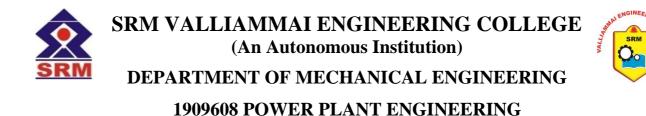
SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution) SRM Nagar, Kattankulathur– 603203.

DEPARTMENT OF MECHANICAL ENGINEERING

QUESTION BANK



VI SEMESTER 1909608 POWER PLANT ENGINEERING Regulation–2019

Academic Year 2022-2023 (Even Semester)

Prepared by

Dr. S. SURESH PUNGAIAH, Assistant Professor (S.G) / MECH

UNIT I - COAL BASED THERMAL POWER PLANTS

Rankine cycle - improvisations, Layout of modern coal power plant, Super Critical Boilers, FBC Boilers, Turbines, Condensers, Steam & Heat rate, Subsystems of thermal power plants – Fuel and ash handling, Draught system, Feed water treatment. Binary Cycles and Cogeneration systems.

PART - A (2 Marks)						
Q.No.	Questions	BT Level	Competence			
1.	Define Compounding of steam turbines.	BT-1	Remembering			
2.	List out the factors with which the unit size of the power plant is being decided.	BT-1	Remembering			
3.	Explain, What do you understand by the term FBC?	BT-2	Understanding			
4.	On what factors does the unit size of a power plant depend?	BT-3	Applying			
5.	What is boiler efficiency?	BT-1	Remembering			
6.	What is super critical boiler?	BT-1	Remembering			
7.	Define supercritical steam cycle.	BT-1	Remembering			
8.	Define condenser efficiency and vacuum efficiency.	BT-1	Remembering			
9.	What is pass-out turbine and when is it used?	BT-3	Applying			
10.	Why thermal power plants are not suitable for supplying fluctuating loads?	BT-3	Applying			
11.	Why majority of coal based thermal power plants are located near seashore?	BT-2	Understanding			
12.	What is stoker? Classify it.	BT-1	Remembering			
13.	Define steam rate and heat rate.	BT-1	Remembering			
14.	Define surface and jet condenser.	BT-1	Remembering			

15.	What are binary cycles? Give one example.	BT-2	Understanding
16.	List the various types of impurities present in feed water.	BT-1	Remembering
17.	Reason out why cogeneration is quite viable in sugar industries compare to that in other industries.	BT-2	Understanding
18.	What are the requirements of a modern surface condenser?	BT-3	Applying
19.	List out the subsystems of thermal power plant.	BT-1	Remembering
20.	List any two advantages of combined cycles.	BT-1	Remembering
21.	What is the mechanism of pulverized fuel firing system?	BT-3	Applying
22.	State the sources of air leakage in condenser.	BT-2	Understanding
23.	List out the major advantages of high pressure boilers in modern thermal power plants.	BT-1	Remembering
24.	What are the factors affecting cooling of water in cooling tower?	BT-3	Applying
25.	State the advantages of balanced draught system.	BT-2	Understanding

	PART - B (13 Marks)			
Q.No.	Questions	Marks	BT Level	Competence
1.	Draw the Reheat Regenerative Rankine cycle of a thermal power plant with P-V and T-S diagram. Write its various formulas.	13	BT-3	Applying
2.	Explain with a neat sketch the working of a thermal electric power plant station and discuss the function of major components in it.	13	BT-4	Analyzing
3.	Draw a line diagram of fluidized bed boiler with a neat sketch. What are the advantages of it?	13	BT-4	Analyzing
4.	Draw a neat diagram of Lamont boiler and explain its working.	13	BT-4	Analyzing
5.	Draw a neat line diagram of Benson boiler and discuss its relative merits and demerits.	13	BT-4	Analyzing
6.	With a neat sketch explain the working principle of Loeffler boiler and discuss its relative merits and demerits.	13	BT-4	Analyzing
7.	Describe briefly the pulverized coal firing system and its relative advantages and disadvantages.	13	BT-6	Creating

8.		Explain abo	ut the modern	ash handling	system with a	neat block	13	BT-2	Understanding
0.		diagram.		ush hundhing	system with a		1.5	L ⁻ L	Understanding
9.		_	principle invol	luad in the pro	paration of coa	l and what	13	BT-2	Understanding
9.		-		-		i and what	15	D1-2	Understanding
10			hods of prepara		11 1/1	1	10		
10.		-		ig system in c	coal based ther	mai power	13	BT-2	Understanding
	(1)	*	neat sketch.				-		
11.	(i)			•••	with a neat sket		6	BT-2	Understanding
	(ii)		-		circulating flu		7	BT-1	Remembering
					uel fired boiler				
12.		Explain abo	ut the cogener	ation plant wi	th neat sketch	and derive	13	BT-2	Understanding
		its efficiency	у.						
13.	(i)	What do you	understand by	y the cogenera	tion of power a	nd process	8	BT-6	Creating
		heat? and Ex	xplain its thern	nodynamic ad	vantage.		2		
	(ii)	Argue: vario	ous steps invol	ved in water t	reatment.		5	BT-5	Evaluating
14.		Define bina	ry cycle? Exp	plain the layo	out and operat	ion of the	13	BT-6	Creating
		mercury-stea	am binary <mark>cyc</mark> l	le power plant	:?		m		
15.		Steam at 10	bar and 0.95	dry is availabl	e. Find the fin	al dryness	13	BT-6	Creating
		fraction of s	steam for each	n of the follo	wing operation	<mark>is, usin</mark> g a	(1)		
		steam table	values.		0				
		160 kJ of he	at is removed	per kg of stea	m at constant p	ressure.			
		It is cooled a	at constant vol	ume till its ter	mperature falls	to 140oC.			
		(Vg = 0.508)	4 m3/kg)						
		Steam expar	nds isentropica	lly in the stear	m turbine deve	loping 200			
		kJ of work p	oer kg of steam	flow and pre	ssure becomes	0.5 bar.			
		Steam table	values:						
		Pressure	hf (kJ/kg)	hfg (kJ/kg)	Vg (m3/kg)]			
		10 bar	762.6	2013.6	0.1943				
		0.5 bar	340.6	2305.4	0.5084				
16.		A steam pov	ver plant opera	tes on a theore	etical reheat cy	cle. Steam	13	BT-5	Evaluating
					through the hig				
				-	ssure of 40 bar	-			
				-	turbine to a cor				
		-	w T-S and h-S	-		actions at			
		0.1 Uai, urav	······································	ulagranis. Th					

	Quality of steam of turbine exhaust			
	Cycle efficiency			
	Steam rate in kg/kW hr.			
17.	Discuss about the different types of cooling towers? Explain	13	BT-2	Understanding
	anyone with a neat sketch.			
18.	Differentiate between forced draught and induced draught cooling	13	BT-5	Evaluating
	tower.			
	PART - C (15 Marks)			
Q. No.	Questions	Marks	BT Level	Competence
1.	Explain about the natural draught system and derive the equation	15	BT-5	Evaluating
	to determine the height of chimney with a neat diagram.	S		
2.	Explain in detailed about the Boiler safety management.	15	BT-4	Analyzing
3.	List out the control and supervisory instruments that are provided	15	BT-5	Evaluating
	for the safe and effective operation of a turbine and write short	m		
	notes about the purpose of each instrument.	G.		
4.	Explain in detailed about the coal based Thermal power stations	15	BT-4	Analyzing
	in Tamil Nadu.			
5.	A steam generator comprises a boiler, a superheater, an	15	BT-6	Creating
	economiser and an air preheater. The feed water enters the			
	economiser at 140OC and leaves as saturated liquid. Air is			
	preheated from a temperature of 25 OC to 250 OC. Steam leaves			
	the boiler drum at 60bar, 0.98 dry and leaves the superheater at			
	450 OC. When using coal with a C.V of 25 MJ/kg, the rate of			
	evaporation is 9 kg steam per kg coal and the air fuel ratio is 15:1			
	by mass. Neglecting heat losses and pressure drops, estimate the			
	heat transfer per kg fuel in each component and the efficiency of			
	the steam generator. What are the percentages of the total heat			
	absorption taking place in the economiser, boiler and the			
	superheater, respectively? Assume Cp of air and water as 1.005			
	and 4.2 kJ/kg K, respectively.			

UNIT-II DIESEL, GAS TURBINE AND COMBINED CYCLE POWER PLANTS

Otto, Diesel, Dual & Brayton Cycle - Analysis & Optimisation. Components of Diesel and Gas Turbine power plants. Combined Cycle Power Plants. Integrated Gasifier based Combined Cycle systems.

Q.No.	Questions		Competence
-		Level	_
1.	What is a diesel engine?	BT-1	Remembering
2.	What are the applications of diesel engine power plant?	BT-3	Applying
3.	What are the different types of engines used in diesel power plant?	BT-2	Understanding
4.	Mention the major difference between otto cycle and diesel cycle.	BT-2	Understanding
5.	What is the duty of the air intake system in a diesel engine power plant?	BT-2	Understanding
6.	Define break thermal efficiency.	BT-1	Remembering
7.	What is cycle? What is the difference between an ideal and actual cycle?	BT-2	Understanding
8.	Draw a P-V and T-S diagram for Otto cycle.	BT-3	Applying
9.	Justify: Auxiliary power consumption of Brayton cycle is almost twice	BT-3	Applying
	that of Rankine cycle despite the thermodynamic processes adopted are		
	similar.		
10.	Show that the efficiency of the Otto cycle depends only on the	BT-2	Understanding
	compression ratio.		
11.	State the four processes of the Dual cycle.	BT-1	Remembering
12.	Draw the P-V diagram and T-S diagram of dual cycle.	BT-3	Applying
13.	List down the various processes of the Brayton cycle.	BT-2	Understanding
14.	Define IGCC.	BT-1	Remembering
15.	Why, the maximum cycle temperature of gas turbine plant much lower	BT-5	Evaluating
	than that of diesel power plant?		

16.	Classify the types of combined cycle plants.	BT-2	Understanding
17.	What are the advantages of combined cycles?	BT-1	Remembering
18.	What is reheating and regeneration of gas turbine?	BT-3	Applying
19.	Mention the methods of improving a simple gas turbine cycle efficiency?	BT-1	Remembering
20.	What are the advantages of closed cycle gas turbine over open cycle gas turbine ?	BT-1	Remembering
21.	What are the applications of gas turbine power plants?	BT-3	Applying
22.	Mention any two drawbacks of a stationary gas turbine power plant for generation of electricity.	BT-3	Applying
23.	What are the pollutants present in the gas turbine exhaust?	BT-1	Remembering
24.	What is integrated gasification combined cycle?	BT-2	Understanding
25.	Point out the term repowering.	BT-1	Remembering
		0	

	PART - <mark>B (13 Marks</mark>)		m	
Q.No.	Questions	Marks	BT Level	Competence
1.	Explain about the working process of Diesel power plant with a neat layout of all systems.	13	BT-6	Creating
2.	Write a detailed note on fuel injection system of diesel power plant with a neat sketch of CRDI.	13	BT-4	Analyzing
3. (i)	Explain: how do you select an engine for a diesel power plant and briefly explain its components with a neat sketch?	7	BT-4	Analyzing
(ii)	What are the factors to be considered for selecting the site of a diesel engine power plant?	6	BT-4	Analyzing
4.	A 2-cylinder CI engine with a compression ratio of 13:1 and cylinder dimensions of 200 mm x 250 mm works on two stroke cycle and consumes 14 kg/hr of fuel while running at 300 rpm. The relative and mechanical efficiencies of engine are 65% and 76% respectively. The fuel injection is effected	13	BT-5	Evaluating

			-	
	up to 5% of stroke. If the calorific value of the used is given			
	as 41800 kJ/kg. Calculate the mean effective pressure			
	developed.			
5.	An air standard diesel cycle has a compression ratio of 16.	13	BT-5	Evaluating
	The temperature before compression is 27oC and the			
	temperature after expansion is 627oC. Determine network			
	output per unit mass of air, thermal efficiency and specific air			
	consumption in kg/kWh.			
6.	Explain how reheating and regenerating improves the	13	BT-4	Analyzing
	efficiency gas turbine plant P-V & T-S diagram and also			
	its performance characteristics.			
7.	A four stroke diesel engine has a piston diameter of 16.5 cm	13	BT-2	Understanding
	and a stroke of 27 cm. The compression ratio is 14:3, the cut-	0		
	off value is 4.23% of the stroke and the mean effective		2	
	pressure is 4.12 bar. The engine speed is 264 rpm and the fuel		5	
	consumption is 1.076 kg per hour, having a calorific value of		m	
	39150 kJ/kg. Calculate the relative efficiency of the engine.		G	
8.	With an aid of a block diagram, explain the working of open	13	BT-3	Applying
	cycle and closed cycle Gas turbine power plant and discuss its			
	advantages and disadvantages.			
9.	What are the essential fe <mark>atures of</mark> gas turbine blades? How are	13	BT-5	Evaluating
	the blades are cooled?			
10. (i)	Explain the use of coal in a combined cycle plant.	8	BT-4	Analyzing
(ii)	What is the environmental impact of a combined cycle plant?	5	BT-1	Remembering
11.	How can a combined cycle plant to be used for Cogeneration?	13	BT-4	Analyzing
	What is its thermodynamic advantage?			
12.	Explain in detail about the construction and working of	13	BT-5	Evaluating
	Integrated Gasifier based Combined Cycle (IGCC) with a neat			
	sketch.			
13.	A gas turbine unit has a pressure ratio of 6:1 and maximum	13	BT-3	Applying
	cycle temperature of 610oC. The isentropic efficiencies of the			
	compressor and turbine are 0.80 and 0.82 respectively.			
	·	•		

	thermoelectric - steam power plant.			
17.	With a neat diagram, explain the working principle of the	13	BT-5	Evaluating
	combined MHD and steam open cycle power plant.			
16.	With a neat diagram, explain the working principle of the	13	BT-5	Evaluating
	= 1.33 for exhaust gases]			
	[Take Cp = 1.0 kJ/kg K, γ =1.4 for air Cp = 1.15 kJ/kg K, γ			
	Mass flow rate			
	Work ratio of the plant			
	Thermal efficiency			
	compute			
	and compressor turbine shaft. Neglecting other losses,			
	Assume a mechanical efficiency of 93% for both power shaft	2		
	turbine stage is 0.85. The heat exchanger thermal ratio is 0.8.			
	efficiency of each compressor stage is 0.8 and that of each			
	stages. The air inlet temperature is 20oC. The isentropic			
	equal pressure ratios and intercooling is complete between the		m	
	leaving the HP stage compressor. The compressors have		0	
	turbine are passed through a heat exchange to heat the air		EG	
	to the HP turbine is 6250C. The exhaust gases leaving the LP		5	
	turbine drives the generator. The temperature of gases at entry		D	
	pressure turbine drives the compressor while the low pressure	0		
10,	compressor stages. The overall pressure ratio is 9:1. The high			
15.	A 4.5 MW gas turbine generating set operates with two	13	BT-6	Creating
	possesses?			
17,	compressors. What properties should the blade material	15	J1-J	
14.	Discuss the materials which are used for gas turbines and	13	BT-5	Evaluating
	expansion process.			
	process and take Cp = 1.11 kJ / kg K and γ = 1.333 for the			
	Take Cp = 1.005 kJ / kg K and γ = 1.4 for the compression			
	compressor at 15oC at the rate of 16 kg/s.			
	generator geared to the turbine when the air enters the			
	Calculate the power output in kilowatts of an electric			

18.		Discuss briefly the methods employed for improvement of	13	BT-4	Analyzing
		thermal efficiency of open gas turbine power plant.			
		PART - C (15 Marks)			
Q.	No.	Questions	Marks	BT Level	Competence
1.		Compare Thermal, Diesel, and gas turbine power plants.	15	BT- 4	Analyzing
2.	(i)	In a CI engine working on dual combustion cycle, the pressure	12	BT-6	Creating
		and temperature at the start of compression 1 bar and 27oC			
		respectively at the end of compression the pressure reaches			
		value of 30 bar. 500 kJ of heat is supplied per kg of air during	10		
		constant volume heating and pressure become 2.8 bar at the	6		
		end of adiabatic expansion. Find the ideal thermal efficiency.	5	0	
		Take Cp = 1.003 kJ/kg K, Cv = 0.713 kJ/kg K and $\gamma = 1.4$.		1	
	(ii)	What are the applications of diesel power plant?	3	BT-1	Remembering
3.		Air enters the compressor of a gas turbine plant operating on	15	BT-5	Evaluating
		Brayton cycle at 101.32 <mark>5 kPa, 270C. The pressure ratio in the</mark>		9	
		cycle is 8. Calculate the maximum temperature in the cycle		111	
		and the cycle efficiency. Assume WT=2.5WC, where WT and			
		WC are the turbine and the compressor work respectively.			
		Take γ =1.4.			
1.		Explain the various methods to improve the gas turbine power	15	BT- 4	Analyzing
		plant efficiencies with a neat sketch.			
5.		Discuss the wet sump lubrication system and dry sump	15	BT- 4	Analyzing
		lubrication system pertaining to reducing noise a diesel			
		engine.			

UNIT III-NUCLEAR POWER PLANTS

Basics of Nuclear Engineering, Layout and subsystems of Nuclear Power Plants, Working of Nuclear Reactors : Boiling Water Reactor (BWR), Pressurized Water Reactor (PWR), CANada Deuterium Uranium reactor (CANDU), Breeder, Gas Cooled and Liquid Metal Cooled Reactors. Safety measures for Nuclear Power plants.

	PART - A (2 Marks)		
Q. No.	Questions	BT Level	Competence
1.	Generalize the fuels used in nuclear power plants.	BT-3	Applying
2.	Define "electron volt" with reference to nuclear power plant.	BT-2	Understanding
3.	List out the important components of a nuclear reactor.	BT-1	Remembering
4.	Describe a chain reaction.	BT-2	Understanding
5.	Give typical examples of control rods.	BT-3	Applying
6.	Describe the functions of control rods in nuclear reactor.	BT-2	Understanding
7.	List out the desirable properties of a coolant.	BT-1	Remembering
8.	Justifying the function of cladding. What are the criteria for selecting cladding?	BT-4	Analyzing
9.	Generalise the factors those are to be considered for the design of a nuclear power reactor.	BT-3	Applying
10.	What do you understand by "Radioactive decay" and "half-life"?	BT-2	Understanding
11.	Define the term "Breeding".	BT-1	Remembering
12.	What are breeder reactors?	BT-3	Applying
13.	Name the coolants commonly used for fast breeder reactors.	BT-3	Applying
14.	What is nuclear waste?	BT-1	Remembering
15.	Discuss the factors which control the selection of a particular type of reactor.	BT-2	Understanding
16.	Write the comparison between fission and fusion.	BT-6	Creating

17.	Point out the functions of	BT-1	Remembering		
18.	What is a CANDU type		BT-1	Remembering	
19.	Why the pressurised he India ?	eactor in	BT-2	Understanding	
20.	What is meant by breed	ng ratio? Discuss.		BT-1	Remembering
21.	What are the condition process?	ns to be satisfied to sustain nuclear	r fission	BT-2	Understanding
22.	What is four factor form	ula and write the purpose of it.		BT-3	Applying
23.	What is shielding of a n	uclear reactor necessary?		BT-2	Understanding
24.	List down the basic fact a nuclear power reactor.	lesign of	BT-1	Remembering	
25.	How can you cater for s	afety of nuclear power plant?		BT-3	Applying
	1	CDM		5	
		PART - B (13 Marks)			
Q.No.	VA	Questions	Marks	BT Level	Competence
1.	Explain the following number, iii) Mass defect	terms. i) Mass number, ii) Atomic , iv) Binding energy.	13	BT-5	Evaluating
2.	Explain fission and fus reaction? Explain how i	on reactions with an example chain is maintained?	13	BT-4	Analyzing
3.	What do you understand	by radioactive decay and half-life?	13	BT-5	Evaluating
4.	What is the difference chain reaction? Explain	BT-4	Analyzing		
5.	Explain inelastic and e energy decrement?	BT-5	Evaluating		
6.	Write short notes about reactors	BT-4	Analyzing		
7.	Explain the construction with a neat layout.	and working of Nuclear power plant	13	BT-1	Remembering

			BT	
	PART - C (15 Marks)			
	power plant.			
18.	Discuss about the safety measures adopted in modern nuclear	13	BT-5	Evaluating
(ii)	Explain with a neat sketch of the indirect gas cooled reactor.	6	BT-4	Analyzing
	system.			
17. (i)	Explain with a neat sketch of the vapour type pressurizer	7	BT-3	Applying
	moderating power and moderating ratio.			
16.	Explain radioactive decay and half-life of nuclear fuels and	13	BT-5	Evaluating
	disadvantages		100	
	With a neat sketch and list out the advantages and		0	
15.	Explain the CANada Deuterium- Uranium reactor (CANDU).	13	BT-4	Analyzing
	discuss the advantages of it.		5	
14.	Explain liquid metal cooled reactors with a neat sketch and	13	BT-5	Evaluating
4.4	neat sketch and discuss the advantages of it.			
13.	Describe the working principle of gas cooled reactor with a	13	BT-3	Applying
12	materials.	12		A 1 '
	CINC INC.			
12.	Generalize the Safety measures for nuclear power plants. And write a short notes on the hazardous effects of nuclear	15	01-0	Creating
11.	Explain the working principle of a BWR with a neat sketch	13	ВТ-3 ВТ-6	Applying
11.		13	BT-3	Applying
10.	nuclear reactor. Describe briefly the functions of each parts.	15	D1-0	Creating
10.	With the help of a sketch, show all the important parts of	13	BT-6	Creating
).	distinguish between PWR and BWR	15	D1-5	Lvaluating
9.	disadvantages Explain the working process of PWR with a neat sketch and	13	BT-5	Evaluating
	power plant, with neat diagram. List out the advantages and			
	Explain the working of a typical fast breeder nuclear reactor		BT-4	Analyzing

4.	Give a detailed note on nuclear power plant waste 15 management.	BT-4	Analyzing
5.	What is an LMFBR? Why is a liquid metal the preferred 15 coolant in a fast reactor? What is its drawback?	BT-6	Creating
	UNIT IV - POWER FROM RENEWABLE ENERG	Y	
Hydro Ele	ectric Power Plants - Classification, Typical Layout and associated comp	ponents i	ncluding Turbines
Principle,	Construction and working of Wind, Tidal, Solar Photo Voltaic (SPV), So	olar Thei	mal, Geo Therma
Biogas an	d Fuel Cell power systems.		
	alt		
	PART - A (2 Marks)		
Q. No.	Questions	BT	Competence
X , 1101		Level	
1.	Define hydrology.	BT-1	Remembering
2.	What are the main components of a Hydel power plant?	BT-1	Remembering
3.	What is spillway?	BT-2	Understanding
4.	Name the methods by which water heads are measured for a layout of Hydel power plants.	BT-1	Remembering
5.	Describe salt gulp method.	BT-1	Remembering
6.	Name some typical components of a wind mill.	BT-1	Remembering
7.	What do you understand by tip-speed ratio?	BT-2	Understanding
8.	List out the advantages of tidal power plants over Hydel power plant?	BT-1	Remembering
9.	What are the limitations of tidal power plant?	BT-3	Applying
10.	Define tidal range (R).	BT-2	Understanding
11.	How are winds formed?	BT-2	Understanding
12.	Mention the various advantages of wind power.	BT-3	Applying
13.	What is a solar cell?	BT-1	Remembering

	1					1
14.	List the methods of solar	BT-3	Applying			
15.	Point out the applications	BT-2	Understanding			
16.	Give the significance of s	olar thermal energy.			BT-2	Understanding
17.	What is geothermal energ	y? Mention its applications.			BT-3	Applying
18.	Classify the different type	es of geothermal fluids.			BT-3	Applying
10			1 :			
19.	earth?	geothermal energy stored de	eply in	side the	BT-3	Applying
20.	Point out the concept of b	viogas technology.			BT-2	Understanding
21.	List out the methods of so		BT-1	Remembering		
22.	What if fuel cell?	G	BT-1	Remembering		
23.	Explain how a fuel cell w	BT-2	Understanding			
24.	Name the different types	of fuel cells.			BT-2	Understanding
25.	What is a FCEV?	SIVIN		-	BT-1	Remembering
20.	What is a relive.				-	U
20.		52			G	
<i></i>		PART - B (13 Marks)			GE	
<u> </u>		PART - B (13 Marks))		C m	
Q.No.	S	PART - B (13 Marks) Questions	,	Marks	BT Level	Competence
	5			Marks 13	BT	Competence Create
Q.No.	A pelton wheel has to	Questions	owing		BT Level	
Q.No.	A pelton wheel has to specifications. Power to b	Questions be designed for the follo	owing thead		BT Level	
Q.No.	A pelton wheel has to specifications. Power to b available = 300 m. Speed	Questions be designed for the follo be developed = 6000kW. Net	owing thead eter to		BT Level	
Q.No.	A pelton wheel has to specifications. Power to b available = 300 m. Speed wheel diameter = 1/10. Hy	Questions be designed for the follo be developed = 6000kW. Net l=550 rpm. Ratio of jet diame	owing thead eter to uming		BT Level	
Q.No.	A pelton wheel has to specifications. Power to b available = 300 m. Speed wheel diameter = 1/10. Hy the velocity coefficient C	Questions be designed for the follo be developed = 6000kW. Net l=550 rpm. Ratio of jet diame ydraulic efficiency = 0.9. Assu	owing thead eter to uming 0.46,		BT Level	
Q.No.	A pelton wheel has to specifications. Power to b available = 300 m. Speed wheel diameter = 1/10. Hy the velocity coefficient C find (a) the number of	Questions be designed for the follo be developed = 6000kW. Net l=550 rpm. Ratio of jet diame ydraulic efficiency = 0.9. Assu	owing t head eter to uming 0.46, et (c)		BT Level	
Q.No.	A pelton wheel has to specifications. Power to b available = 300 m. Speed wheel diameter = 1/10. Hy the velocity coefficient C find (a) the number of diameter of the wheel and	Questions be designed for the follo be developed = 6000kW. Net l=550 rpm. Ratio of jet diame ydraulic efficiency = 0.9. Assu Cv = 0.98 and speed ratio f = jets (b) diameter of each jet	owing thead eter to uming 0.46, et (c) uired.		BT Level	
Q.No. 1.	A pelton wheel has to specifications. Power to b available = 300 m. Speed wheel diameter = 1/10. Hy the velocity coefficient C find (a) the number of diameter of the wheel and Sketch the layout of hyd	Questions be designed for the follo be developed = 6000kW. Net l=550 rpm. Ratio of jet diame ydraulic efficiency = 0.9. Assu Cv = 0.98 and speed ratio f = jets (b) diameter of each jet l (d) the quantity of water requ	owing t head eter to uming 0.46, et (c) uired. xplain	13	BT-6	Create
Q.No. 1.	A pelton wheel has to specifications. Power to b available = 300 m. Speed wheel diameter = 1/10. Hy the velocity coefficient C find (a) the number of diameter of the wheel and Sketch the layout of hyd	Questions be designed for the follo be developed = 6000kW. Net l=550 rpm. Ratio of jet diame ydraulic efficiency = 0.9. Assu Cv = 0.98 and speed ratio f = jets (b) diameter of each jet (d) the quantity of water require roelectric power plant and exponent in it. List out the advart	owing t head eter to uming 0.46, et (c) uired. xplain	13	BT-6	Create

3.	What are the factors to be considered while selecting a site	13	BT-3	Applying
	for hydroelectric power plant and the selection factors of a			
	hydraulic turbine.			
4.	Sketch and explain the two pool tidal power plant and What	13	BT-2	Understanding
	are the different types of tidal power plants?			
5.	What are the factors to be considered while governing the	13	BT-5	Evaluating
	selection of a suitable type of turbine?			
6.	How are dams classified? What are the factors to be	13	BT-6	Create
	considered in selecting a type of dams?			
7.	Briefly explain the low temperature system with flat plate	13	BT-5	Evaluating
	collector in solar power plant.			
8.	Explain with a neat diagram of wind electric generating	13	BT-5	Evaluating
	power plant and the various types of wind energy system.	5		
9.	Write down the factors to be considered for selecting site to	13	BT-3	Applying
	install wind mills.		<	
10.	Explain the construction and working of geo thermal power	13	BT-5	Evaluating
	plant.		m	
11. (i)	The wind velocity is 10 m/s at 22oC. The turbine diameter is	6	BT-3	Applying
	10 m. The wind machine operates at 35 rpm at a peak		111	
	efficiency of 40%. Compute the following (i) Total power			
	density of wind stream (ii) Actual power density (iii) Turbine			
	power output.			
(ii)	Describe the energy generation cycle of 'Single basin single	7	BT-4	Analyzing
	effect' and single basin double effect' systems.			
12.	Enumerate and explain the various types of prime movers	13	BT-4	Analyzing
	used in geothermal energy conversion systems.			
13.	What is a SPV power plant and Explain in detail how power	13	BT-4	Analyzing
	is produced in a SPV power plant and List out the advantages			
	and disadvantages			
14.	Explain the method of power generation using biogas with a	13	BT-5	Evaluating
	neat sketch			
15.	What is a fuel cell? Explain its working using a block	13	BT-3	Applying
	diagram and generalised concept of a fuel cell as a power			
	plant.			

16	Evaluin the animainly construction and marking of a tidal	12	DT 5	Evolution
16.	Explain the principle, construction and working of a tidal	13	BT-5	Evaluating
	power plant and List out the advantages and disadvantages.			
17.	Explain the principle, construction and working of a wind	13	BT-4	Analyzing
	power plant and List out the advantages and disadvantages.			
18.	What is meant by pumped storage plant? Discuss its	13	BT-5	Evaluating
	advantage and disadvantages.			
	PART - C (15 Marks)			
Q.No.	Questions	Marks	BT	Competence
Q.110.			Level	p
1.	List out the future scope for renewable energy power plants	15	BT-6	Create
	in India.	G		
2.	Explain various renewable energy power plants in Tamil	15	BT-4	Analyzing
	Nadu.		D	
3.	Write a short note on various geothermal energy systems in	15	BT-4	Analyzing
	India and abroad.		-	
4.	List out the various government subsidy and schemes for	15	BT-5	Evaluating
	renewable energy plants in India.		m	
5.	"Solar thermal power cycles can be broadly classified into	15	BT-5	Evaluating
	low, medium and high temperature cycles". Elaborate this			
	statement with suitable examples and relevant sketches.			
			I	1

UNIT V - ENERGY, ECONOMIC AND ENVIRONMENTAL ISSUES OF POWER PLANTS

Power tariff types, Load distribution parameters, load curve, Comparison of site selection criteria, relative merits & demerits, Capital & Operating Cost of different power plants. Pollution control technologies including Waste Disposal Options for Coal and Nuclear Power Plants.

PART - A (2 Marks)									
Q.No.	Questions	BT Level	Competence						
1.	Define utility factors.	BT-1	Remembering						
2.	Define load factor.	BT-1	Remembering						
3.	What are chronological load curves?	BT-2	Understanding						
4.	Define load curve.	BT-1	Remembering						
5.	Draw the load duration curve.	BT-3	Applying						
6.	What do you understand by tariff? Mention its types.	BT-3	Applying						
7.	How can we calculate the cost of electricity?	BT-3	Applying						
8.	How will you describe two part tariff?	BT-2	Understanding						
9.	Discuss how power factor can be improved.	BT-2	Understanding						
10.	Describe the capital cost of power plant.	BT-1	Remembering						
11.	What is financing cost?	BT-1	Remembering						
12.	What is operating cost?	BT-1	Remembering						
13.	Discuss about flat demand rate.	BT-2	Understanding						
14.	Mention the various operating cost of coal fired steam power plant.	BT-3	Applying						
15.	Name any two advanced emissions control technologies for coal-fired power plants.	BT-1	Remembering						
16.	What is acid rain?	BT-1	Remembering						
17.	How 'smog' is defined?	BT-1	Remembering						

18.	What are the methods used for reduction of SO2 pollutants?											Remembering
19.	Define flat rate tariff.											Remembering
20.	List the components of fixed cost.										BT-1	Remembering
21.	How the tariff	for el	ectri	cal ene	ergy is	arrive	d?				BT-2	Understanding
22.	Compare the si	gnifi	cance	e of tw	o part	tariff	and th	ree pai	rt tariff.		BT-4	Analyzing
23.	What are the ec	quipn	nent	used to	o conti	rol the	partic	ulates?)		BT-1	Remembering
24.	Define "Green	Hous	se Ef	fect".							BT-1	Remembering
25.	Point out the w	aste	dispo	sal op	tions f	for nuc	lear po	ower p	lant.		BT-4	Analyzing
			P	2					"N _G			
					PA	RT - F	B (13 N	/larks))			
	5	7		0		<u> </u>		-			BT	G (
Q.No.	1			Qu	estion		2 11	1		Marks	Level	Competence
1. (i)	What do you u	nders	tand	by po	wer pl	ant eco	onomi	cs? Dis	scuss.	7	BT-2	Understanding
(ii)	Explain the fixe	ed co	sts a	nd ope	erating	costs	of a po	ower st	tation.	6	BT-4	Analyzing
2.	Show the elem	ents	whic	h con	tribute	to the	e cost	of the	electricity	13	BT-6	Creating
	and Describe h	ow a	re the	ey acco	ounted	l for fiz	xing co	ost of e	e <mark>lectric</mark> ity.			
3.	A generating st	ation	is as a	a maxi	imum	deman	d (MI)) of 1	4 MW and	13	BT-5	Evaluating
	the daily load	curve	e on	the sta	ation i	s as fo	ollows,	10pm	to 05 am			
	2500 KW 01pn								-			
	to 06pm 1200			-				-	-			
	15000KW 11a		-	-								
	Determine the					•			-			
	factor, plant ca	apaci	ty fa	ctor, 1	use fa	ctor a	nd res	erve c	apacity of			
	plant.											
4.	A power station	n sun	nlies	the fo	llowir	ng load	s to th	e custo	omers	13	BT-5	Evaluating
		0	6	10	12	16	20	22		15	D1-5	Lvaruating
	Time in	to	to	to	to	to	to	to				
	hours	6	10	12	16	20	22	24				
	Load in MW	30	70	90	60	100	80	60				

			1	[]
	Draw the load curve and estimate the load factor of the plant.			
	What is the load factor of a standby equipment of 30 MW capacity			
	if it takes up all loads above 70 MW? What is its use factor?			
5.	A generating station supplies four feeders with maximum demands	13	BT-6	Creating
	in (MW) 16, 10, 12, and 7. The overall maximum demand of the			
	stations is 22MW and the annual load factor is 45%. Calculate the			
	diversity factor and number of units generated annually.			
6.	Calculate the cost of generation per kWh for a power station having	13	BT-6	Creating
	the following data:			
	Installed capacity of the plant $= 200 \text{ MW}$			
	Capital cost = Rs 400 crores			
	Rate of interest and depreciation = 12%			
	Annual cost of fuel, salaries and taxation = Rs 5 crores	-		
	Load factor = 50% Also estimate the saving in cost per kWh if the	So		
	annual load factor is rais <mark>ed to 60%.</mark>	~		
7. (i)	Explain the various methods used to calculate the depreciation cost.	7	BT-4	Analyzing
(ii)	Elucidate the objectives and requirements to tariff and general for	6	BT-1	Remembering
	of tariff.		1	
8. (i)	Explain the terms peak load, demand factor, load factor and plant	7	BT-1	Remembering
	use factor.			
(ii)	What are load curves and load duration curves? Discuss their utility	6	BT-2	Understanding
	in the economics of generation.			
9.	A peak load on the thermal power plant is 75 MW. The loads	13	BT-6	Creating
	having maximum demands of 35 MW, 20MW, 15 MW and			
	18MW are connected to the power plant. The capacity of the plant			
	is 90 MW and annual load factor is 0.55. Calculate the average load			
	on power plant, energy supplied per year, demand factor and			
	diversity factor.			
10.	A central power plant has annual factors as follows. Load factor =	13	BT-6	Creating
	60%, capacity factor = 40% and use factor = 45% . Power station			
	has a maximum demand of 15,000 kW. Determine the annual			
	energy production, reserve capacity over and above peak load and			
	hours per year not in service.			

11.	A power plant	has to	supply l	oad as fo	ollows:			13	BT-5	Evaluating
	Time (hrs)	0-6	6-12	12-14	14-18	18-24				
	Load (MW)	45	135	90	150	75	Draw			
							the			
	load curve, lo	ad dura	ation cu	irve and	Choose s	suitable ge	eneration			
	units and its op	peration	n schedu	ile to sup	ply the lo	ad.				
12. (i)	Explain about	econon	nics of lo	oad shari	ng betwee	n power p	lants and	6	BT-2	Understanding
	generators.									
(ii)	Compare the o	operatii	ng and	capital c	ost of The	ermal and	Nuclear	7	BT-4	Analyzing
	power plants.				-	-				
13. (i)	Explain the pol			technolog	gies incluc	ling waste	disposal	7	BT-2	Understanding
	options for coa	ıl powe	r plant.							
(ii)	Explain in de	tail Ca	pital &	Operati	ng Cost o	of differer	nt power	6	BT-2	Understanding
	plants.							0		
14.	Explain the pol	llution	control	technolog	gies incluc	ling waste	disposal	7	BT-2	Understanding
	options for nuc	elear po	wer pla	nt.	SRI	VI			-	
15.	Give short not	tes on s	site sele	ction cri	teria and	Explain th	ne merits	13	BT-5	Evaluating
	and demerits.				~				m	
16.	Elucidate the o	bjectiv	es and r	equireme	ents to tari	ff and gene	eral form	13	BT-5	Evaluating
	of tariff.					2				
17.	A power plan	t of 21	0 MW	installed	capacity	has the f	ollowing	13	BT-5	Evaluating
	particulars.:									
	Capital cost =	Rs. 18,	000 / kV	W installe	ed					
	Interest and de	preciat	ion = 12	2%						
	Annual load factor = 60%									
	Annual capacit	ty facto	r = 54%	,)						
	Annual runnin	g charg	ges = Rs	. 200 x 1	06					
	Energy consumed by power plant auxiliaries $= 6\%$									
	Calculate.									
	(a) the cost of power generation per kWh, and									
	(b) the reser	ve capa	acity.							
18.	Write short not	tes abo	ut the ef	ffect of lo	bad factor	on cost pe	er kWh.	13	BT-5	Evaluating

PART - C (15 Marks)	
---------------------	--

		1	1	
Q.No.	Questions	Marks	BT Level	Competence
1.	A hydro power plant is to be used as peak load plant at an annual	15	BT-6	Creating
	load factor of 30%. The average electrical energy obtained during			
	the year is 750 x 105 kWh. Determine the maximum demand. If the			
	plant capacity factor is 24% find reserve of the plant.			
	N			
2.	Write down the procedure for calculating the power tariff for your	15	BT-5	Evaluating
	home and give a specimen calculation.	0		
		5		
3.	What are the factors to be considered while calculating the	15	BT-4	Analyzing
	operating cost and the running cost? Explain each separately in			
	detail.			

4.	It is pro	posed to supply a lo	oad with a r	naximum de	emand of 500	15	BT-6	Creating
	MW and load factor of 70%. Choice is to be made from a nuclear							
	power plant, a hydraulic power plant and a steam power plant.							
	Calculate the overall cost per kWh in case of each scheme as given							
	below:							
	S.No	Cost	Steam power plant	Hydro- electric power plant	Nuclear power plant			
	1	Capital cost per MW installed	Rs. 3 crore	Rs. 4 crore	Rs. 5 crore			
	2	Interest	6%	5%	5%			
	3	Depreciation	6%	4%	5%	0		
	4	Operating cost (including fuel) per kWh	30 paise	5 paise	15 paise	OLLE		
	5	Transmission and distribution cost per kWh	2 paise	3 paise	2 paise		GF	
5.	Compare the cost analysis of various power plants.					15	BT-5	Evaluating
