SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution)

SRM Nagar, Kattankulathur–603203

DEPARTMENT OF MECHANICAL ENGINEERING

QUESTION BANK

Regulation–2019

Academic Year 2022–23 (Even Semester)

Prepared by

Mr.J.P.Ramesh , Assistant Professor/Mech Mr. S. Sivasankar, Assistant Professor/Mech

SRM VALLIAMMAIENGINEERING COLLEGE

(An Autonomous Institution) SRM Nagar, Kattankulathur– 603203.

DEPARTMENTOFMECHANICALENGINEERING

OUESTION BANK

SUBJECT : 1909602-Heat and Mass Transfer

SEM / YEAR: VI / III

UNIT – I CONDUCTION

SYLLABUS

General Differential equation – Cartesian, Cylindrical and Spherical Coordinates – One Dimensional Steady State Heat Conduction — plane and Composite Systems – Conduction with Internal Heat Generation – Extended Surfaces – Unsteady Heat Conduction – Lumped Analysis – Semi Infinite Solids –Use of Heisler's charts.

	PART- A (2 Marks)				
Q.No	Questions	BT Level	Competence		
1.	What is meant by lumped heat capacity analysis? When is it used?	BTL-1	Remembering		
2.	Point out Fourier's Law of heat conduction.	BTL-2	Understanding		
3.	what is a thermal symmetry boundary condition?	BTL-1	Remembering		
4 <mark>.</mark>	Define heat transfer. And write the different types.	BTL-1	Remembering		
5.	Define the term thermal conductivity. Also list the behavior of metal, liquid and gases thermal conductivity for increase in temperature.	BTL-1	Remembering		
6.	Define efficiency and fin effectiveness.	BTL-1	Remembering		
7.	Write any two examples of heat conduction with heat generation.	BTL-1	Remembering		
8.	Define critical thickness of insulation with its significance.	BTL-3	Applying		
9.	Write the three dimensional heat transfer Poisson and Laplace equations in Cartesian co-ordinates.	BTL-1	Remembering		
10.	What is meant by transient heat conduction ? Also give any two example.	BTL-2	Understanding		
11.	Define thermal diffusivity. Explain its importance in heat conduction problems.	BTL-1	Remembering		
12.	What are Biot and Fourier numbers? Explain their physical significance.	BTL-1	Remembering		
13.	What are boundary and initial conditions?	BTL-1	Remembering		
14.	Differentiate between steady and transient heat conduction.	BTL-2	Understanding		

15.	What is Newtonian heating or cooling process?	BTL-1	Remembering	
16.	Difference between conductivity and conductance. What are their units?	BTL-2	Understanding	
17.	What is meant by thermal resistance?	BTL-2	Understanding	
18.	Write a note on electrical analogy for conduction problems.	BTL-2	Understanding	
19.	Describe about Heisler Charts.	BTL-1	Remembering	
20.	Explain semi-infinite body and Define the error function in transient state.	BTL-4	Analyzing	
21.	What is the difference between fin effectiveness and fin efficiency?	BTL-2	Understanding	
22.	Give a few specific examples of use of fins.	BTL-3	Applying	
23.	What is lumped system analysis?	BTL-2	Understanding	
24.	Define conduction shape factor.	BTL-1	Remembering	
25.	What is non periodic heat flow?	BTL-2	Understanding	
PART- B(13 Marks)				
1.	A furnace wall consists of three layers. The inner layer of 10 cm	1		
	thickness is made of firebrick (k =1.04 W/mK). The intermediate		-	
	layer of 25 cm thickness is made of masonry brick ($k = 0.69 \text{ W/mK}$)		173	
1	followed by a 5 cm thick concrete wall ($k = 1.37$ W/mK). When the		0	
-	furnace is in continuous operation the inner surface of the furnace is	BTL-2	Understanding	
-	at 800°C while the outer concrete surface is at 50°C. Calculate the			
	rate of heat loss per unit area of the wall, the temperature at the			
	interface of the firebrick and masonry brick and the temperature at			
	the interface of the masonry brick and concrete. (6)			
2.	A furnace wall is made up of three layer of thicknesses 25 cm, 10			
	cm and 15 cm with thermal conductivities of 1.65W/mK ,			
	4.83W/mK and 9.2 W/mK respectively. The inside is exposed to			
	gases at 1250°C with a convection coefficient of 25 W/m ² °C and the			
	inside surface is at 1100°C, the outside surface is exposed to air at	BTL-2	Understanding	
	25° C with convection coefficient of 12 W/m ² °C.Determine (i) The			
	unknown thermal conductivity (ii) The overall heat transfer			
	coefficient (iii) All the surface temperature.			

3.	The walls of a house, 4 m high, 5 m wide and 0.3 m thick are made		
	from brick with thermal conductivity of 0.9 W/m.K. The		
	temperature of air inside the house is 20°C and outside air is at		
	-10° C. There is a heat transfer coefficient of 10 W/m ² K on the	BTL-3	Applying
	inside wall and 30 W/m ² .K on the outside wall. Calculate the inside		
	and outside wall temperatures, heat flux and total heat transfer rate		
	through the wall.		
4.	Derive the heat conduction equation in plane walls.	BTL-1	Remembering
5.	Derive the dissipation equation through pin fin with insulated end(5)	BTL-5	Evaluating
	(ii) A temperature rise of 50°C in a circular shaft of 50 mm diameter		
	is caused by the amount of heat generated due to friction in the	8	
	bearing mounted on the crankshaft. The thermal conductivity of	DTI 1	
	shaft material is 55 W/mK and heat transfer co efficient is 7 W/m ² K.	BIT-I	Remembering
	Determine the amount of heat transferred through shaft assume that	0	
	the shaft is a rod of infinite length. (8)	1.5	-
6.	An aluminium rod (k = 204 W/mK) 2 cm in diameter and 20 cm		
	long protrudes from a wall which is maintained at 300°C. The end of		1.11
1	the rod is insulated and the surface of the rod is exposed to air at		
	30°C. The heat transfer coefficient between the rod's surface and air	BIT-I	Remembering
	is 10 W/m ² K. Calculate the heat lost by the rod and the temperature		
	of the rod at a distance of 10 cm from the wall.		
7.	A wall is constructed of several layers. The first layer consists of		
	brick (k = 0.66 W/mK), 25 cm thick, the second layer 2.5 cm thick		
	mortar ($k = 0.7$ W/mK), the third layer 10 cm thick limestone		
	(k = 0.66 W/mK) and outer layer of 1.25 cm thick plaster		
	(k = 0.7 W/mK). The heat transfer coefficients on interior and		
	exterior of the wall fluid layers are 5.8 W/m^2 .K and 11.6 W/m^2 K,		
	respectively. Find :	BTL-5	Evaluating
	(i) Overall heat transfer coefficient,		
	(ii) Overall thermal resistance per m ² ,		
	(iii) Rate of heat transfer per m^2 , if the interior of the room is at		
	26° C while outer air is at -7° C,		
	(iv) Temperature at the junction between mortar and limestone.		

8.	The door of an industrial furnace is $2 \text{ m} \times 4 \text{ m}$ in surface area and is		
	to be insulated to reduce the heat loss to not more than 1200 W/m^2 .		
	The interior and exterior walls of the door are 10 mm and 7 mm		
	thick steel sheets ($k = 25$ W/mK). Between these two sheets, a		
	suitable thickness of insulation material is to be placed. The		
	effective gas temperature inside the furnace is 1200°C and the	BTL-2	Understanding
	overall heat transfer coefficient between the gas and door is		
	20 W/m ² K. The heat transfer coefficient outside the door is		
	5 W/m ² C. The surrounding air temperature is 20°C. Select suitable		
	insulation material and its size.		
9.	Circumferential aluminium fins of rectangular profile (1.5 cm wide	c	
	and 1 mm thick) are fitted to a 90 mm engine cylinder with a pitch		
	of 10 mm. The height of the cylinder is 120 mm. The cylinder base	0	
	temperature before and after fitting the fins are 200°C and 150°C	BTL-5	Evaluating
	respectively. Take ambient at 30°C and $h_{(average)} = 100 \text{ W/m}^2\text{K}$.	1	5
	Estimate the heat dissipated from the finned and the unfinned	1.1	-
	surface areas of cylinder body.		173
10.	A hollow cylinder with inner radius 30 mm and outer radius 50 mm		0
-	is heated at the inner surface at a rate of 10 ⁵ W/m ² and dissipated		100
-	heat by convection from outer surface into a fluid at 80°C with heat		
	transfer coefficient of 400 W/m ² K. There is no energy generation	BTL-5	Evaluating
	and thermal conductivity of the material is constant at 15 W/mK.		_
	Calculate the temperatures of inside and outside surfaces of the		
	cylinder.		
11.	A hollow sphere of inside radius 30 mm and outside radius 50 mm is		
	electrically heated at its inner surface at a constant rate of 10^5 W/m ² .		
	The outer surface is exposed to a fluid at 30°C, with heat transfer	BTL-4	Analyzing
	coefficient of 170 W/m ² K. The thermal conductivity of the material		
	is 20 W/mK. Calculate inner and outer surface temperatures.		
12.	A steel fin ($k = 54$ W/mK) with a cross section of an equilateral		
	triangle, 5 mm in side is 80 mm long. It is attached to a plane wall		
	maintained at 400°C. The ambient air temperature is 50°C and unit	BTL-2	Understanding
	surface conductance is 90 W/m ² K. Calculate the heat dissipation		
	rate from the rod.		
13.	A rectangular steel billet, measuring 500 x 400 x 200 mm in size	BTL-3	Applying

	with an initial temperature of 30°C is heated in a furnace to a		
	temperature of 1000°C. Calculate the temperature at the centre of		
	the billet 90 minutes after being put into the furnace. The thermal		
	conductivity of steel is 37.0 W/mK and its thermal diffusivity is		
	0.025 m ² /h. The local coefficient of heat transfer is 185 W/m ² K.		
14.	It is better to use 10 fins of 5 cm length than 5 fins of 10 cm length.		
	State and prove correctness of the statement. Take properties as		
	follows :		
	Diameter of fin = 10 mm	BIL-I	Remembering
	Thermal conductivity = 45 W/mK		
	Heat transfer coefficient = $95 \text{ W/m}^2\text{K}$.	2	
15.	A solid steel ball 5 cm in diameter and initially at 450°C is quenched	-	
	in a controlled environment at 90°C with convection coefficient of	C.	
	115 W/m ² K. Determine the time taken by centre to reach a	BTL-5	Evaluating
	temperature of 150°C. Take thermophysical properties as	1	
	C = 420 J/kgK, p = 8000 kg/m ³ , k = 46 W/mK.	1.1	
16.	A titanium alloy blade of an axial compressor for which		())
1	k = 25 W/mK, $\rho = 4500$ kg/m ³ and C = 520 J/kgK is initially at		9
2	60°C. The effective thickness of the blade is 10 mm and it is		111
	exposed to gas stream at 600°C, the blade experiences a heat	BTL-4	Analyzing
	transfer coefficient of 500 W/m ² K. Use low Biot number		
	approximation to estimate the temperature of blade after 1, 5, 20 and		
	100 s.		
17.	An aluminium sphere weighing 6 kg and initially at temperature of		
	350°C is suddenly immersed in a fluid at 30°C with convection		
	coefficient of 60 W/m ² K. Estimate the time required to cool the	BTL-1	Remembering
	sphere to 100°C. Take thermophysical properties as		
	C = 900 J/kgK, ρ = 2700 kg/m ³ ,k = 205 W/mK.		
18.	A long aluminium cylinder 5.0 cm in diameter and initially at 200°C		
	is suddenly exposed to a convection environment at 70°C with heat		
	transfer coefficient of 525 W/m ² K. Calculate the temperature at the	BTL-4	Analyzing
	radius of 1.25 cm 1 minute after the cylinder exposed to the		
	environment.		
	PART- C (15 Marks)	ı I	
1.	The temperature of the inner side of a furnace wall is 640°C and that	BTL-1	Remembering
	of on other side is 240° C and it is exposed to an atmosphere at 40° C.		Kennennbernig

	In order to reduce the heat loss from the furnace, its wall thickness		
	is increased by 100%. Calculate the percentage decrease in the heat		
	loss due to increase in wall thickness. Assume no change in		
	properties except temperature.		
2.	A steam pipe of 5 cm inside diameter and 6.5 cm outside diameter is		
	covered with a 2.75 cm radial thickness of high temperature		
	insulation (k = 1.1 W/mK). The surface heat transfer coefficient for		
	inside and outside surfaces are 4650 W/m^2K and 11.5 W/m^2K ,		
	respectively. The thermal conductivity of the pipe material is	BTI -3	Applying
	45 W/mK. If the steam temperature is 200°C and ambient air	DILJ	rippiying
	temperature is 25°C, determine :	6	
	(i) Heat loss per metre length of pipe.		
	(ii) Temperature at the interface.	0.	
	(iii) Overall heat transfer coefficient.	0	
3.	One end of a copper rod (k = 380 W/mK), 300 mm long is	1	
	connected to a wall which is maintained at 300°C. The other end is	1.10	
	firmly connected to other wall at 100°C. The air is blown across the		177
	rod so that the heat transfer coefficient of 20 W/m ² K is maintained.		0
-	The diameter of the rod is 15 mm and temperature of air is 40°C.	BTL-4	Analyzing
-	Determine :		
	(i) Net heat tran <mark>sfer rate to</mark> air,		
	(ii) The heat conducted to other end which is at 100°C.		
4.	A load of peas at a temperature of 25 C is to be cooled down in a		
	room at a constant air temperature of 1 C. (a) How long the peas		
	will require to cool down to 2 C when the surface heat transfer		
	coefficient of the peas is $5.81 \text{ W/m}^2 \text{ K}$? (b) What is the temperature		
	of the peas after a lapse of 10 min from the start of cooling ? (c)	BTL-2	Understanding
	What air temperature must be used if the peas were to be cooled		
	down to 5°C in 30 min? The peas are supposed to have an average		
	diameter of 8 mm. Their density is 750 kg/m ³ and specific		
	heat 3.35 kJ/kg K.		
5.	In a quenching process, a copper plate of 3 mm thick is heated upto		
	350°C and then suddenly, it is dropped into a water bath at 25°C.	BTI -3	Applying
	Calculate the time required for the plate to reach the temperature of	D1L-3	¹ PP1 JIII 5
	50°C.The heat transfer coefficient on the surface of the plate is		

28 W/m ² K. The plate dimensions may be taken as length 40 cm and		
width 30 cm.		
Also calculate the time required for infinite long plate to cool to		
50°C. Other parameters remain same.		
Take the properties of copper as		
$C = 380 \text{ J/kgK}, \rho = 8800 \text{ kg/m}^3, k = 385 \text{ W/mK}.$		

UNIT – II CONVECTION

SYLLABUS

Conservation Equations - Hydrodynamics and Thermal Boundary layer - Forced Convection: External Flow – Flow over Plates, Cylinders and Bank of tubes and Internal Flow through tubes. Free Convection: – Flow over Vertical Plate, Horizontal Plate, Inclined Plate, Cylinders and internal flow through tubes.

	PART- A (2 Marks)			
1.	What is meant by a hydrodynamically well-developed flow in a pipeline?	BTL-1	Remembering	
2.	What is meant by convective heat transfer?	BTL-1	Remembering	
3.	Define the velocity and thermal boundary layers.	BTL-1	Remembering	
4.	Define bulk temperature.	BTL-1	Remembering	
5.	Classify the dimensionless parameters used in forced and free convection heat transfer analysis.	BTL-3	Applying	
6.	Define grashoff number and prandtl number.	BTL-1	Remembering	
7.	Differentiate viscous sublayer and buffer layer.	BTL-1	Remembering	
8.	State Newton's law of cooling.	BTL-1	Remembering	
9.	Air at 27°C and 1 atmospheric flows over a flat plate at a speed of 2 m/s. Calculate boundary layer thickness at distance 40 cm from leading of plate. at 27°C viscosity(air)=1.85 x 10 ⁻⁵ kg/ms.	BTL-3	Applying	
10.	A square plate 40 x 40 cm maintained at 400 K is suspended vertically in atmospheric air at 300 K. Determine the boundary layer thickness at trailing edge of the plate.	BTL-5	Evaluating	
11.	What is colburnand Reynolds analogy?	BTL-2	Understanding	
12.	Define Nusselt and Stanton numbers.	BTL-1	Remembering	
13.	Distinguish between laminar & turbulent flow.	BTL-2	Understanding	
14.	Diffrence between Biot and prandtl numbers.	BTL-2	Understanding	
15.	What is Dittus-Boelter Equation?	BTL-1	Remembering	
16.	Define momentum thickness.	BTL-1	Remembering	
17.	Define critical Reynolds number. What is its typical value for flow over a flat plate and flow through a pipe?	BTL-1	Remembering	
18.	Why heat transfer coefficient for natural convection is much lesser than that for forced convection?	BTL-1	Remembering	
19.	What are the different methods of determining heat transfer	BTL-1	Remembering	

	coefficient in forced convection.		
20.	Define skin friction coefficient.	BTL-1	Remembering
21.	What is the modified Grashof number ? Where does it use ?	BTL-2	Understanding
22.	Define Rayleigh number.	BTL-1	Remembering
23.	Define drag coefficient and drag force.	BTL-1	Remembering
24.	What is critical Reynolds number for flow over a flat plate?	BTL-3	Applying
25.	What do you mean by critical value of Rayleigh number?	BTL-2	Understanding
1	PART- B (13 Marks)		
1.	(1) Sketch the boundary layer development of a flow over a flat plate	RTI -1	Understanding
	and explain the significance of the boundary layer. (4)	DIL-4	Onderstanding
	(ii) Atmospheric air at 275 K and a free stream velocity of 20 m/s	6	
	flows over a flat plate 1.5 m long that is maintained at a uniform		
	temperature of 325 K. Calculate the average heat transfer coefficient	0.	
	over the region where the boundary layer is laminar, the average	BTL-3	Applying
	heat transfer coefficient over the entire length of the plate and the	1	
	total heat transfer rate from the plate to the air over the length 1.5 m	1.1	-
	and width 1 m. Assume transition occurs at $Re = 2 \times 10^5$. (9)		173
2.	Air at 27°C and 1 atm flows over a heated plate with a velocity of		0
-	2 m/s. The plate is at uniform temperature of 60°C. Calculate the		
1	heat transfer rate from (i) first 0.2 m of the plate, (ii) first 0.4 m of	BTL-2	Understanding
	the plate.		
3.	Caster oil at 25°C flows at a velocity of 0.1 m/s part a flat plate, in a		
	certain process. If the plate is 4.5 m long and is maintained at a		
	uniform temperature of 95°C, calculate the following		
	(i) The hydrodynamic and thermal boundary layer thicknesses		
	on one side of the plate.		
	(ii) The total drag force per unit width on one side of the plate.	BTL-3	Applying
	(iii) The local heat transfer coefficient at the trailing edge and		
	(iv) The heat transfer rate ; properties of oil at 60°C are		
	$\rho=956.8~kg/m^3,~\infty=7.2~x~10$ -8m²/s $~;~k=0.213~W/mK$;		
	$v = 0.65 \text{ x } 10-4 \text{m}^2/\text{s}.$		
4.	Air at 10°C and at a pressure of 100 kPa is flowing over a plate at a		
	velocity of 3 m/s. If the plate is 30 cm wide and at a temperature of		
	60° C. Calculate the following quantities at x = 0.3 m.	BTL-3	Applying
	(i) Boundary layer thickness,		~
	(ii) Local friction coefficient,		
			1

	(iii) Local shearing stress,		
	(iv) Total drag force,		
	(v) Thermal boundary layer thickness,		
	(vi) Local convective heat transfer coefficient,		
	(vii) The heat transfer from the plate.		
5.	Air at velocity of 3 m/s and at 20°C flows over a flat plate along its		
	length. The length, width and thickness of the plate are 100 cm, 50		
	cm, and 2 cm respectively. The top surface of the plate is maintained		
	at 100°C. Calculate the heat lost by the plate and temperature of	BIT-1	Remembering
	bottom surface of the plate for the steady state conditions. The		
	thermal conductivity of the plate may be taken as 23 W/mK.	0	
6.	An air stream at 0°C is flowing along a heated plate at 90°C at a		
	speed of 75 m/s. The plate is 45 cm long and 60 cm wide. Assuming	C	
	the transition of boundary layer takes plate at $Re_{cr} = 5 \times 10^5$.	0	
	Calculate the average value of friction coefficient and heat transfer	BTL-5	Evaluating
	coefficient for full length of the plate. Also calculate the heat	1.1	
	dissipation from the plate.		177
7.	Air at 27°C is flowing across a tube with a velocity of 25 m/s. The		0
-	tube could be either a square of 5 cm side or a circular cylinder of		111
	5 cm dia. Comp <mark>are th</mark> e rate of heat transfer in each case, if the tube		
	surface is at 127°C.	BTL-5	Evaluating
	Use the correlation : $Nu = C \operatorname{Re}^{n} \operatorname{Pr}^{1/3}$		
	where, $C = 0.027$, $n = 0.805$ for cylinder		
	C = 0.102, $n = 0.675$ for square tube.		
8.	Air at 200 kPa and 200°C is heated as it flows through a tube with a		
	diameter of 25 mm at a velocity of 10 m/sec. The wall temperature		
	is maintained constant and is 20°C above the air temperature all		
	along the length of tube. Calculate:	BTL-3	Applying
	(i) The rate of heat transfer per unit length of the tube.		
	(ii) Increase in the bulk temperature of air over a 3 m length of		
	the tube.		
9.	Air stream at 27°C moving at 0.3 m/s across 100 W incandescent		
	bulb, glowing at 127°C. If the bulb is approximated by a 60 mm		
	diameter sphere, estimate the heat transfer rate and the percentage of	BTL-3	Applying
	power lost due to convection.		

	Use correlation $Nu = 0.37 \text{ Rep}^{0.0}$.		
10.	Water at 20°C enters a 2 cm diameter tube with a velocity of 1.5		
	m/s. The tube is maintained at 100°C. Find the tube length required	BTL-5	Evaluating
	to heat the water to a temperature of 60° C.	DILU	Dianang
11.	A plate 20 cm in height and 1 m wide is placed in air at 20°C. If the		
	surface of the plate is maintained at 100°C, Calculate the boundary		
	layer thickness and local heat transfer coefficient at 10 cm from the	BTL-5	Evaluating
	leading edge. Also calculate the average heat transfer coefficient	DILU	Dianang
	over the entire length of the plate.		
12.	A vertical plate 15 cm high and 10 cm wide is maintained at 140°C.	6	
	Calculate the maximum heat dissipation rate from the both sides of		
	the plate in an ambient of at 20°C. The radiation heat transfer	BTL-6	Creating
	coefficient is 9.0 W/m ² K. For air at 80°C, take	DILO	croating
	$v = 21.09 \times 10^{-6} \text{ m}^2/\text{s}, \text{Pr} = 0.692, \text{k}_f = 0.03 \text{ W/mK}.$	5	
13.	Consider a rectangular plate 0.2 m \times 0.4 m is maintained at a		
	uniform temperature of 80°C. It is placed in atmospheric air at 24°C.		177
1	Compare the heat transfer rates from the plate for the cases when the	BTL-4	Applying
5	vertical height is (a) 0.2 m and (b) 0.4 m.		m
14.	The surface temperature of a steel wall ($k = 0.213 \text{ W/mK}$) 0.3 m		
	thick are maintained at 100°C and 40°C. Water at a temperature of		
	T_{∞} = 20°C flows over the surface at 40°C. Calculate the convection	BTL-3	Applying
	coefficient associated with the water flow.		
15.	Estimate the heat transfer rate from a 100 W incandescent bulb at		
	140°C to an ambient at 24°C.Approximate the bulb as 60 cm		
	diameter sphere. Calculate the percentage of power lost by natural		
	convection.		
	Use following correlation and air properties ;		_
	$Nu = 0.60 (GrPr)^{1/4}$	BTL-5	Evaluating
	The properties of air at 82°C are		
	$v = 21.46 \times 10^{-6} \mathrm{m}^2/\mathrm{s},$		
	$k_{\rm f} = 30.38 \times 10^{-3} { m W/mK},$		
	$\Pr = 0.699.$		
16.	A hot plate 1 m \times 0.5 m at 180°C is kept in still air at 20°C. Find :		A 1 .
	(i) The heat transfer coefficient.	B1T-3	Applying

	(ii) Initial rate of cooling of the plate in °C/min.		
	Mass of the plate is 20 kg and specific heat is 400 J/kg.K. Assume		
	that the 0.5 m sides is vertical.		
17.	Explain the development of hydrodynamic and thermal boundary		
	layers with suitable figure.	BTL-6	Creating
18.	A circular disc heater 0.2 m in diameter is exposed to ambient air at		
	25°C. One surface of the disc is insulated and other surface is		
	maintained at 130°C. Calculate the amount of heat transferred from	BIL-3	Applying
	the disc when it is horizontal with hot surface facing up.		
	PART- C (15 Marks)	1	
1.	A block 10 cm \times 10 cm \times 10 cm in size is suspended in still air at	2	
	10°C with one of its surface in horizontal position. All surfaces of	DTI 1	Demonstrations
	the block are maintained at 150°C. Determine the total heat transfer	BIL-I	Remembering
	rate from the block.	0	
2.	A 15 cm outer diameter steel pipe lines 2 m vertically and 8 m	5	
	horizontally in a large room with an ambient temperature of 30 C. If	1.1	
	the pipe surface is at 250 C and emissivity of steel is 0.60, Calculate		
1	the total rate of heat loss from the pipe to the atmosphere. Properties	BTL-3	Applying
5	of air at 140 C are ρ = 0.854 kg/m ³ , c _p = 1.01 kJ/kg K, k=0.035		
	W/m K, Pr=0.6 <mark>84 and</mark> v=27.8x10 ⁻⁶ m ² /s.		
3.	Air at 20 C and a pressure of 1 bar is flowing over a flat plate at a		
	velocity of 3 m/s. If the plate is 280 mm wide and at 5 <mark>6 C, estim</mark> ate		
	the following quantities at $x = 280$ mm, given that the properties of		
	air at the bulk mean temperature of 38 C are : $\rho = 1.1374$ kg/m ³ ,		
	k =0.02732 W/m K, c_p = 1.005 kJ/Kg K, and v = 16.768 x 10 $^{-6}$ m ² /s:		
	(i) boundary layer thickness, (ii) local friction coefficient, (iii)		
	average friction coefficient, (iv) shearing stress due to friction, (v)	BTL-4	Analyzing
	thickness of thermal boundary layer, (vi) local convective heat		
	transfer coefficient, (vii) average convective heat transfer		
	coefficient, (viii) rate of heat transfer by convection, (ix) total drag		
	force on the plate, and (x) local mass flow rate through the		
	boundary.		
4.	Beer cans (diameter 65 mm, length 150 mm) are to be cooled from		
	an initial temperature of 20°C by placing them in a bottle cooler	BTL-2	Understanding
	with an ambient air temperature of 1°C. Compare the initial cooling		

rates, when the cans are laid horizontally, to when they are laid vertically.		
A pipe carrying steam runs in a large room and is exposed to air at a		
temperature of 30°C. The pipe surface temperature is 200°C. The	5 (
pipe diameter is 20 cm. If total heat loss rate from the pipe per metre	BTL-4	Analyzing
length is 1.9193 kW/m, determine the pipe surface emissivity.		
	rates, when the cans are laid horizontally, to when they are laid vertically. A pipe carrying steam runs in a large room and is exposed to air at a temperature of 30°C. The pipe surface temperature is 200°C. The pipe diameter is 20 cm. If total heat loss rate from the pipe per metre length is 1.9193 kW/m, determine the pipe surface emissivity.	rates, when the cans are laid horizontally, to when they are laid vertically.rates, when the cans are laid horizontally, to when they are laid vertically.A pipe carrying steam runs in a large room and is exposed to air at a temperature of 30°C. The pipe surface temperature is 200°C. The pipe diameter is 20 cm. If total heat loss rate from the pipe per metre length is 1.9193 kW/m, determine the pipe surface emissivity.BTL-4

UNIT – III PHASE CHANGE HEAT TRANSFER AND HEAT EXCHANGERS

SYLLABUS

Nusselt's theory of condensation- Regimes of Pool boiling and Flow boiling, correlations in boiling and condensation. Heat Exchanger Types - Overall Heat Transfer Coefficient – Fouling Factors-Analysis - LMTD and NTU methods.

	PART- A (2 Marks)				
1.	Explain the assumptions made in Nusselt theory of condensation.	BTL-5	Evaluating		
2.	Explain fouling. How does it affect the rate of heat transfer?	BTL-5	Evaluating		
3.	Compare subcooled or local boiling and saturated boiling.	BTL-4	Analyzing		
4.	Explain the advantage does NTU method have over the LMTD method.	BTL-4	Analyzing		
5.	Describe the different regimes involved in pool boiling.	BTL-4	Analyzing		
6.	Develop the relation for overall heat transfer coefficient in heat exchanger without fouling factor.	BTL-6	Creating		
7.	Define pool boiling . Give an example for it.	BTL-1	Remembering		
8.	Distinguish fin efficiency and fin effectiveness.	BTL-1	Remembering		
9.	Define LMTD of a heat exchanger.	BTL-1	Remembering		
10.	Distinguish pool boiling from forced convection boiling.	BTL-1	Remembering		
11.	Describe the limitation of LMTD method. How is ε-NTU method superior to LMTD method.	BTL-2	Understanding		
12.	Differentiate boiling and condensation.	BTL-2	Understanding		
13.	Show the temperature distribution graph for condensers & evaporators.	BTL-3	Applying		
14.	Explain the excess temperature in boiling.	BTL-5	Evaluating		
15.	What are the factors are involved in designing heat exchangers?	BTL-1	Remembering		
16.	Define flow boiling.	BTL-1	Remembering		
17.	Give an example of non mixing type heat exchangers.	BTL-2	Understanding		
18.	Show the heat flux curve for various regions of flow boiling.	BTL-3	Applying		
19.	Define Film wise condensation.	BTL-1	Remembering		
20.	Define Drop wise condensation.	BTL-1	Remembering		
21.	What is nucleate boiling? Why is it important?	BTL-3	Applying		
22.	Define critical heat flux.	BTL-1	Remembering		
23.	What is condensation number?	BTL-1	Remembering		

24.	What do you mean by fouling factor?	BTL-2	Understanding
25.	Define compact heat exchanger.	BTL-1	Remembering
	PART- B (13 Marks)		
1.	The outer surface of a vertical tube 80 mm in outer diameter and 1		
	m long is exposed to saturated steam at atmospheric pressure. The		
	tube surface is maintained at 50°C by flow of water through the	BTL-4	Analyzing
	tube. What is the rate of heat transfer to coolant and what is the rate		
	of condensation of steam ?		
2.	Dry saturated steam at a pressure of 2.45 bar condenses on the		
	surface of a vertical tube of height 1 m. The tube surface		
	temperature is kept at 117°C. Estimate the thickness of condensate	BTL-3	Applying
	film and local heat transfer coefficient at a distance of 0.2 m from		
	the upper end of the tube.	C.	
3.	A horizontal tube 50 mm in diameter with a surface temperature of	0	
	34°C is exposed to steam at 0.2 bar. Estimate the condensation rate	BTL-2	Understanding
	and heat transfer rate per unit length of the tube.		6
1	Compare the values of heat transfer coefficient for laminer film wise		
4.	condensation when a pipe 6.25 cm in diameter and 1 m long is used		9
-	condensation, when a pipe 0.25 cm in diameter and 1 m long is used	BTL-6	Creating
	asticondenser, when it (1) vertical, (1) norizontal.		
5.	Point out the nucleate boiling and solve the following.		
	A wire of 1 mm diameter and 150 mm length is submerged		
	horizontally in wire at 7 bars. A wire carries a current of 131.5		
	ampere with an applied voltage of 2.15 volt. If the surface of the	BTL-4	Analyzing
	wire maintained at a temperature of 180°C, calculate the heat flux		
	and boiling heat transfer coefficient.		
6.	A steam condenser consist of 16 tubes arranged in 4×4 array. The		
	tubes are 25 mm in diameter and 1.2 m long. Water flows through		
	the tube at 65° C while steam condenses at 75° C over the tube		
	surface. Find the rate of condensation, if tubes are horizontal.	BTL-4	Analyzing
	Take latent heat of steam as 2300 kJ/kg and		
	properties of water at 70°C		
7.	A vertical tube of 50 mm outside diameter and 2 mm long it exposed		
	to steam at atmospheric pressure. The outer surface of the tube is	BTL-4	Analyzing
	maintained at a temperature of 84°C by circulating cold water		

	through the tube. Determine the rate of heat transfer and also		
	condensate mass flow rate.		
8.	Hot oil with a capacity rate of 2500 W/K flows through the double		
	pipe heat exchanger. It enters at 360°C and leaves at 300°C.cold		
	fluid enters at 30°C and leaves at 200°C. If the overall heat transfer	BTL-1	Remembering
	coefficient is 800 W/m ² K. Determine the heat exchanger area		
	required for (1) parallel flow and (2)counter flow.		
9.	Describe about the pool boiling regimes of water at atmospheric	DTI 1	Domomboring
	pressure.	BIL-I	Remembering
10.	Steam in a condenser of a steam power plant is to be condensed at a		
	temperature of 30°C with cooling water from a nearby lake, which	2	
	enters the tubes of condenser at 14°C and leaves at 22°C. The	DTL 0	TT 1 / 1
	surface area of the tubes is 45 m^2 and overall heat transfer	BIL-2	Understanding
	coefficient is 2100 W/m ² K. Calculate the mass flow rate of cooling	0	
	water needed and rate of steam condensation in the condenser.	5	
11.	Steam enters a counter flow heat exchanger, dry saturated at 10 bar		5 C
	and leaves at 350°C.The mass flow rate of the steam is 720 kg/min.		111
1	The hot gas enters the exchanger at 650°C with mass flow rate of		9
5	1320 kg/min. If the tubes are 30 mm in diameter and 3 m long,		111
	determine the number of tubes required. Neglect the resistance		
	offered by metallic tubes. Use following data:	BTL-2	Understanding
	For steam $T_{sat} = 180^{\circ}C$ (at 10 bar),		
	$C_{p.s} = 2.71 \text{ kJ/kgK},$		
	$h_i = 600 \text{ W/m}^2 \text{K}$		
	For gas $C_{p,g} = 1 \text{ kJ/kgK}$,		
	$h_0 = 250 \text{ W/m}^2 \text{K}.$		
12.	A counter flow concentric heat exchanger is used to cool the		
	lubricating oil for a large industrial gas turbine engine. The flow rate		
	of cooling water through the inner tube ($d_i = 20 \text{ mm}$) is 0.18 kg/s		
	while the flow rate of oil through the outer annulus $(d_0 = 40 \text{ mm})$ is		
	0.12 kg/s. The inlet and outlet temperature of the oil are 95°C and	BTL-5	Evaluating
	65°C respectively. The water enters at 30°C to the exchanger.		
	Neglecting tube wall thermal resistance, fouling factors and heat		
	loss to the surroundings, calculate the length of the tube. Take the		
	following properties at the bulk mean temperature: Engine oil at		

$\begin{array}{ c c c c c c } & 35^{\circ}\text{C}; \ \text{C}_{p}\text{=}4174 \ \text{J/kg} \ ^{\circ}\text{C}; \ \mu\text{=}725\times10^{-6} \ \text{N-s/m}^{2}; \ \text{k}\text{=}0.625\text{w/m}^{\circ}\text{C}; \\ \text{pr} = 4.85. \end{array}$ $\begin{array}{ c c c c } & 13. & \text{A one tonne window air conditioner removes } 3.5 \ \text{kW heat from a} \\ \text{room and in process, it rejects } 4.2 \ \text{kW heat in an air cooled} \\ \text{condenser. The ambient temperature is } 30^{\circ}\text{C}, \ \text{whereas, the} \\ \text{refrigerant condenser at } 45^{\circ}\text{C}. \ \text{For the condenser, the product of} \\ \text{overall heat transfer coefficient and corresponding area is } 350 \ \text{W/K.} \\ \text{Calculate the temperature rise of air as it flows over the condenser} \\ \text{tubes.} \end{array}$
pr = 4.85.13.A one tonne window air conditioner removes 3.5 kW heat from a room and in process, it rejects 4.2 kW heat in an air cooled condenser. The ambient temperature is 30°C, whereas, the refrigerant condenser at 45°C. For the condenser, the product of overall heat transfer coefficient and corresponding area is 350 W/K. Calculate the temperature rise of air as it flows over the condenser tubes.BTL-4Analyzing
13.A one tonne window air conditioner removes 3.5 kW heat from a room and in process, it rejects 4.2 kW heat in an air cooled condenser. The ambient temperature is 30°C, whereas, the refrigerant condenser at 45°C. For the condenser, the product of overall heat transfer coefficient and corresponding area is 350 W/K. Calculate the temperature rise of air as it flows over the condenser tubes.BTL-4Analyzing
room and in process, it rejects 4.2 kW heat in an air cooled condenser. The ambient temperature is 30°C, whereas, the refrigerant condenser at 45°C. For the condenser, the product of overall heat transfer coefficient and corresponding area is 350 W/K. Calculate the temperature rise of air as it flows over the condenser tubes.
condenser. The ambient temperature is 30°C, whereas, the refrigerant condenser at 45°C. For the condenser, the product of overall heat transfer coefficient and corresponding area is 350 W/K. Calculate the temperature rise of air as it flows over the condenser tubes.BTL-4Analyzing
refrigerant condenser at 45°C. For the condenser, the product of overall heat transfer coefficient and corresponding area is 350 W/K. Calculate the temperature rise of air as it flows over the condenser tubes.
overall heat transfer coefficient and corresponding area is 350 W/K. DTD T Introduced to the temperature rise of air as it flows over the condenser tubes.
Calculate the temperature rise of air as it flows over the condenser tubes.
tubes.
14 Hot oil $(C - 2200 \text{ L/kg K})$ is to be cooled by water $(C - 4180 \text{ L/kg K})$
in a 2shell pass and 12 tube pass heat exchanger. The tubes are thin
walled and are made of copper with a diameter of 1.8 cm. The
length of the each tube pass in the heat exchanger is 3m and the
overall heat transfer coefficient is $340 \text{ W/m}^2 \text{ K}$. Water flows through
the tube at a total rate of 0.1 kg/s and the oil through the shell at a
rate of 0.2 kg/s. The water and the oil enter at 18° C and 160° C
respectively. Determine the rate of heat transfer in the heat
exchanger and the outlet temperature of the water and the oil
exchanger and the outlet temperature of the water and the on.
15. A chemical having specific heat of 3.3 kJ/kgK at a rate of
20,000 kg/h enters a parallel flow heat exchanger at 120°C. The
flow rate of cooling water is 50,000 kg/h with an inlet temperature
of 20°C. The heat transfer area is 10 m ² and overall heat transfer BTL-5 Evaluating
coefficient is 1050 W/m ² K. Find (i) The effectiveness of the heat
exchanger,(ii) Outlet temperature of water and chemical. Take C _p of
water as 4.186 kJ/kgK.
16. In an open heart surgery, under hypothermic conditions, the patient
blood is cooled before the surgery and rewarmed afterwards. It is
proposed that a concentric tube, counter flow heat exchanger of
length 0.5 m be used for this purpose with the thin walled inner tube
having a diameter of 55 mm. If the water at 60°C and 0.10 kg/s is BTL-2 Understanding
used to heat the blood entering the exchanger at 18°C and 0.05 kg/s,
what is the temperature of blood leaving the exchanger ? The overall
heat transfer coefficient is 500 W/m ² K and specific heat of the blood

	is 3500 J/kgK.		
17.	List out the classification of heat exchangers and draw the		
17.	temperature distribution in a condenser and evaporator and drive the		
	expression for effectiveness of parallel flow heat exchanger by NTU	BTL-1	Remembering
	method		
18	Calculate for the following cases, the surface area required for the		
10.	heat exchanger which is required to cool 3200 kg/hr of benzene		
	(C = 1.74 kJ/kg K) from 72°C to 42°C. The cooling water (C ₂ =4.18		
	$(C_p=1.14 \text{ KJ/kg K})$ from 72 C to 42 C. The coording water $(C_p=4.18 \text{ KJ/kg °C})$ at 15°C has a flow rate of 2200 kg/hr		
	kj/kg C) at 15 C has a now rate of 2200 kg/m.		
	(i) single pass counter flow	BTL-1	Remembering
	(ii) 1-4 heat exchanger (one-shell pass and four -tube passes) and	0	
	(iii) Cross flow single pass with water mixed and benzene	0	
	unmixed. Assume all the cases U=0.28 kW/m ² K.	1	
		_	10 ¹⁰ -
1	PARI-C (IS Marks)		77
1.	A condenser is designed to condense 500 kg/h of dry and saturated		0
-	steam at 0.1 bar. A square array of 400 tubes, 6 mm in diameter is	BTL-2	Understanding
-	used. The tube surface is maintained at 24°C by flowing water.		C.
	Calculate the heat transfer coefficient and length of the each tube.		
2.	A vertical plate 2.8 m high is maintained at 54°C in the presence of		
	saturated steam at atmospheric pressure. Estimate the heat transfer	BTL-3	Applying
	rate per unit width.		
3.	A 1-shell-2-tube steam condenser consists of 3000 brass tubes of 20		
	mm diameter. Cooling water enters the tube at 20°C with a mean		
	flow rate of 3000 kg/s. The heat transfer coefficient for condensation		
	on the outer surfaces of the tube is $15500 \text{ W/m}^2\text{K}$. If the heat load of		
	the condenser is 2.3×10^8 W when the steam condenses at 50°C		
	determine	BTL-4	Analyzing
	(a) the outlet temperature of the cooling water.	DIL	7 mary 2mg
	(b) the overall heat transfer coefficient.		
	(c) the tube length per pass using the NTU method.		
	(d) the rate of condensation of steam if $h_{fg} = 2380 \text{ kJ/kg}$.		

4.	A simple heat exchanger consisting of two concentric flow passages		
	is used for heating 1110 kg/h of oil (sp. heat = 2.1 kJ/kgK) from a		
	temperature of 27°C to 49°C. The oil flows through the inner pipe		
	made of copper (O.D. = 2.86 cm, I.D. = 2.54 cm) and the surface		
	heat transfer coefficient on the oil side is 635 W/m^2K . The oil is		Analyzing
	heated by hot water supplied at the rate of 390 kg/h and at an inlet	BTL-4	
	temperature of 93°C. The water side heat transfer coefficient is		
	1270 W/m ² K. Take the thermal conductivity of copper to be		
	350 W/mK and the fouling factors on the oil and water sides to be		
	0.0001 and 0.0004 $m^{2}K/W$. What is the length of the heat exchanger		
	for : (i) parallel flow, and (ii) counter flow ?	2	
5.	A counter flow heat exchanger is used to heat air entering at 400°C	-	
	with a flow rate of 6 kg/s by exhaust gas entering at 800°C with a	C	
	with a flow rate of 6 kg/s by exhaust gas entering at 800°C with a flow rate of 4 kg/s. The overall heat transfer coefficient is 100	0	
	with a flow rate of 6 kg/s by exhaust gas entering at 800°C with a flow rate of 4 kg/s. The overall heat transfer coefficient is 100 W/m^2K and the outlet temperature of air is 551.5°C. The specific	0	
	with a flow rate of 6 kg/s by exhaust gas entering at 800°C with a flow rate of 4 kg/s. The overall heat transfer coefficient is 100 W/m ² K and the outlet temperature of air is 551.5°C. The specific heat at constant pressure for both air and exhaust gas can be taken as	BTL-1	Remembering
	with a flow rate of 6 kg/s by exhaust gas entering at 800°C with a flow rate of 4 kg/s. The overall heat transfer coefficient is 100 W/m ² K and the outlet temperature of air is 551.5°C. The specific heat at constant pressure for both air and exhaust gas can be taken as 1100 J/kgK. Calculate :(i) Heat transfer area needed,(ii) Number of	BTL-1	Remembering
1	with a flow rate of 6 kg/s by exhaust gas entering at 800°C with a flow rate of 4 kg/s. The overall heat transfer coefficient is 100 W/m ² K and the outlet temperature of air is 551.5°C. The specific heat at constant pressure for both air and exhaust gas can be taken as 1100 J/kgK. Calculate :(i) Heat transfer area needed,(ii) Number of transfer units.	BTL-1	Remembering
	with a flow rate of 6 kg/s by exhaust gas entering at 800°C with a flow rate of 4 kg/s. The overall heat transfer coefficient is 100 W/m ² K and the outlet temperature of air is 551.5°C. The specific heat at constant pressure for both air and exhaust gas can be taken as 1100 J/kgK. Calculate :(i) Heat transfer area needed,(ii) Number of transfer units.	BTL-1	Remembering

	UNIT – IV RADIATION			
	SYLLABUS			
Radia	tion laws - Black Body and Gray body Radiation - Shape Factor - Elect	rical Ana	logy. Radiation	
Shield	ds- Radiation through gases.			
	PART- A (2 Marks)			
1.	What are the factors involved in radiation by a body.	BTL-1	Remembering	
2.	List out the use of radiation shield.	BTL-1	Remembering	
3.	What is thermal radiation? What is its wavelength band?	BTL-2	Understanding	
4.	How a radiation gas differs from solids?	BTL-2	Understanding	
5.	Differentiate Opaque body & perfectly transparent surface.	BTL-3	Applying	
6.	Explain black body radiation. SRM	BTL-5	Evaluating	
7.	Explain emissive power and pronochromatic emissivity.	BTL-5	Evaluating	
8.	Compare irradiation and radiosity.	BTL-4	Analyzing	
9.	Write down the heat transfer equation for Radiant exchange between		Analyzing	
	infinite parallel gray planes.	DIL-4	g	
10.	List out any two shape factor algebra.	BTL-1	Remembering	
11.	Define Planck's distribution law.	BTL-1	Remembering	
12.	Define Wien's distribution law.	BTL-1	Remembering	
13.	Describe Emissivity of a surface.	BTL-2	Understanding	
14.	Define Reflectivity.	BTL-1	Remembering	
15.	What is Radiation Shield?	BTL-1	Remembering	
16.	Define Radiation heat transfer.	BTL-1	Remembering	
17.	What is Intensity of radiation?	BTL-3	Remembering	
18.	Explain Shape factor.	BTL-5	Evaluating	
19.	Formulate the equation for radiation between two gray bodies.	BTL-6	Creating	
20.	Distinguish between Absorptivity & Transmitivity of radiation.	BTL-2	Understanding	
21.	Define infrared and ultraviolet radiation.	BTL-1	Remembering	
22.	State Lambert's cosine law.	BTL-1	Remembering	
23.	Discuss the radiation characteristics of carbon dioxide and water		Creating	
	vapour.	BTL-6	Cicaning	
24.	What does the view factor represent? When is the view factor from a		Understanding	
	surface to itself is not zero?	BTL-2	Understanding	
25.	Define electrical analogy.	BTL-1	Remembering	

	PART- B (13 Marks)			
1.	Determine (a) the wavelength at which the spectral emissive power of a tungsten filament at 1400 K is maximum, (b) the spectral emissive power at that wavelength, and (c) the spectral emissive power at 5 μ m.	BTL-3	Applying	
2.	(i) What is view factor and shape factor? (4)	BTL-4	Analyzing	
	(ii) State laws of black body radiation? (4)	BTL-2	Understanding	
	(iii) Two large parallel plates are at temperatures $T_1 = 500$ K and			
	$T_2=300$ K. The emissivity's are $\epsilon_1{=}0.85$ and $\epsilon_2{=}0.90.$ What is the	BTL-5	Evaluating	
	radiation flux between the plates? (5)			
3.	Two very large parallel plates are maintained at a uniform	1		
	temperature of $T_1 = 1000$ K and $T_2 = 800$ K and have emissivity's of			
	$\varepsilon_1 = \varepsilon_2 = 0.2$, respectively. It is desire to reduce the net rate of	C.		
	radiation heat transfer between the two plates to one-fifth by placing	BTL-2	Understanding	
	the thin aluminium sheets with an emissivity of 0.15 on both sides	1		
	between the plates. Determine the number of sheets that need to be			
	inserted.		133	
4.	(i) The spectral emissivity function of an opaque surface at 1000 K		9	
5	is approximated as		111	
	$\mathcal{E}_{\lambda 1}=0.4, 0 \leq \lambda 2 \mu m;$			
	$E_{\lambda 2}$ =0.7, 2 μm ≤ λ 6μm;	BTL-6	Creating	
	$\mathcal{E}_{\lambda 3}=0.3, 6 \ \mu m \leq \lambda \infty.$			
	Determine the average emissivity of the surface and the rate of			
	radiation emission from the surface, in W/m^2 . (6)			
	(ii) Emissivity's of two large parallel plates maintained at 800°C and			
	300°C are 0.3 and 0.5 respectively. Find the net radiant heat	BTL-2	Understanding	
	exchange per meter for these plates? (7)			
5.	A window glass 0.3 cm thick has a monochromatic transmissivity of			
	0.9 in the range of 0.3 μm to 2.5 μm and nearly zero elsewhere.			
	Estimate the total transmissivity of the window for (a) near black	BTL-4	Analyzing	
	solar radiation at 5800 K, and (b) black room radiation at 300 K.			
6.	Two large parallel planes with emissivity 0.6 are at 900 K and			
	300 K. A radiation shield with one side polished and having		TT 1 / 1	
	emissivity of 0.05, while the emissivity of other side is 0.4 is	BTL-2	Understanding	
	proposed to be used. Which side of the shield to face the hotter			

	plane, if the temperature of shield is to be kept minimum? Justify		
	your answer.		
7.	A gray, diffuse opaque surface ($\alpha = 0.8$) is at 100°C and receives an		
	irradiation 1000 W/m ² . If the surface area is 0.1 m^2 . Calculate		
	(i) Radiosity of the surface, and	BTL-3	Applying
	(ii) Net radiative heat transfer rate from the surface.		
	(iii) Calculate above quantities, if surface is black.		
8.	Two parallel plate of size 1.0 m by 1.0 m spaced 0.5 m apart are		
	located in a very large room, the walls of which are maintained at		
	temperature of 27°C. One plate is maintained at a temperature of		
	900°C and the other at 400°C. Theiremissivities are 0.2 and 0.5	BTL-2	Understanding
	respectively. If the plates exchange heat between themselves and		
	surroundings. Find the net heat transfer to each plate and to the	0	
	room. Consider only the plate surfaces facing each other.	0	
9.	Two parallel, infinite gray surfaces are maintained at temperature of	1	
	127°C and 227°C respectively. If the temperature of the hot surface	1.11	
	is increased to 327°C. By what factor is the net radiation exchange	BTL-1	Remembering
1	per unit area increased ? Assume the emissivities of colder and		0
	hotter surfaces to be 0.9 and 0.7, respectively.		m
10.	A cubical room 4 m by 4 m by 4 m is heated through the floor by		
	maintaining it at uniform temperature of 350 K, while side walls are		
	well insulated. The heat loss takes place through the ceiling at 300	BTL-4	Analyzing
	K. Assuming that the all surfaces have an emissivity of 0.8,		
	determine the rate of heat loss by radiation through the ceiling.		
11.	Two parallel discs 50 cm in diameter are spaced 40 cm apart with		
	one disc located directly above the other disc. One disc is		
	maintained at 500°C and other at 227°C. The emissivities of the		
	discs are 0.2 and 0.4, respectively. The curved cylindrical surface		
	approximates a black body and is maintained at a temperature of	BTL-3	Applying
	67°C. Determine the rate of heat loss by radiation from the inside		
	surfaces of each disc, and explain how these surfaces can be		
	maintained at specified temperatures.		
12.	A 12 mm outside diameter pipe carries a cryogenic fluid at 90 K.		
	another pipe of 15 mm outside diameter and 290 K surrounds it	BTL-3	Applying
	coaxially and the space between the pipes is completely evacuated.		

	(i) Determine the radiant heat flow for 3.5 m length of pipe. If the		
	surface emissivity for the both surface is 0.25.		
	(ii) Calculate the percentage reduction in heat flow if a shield of		
	13.5mm diameter and 0.06 surface emissivity is placed between		
	pipes.		
13.	A heater of 1 m diameter is covered by a hemisphere of 4 m		
	diameter. The surface of hemisphere is maintained at 400 K. The		
	emissivity of the surface is 0.8. The heater surface is maintained at		
	1000 K. The remaining base area is open to surroundings at	BTL-1	Remembering
	300 K. The surroundings may be considered black. The emissivity		
	of heater surface is also 0.8. Determine the heat exchange from	6	
	heater to the hemisphere and to the surroundings.		
14.	Identify an expression for heat transfer rate using electrical analogy	0.	
	(i)Without any shield between two parallel plates. (ii)With shield in	BTL-1	Remembering
	between two parallel plates.	1	
15.	A cubical room 4 m by 4 m by 4 m is heated through the ceiling by		
	maintaining it at uniform temperature of 350 K, while walls and the		173
	floor are at 300 K. Assuming that the all surfaces have an emissivity	BTL-3	Applying
	of 0.8, determine the rate of heat loss from ceiling by radiation.		m
16.	A cryogenic fluid flows through a long tube of 20 mm diameter, the		
	outer surface of which is diffuse and gray ($\varepsilon_1 = 0.02$) at 77 K. This		
	tube is concentric with a larger tube of 50 mm diameter, the inner		
	surface of which is diffuse and gray ($\varepsilon_2 = 0.05$) and at 300 K. The		
	space between the surfaces is evacuated. Calculate the heat gain by	BTL-3	Applying
	cryogenic fluid per unit length of tubes. If a thin radiation shield of		
	35 mm diameter ($\varepsilon_3 = 0.02$) both sides is inserted midway between		
	the inner and outer surfaces, calculate the percentage change in heat		
	gain per unit length of the tube.		
17.	A pipe carrying steam having an outside diameter of 20 cm runs in a		
	large room and is exposed to air at a temperature of 30°C. The pipe		
	surface temperature is 400°C. Calculate the heat loss to the		
	surroundings per metre length of pipe due to thermal radiation. The	BTL-4	Analyzing
	emissivity of the pipe surface is 0.8.		
	(i) What would be the loss of heat due to radiation, if the pipe is		

	(ii) What would be the radiation heat transfer from the pipe, if it is		
	enclosed within a square conduit of 0.5 m side of emissivity of 0.9 ?		
18.	A cylindrical rod ($\epsilon = 0.7$) of 50 mm diameter is maintained at		
	1000°C by an electric resistance heating and is kept in a room, the		
	walls ($\epsilon = 0.6$) of which are at 15°C. Determine the energy which		
	must be supplied per metre length of the rod. If an insulated half	BTL-I	Remembering
	circular reflector of 0.45 m diameter is placed around the rod,		
	determine the energy supplied to the rod per metre length.		
	PART- C (15 Marks)		
1.	Calculate the following quantities for an industrial furnace (black		
	body) emitting radiation at 2650°C.	6	
	(i) Spectral emissive power at $\lambda = 1.2 \ \mu m$,	·	
	(ii) Wavelength at which the emissive power is maximum,		
	(iii) Maximum spectral emissive power,	BTL-3	Applying
	(iv) Total emissive power,	15	
	(v) Total emissive power of the furnace, if it is treated as gray and	1.1	
	diffuse body with an emissivity of 0.9.		177
2.	Calculate the net radiant heat exchange per m ² area for two large		9
	parallel plates at temperature of 427 C and 27 C respectively.		111
	ε (hot plate) = 0.9 and ε (cold plate) = 0.6. If a polished aluminium	BTL-3	Applying
	shield is placed between them, find the percentage reduction in the		
	heat transfer, ε (shield) = 0.4.		
3.	A long square duct has its three surfaces 1, 2, and 3 maintained at		
	uniform temperatures of 400 K,500 K and 600 K, respectively, their		
	respective emissivities are 0.9, 1.0 and 0.1. The surface 4 is		
	subjected to a uniform heat flux of 5000 W/m^2 and emissivity of 0.8.	BTL-3	Applying
	Determine the net radiative heat fluxes from surfaces 1, 2, and 3 and		
	temperature of surface 4. Assume all surfaces are gray and diffuse.		
4.	An oven is approximated as a long equilateral triangular duct, which		
	heat surface maintained at a temperature of 1200 K. The other		
	surface is insulated while the third surface is at 500 K. The duct has		
	a width of a 1 m on a side and the heated and insulated surfaces have	BTL-4	Analyzing
	an emissivity of 0.8. The emissivity of the third surface is 0.4. For		
	steady state operation find the rate at which energy must be supplied		
	to the heated side per unit length of the duct to maintained at a		

	temperature at 1200 K. What is the temperature of the insulated		
	surface?		
5.	Two parallel plates 2 m x1m are spaced 1m apart. The plates are at		
	temperatures of 727°C and 227°C and their emissivities are 0.3 and		
	0.5 respectively. The plates are located in a large room, the walls of	BTL-4	Analyzing
	which are at 27°C. Determine the rate of radiant heat loss from each		
	plate and the heat gain by the walls.		

UNIT – V MASS TRANSFER SYLLABUS

Basic Concepts – Diffusion Mass Transfer – Fick's Law of Diffusion – Steady state Molecular Diffusion - Convective Mass Transfer – Momentum, Heat and Mass Transfer Analogy – Convective Mass Transfer Correlations.

PART– A (2 Marks)			
1.	Define Molar concentration.	BTL-1	Remembering
2.	Explain Mass transfer co-efficient.	BTL-2	Understanding
3.	Define Fourier number &Biot number for mass transfer.	BTL-1	Remembering
4.	Define Mass concentration.	BTL-1	Remembering
5.	Define Mole fraction.	BTL-1	Remembering
6.	Evaluate free convective mass transfer.	BTL-5	Evaluating
7.	Give two examples of convective mass transfer.	BTL-3	Applying
8.	Write the physical meaning of Lewis number.	BTL-2	Understanding
9.	Show the analogy of Momentum transfer.	BTL-3	Applying
10.	Show the anology of Heat transfer.	BTL-3	Applying
11.	Define 'Sherwood Number' & Schmidt number.	BTL-1	Remembering
12.	Point out molecular diffusion.	BTL-4	Analyzing
13.	Point out eddy diffusion.	BTL-4	Analyzing
14.	Define forced convective mass transfer.	BTL-1	Remembering
15.	What are the factors considered in evaporation of water into air?	BTL-1	Remembering
16.	Summarize the mass transfer.	BTL-2	Understanding
17.	What is the governing equation for Transient Diffusion?	BTL-1	Remembering
18.	Classify the modes of mass transfer.	BTL-4	Analyzing
19.	State Fick's law of diffusion. Give its expression.	BTL-2	Understanding
20.	Evaluate the convective mass transfer.	BTL-5	Evaluating
21.	Define equimolar counter diffusion.	BTL-1	Remembering
22.	What do you understand by steady state molecular diffusion?	BTL-1	Remembering
23.	Define molar concentration and mass fraction.	BTL-1	Remembering
24.	State the modes of mass transfer with suitable examples.	BTL-2	Understanding
25.	State the generalised mass diffusion equation.	BTL-2	Understanding
PART-B (13 Marks)			
1.	A tank contains a mixture of CO_2 and N_2 in the mole proportion of 0.2 and 0.8 at 1 bar and 290 K. It is connected by a duct of cross-	BTL-6	Creating

	sectional area 0.1 m ² , 0.5 m long to another tank containing mixture		
	of CO_2 and N_2 in the molar proportion of 0.8 and 0.2 respectively		
	Calculate the diffusion rates of CO ₂ and N ₂ .Assume diffusivity		
	coefficient $D_{AB} = 0.17 \times 10^{-4} \text{ m}^2\text{/s}.$		
2.	(i) Analogy between heat and mass transfer. (7)	BTL-2	Understanding
	(ii) Analogy of Mass convection. (6)	BTL-2	Understanding
3.	A vessel contains binary mixture of O2 and N2 with partial pressure		
	in the ratio of 0.21 and 0.79 at 15°C. The total partial pressure of the		Applying
	mixture is 1.1 bar. Calculate the following, Molar concentrations	BTL-3	
	Mass densities Mass fractions & Molar fraction of each species.		
4.	An open pan 20 cm in diameter 20 mm deep is filled with water to a	10	
	level of 10 mm and is exposed to air at 25°C. Assuming mass		
	diffusivity of 0.25×10^{-4} m ² /s, calculate the time required for all the	BTL-4	Analyzing
	water to evaporate.	0	
5.	Paraphrase the followings.	BTL-5	Evaluating
	(i) Fick's law of diffusion (4)	BTL-5	Evaluating
	(ii) Equimolar counter diffusion (4)	DTI 5	Enclose
1	(iii) Evaporation process in the atmosphere (5)	BIL-5	Evaluating
6.	An open pan 20 cm in diameter and 8 cm deep contains water at		000
	25°C and is exposed to dry atmospheric air. If the rate of diffusion		
	od water vapou <mark>r is 8.54 x</mark> 10 ⁻⁴ kg/h estimate the diffusion coefficient	BTL-5	Evaluating
	of water in air.		
7.	A well is 40 m deep and 9 m in diameter is exposed to atmosphere at		
	25°C. The air at the top has relative humidity of 50%. Calculate the		Remembering
	rate of diffusion of water vapour through the wall.	BTL-1	
	Take $D_{AB} = 2.58 \times 10^{-5} \text{ m}^2/\text{s}$, $M_w = 18 \text{ kg/kg-mole}$.		
8.	Estimate the diffusion rate of water from the bottom of the test tube		
	1.5 cm in diameter and 15 cm long into dry atmospheric air at 25°C.	BTL-4	Analyzing
	Take diffusion coefficient of $25.6 \times 10^{-6} \text{ m}^2/\text{s}$.		
9.	A steel sphere of radius 60 mm which is initially at a uniform		
	temperature of 325°C is suddenly exposed to an environment as		
	25°C; with convection heat transfer coefficient 500 W/m^2K	BTL-4	Analyzing
	Calculate the temperature at a radius 36 mm and the heat transferred		
	100 seconds after the sphere is exposed to the environment.		
10.	Air at 25°C and 1 atmospheric pressure, containing small quantities	BTL-3	Applying

	of iodine flows with a velocity of 5 m/s inside a 3 cm inner diameter		
	tube. Determine the mass transfer coefficient from the air stream to		
	the wall surface. Assume D_{AB} (iodine air) = 0.82 x 10 ⁻⁵ m ² /s.		
11.	Air at 35°C and 1 atm flows at a velocity of 60 m/s over		
	(i) a flat plate 0.5 m long		
	(ii) a sphere 5 cm in diameter.	BTL-1	Remembering
	Calculate the mass transfer coefficient of water vapour in air.		
	Neglect the concentration of vapour in air.		
12.	(i) Dry air at 27°C and 1 atm flows over a wet flat plate 50 cm long		
	at a velocity of 50 m/s. To find out the mass transfer coefficient of	BTL-2	Understanding
	water vapour in air at the end of the plate. (10)	c	
	(ii) Summarize about equimolar diffusion. (3)	BTL-2	Understanding
13.	The water in a 5 m x 15 m outdoor swimming pool is maintained at	C	
	a temperature of 27°C. The average ambient temperature and	0	
	relative humidity are 27°C and 40 percent respectively. Assuming a	1	
	wind speed of 2 m/s in the direction of the long side of the pool	BTL-1	Remembering
	estimate the mass transfer coefficient for the evaporation of water		177
1	from the pool surface.		0
14.	Water is available at the bottom of well of 2.5 m diameter and 5 m		(1971)
-	deep. Estimation its diffusion rate in to dry air is $0.0925 \text{ m}^2/\text{h}$ and	BTL-1	Remembering
	the atmospheric pressure is 1.032 bar.		
15.	In a solar pond, the salt is placed at the bottom of the pond 1.5 m		
	deep. The surface is flushed constantly, so that the concentration of		
	salt at the top layer is zero. The salt concentration at the bottom		
	layer is 5 kg-mole/m ³ . Calculate the rate at which salt is washed off	BTL-3	Applying
	at the top at steady state condition per m ² . Take		
	$D_{AB} = 1.24 \times 10^{-9} \text{ m}^2\text{/s.}$ Total concentration = 55.55 kg-mole/m ³ .		
16.	Air at 50°C and 1 atm flow over the surface of a water reservoir at		
	an average velocity of 2.3 m/s. The water surface is 0.65 m long and		
	0.65 m wide. The water surface temperature is estimated at 30°C.		
	The relative humidity of air is 40%. The density of air is	BTL-4	Analyzing
	1.105 kg/m ³ and its viscosity is 1.943 \times 10 ⁻⁵ kg/ms. Calculate the		
	amount of water vapour evaporates per hour per sq.m of water		
	surface and state the direction of diffusion.		
17.	Air at 1 atm, 25°C containing small quantity of iodine flows with a	BTL-4	Analyzing

	velocity of 4 m/s inside a 25 mm diameter tube. Calculate the mass		
	transfer coefficient for iodine transfer from gas stream to the wall		
	surface. If C _m is mean concentration of the iodine in kg-mole/m ³ in		
	air stream, calculate the rate of deposition of iodine on the tube		
	surface, where the iodine concentration is zero.		
18.	Calculate the temperature of dry air at 1 atm, whose wet bulb		
	temperature is 18.3°C. If air stream temperature is 32.2°C and wet		
	bulb temperature remains 18.3°C, what would be the relative	BTL-1	Remembering
	humidity of air stream ? Take $D_{AB} = 0.26 \times 10^{-4} \text{ m}^2/\text{s}$,		
	$\alpha = 0.221 \times 10^{-4} \text{ m}^2/\text{s}$ for air, $C_p = 1.004 \text{ kJ/kg.K.}$		
	PART- C (15 Marks)	6	
1.	A thermometer whose bulb is covered by a wetted cloth reads 20°C		
	when dry air is blown over it. Determine the temperature of the	BTL-4	Analyzing
	air.	0	
2.	A spherical tank of 0.18 m radius made of fused silica has a wall	5	
	thickness of 2.5 mm. It is originally filled with helium at 6 bar gauge	1.1	
	and 0°C. Determine the rate of pressure drop with time at this		177
1	condition due to gas diffusion. $D = 0.04 \times 10^{-12} \text{ m}^2/\text{s}$, the density of	BTL-4	Analyzing
-	gas at the solid surface is given by 18×10^{-9} kg/m ³ Pa. (also termed		111
	solubility).		
3.	Water flows down on the surface of a vertical plate at a rate of		
	0.05 kg/s over a width of 1m. The water film is exposed to pure		
	carbon dioxide. The pressure is 1.013 bar and the temperature is		
	25°C. Water is essentially CO_2 free initially. Determine the rate of		
	absorption of CO ₂ . The molal concentration at this condition for	BTL-5	Evaluating
	CO_2 in water at the surface is 0.0336 kgmol/ m ³ of solution.		
	$D = 1.96 \times 10^{-9} \text{ m}^2/\text{s}$, solution density = 998 kg/m ³ ,		
	$\mu = 0.894 \times 10^{-3}$ kg/ms, G=0.05 kg/ms, L = 1 m. The notation for		
	convective mass transfer coefficient is h _m .		
4.	A square plate of side 1 m has one of its sides coated with		
	napthalene and stands vertically in still air at 53°C. Determine		
	diffusion rate. M = 128, D = $6.11 \times 10^{-6} \text{ m}^2/\text{s}$, kinematic	BTL-4	Analyzing
	visocity = 18.8×10^{-6} , Sc = 3.077. The vapour pressure at 53°C is		
	1.333×10^{-3} bar.R _v = 8315/128=64.91 J/kgK,T=53+273 = 326 K.		
5.	During an experimentation, the flow of dry air at 25°C and 1 atm at	BTL-4	Analyzing

a free stream velocity of 2 m/s over a softdrink bottle covered with a	
layer of wet cloth. It is observed that 15 gram of water has	
evaporated in 15 minutes. The surface area of bottle is 0.3 m^2 . Both	
the body and air are kept at 25° C during study. The vapour pressure	
of water at 25°C is 15 Pa and mass diffusivity of water in air at 25° C	
is $2.5\times 10^{-5}\ m^2/s.$ Calculate heat transfer coefficient under the same	
flow conditions over same geometry.	

