SRM VALLIAMMAI ENGINEERING COLLEGE

SRM Nagar, Kattankulathur – 603 203

DEPARTMENT OF AGRICULTURAL ENGINEERING

QUESTION BANK

VI SEMESTER

1902601- GROUNDWATER AND WELL ENGINEERING

B. Tech. AGRICULTURAL ENGINEERING

Regulation – 2019

Academic Year: 2024–2025

Dr. E. Maheswari

ASSISTANT PROFESSOR (O.G)

DEPARTMENT OF AGRICULTURAL ENGINEERING

SRM VALLIAMMAI ENGINEERING COLLEGE

B.E. AGRICULTURE ENGINEERING

1902601- GROUNDWATER AND WELL ENGINEERING

Question Bank

SEMESTER: 06

REGULATION-2019

YEAR: B.E /III

UNIT I - HYDROGEOLOGIC PARAMETERS

Water Balance – Distribution of subsurface water – Water bearing properties of Rocks –Types of Aquifers – Aquifer properties Estimation – Pumping test – Permeability, Specific yield, transmissivity and Storage coefficient – Methods of Estimation – Ground water table fluctuation method – GEC Norms – Ground water development and potential in India - Groundwater prospective - Geophysical techniques – Electrical resistivity survey.

PART A				
Q. No	Questions	BT Level	Competence	
1.	Define aquifer.	BT-1	Remember	
2.	Differentiate between confined and unconfined aquifer?	BT-1	Remember	
3.	What are the types of aquifers?	BT-1	Remember	
4.	Tell about the aquifer properties.	BT-1	Remember	
5.	Define aquiclude.	BT-1	Remember	
6.	Define aquifuge.	BT-1	Remember	
7.	What do you mean by permeability?	BT-2	Understand	
8.	Draw a typical aquifer cross section.	BT-2	Understand	
9.	Define specific yield?	BT-2	Understand	
10.	Define storage coefficient.	BT-2	Understand	
11.	Explain the reason behind Groundwater fluctuations.	BT-2	Understand	
12.	List the major zones below the ground level of the earth.	BT-1	Understand	
13.	What is porosity	BT-2	Understand	
14.	What is meant by specific storage?	BT-1	Remember	
15.	Define Specific retention.	BT-1	Remember	
16.	List the factors affecting occurrence of ground water.	BT-1	Remember	
17.	Write about Groundwater development in India.	BT-2	Understand	
18.	Outline about the Groundwater potential.	BT-2	Understand	
19.	Outline advantages of geophysical method	BT-2	Understand	
20.	Show the salient features of GEC Norms.	BT-2	Understand	
21.	Define aquitard.	BT-1	Remember	
22.	List out the importance of electrical resistivity.	BT-2	Understand	
23.	What is meant by hydrogeological parameter?	BT-1	Remember	
24.	Draw typical wells in aquifer systems.	BT-2	Understand	
25.	Define transmissivity.	BT-1	Remember	

	PART-B		
Q.No	Questions	BT Level	Competence
1.	Explain the following terms: (a) Soil water (b) Soil available water (c) Water holding capacity (d) Soil-water-plant relationship	BT-3	Apply
2.	Explain about water bearing properties of rock.	BT-3	Apply
3.	Explain about Groundwater Investigation with an example.	BT-3	Apply
4.	Write the groundwater balance equation and explain the components in detail.	BT-3	Apply
5.	During Hydro geological investigation two potential aquifers 32 km apart were located, one being 5000 years and the other 25000 years old. They were found to be connected by a water bearing stratum of 30m thickness running inclined at 20m/km. From a few observation wells, the hydraulic gradient was found to be 0.2m/km. Determine the transmissibility of the water bearing stratum.	BT-4	Analysis
6.	In a phreatic aquifer extending over 1 km^2 the water table was intially at 25 m below ground level. Sometime after the irrigation with a depth of 20 cm of water, the water table rose to a depth of 24 m. Later $3 \times 10^5 \text{ m}^3$ of water was pumped out and the water table dropped to 26.2 m. Determine (a) specific yield of the aquifer, (b) Return flow from irrigation, (c) deficit in soil moisture before irrigation.	BT-4	Analysis
7.	Illustrate the methods of estimation of groundwater potential based on GEC methodology.	BT-3	Apply
8.	Write in detail about Groundwater fluctuations and interpretation.	BT-3	Apply
9.	Explain about Groundwater development potential in India.	BT-3	Apply
10.	Illustrate about GEC Norms and its Recommendations with a case study.	BT-3	Apply
11.	Develop about Electrical resistivity method.	BT-3	Apply
12.	Construct about seismic refraction method.	BT-3	Apply
13.	Outline about water table fluctuation in detail.	BT-3	Apply
14.	An artesian aquifer, 30 m thick has a porosity of 25% and bulk modulus of compression 2000 kg/cm ² . Estimate the storage coefficient of the aquifer. What fraction of this is attributable to the expansibility of water?	BT-3	Apply
15.	An undisturbed rock sample has an oven dry weight of 0.655 kg. After saturation with kerosene its weight is 0.732 kg. Its then immersed in kerosene and found to displace 0.301 kg. What is the porosity of the sample?	BT-3	Apply
16.	When 3.68 million m^3 of water was pumped out from an unconfined aquifer of 6.2 km ² a real extent, the water table was	BT-3	Apply

17.	observed to go down by 2.6 m. What is the specific yield of the aquifer? During a monsoon season if the water table of the same aquifer goes up by 10.8 m. What is the volume of recharge? The water table levels in two observation wells apart are +210.5	BT-3	Apply
17.	and $+206.25$ m respectively. If the hydraulic conductivity and porosity of the aquifer are 12.5 m/day and 15 per cent, what is the actual velocity of flow in the aquifer?	D1-3	Apply
	PART-C		
Q.No	Questions	BT	Competence
V .10	Questions	Level	Competence
1.	Explain the water resources in India with a case study.	Level BT-3	Apply
			-
1.	Explain the water resources in India with a case study. Elaborate the hydrologic cycle with neat sketch and its importance	BT-3	Apply
<u>1.</u> 2.	Explain the water resources in India with a case study. Elaborate the hydrologic cycle with neat sketch and its importance in groundwater hydrology.	BT-3 BT-3	Apply Apply

UNIT II - WELL HYDRAULICS

Darcy's law – Groundwater Flow Equation – Steady state flow – Dupuit Forcheimer Assumption – Theim's Equation - unsteady flow – Theis method and Jacob method – Image well theory – Partial penetration of wells.

PART A				
Q.No	Questions	BT Level	Competence	
1.	What is groundwater recharge zone?	BT-1	Remember	
2.	What is meant by well hydraulics?	BT-1	Remember	
3.	State any two assumptions of dupits theory.	BT-1	Remember	
4.	What is Darcy's law of permeability?	BT-1	Remember	
5.	What is unsteady state flow?	BT-1	Remember	
6.	Write the different types of flow condition.	BT-1	Remember	
7.	What is meant by Drawdown in well hydraulics?	BT-2	Understand	
8.	Define cone of depression.	BT-2	Understand	
9.	Illustrate about steady state flow.	BT-2	Understand	
10.	Show about the application of Darcy's law.	BT-2	Understand	
11.	Outline the specific capacity of well.	BT-2	Understand	
12.	Tell about the water table in aquifer.	BT-1	Remember	
13.	Write about the Thiem equation for confined aquifers.	BT-1	Remember	
14.	Interpret about Dupuit equation for unconfined aquifers.	BT-2	Understand	
15.	Write any two assumptions of Theis theory.	BT-1	Remember	
16.	Interpret about radius of influence.	BT-2	Understand	
17.	Write about steady flow.	BT-2	Understand	
18.	What is hydraulic gradient?	BT-1	Remember	

19.	Write about Jacob method.		BT-2	Understand
20.	Write about Dupuit equation for	Write about Dupuit equation for confined aquifers.		
21.	What is the water balance equation?			Remember
22.	What is field water balance?			Remember
23.	State any two assumptions of steady radial flow to wells.			Remember
24.		Outline the partially penetrating well?		
25.		Write the Thiem equation for unconfined aquifers.		
		PART-B	BT-1	Remember
Q. No	Oue	stions	BT	Competence
2.110	Que.		Level	competence
1.	A pumping test was carried ou	t on a new irrigation bore well	BT-4	Analysis
1.		aquifer at a rate of 22 lit/s. The	БІТ	7 mary 515
		rvation well connected at 45.7 m		
		g the test is as given below.		
	Determine T and S of the aquifer.			
	Time t in hours	Drawdown s in m		
	0.5	0.091		
	1.8	0.294		
	2.7	0.382		
	5.4	0.55		
	9.0	0.701		
	12.0	0.785		
	18	0.911		
	30	1.06		
	54	1.24		
2.	(a) Write in detail about partial po		BT-4	Analysis
		conducted on an open well in a	DII	7 mai y 515
		vell was depressed by 3m and it		
	observed to rise by 1.75m in 75 n			
	(a) What is the specific yield of o			
		n a well of 5m diameter under a		
	depression head of 2.5m?	(3)		
		of the well to give a yield of 12		
	lit/s under a depression head of 2.			
3.		ow in unconfined aquifer with	BT-3	Apply
	recharge from rainfall.			
4.	1	tes 25 m below the static water	BT-4	Analysis
		g @ 5400 liters/minute, the water		
		vered by 0.53 m, and in a well 30		
	m away the drawdown is 1.11 m.			
	(a) What is the transmissibility of			
	(b) Also determine the drawdowr			
5.	Derive steady unidirectional flow	in unconfined aquifer.	BT-3	Apply
6.	Derive Cooper and Jacob method	and compute T and S	рт 2	1
0.	Derive Cooper and Jacob method	and compute 1 and 5.	BT-3	Apply

7.	A 30cm well fully penetrate a confined aquit long period of pumping at a rate of 1200 lpm well at 20 and 45m from the pumping well at 1.8 m respectively. Determine transmissibility is the draw down?	, the drawdown in the found to be 2.2 and	d	Apply
8.	Derive the steady radial flow to a well in an u	nconfined aquifer.	BT-3	Apply
9.	The following data were collected during the confined aquifer to determine the aquifer para was pumped at the rate of 31.5 Ips. The observat 15.2 m from the main pumping well. Detervation aquifer by Jacob's technique.	ameters. The test we vation well is locate	11 ed	Analysis
	Time (hrs) Drawdown	(m)		
	0.5 0.15			
	1 0.30			
	2 0.46			
	4 0.76			
	6 0.98			
	12 1.31			
	24 1.65			
	48 1.95			
	 consists of fine sand. (b) The following date is obtained from a reopen well of diameter 6.5m R.L of water table = 237.8 m R.L of water level in the well when the pump 231.2 m R.L of the water level in the well 2.5 hrs stopped = 234.5 m Estimate the safe yield of the well, if the work 	ping is just stopped after the pumping	n = is	
11.	Derive the unsteady radial flow to a well in a		BT-4	Analysis
12.	In an artesian aquifer of 8m thick, a 10 cm diameter well is pumped at a constant rate of 100 lit/minute. The steady state drawdown observed in two wells located at 10 m and 50 m distances from the centre of the well are 3m and 0.05 m respectively, compute the transmissivity and the hydraulic conductivity of the aquifer.			Apply
13.	Derive the steady radial flow to a well in a co	nfined aquifer.	BT-3	Apply
14.	A 30cm well penetrates 50m below static wa period of pumping at a rate of 1800 lpm, the at 15 m and 45 m from the pumped well w respectively. Determine transmissibility of th draw down?	g BT-4 ll n	Analysis	
15.	Streams A and B are separated by an aquife 3.8 km and the depths of flow in them a			Analysis

	hydraulic conduct when the rainfall	ctivity of the s with an int	w from stream A to aquifer is 0.1 mr ensity which is alw quifer and which i	n/s and also find ays more that the		
16.	depth 40 m. Afte 1500 lpm, the dra from the pumpi	er a long per awdown in tw ng well wer ermine the tr	enetrates an uncon- riod of pumping a wo observation wel re found to be 3. ansmissibility of th well?	t a steady rate of ls 25 m and 75 m 5 m and 2.0 m	BT-4	Analysis
17.	aquifer. The strai well under a dra effective size of	iner length is wdown of 3 0.2 mm havi	eter penetrates ful 5 15 m. Calculate t m. The aquifer co ng coefficient of p f drawdown equal t	he yield from the onsists of sand of ermeability equal	BT-4	Analysis
			PART-C			
Q. No		Q	uestions		BT Level	Competence
1.	Write the basic as practical examination	-	or analyzing flow t	o wells. With any	BT-3	Apply
2.	Explain about th wells?	ie image we	ll theory and parti	al penetration of	BT-4	Analysis
3.	Evaluate the dis wells.	scharge com	putation of partia	l penetrations of	BT-3	Apply
4.	intervals in an or pumped at a cons is listed in table. ' still dropping after the test data requ	observation v stant rate of 5 These measu er 4000 minu ires use of th	luring a pumping vell 200 feet from 500 ppm. The data rements shows that tes of pumping, the te Thesis non equil- ufer	a well that was for this pump test the water level is prefore analysis of	BT-4	Analysis
	Determine S and	1 IOI uns aqu	#11 VI			
	Determine S and		ump test data			
	Determine S and					
	Determine S and	P	ump test data			
	Determine S and	P Time	ump test data Drawdown			
	Determine S and	P Time (min) 1 2	ump test data Drawdown (feet)			
	Determine S and	P Time (min) 1 2 3	ump test data Drawdown (feet) 0.05 0.22 0.4			
	Determine S and	P Time (min) 1 2 3 4	ump test data Drawdown (feet) 0.05 0.22 0.4 0.56			
	Determine S and	P Time (min) 1 2 3 4 5	ump test data Drawdown (feet) 0.05 0.22 0.4 0.56 0.7			
	Determine S and	P Time (min) 1 2 3 4 5 7	ump test data Drawdown (feet) 0.05 0.22 0.4 0.56 0.7 0.94			
	Determine S and	P Time (min) 1 2 3 4 5 7 10	ump test data Drawdown (feet) 0.05 0.22 0.4 0.56 0.7 0.94 1.2			
	Determine S and	P Time (min) 1 2 3 4 5 7	ump test data Drawdown (feet) 0.05 0.22 0.4 0.56 0.7 0.94			

			300	4.5			
			1000	5.6			
			4000	7			
5	5.	20 cm diameter w The drawdown distances of 10m respectively. Dete	vell in this a measured in and 100m ermine the a	nickness of 30 m. A quifer is pumped at two observation from the well are verage hydraulic co from the well th	a rate of 35 lit/s. wells located at 7.5 m and 0.5 m onductivity of the	BT-4	Analysis

UNIT III - WELL DESIGN

Design characteristics – Design of wells - Well diameter, depth and Well screen design – Materials for well screens – Well casing – Design of collector wells and Infiltration gallery – Dug wells versus tube wells.

PART-A				
Q.No	Questions	BT Level	Competence	
1.	What are the objectives of well design?	BT-1	Remember	
2.	How is a water well-constructed?	BT-1	Remember	
3.	Can you build a well anywhere?	BT-1	Remember	
4.	What material is used for well casing?	BT-1	Remember	
5.	What is well screen?	BT-1	Remember	
6.	Can PVC be used for well casing?	BT-1	Remember	
7.	What is difference between wells and tube wells?	BT-2	Understand	
8.	What are the different types of wells?	BT-2	Understand	
9.	Show the specification of well diameter	BT-2	Understand	
10.	What is a cased well?	BT-2	Understand	
11.	Explain about well depth.	BT-2	Understand	
12.	What is the function of well screen in tube wells?	BT-1	Remember	
13.	How deep is a dug well?	BT-2	Understand	
14.	What is the need of collector well?	BT-1	Remember	
15.	What are dug wells?	BT-2	Understand	
16.	How Can groundwater be drawn out through tube wells?	BT-1	Remember	
17.	Discuss about basin	BT-1	Remember	
18.	What is Ranny well?	BT-1	Remember	
19.	What is river intake?	BT-1	Remember	
20.	What are the advantages of infiltration gallery?	BT-2	Understand	
21.	What is Jack well?	BT-2	Understand	
22.	How do infiltration galleries work?	BT-2	Understand	
23.	Define artesian well.	BT-2	Understand	
24.	How the well was dug?	BT-1	Remember	

25. What is meant by infiltration gallery?	BT-1	Remember

PART-B			
Q.No	Questions	BT Level	Competence
1.	Draw the cross section of well and explain its components with examples.	BT-3	Apply
2.	Explain the design principle of well with an example?	BT-3	Apply
3.	Design an open well in coarse sand to give a discharge of 0.004 cumec when worked under depression head of 3 metres.	BT-4	Analysis
4.	Explain about infiltration wells with example.	BT-3	Apply
5.	Outline the design principle of well screen with neat sketch.	BT-2	Apply
6.	Design an open well in fine sand to give a discharge of 0.003 cumec when worked under depression head of 2.5 metres.	BT-4	Analysis
7.	What are the selection factors for site of well with a case study?	BT-3	Apply
8.	A fully penetrating well in a confined sandy aquifer has a maximum discharge capacity of 1200 l/min. The aquifer is overlain and underlain by impervious formations. The thickness of the aquifer is 20m. Design the length of the well screen assuming the percentage of the open area of the available strainer to be 15%, and bore hole diameter as 15 cm.	BT-4	Analysis
9.	Design a tube well for the following data Yield required = 0.08 cumec Thickness of confined aquifer = 30 m Radius of circle of influence = 300 m Permeability coefficient = 60 m/ day Drawdown = 5 m	BT-4	Analysis
10.	Describe in detail about advantages and disadvantages of open well and tube well.	BT-3	Apply
11.	Enumerate the test to calculate the yield of an open well.	BT-3	Apply
12.	Explain about infiltration galleries with an example.	BT-3	Apply
13.	Explain different types of wells with an example.	BT-3	Apply
14.	Design a tube well for the following data Yield required = 0.06 cumec Thickness of confined aquifer = 33 m Radius of circle of influence = 330 m Permeability coefficient = 75 m/ day Drawdown = 7 m	BT-4	Analysis
15.	Differentiate between dug well and tube well.	BT-3	Apply
16.	List the advantages of well irrigation over canal irrigation.	BT-3	Apply
17.	Explain about collector well in detail with an example.	BT-3	Apply

PART-C						
Q.No			Questions		BT Level	Competence
1.		ribe in detail about bore wells. Explain its advantages and			BT-3	Apply
			short notes on bore well in I			
2.	-	• 1	nd also the selection factor	for site of	BT-3	Apply
		case study?				
3.		e construction o	f dug well and collector	well with	BT-3	Apply
	examples.					
4.			filtration galleries with nea		BT-3	Apply
5.	depression ground in C	Design a tube well to deliver 33,000 gallons per hour at a depression head of 5 m. The average water level is 10 m below the ground in October and 15 m in July. The geological investigation has yielded the following results at the site of boring:				Analysis
		DEPTH	TYPE OF STRATA			
		0 to 5 m	Surface clay			
		5 to 20 m	Very fine sand			
		20 to 30 m	Clay with Kankar			
		30 to 50 m	Coarse sand			
		50 to 60 m	Clay			
		60 to 70 m	Medium sand			
		Below 70 m	Clay with sand stone.			

UNIT IV - WELL CONSTRUCTION AND MAINTENANCE

Types of wells – Well drilling - Boring, Jetting – Rotary drilling, Hammer drilling Construction– Installation of pipes and screens - Well development, Completion and disinfection – Well maintenance – Well performance test – Well effectiveness – Well loss – Pumping equipment – Rehabilitation of wells and borewells

PART-A				
Q.No	Questions	BT Level	Competence	
1.	What are the types of auger?	BT-1	Remember	
2.	Write the need of casing.	BT-1	Remember	
3.	How do you maintain a well?	BT-1	Remember	
4.	State bore hole.	BT-1	Remember	
5.	How do you rehabilitate a water well?	BT-1	Remember	
6.	State the uses of well seal.	BT-1	Remember	
7.	Identify the methods of drilling.	BT-2	Understand	
8.	Compare PVC casing and steel casing.	BT-2	Understand	
9.	Mention the reason for well disinfection.	BT-2	Understand	

10.	Compare over pumping with backwashing.	BT-2	Understand
11.	Show the methods of well development.	BT-2	Understand
12.	Define the well completion operations.	BT-1	Remember
13.	What is well rehabilitation?	BT-2	Understand
13.	Write about well development.	BT-2	Understand
15.	Write about different types of bore well.	BT-1	Remember
16.	Sketch the cross section of water well.	BT-1 BT-1	Remember
10.	Classify the types of pumps.	BT-1 BT-1	Remember
18.	Explain the sequence procedure for construction well.	BT-1 BT-1	Remember
10.	How do you backflush a well?	BT-1	Remember
20.	Where large diameter low yield wells?	BT-2	Understand
20.	Mention the need of filter pack.	BT-2 BT-2	Understand
21.	Do wells need to be cleaned?	BT-2 BT-2	Understand
22.	Draw the sketch of drillers.	BT-2 BT-2	Understand
23.	Write about the needs of dispersing agents in well development.	BT-2 BT-2	Understand
24.	What was meant by disturbed sample?	BT-2 BT-1	Remember
23.	PART-B	D1-1	Kemember
Q.No	Questions	BT	Competence
2.10	Questions	Level	Competence
1.	Explain the difference between drilled well and driven well with	BT-3	Apply
1.	suitable examples.	DIS	rippiy
2.	Explain in detail about process of rotary drilling with an example.	BT-3	Apply
3.	Explain in detail about the disinfection of wells with an example.	BT-3	Apply
4.	Explain the different types of pumps with a neat sketch.	BT-3	Apply
5.	List the advantages and disadvantages of different types of pump	BT-3	Apply
	with an example.	210	- pp-y
6.	What are the different components of well? Explain in detail with	BT-3	Apply
0.	neat sketch.	210	
7.	Explain the construction of well using hammer drilling with an	BT-3	Apply
	example.		
8.	Explain in details about the pumping equipment's with an	BT-3	Apply
	example.		11 5
9.	Outline the processes of Auger boring with typical sketch.	BT-3	Apply
10.	Sketch the well completion operation.	BT-3	Apply
11.	Explain the construction of jetting with an example.	BT-3	Apply
12.	How will you construct water well?	BT-3	Apply
13.	What are the well maintenance methods with an example?	BT-3	Apply
14.	Explain the types of screens and also design of gravel pack with	BT-3	Apply
	sketch an example.		
15.	Outline the protection of water well.	BT-3	Apply
16.	Outline the wash boring technique with neat sketch and example.	BT-3	Apply
17.	List the following:	BT-3	Apply
	(a) Major Causes of Deteriorating Well Performance. (7)		

PART-C				
Q.No	Questions	BT Level	Competence	
1.	Prepare a case study on quality of ground water on your native district.	BT-4	Analysis	
2.	Explain the placement of well casing and well screen with an example.	BT-3	Apply	
3.	Outline the pumping equipment used in wells construction with a neat sketch and example.	BT-3	Apply	
4.	Enumerate the facts about rehabilitation of wells with an example.	BT-3	Apply	
5.	Explain the methods of well development in detail.	BT-3	Apply	

UNIT V - SPECIAL TOPICS

Artificial Recharge Techniques – Sea water Intrusion – Introduction to Ground water modeling Techniques – Ground water pollution and legislation - Groundwater quality – Dose response assessment – Risk analysis.

Q.No	Questions	BT Level	Competence
1.	Why artificial recharge required?	BT-1	Remember
2.	State the objectives of artificial recharge	BT-1	Remember
3.	Outline the advantages of artificial recharge.	BT-1	Remember
4.	Compare natural recharge and artificial recharge.	BT-1	Remember
5.	What is recharge structure?	BT-1	Remember
6.	What is dose response assessment?	BT-1	Remember
7.	What causes seawater intrusion?	BT-2	Understand
8.	What is an example of saltwater intrusion?	BT-2	Understand
9.	Why is seawater intrusion bad?	BT-2	Understand
10.	How does saltwater intrusion affect humans?	BT-2	Understand
11.	Why ground water Modeling is needed?	BT-2	Understand
12.	What is numerical groundwater Modeling?	BT-1	Remember
13.	State groundwater contamination.	BT-1	Remember
14.	What is MODFLOW used for?	BT-2	Understand
15.	Define saltwater intrusion.	BT-2	Understand
16.	Discuss the Impacts of saltwater intrusion?	BT-1	Remember
17.	List the remedies to be taken to reduce saltwater intrusion?	BT-1	Remember
18.	What pollutants are in groundwater?	BT-1	Remember
19.	What are the sources of groundwater Pollution?	BT-2	Understand
20.	What is the difference between groundwater and surface water pollution?	BT-2	Understand
21.	How do you recognize protection zone delineation?	BT-2	Understand
22.	Why groundwater legislation is needed in India?	BT-2	Understand

PART-A

23.	What do you mean by MAR?	BT-3	Remember
24.	Why groundwater quality is important?	BT-3	Understand
25.	What are groundwater quality parameters?	BT-3	Remember
	PART-B		
Q.No	Questions	BT Level	Competence
1.	Describe in detail about Surface spreading method of artificial recharge with an example.	BT-3	Apply
2.	Show the influence of recharge factors with an example.	BT-3	Apply
3.	Explain about Sub Surface method of artificial recharge with an example.	BT-3	Apply
4.	Identify Remediation schemes of contaminant present in ground water.	BT-3	Apply
5.	Explain the Recent Progress on Groundwater Legislation.	BT-3	Apply
6.	Enumerate the potential sources of groundwater contamination.	BT-4	Analysis
7.	How can you stop groundwater pollution explain any two methods in detail?	BT-4	Analysis
8.	Why is pollution of groundwater a greater environmental hazard than pollution of surface water? Explain in detail.	BT-3	Apply
9.	Show the remedial measures of saline intrusion.	BT-3	Apply
10.	Outline the groundwater quality parameters in detail with an example.	BT-3	Apply
11.	Write the preventive measures of groundwater pollution with a case study.	BT-3	Apply
12.	Describe in detail about causes of ground water pollution with an example.	BT-3	Apply
13.	Show the ground water quality features of the country with an example.	BT-3	Apply
14.	Summarize the facts about risk analysis in groundwater pollution. Explain an area where the groundwater pollution is identified.	BT-3	Apply
15.	Write about the advantages and disadvantages of artificial recharge.	BT-3	Apply
16.	Explain the factors affecting groundwater.	BT-3	Apply
17.	Explain about seismic refraction method.	BT-3	Apply
	PART-C		
Q.No	Questions	BT	Competence
		Level	_
1.	Outline the methods to remediate saline intrusion.	BT-3	Apply
2.	Prepare a case study on quality of groundwater on your native district	BT-3	Apply
3.	Enumerate the roles and responsibilities of Central water commission on groundwater quality.	BT-4	Analysis
4.	Elaborate the Water quality standards for irrigation water with an	BT-3	Apply

	example.		
5	Explain in detail about artificial recharge and also the advantag	es BT-3	Apply
	and disadvantages.		