine		
	(i) the tangential force at the Mean radius (ii) the pinion thrust		
	force (iii) the gear thrust force. Draw the free body diagrams		
	indicating the forces.		
5	A pair of cast iron bevel gear connect two shafts at right angles. The		
	pitch diameters of the pinion and gears are 80mm and 100 mm	BT-6	Creating
	respectively. The tooth profiles of the gears are of 14 $^{1/20}$ composite		
	form. The allowable static stress for both the gears is 55 Mpa. If the		
	pinion transmits 2.75kW at 1100 r.p.m. find the module and number		
	of teeth on each gears and check the design for wear strength. Take		
	surface endurance limit as 630 Mpa and modules of elasticity for		
	cast iron as 84 kN/mm ²		

UNIT IV GEAR BOXES

Geometric progression - Standard step ratio - Ray diagram, kinematics layout -Design of sliding mesh gear box - Design of multi speed gear box for machine tool applications - Constant mesh gear box - Speed reducerunit. – Variable speed gear box, Fluid Couplings, Torque Converters for automotive applications.

	PART-A (2 Marks)			
Q.No	QUESTIONS	BT Level	Competence	
1	What are preferred Numbers?	BT-2	Understanding	
2	List any two methods used for changing speeds in gear box.	BT-1	Remembering	
3	Specify the four types of gear box.	BT-1	Remembering	
4	Define progression ratio.	BT-2	Understanding	
5	Compare sliding mesh and synchromesh gear box.	BT-2	Understanding	
6	What does the ray-diagram of gear box indicates?	BT-2	Understanding	
7	Differentiate Ray diagram and structural diagram.	BT-1	Remembering	
8	List the six speeds starting from 18 rpm with a step ratio of 1.4	BT-2	Understanding	
9	Write the possible structural arrangements to achieve 6 speed gear box.	BT-5	Evaluate	
10	State three basic rules to be followed while designing a gear box.	BT-1	Remembering	
11	Sketch the kinematic layout of gears for 3 speeds between shafts.	BT-1	Remembering	
12	Write any two requirements of a speed gear box.	BT-2	Understanding	
13	List four applications where constant mesh gear box is used.	BT-2	Understanding	
14	Specify the function of spacers in a gear box.	BT-2	Understanding	
15	List the methods of lubrication in speed reducers.	BT-2	Understanding	
16	Find the step ratio for 12 speed gear box, the speed range of the gear box from 50 rpm to 600 rpm.	BT-5	Evaluate	
17	List the significance of structural formulas.	BT-1	Remembering	
18	Write the possible structural arrangements to achieve 12 speed gear box.	BT-1	Remembering	
19	Write the possible structural formula for 16 speed gear box.	BT-5	Evaluate	
20	Define torque converter. List its functions and applications.	BT-1	Remembering	
21	List out the basic rules to be followed for optimum gear box design	BT-1	Remembering	
22	Explain why the discrete speeds are specified in geometric series for any machine tools.	BT-2	Understanding	
23	What is the function of spacers in a gear box?	BT-2	Understanding	
24	Draw the Ray diagram for a 6speed Gear box.	BT-5	Evaluate	
25	Compare sliding mesh and synchromesh gear box.	BT-2	Understanding	

PART-B (13 Marks)			
Q.No	QUESTIONS	BT Level	Competence
1	Design the six speed gear box is to provide the speeds in the range		
	of 160 to 500 rpm and transmit a power of 5 kW at 710 rpm. Draw	BT-6	Creating
	the speed diagram and kinematics diagram. Determine the number		
	of teeth module and face width of all gears, assuming suitable		
	Materials for the gears.		
2	Design a 9 speed gear box for the following data.		
	Minimum speed: 180 rpm, Maximum speed: 1800 rpm. Using	BT-6	Creating
	standard step ratio, draw the speed diagram, kinematic layout. Also		
	find the number of teeth on each gear.		
3	Design a nine speed gear box for a machine to provide speeds	0	
	ranging from 100 to 1500 rpm. The input is from a motor of 5 kW	BT-6	Creating
	at 1440 rpm. Assume any alloy steel for the gear.		
4	Design 12 speed gear box for a minimum speed of 160 rpm and a		-
	maximum speed of 2000 rpm. The input speed of motor is 1600rpm.	BT-6	Creating
	Draw the speed diagram, kinematic diagram and indicate the		1.1.1
	number of teeth on ea <mark>ch gear.</mark>		6
5	Design the layout of a 12 speed gear box for a milling machine		m
C C	having an output of speeds ranging from 100 to 1200 rpm. Power is	BT-6	Creating
	applied to the gear box from a 5 kW induction motor at 1440 rpm.		
	Choose standard step ratio and construct the speed diagram. Decide		
	up on the various reduction ratios and number of teeth on each gear		
	wheel sketch the arrangement of the gear box.		
6	Design the headstock gear box of a lathe having nine spindle speeds		
	ranging from 50 to 1500 rpm. The power of the machine may be	BT-6	Creating
	taken as 6 kW and speed of the motor is 1450 rpm. Minimum number		
	of teeth on the gear is to be $2x3$. (a) Draw the speed diagram		
	(b) Sketch the layout of the gear box. (c) Calculate the number of		
	teeth on all gears.		
7	Illustrate the ray diagram and kinematic lay out of a gear box for an		
	all geared head stock of a lathe. The maximum and minimum speeds	BT-5	Evaluating
	are to be 2800 and 63 rpm respectively. The number of steps is 12		
	and drive is from a 3 kW electric motor running at 1440rpm.		

8	Select speeds for an 18 speeds Gear box for a minimum speed of		
	35 rpm and maximum speed 650 rpm. Draw speed diagram and a	BT-6	Creating
	kinematic arrangement of the gear box showing the number of teeth		8
	in all the gears.		
0	The spindle of a pillar drill is to run at 12 different speeds in the range		
9	of 100 rpm and 355 rpm. Design a three stage gear box with astandard	BT-6	Creating
	step ratio. The gear box receives 5kW from an electric motor running		68
	at 360 rpm. Sketch the layout of the gear box, indicating the number		
	of teeth on each gear. Also sketch the speed		
	diagram.		
10	Design a 16 speed gear box for the following data. Minimum speed:		
	100 rpm, step ratio is 1.25. The input is from a 5 kW, 1000rpm motor.	BT-6	Creating
	Draw the speed diagram, kinematic diagram and indicate the number		6
	of teeth on each gear.		
11	A 16 speed gear box is required to furnish output speeds in the range		
	of 100 to 560 rpm. Sketch the kinematic arrangement and draw the	BT-6	Creating
	speed diagram.	_ •	
10	The range of maximum and minimum speeds of nine speed box are		
12	to be 600 rpm and 100 rpm respectively. The drive is from an electric	BT-6	Creating
	motor giving 3kW at 1440rpm. Design the gear box. Construct the		
	speed diagram and sketch the arrangement of gear box.		
13	Design a six speed gear box for a machine to provide speeds ranging		
	from 100 rpm to 560 rpm. The input shaft speed is 560rpm. The	BT-6	Creating
	intermediate shaft to have three speeds. Assume any alloy steel for		
	the gears.		
14	Draw the ray diagram and kinematic lay out of a gear box for an all		
	geared head stock of a lathe. The maximum and minimum speeds are	BT-6	Creating
	to be 600 rpm and 23 rpm respectively. Number of step is 12		
	and drive is from a 3000 W electric motor running at 1440 rpm.		
15	Write down all the possible structural formula for 6,8,9,12,14,15,16	BT-2	Understanding
	& 18 speed gear box.		
16	Explain in detail the selection of standard speeds from preferred	BT-2	Understanding
	numbers using step ratio with suitable examples.		

17	A nine speed gear box used as a head stock gear box of a turret lathe,		
	is to provide a speed range of 180 r.p.m. Using standard steep ratio,	BT-6	Creating
	draw the speed diagram and the kinematic layout. Also find and fix		C
	the number of teeth on all gears.		
18	Design a 12 speed gear box for an all geared heat stock of a lathe.		
	Maximum and minimum speeds are 600 r.p.m. and 25 r.p.m.	BT-6	Creating
	respectively. The drive is from an electric motor giving 2.25kW at		C C
	1440 r.p.m.		

PART C (15 Marks)			
	A six speed gear box is required to provide output speeds in the		
	range of 125 to 400 rpm with a step ratio of 1.25 and transmit a		
	power of 5 kW at 710 rpm. Draw the speed diagram and kinematics	BT-3	Applying
	diagram. Determine the number of teeth module and face width of		11,7,8
	all gears, assuming suitable materials for the gears. Determine the		
	length of the gear box along the axis of the gear shaft.		
2	A machine tool gear box is to have 9 speeds. The gear box is driven		
2	by an electric motor whose shaft rotational speed is 1400 rpm. The		
	gear box is connected to the motor by a belt drive. The maximum		
	and minimum speeds required at the gear box output are 1000 rpm.	BT-4	Analyzing
	and 200 rpm respectively. Suitable speed reduction can also be	5	
	provided in the belt drive. What is the step ratio and what are the	0	
	values of 9 speeds? Sketch the arrangement. Obtain the number of	0	
	teeth on each gear and also the actual output speeds.	5	
3	In a milling machine, 18 different speeds in the range of 35 rpm and		
	650 rpm are required. Design a three stage gear box with a standard		1.1.1
	step ratio. Sketch the layout of the gear box, indicating the number	BT-6	Creating
	of teeth n each gear. The gear box receives 3.6 kW from an electric	D1-0	
	motor running at 1,44 <mark>0 rpm.</mark> Sketch also the speed diagram.		
4	Sketch the arrangements of a six speed gear box. The minimum and		
	maximum speeds required are around 460 and 1400 rpm. Drove		
	speed is 1440 rpm. Construct speed diagram of the gear box and	BT-6	Creating
	obtain various reduction ratios. Use standard output speeds and		8
	standard step ratio. Calculate number of teeth in each gear and verify		
	whether the actual output speeds are within + 2% of standard speeds.		
5	A nine speed gear box used as a head stock gear box of a turret lathe,		
	is to provide a speed range of 180 r.p.m. Using standard steep ratio,		
	find and fix the number of teeth on all gears and calculate the	BT-6	Creating
	percentage deviation of the obtainable speeds from the calculated	d	erouning
	ones.		

UNIT V CAMS, CLUTCHES AND BRAKES

Cam Design: Types-pressure angle and under cutting base circle determination-forces and surface stresses. Design of plate clutches –axial clutches-cone clutches-internal expanding rim clutches-Electromagnetic clutches. Band and Block brakes - external shoe brakes – Internal expanding shoe brake.

PART-A (2 Marks)			
Q.No	QUESTIONS	BT Level	Competence
1	Describe the working principle of clutch.	BT-1	Remembering
2	List the significance of pressure angle in cam design.	BT-1	Remembering
3	Define Jerk. Name the profile of the cam that gives no Jerk.	BT-1	Remembering
4	Define pitch point in a cam.	BT-2	Understanding
5	Name four profiles normally used in cams.	BT-1	Remembering
6	Describe the term undercutting in cam.	BT-2	Understanding
7	Classify the clutch by the method of its engagement.	BT-2	Understanding
8	Distinguish between dry and wet operation of clutch	BT-1	Remembering
9	Name a few commonly used friction materials.	BT-1	Remembering
10	Specify the desirable properties of friction materials in clutch.	BT-2	Understanding
11	Give examples of axial and radial friction clutches.	BT-2	Understanding
12	If a multidisc clutch has 6 discs in the driving shaft and 7 disc in	BT-5	Evaluating
	the driven shaft and find the number of contact surfaces.		
13	Clutches are usually designed on the basis of uniform wear. Why?	BT-4	Analyzing
14	Quote the types of brake linings.	BT-1	Remembering
15	What you meant by self-energizing brake?	BT-2	Understanding
16	List out the bonding materials used to fabricate the frictional	BT-1	Remembering
	materials used in clutch.		
17	Differentiate between uniform pressure and uniform war theories	BT-2	Understanding
	adopted in design of clutches.		
18	What is meant by self-locking brake?	BT-2	Understanding
19	Write the formula for torque transmitted by multi plate clutch.	BT-5	Evaluating
20	Why semi-cone angle is normally taken as 12.5° in cone clutch?	BT-4	Analyzing
21	List at least four characteristics of the materials used for the brake linings.	BT-1	Remembering
22	Define base circle, pitch circle and jerk with respect to cam.	BT-2	Understanding
23	When do we use multiple disk clutches?	BT-2	Understanding
24	What is fade?	BT-2	Understanding
25	What are the factors upon which the torque capacity of a clutch depends?	BT-2	Understanding

PART-B (13 Marks)				
Q.No	QUESTIONS	BT Level	Competence	
	A single plate sketch, effective on both sides, is required to transmit			
1	25kW at 3000 rpm. Determine the outer and inner diameter of			
	frictional surfaces if the coefficient of friction is 0.25, ratio of	BT-5	Evaluate	
	diameter is 1.25 and the maximum pressure is not to exceed the			
	value of 0.1 N/mm2. Determine (i) the face width required and			
	(ii) the axial spring force necessary to engage the clutch.			
	A plate clutch with maximum diameter 60mm has maximum lining			
2	pressure of 0.35 MPa. The power to be transmitted at 400 rpm is 135		Evaluate	
	kW and $\mu = 0.3$. Find inside diameter and spring force required to	BT-5		
	engage the clutch. Springs with spring index 6 and material spring	0		
	steel with safe shear stress 600 MPa are used. Find the diameters if	500		
	6 spring are used.	9		
	A multi disk clutch consists of five steel plates and four bronze			
3	plates. The inner and outer diameters of friction disks are 75mm and			
	150mm respectively. The coefficient of friction is 0.1 and the	BT-5	Evaluate	
	intensity of pressure is limited to 0.3. N/mm ² . Assuming the uniform		6.2	
	wear theory, calculate (i) The required operating force, and		m -	
	(ii) Power transmitting capacity at 750 rpm.			
4	A plate clutch has 3 discs on the driving shaft and 2 discs on the drive			
	shaft, providing 4 pairs of contact surfaces. The outer diameter of			
	contact surface is 240mm and inner diameter is120mm. Assuming	B1-2	Evaluate	
	uniform pressure and μ =0.3, find the total spring load forpressing			
	the plates together to transmit 25kW at 1575 rpm. If there are 6			
	springs each of stiffness 13kN/m and each of contact surfaces have			
	worn away by1.25mm, find the power that can be transmitted,			
	assuming uniform wear.			
5	A multi disc wet clutch is to be designed for a machine tool driven			
	by an electric motor of 12.5 kW running at 1440 rpm. Space	BT-5	Evolusta	
	restrictions limit the outside disc diameter to 100mm. Determine		Evaluate	
	the appropriate value of inside diameter, total number of discs and			
	clamping force.			

	An engine developing 45kW at 1000 rpm id fitted with a cone clutch		
6	built inside the fly wheel. The cone has a face angle of 12.5 degree	DT 5	Evolucio
	and a maximum mean diameter of 500 mm. The coefficient of	B1-5	Evaluate
	friction is 0.2. The normal pressure on the clutch face is not		
	exceeded 0.1N/mm ² . Determine (i) The face width required (ii) the		
	axial spring force necessary to engage the clutch.		
7	A single block brake, the diameter of drum is 250mm and the angle		
/	of contact is 90 degrees, the operating force of 700N is applied at the		
	end of lever which is at 250mm from the center of the brake block.	B1-2	Evaluate
	Determine the torque that may be transmitted. Fulcrum is at 200mm	A 17	
	from the center of brake block with an offset of 50mm from the	G	
	surface of contact. The coefficient of friction is 0.35.	0	
8	A 360 mm radius Brake drum contacts a single shoe as shown in	0	
0	Figure-1 and resists a torque of 250 Nm at 500 rpm.	1	
	The co- efficient of friction is 0.3.		
	Determine		1.11
	(i) The normal reaction on the shoe,		0
	(ii) The force to be applied at the lever end for counter clock		THE .
	Wise rotation of the drum if $e = 0$,		
	(iii) The force to be applied at the lever end for clock		
	Wise rotation of the drum if e=42 mm,		
	(iv) The force to be applied at the lever end for counter clock		
	Wiserotation of the drum if $e = 42$ mm.	BT-5	Evaluate
	R=360mm		
	Fig-1		

0	The layout of a double block brake is shown in figure -2. The brake		
9	is rated at 250N-m at 650rpm. The drum diameter is		
	250mm.assuming the co-efficient of friction as 0.3 and for		
	conditions of service a pV value of 1000 (KPa) m/s may be		
	assumed. Determine (i) The spring force "S" required to set the		
	brake (ii) Width of shoes (iii) Which shoe will have greater rate of		
	wear?		
	s s t		
	F ₂ 160mm	BT-5	Evaluate
		-	
		6	
		0	
	F1 160mm	0	
	60mm 60mm		
	Fig-2		1.1.1
10	An internal expanding shoe brake has the following dimensions:		0
	Diameter of the drum = 300 mm, distance between the fulcrum		111
	centers is 80 mm, distance of fulcrum centers and that of cam axis,		
	both from the drum center=100 mm, distance of the line of action of		
	braking force from the cam axis = 90 mm, distance between the		
	points where the cam acts on the two brake shoes = 30 mm . Each		
	shoe subtends an angle of 90° at the drum Centre. If the braking force	DT 5	Esselsets
	is 750 N and the coefficient of friction is 0.3, Find the brakingtorque	B1-2	Evaluate
	on the drum. Assume the reaction between the brake shoes and the		
	drum passes through the point bisects the contact angle. Also assume		
	that forces exerted by the cam ends on the two shoes		
	are equal.		
11	A power of 20 kW is to be transmitted through a cone clutch at		
11	500 rpm. For uniform wear condition find the main dim of clutch	рт <i>с</i>	Evolucio
	and shaft. Also determine the axial force required to engage the		Evaluate
	clutch. Assume coefficient of friction as 0.25, the max normal		
	clutch. Assume coefficient of friction as 0.25, the max normal pressure on the friction surface is not to exceed 0.08 MPa and take		

12	Design a differential band for a winch lifting a load of 20 kN		
	through a steel wire rope wound around a barrel of 600 mm		
	diameter. The brake drum, keyed to barrel shaft is 800 mm diameter	BT-6	Creating
	and the angle of lap of the band over the drum is about 240 degree.		
	Operating arms of the brake are 50 mm and 250 mm. The length		
	of operating level is 1.6m.		
13	Derive the expression to determine the braking torque for an		
	internal expanding shoe brake.	BT-2	Understanding
14	An automobile engine has an output of 80 kW at 3000 rpm. The		
14	mean diameter of the clutch is 200 mm with a permissible pressure	DT <i>5</i>	
	of 0.2 N/mm ² . Friction lining is of asbestos with $\mu = 0.22$. What	B1-3	Evaluate
	should be the inner diameter of the disc? Take both sides of plates		
	with friction lining as effective. There are 8 springs and axial		
	deflection in spring is limited to 10 mm. Given $G = 80 \text{ kN/mm}^2$.		
	Spring index may be taken as 6.		-
15	A plate clutch having a single driving plate with contact surfaces		
	on each side is required to transmit 110 kW at 1250 r.p.m. The outer	DT 5	Evolueto
	diameter of the contact surfaces is to be 300 mm. The coefficient	D1-J	Evaluate
	of friction is 0.4. (a) Assuming a uniform pressure of 0.17 N/mm ² ;		111
	determine the inner diameter of the friction surfaces. (b) Assuming		
	the same dimensions and the same total axial thrust, determine the		
	maximum torque th <mark>at can b</mark> e transmitted and the ma <mark>ximum</mark>		
	intensity of pressure when uniform wear conditions have been		
	reached.		
16	A single dry plate clutch is to be designed to transmit 7.5 kW at 900		
	r.p.m. Find :1. Diameter of the shaft, 2. Mean radius and face width	BT 5	Evaluate
	of the friction lining assuming the ratio of the mean radius to the face	D 1-5	Livaluate
	width as 4, 3. Outer and inner radii of the clutch plate, and 4.		
	Dimensions of the spring, assuming that the number of springs are 6		
	and spring index $= 6$. The allowable shear stress for the spring wire		
	may be taken as 420 MPa.		

17	A multiple disc clutch, steel on bronze, is to transmit 4.5 kW at 750		
	r.p.m. The inner radius of the contact is 40 mm and outer radius of	BT-5	Evaluate
	the contact is 70 mm. The clutch operates in oil with an expected		Evaluate
	coefficient of 0.1. The average allowable pressure is 0.35 N/mm ² .		
	Find: 1. the total number of steel and bronze discs; 2. the actual axial		
	force required; 3. the actual average pressure; and 4. the actual		
	maximum pressure.		
18	A multi-disc clutch has three discs on the driving shaft and two on		
	the driven shaft. The inside diameter of the contact surface is 120	BT-5	Evaluate
	mm. The maximum pressure between the surface is limited to 0.1		
	N/mm ² . Design the clutch for transmitting 25 kW at 1575 r.p.m.		
	Assume uniform wear condition and coefficient of friction as 0.3.		
		20	

PART-C (15 Marks)			
1	A leather faced conical clutch has cone angle of 30° . The pressure between the contact surfaces is limited to $35N/mm^2$ and the breath of the conical surface is not to exceed 1/3 of the mean radius. Find the dimensions of the contact surface to transmit 22kW at 2000 rpm Also calculate the force required to engage the clutch. Take $\mu = 0.1$	BT-5	Evaluate
2	A single plate clutch, both side being effective is required to connect a machine shaft to a driver shaft which runs at 500rpm. The moment of inertia of the rotating parts of the machine is 1Kgm^2 . The inner and the outer radii of the friction discs are 50mm &100mm respectively. Assuming uniform pressure of 0.1N/mm ² and μ =0.25, determine the time taken for the machine to reach full speed when the clutch is suddenly engaged. Also determine the powertransmitted by the clutch and energy dissipated during the clutch slip and the energy supplied to the machine during engagement.	BT-5	Evaluate
3	A radial cam rotates at 1200 rpm with the follower rising 20 mm with SHM in 1500 of the cam rotation. The roller is 32 mm in diameter and the prime circle is 80mm in diameter. Check whether undercutting will occur.	BT-5	Evaluate

4	A multi – disk clutch consists of five steel plates and four bronze plates. The inner and outer diameters of friction disks are 75mm and 150mm respectively. The coefficient of friction is 0.1 and the intensity of pressure is limited to 0.3 N/mm ² . Assuming the uniform wear theory, calculate (i) the required operating force, and (ii) power transmitting capacity at 750 rpm.	BT-5	Evaluate
5	A centrifugal clutch is to be designed to transmit 15 kW at 900 r.p.m. The shoes are four in number. The speed at which the engagement begins is 3/4th of the running speed. The inside radius of the pulley rim is 150 mm. The shoes are lined with Ferro do or which the coefficient of friction may be taken as 0.25. Determine: 1. mass of the shoes, and 2. size of the shoes.	BT-5	Evaluate