

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

QUESTION BANK

VI SEMESTER 1904602 – COMPILER DESIGN Regulation – 2019 Academic Year 2024– 2025 EVEN

Prepared by

Ms.V.Vijaypriya, Assistant Professor (O.G) Ms.Christina Sweetline, Assistant Professor (O.G) Dr.K.Shanmugam, Assistant Professor (Sr.G)

SRM VALLIAMMAI ENGNIEERING COLLEGE (An Autonomous Institution) SRM Nagar, Kattankulathur – 603203.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING <u>QUESTION BANK</u>

SUBJECT : 1904602 – COMPILER DESIGN

SEM / YEAR : VI/III

UNIT I -INTRODUCTION TO COMPILERS

Phases of a compiler – Lexical Analysis – Role of Lexical Analyzer – Input Buffering – Specification of Tokens – Recognition of Tokens – Lex – Finite Automata – Regular Expressions to Automata – NFA to DFA- Minimizing DFA.

	PART-A (2 - MARKS)			
Q. No	QUESTIONS	Competence	BT Level	
1.	Define tokens, patterns and lexemes.	Remember	BTL1	
2.	Classify approach would you use to recover the errors in lexical	Apply	BTL3	
	analysis phase?			
3.	Apply the regular expression for identifier and white space.	Apply	BTL3	
4.	Point out why is buffering used in lexical analysis?	Analyze	BTL4	
5.	Define transition diagram for an identifier.	Remember	BTL1	
6.	Compare syntax tree and parse tree.	Analyze	BTL4	
7.	Summarize the issues in a lexical analyzer.	Evaluate	BTL5	
8.	Define buffer pair.	Remember	BTL1	
9.	Differentiate the features of DFA and NFA.	Understand	BTL2	
10.	Identify the interactions between the lexical analyzer and the	Remember	BTL1	
	parser.			
11	State parse tree and construct a parse tree for $-(id + id)$	Evaluate	BTL5	
12.	Name the operations on languages.	Remember	BTL1	
13.	List out the phases of a compiler.	Remember	BTL1	
14.	Generalizes the advantage of having sentinels at the end of each	Create	BTL6	
	buffer halves in buffer pairs.			
15.	Analyze and identify the symbol table for the following statements.	Analyze	BTL4	
	int a,b; float c; char z;			
16.	Discuss Regular expression and the Algebraic properties of	Understand	BTL2	
	Regular Expression.			
17.	Develop the Structure of lex program.	Create	BTL6	
18.	Apply a grammar for branching statements.	Apply	BTL3	
19.	Express the main idea of NFA? And discuss with examples (a/b)*	Understand	BTL2	
20.	Define lex and give its execution steps.	Understand	BTL2	

21	Differentiate interpreters and compilers	Analyze	BTL4
22	Apply the parse tree for the statement $z := x + y^* 130$.	Apply	BTL3
23	Outline the role of lexical analysis in compiler design.	Understand	BTL2
24	Criticize the use of Input Buffering with simple examples.	Evaluate	BTL5
	PART-B (13- MARKS)		
1.	Describe the various phases of compiler with suitable example (13)	Remember	BTL1
2	(i)Give the structure of compiler. (4)	Analyze	BTL4
	(ii)Analyze structure of compiler with an assignment statement (9)		
3.	(i).Discuss in detail about the role of Lexical analyzer with the (7)	Understand	BTL2
	possible error recovery schemes.		
	(ii)Describe in detail about issues in lexical analysis. (6)		
4	(i)Describe the Input buffering techniques in detail. (7)	Remember	BTL1
	(ii)Discuss about the recognition of tokens with example (6)		
5	Summarize in detail about how the tokens are specified by the (13)	Understand	BTL2
	compiler with suitable example.		
6	Define Finite Automata. Differentiate Deterministic Finite(13)	Understand	BTL2
	Automata and Non-Deterministic Finite Automata with		
	examples.		
7	Solve the given regular expression into NFA using Thompson	Apply	BTL3
	construction		
	i) $(a/b)^*$ abb $(a/b)^*$. (7)		
	ii)ab*/ab (6)		
8	Create DFA the following regular expression. $((\epsilon / a)b^*)^*$ (13)	Create	BTL6
	(i)Illustrate the algorithm for minimizing the number of states (8)	Apply	BTL3
9	of a DFA	r ippiy	DILS
	(ii)Minimize the following states of DFA (5)		
	Å		
	b a		
	a		
10.	Describe in detail about the subset construction of DFA from	Remember	BTL1
	NFA (13)		
11	Define Lex and Lex specifications. How lexical analyzer is (13)	Remember	BTL1
	constructed using lex? Give an example.		
12	(i)Explain the lex program for tokens. (7)	Evaluate	BTL5
	(ii) Describe in detail the tool for generating lexical analyzer. (6)		
13	Find the NFA for the given regular expression and find the (13)	Analyze	BTL4

	minimized DFA for the constructed NFA(a^* / b^*)*			
14	Find the minimized DFA for the regular expression: (13) ($0+1$) * ($0+1$) 1 0.	3)Analyze	BTL4	
15	Discuss in detail about the output of each phase of compiler for (13) the expression a:=b+c*50.	3) Understand	BTL2	
16	Demonstrate the role of lexical analyzer in detail with (13) necessary diagrams	3)Apply	BTL3	
17	Determine the minimum -state DFA for the regular expression (13 $(a / b)^* a (a/b)$	B)Evaluate	BTL5	
	PART-C (15- MARK)			
1.	 (i) Create languages denoted by the following regular (9) expressions a) (a b)*a(a b)(a b) b) a*ba*ba*ba* 	Create	BTL6	
	 c) !! (aa bb)*((ab ba)(aa bb)*(ab ba)(aa bb)*)* (ii) Write regular definitions for the following languages: (6) a)All strings of lowercase letters that contain the five vowels in order. b)All strings of lowercase letters in which the letters are in ascending lexicographic order. c)Comments, consisting of a string surrounded by / and /, without an intervening */, unless it is inside double-quotes (") 			
2.	Find transition diagrams for the following regular expression (15 and regular definition. a(a b)*a $((\epsilon a)b*)*$ All strings of digits with at most one repeated digit. All strings of a's and b's that do not contain the substring abb. All strings of a's and b's that do not contain the subsequence abb	i) Evaluate	BTL5	
3.	Evaluate that the following two regular expressions are (15 equivalent by showing that the minimum state DFA's are same (a / b) * (a * / b *) *	j)Evaluate	BTL5	
4.	Explain in detail the tool for generating Lexical-Analyzer with (15 an example program.	i)Evaluate	BTL5	
5	Develop the Lex Program to recognize the identifiers, constants and operators (15)	Create	BTL6	
UNIT II SYNTAX ANALYSIS				
Role of Down l Reduce	Role of Parser – Grammars – Error Handling – Context-free grammars – Writing a grammar – Top Down Parsing - General Strategies Recursive Descent Parser Predictive Parser-LL(1) Parser-Shift Reduce Parser L P. Parser L P. (0) Item Construction of SLP. Parsing Table Introduction to LALP			
Parser - Error Handling and Recovery in Syntax Analyzer-YACC.				

PART-A (2 - MARKS)				
1.	Eliminate the left recursion for the grammar.	Create	BTL6	
	$S \rightarrow Aa \mid b$			
	$A \rightarrow Ac \mid Sd \mid \varepsilon$			
2.	Define handle pruning.	Remember	BTL1	
3.	Compute FIRST and FOLLOW for the following grammar	Apply	BTL3	
	$S \rightarrow AS$			
	$S \rightarrow b$			
	$A \rightarrow SA$			
	$A \rightarrow a$			
4.	State the concepts of Predictive parsing .	Remember	BTL1	
5.	Differentiate Top Down parsing and Bottom Up parsing?	Understand	BTL2	
6.	Define Recursive Descent Parsing.	Remember	BTL1	
7.	State the different error recovery methods of predictive	Remember	BTL1	
	parsing.			
8.	Write an algorithm for finding FOLLOW.	Analyze	BTL4	
9.	What is the main idea of Left factoring? Give an example.	Understand	BTL2	
10.	Define LL(1) Grammar.	Remember	BTL1	
11.	Difference between ambiguous and unambiguous grammar.	Analyze	BTL4	
12.	Define parser. Explain the advantages and disadvantages of LR parsing?	Evaluate	BTL5	
13.	Define Augmented Grammar with an example.	Remember	BTL1	
14.	Evaluate the conflicts encountered while parsing?	Evaluate	BTL5	
15.	Point out the categories of shift reduce parsing.	Analyze	BTL4	
16.	How to create an input and output translator with YACC.	Create	BTL6	
17.	Give the four possible actions of LR Parsing.	Understand	BTL2	
18.	Solve the following grammar is ambiguous: S→aSbS / bSaS / €	Apply	BTL3	
19.	Discuss when Dangling reference occur?	Understand	BTL2	
20.	Illustrate the use of GOTO function.	Apply	BTL3	
21.	Give the comparison between various LR parsers	Evaluate	BTL5	
22.	Write down the structure of YACC file	Analyze	BTL4	
23.	Differentiate Lex and yacc	Understand	BTL2	
24.	Write about Closure Operation	Apply	BTL3	
	PART-B (13- MARKS)			
1.	(i)Explain left recursion and Left Factoring. (7)	Analyze	BTL4	
	(ii)Eliminate left recursion and left factoring for the following (6)			
	grammar.			
	$E \to E + T \mid E - T \mid T$			
	$T \to a \mid b \mid (E).$			
2.	(i)Parse the input string 000111 for the grammar $S \rightarrow 0S1 01$ (6)	Create	BTL6	
	(ii)Construct a parse tree for the input string w-cad using top			
	down parser . (7)			

	S->cAd			
	A->ab a			
3.	(i)Analyze the give grammar to construct predictive parser	(13)	Analyze	BTL4
	$S \rightarrow +SS \mid *SS \mid a \text{ with the string "+*aaa.}$			
4.	(i)Evaluate predictive parsing table for the following grammar	(9)	Evaluate	BTL5
	$E \rightarrow E + T \mid T$			
	$T \rightarrow T^*F \mid F$			
	$F \rightarrow (E) \mid id$			
	(ii) Parse the string id+id*id	(4)		
5.	Solve the following grammar for the predictive parser and	(13)	Analyze	BTL2
	parse the string 000111			
	S>0S1			
	S->01			
6.	(i).Describe on detail about the various types of parser	(7)	Remember	BTL1
	(ii)Discuss about the context-free grammar.	(6)		
7.	(i).Discuss in detail aabout the role of parser.	(7)	Remember	BTL1
	(ii).What are the Error recovery techniques used in Predictive	(6)		
	parsing? Explain in detail.			
8.	(i)Give the predictive parser table for the following grammar.	(8)	Understand	BTL2
	$ S \rightarrow (L) a$			
	$L \rightarrow L, S \mid S$	(5)		
	(ii)Parse the string (a, (a, a)).			
9.	(i_Analyze the following grammar is a LALR grammar.	(13)	Analyze	BTL4
	S->CC			
	C->cC d			
	(ii)Parse the input string ba using the table generated.			
10.	(i)Define YACC parser generator. List out the Error recovery	(8)	Remember	BTL1
	actions in YACC.			
	(ii) Define SLR (1) parser. Describe the Steps for the SLR	(5)		
	parser.			
11	(i)Show SLR parsing table for the following grammar	(9)	Apply	BTL3
	A->(A) a			
	ii)Differentiate SLR and CLR	(4)		
12.	Solve the following grammar to generate the SLR parsing	(13)	Understand	BTL2
	table.			
	$E \rightarrow E + T \mid T$			
	$T \rightarrow T^*F \mid F$			
	$F \rightarrow F^* a b$			
13.	(i)Consider the following grammar	(10)	Apply	BTL3
	$ S \rightarrow AS b$			
	$A \rightarrow SA a.$			
	Construct the SLR parse table for the grammar.			
	(ii)Show the actions of the parser for the input string "abab".	(3)		
14.	Give the LALR for the given grammar.	(13)	Understand	BTL2
	S->AA			
	A->Aa b			

15.	Examine the following grammar using canonical parsing table. (13)	Remember	BTL1
	S->CC		
	C->cC d		
16.	Explain SLR parser.Construct SLR parse for the given (13)	Evaluate	BTL5
	grammar.		
	Š->L=R		
	S->R		
	L->*R		
	L->id		
	R->L		
17.	Show the bottom up parser for the following (13)	Apply	BTL3
	The input aaa $*a++$ for the grammar		
	S->SS+		
	S->SS*		
	S->a		
	PART-C (15 -MARKS)		
1.	(i)What is Leftmost derivation and Rightmost derivation . (8)	Create	BTL6
	Draw leftmost derivation and Rightmost derivation for the		
	following. E->E+E E*E id		
	(ii)What is an ambiguous and unambiguous grammar? Identify (7)		
	the following grammar is ambiguous or not.		
	$E \rightarrow E + E \mid E^*E \mid (E) \mid -E \mid id$ for the sentence id +id*id		
2	Explain in detail about the various types of Top -down(15)	Evaluate	BTL5
	parsing.		
3	Evaluate the LR parsing algorithm with an example (15)	Evaluate	BTL5
4	(i)What is CFG .Explain in detail about the Context-Free (8)	Evaluate	BTL5
	Grammar		
	(ii)Construct Stack implementation of shift reduce parsing for (7)		
	the grammar		
	E->E+E		
	E->E*E		
	E->(E)		
	E->id and the input string id1+id2*id3.		
5.	Discuss in detail about YACC Paser -Generator with an(15)	Create	BTL6
	example program		
	UNIT-III INTERMEDIATE CODE GENERAT	ION	
Syntax	Directed Definitions, Evaluation Orders for Syntax Directed	Definitions,	Intermediate
Langu	ages: Syntax Tree, Three Address Code, Types and Declarations,	Translation of	Expressions,
Type C	Checking.		
	PART-A (2 - MARKS)		
1.	List out the two rules for type checking.	Remember	BTL1
2.	Compare synthesized attributes and inherited attributes.	Analyze	BTL4
3.	What is Annotated parse tree?	Remember	BTL1
4.	Define Type checker.	Remember	BTL1
5.	What is a syntax tree? Draw the syntax tree for the assignment	Create	BTL6
	statement $a := b * -c + b * -c$		

6.	Define type systems.		Remember	BTL1
7.	Express the rule for checking the type of a function.		Understand	BTL2
8.	Define Syntax directed definition of a simple desk calculator.		Remember	BTL1
9.	Identify the different types of intermediate representation.		Evaluate	BTL5
10.	Give the difference between syntax-directed definitions and		Understand	BTL2
	translation schemes.			
11.	State the type expressions.		Remember	BTL1
12.	Illustrate the methods of implementing three-address		Apply	BTL3
	statements.			
13.	Differentiate S-attribute and L-attribute definitions.		Analyze	BTL4
14.	Create postfix notation for the given expression a+b*c.		Create	BTL6
15.	Translate the conditional statement if a b then 1 else 0 into		Understand	BTL2
	three address code.			
16.	Test whether the following rules are L-attribute or not?		Evaluate	BTL5
	Semantic rules			
	A.s = B.b;			
	B.i = f(C.c, A.s)			
17.	What are the methods of representing a syntax tree?		Understand	BTL2
18.	Constrct the syntax directed definition for if-else statement		Analyze	BTL4
19.	Examine the usage of syntax directed definition		Apply	BTL3
20.	Show the three address code sequence for the assignment		Apply	BTL3
	statement. $d=(a-b)+(a-c)+(a-c)$			
21.	Give the evaluation order of a SDD		Evaluate	BTL5
22	What is translation scheme?		Understand	BTL2
23.	How will you evaluate semantic rules?		Analyze	BTL4
24.	Illustrate how to construct syntax tree for an expression		Apply	BTL3
1	PART-B (13- MARKS)		TT 1 (1	
1.	Discuss the following in detail about the Syntax Directed		Understand	BIL2
	Definitions.	(7)		
	(i) Evoluete SDD of a nerve tree	(1)		
	(II) Evaluate SDD of a parse tree for the following expression	(0)	Evoluoto	DTI 5
\mathbf{r}	(i) $(3 + 4)*(5 + 6)$ n	(6)	Evaluate	DILJ
Δ.	$(1)(3+4)^{(3+0)11}$ (ii)1*2*2*(4+5)n	(0)		
	$\frac{(1)1^{-2}}{2} \frac{(4+5)1}{5}$	(\prime)		
	Production Semantic Rules			
	$D _ TI$ $I inh - T type$			
	$T \longrightarrow int$			
	$T \longrightarrow float$			
	$I \longrightarrow I 1$ id $I 1$ in $h = I$ in h			
	$ \begin{array}{c} L \longrightarrow L1, \text{Iu} \\ \text{addType (id entry Linb)} \end{array} $			
	add i ype (id.enu y, Linii)			
3	Suppose that we have a production $A \rightarrow BCD$ Each of the four	r (13)	Analyze	BTI 4
-			A CONTRACT V / A /	
2.	(i) $(3+4)*(5+6)n$ (ii) $(3+4)*(5+6)n$ (ii) $1*2*3*(4+5)n$ Using the given SDDProductionSemantic Rules $D \longrightarrow TL$ $L .inh = T.type$ $T \longrightarrow int$ $T \longrightarrow float$ $L -> L1$, idL1.inh = L.inhaddType (id.entry, Linh)	(6) (7)	Analyze	BTL4

	synthesized attribute and i is an inherited attribute. Analyze			
	For each of the sets of rules below tell whether (i)the rules are			
	consistent with an S-attributed definition(ii) the rules are			
	consistent with an L-attributed definition and(iii) whether the			
	rules are consistent with any evaluation order at all?			
	A.s = B.i + C.s			
	A.s = B.i + C.s and $D.i = A.i + B.s$.			
4.	Illustrate in detail about the various instructions forms of three	(13)	Apply	BTL3
	address instruction with suitable examples			
5.	Discuss in detail about		Understand	BTL2
	(i)Dependency graph	(10)		
	(ii)Ordering Evaluation of Attributes.	(3)		
6.	Create variants of Syntax tree. Explain in detail about it with	(13)	Create	BTL6
	suitable examples.			
7.	(i).Analyse the common three address instruction forms.	(7)	Analyze	BTL4
	(ii). Explain the two ways of assigning labels to the following	(6)		
	three address statements			
	Do i=i+1;			
	While (a[i] <v);< td=""><td></td><td></td><td></td></v);<>			
8.	Describe.in detail about		Remember	BTL1
	(i) Quadruples	(7)		
	(ii) Triples.	(6)		
9.	(i) Describe in detail about addressing array Elements.	(6)	Remember	BTL1
	(ii) Discuss in detail about Translation of array reference.	(7)		
	Describe in detail about types and declaration with suitable	(13)	Remember	BTL1
10.	examples.	(-)		
11.	Compare three address code for expression with the	(13)	Analvze	BTL4
	Incremental translation.	~ /	5	
12.	Show the intermediate code for the following code segment	(13)	Understand	BTL2
	along with the required syntax directed translation scheme	(-)		
	while ($i < 10$)			
	if $(i \% 2 == 0)$			
	evensum = evensum + i			
	else			
	oddsum = oddsum + i			
13.	(i)State the rules for type checking with example.	(7)	Remember	BTL1
	(ii) Give an algorithm for type inference and polymorphic	(6)		
	function.			
14.	Illustrate an algorithm for unification with its operation.	(13)	Apply	BTL3
15.	Write down the SDD for constructing syntax tree for the	(13)	Understand	BTL2
	expression a+b*5			
16.	Illustrate in detail about Bottom-up evaluation of S-attribute	(13)	Apply	BTL3
	definitions	. /		

17.	Explain the evaluation order for SDD	(13)	Evaluate	BTL5
	PART-C(15 -MARKS)			
1.	Create the following uind the arithmetic expression a+-	(15)	Create	BTL6
	(b+c)* into			
	(i)Syntax tree			
	(ii)Quadruples			
	(iii)Triples			
	(iv)Indirect Triples			
2.	Explain what is SDD and examine syntax-directed definition	(15)	Evaluate	BTL5
	to differentiate expressions formed by applying the arithmetic			
	operators + and * to the variable x and constants ; expression :			
	x * (3 * x + x * x)			
			~	
3.	Generate an intermediate code for the following code segment		Create	BTL6
	with the required syntax-directed translation scheme.			
	(1) if $(a > b)$	(7)		
	x = a + b			
	eise			
	$\mathbf{x} = \mathbf{a} - \mathbf{b}$	(6)		
	(ii) p>q AND r <s or="" u="">r</s>	(0)		
4.	What is Type conversion? What are the two types of type		Evaluate	BTL5
	conversion? Formulate the rules for the type conversion.	(15)		
5.	Explain the specification of a simple Type Checkers	(15)	Evaluate	BTL5
	UNIT IV- RUN-TIME ENVIRONMENT AND COD	E GI	ENERATION	
Storage	e Organization, Stack Allocation Space, Access to Non-le	ocal	Data on the	Stack, Hear
Manag	ement - Issues in Code Generation - Design of a simple Code C	Gener	ator.	, 1
	PART-A (2 -MARKS)			
1.	List out limitations of the static memory allocation.		Remember	BTL1
2	How the storage organization for the run-time memory is		Apply	BTL3
2.	organized?			
3.	What is heap allocation?		Remember	BTL1
4.	How the activation record is pushed onto the stack.		Apply	BTL3
5.	Analyze the storage allocation strategies.		Analyze	BTL4
6.	State the principles for designing calling sequences.		Remember	BTL1
7.	List out the dynamic storage techniques.		Remember	BTL1
8.	Define the non-local data on stack.		Remember	BTL1
9.	Define variable data length on the stack.		Remember	BTL1
10.	Differentiate between stack and Heap allocation		Analyze	BTL4
11.	Distinguish between static and dynamic storage allocation.		Understand	BTL2
12.	Discuss the main idea of Activation tree.		Understand	BTL2
13.	Give the fields in an Activation record.		Understand	BTL2
14.	Compose space efficiency and program efficiency.		Create	BTL6
15.	Construct typical memory hierarchy configuration of a		Evaluate	BTL5

	computer.		
16	How would you solve the issues in the design of code	Apply	BTL3
10.	generators?		
17.	Evaluate Best-fit and Next-fit object placement.	Evaluate	BTL5
	Prepare optimal code sequence for the given sequence	Create	BTL6
10	t=a+b		
10.	t=t*c		
	t=t/d		
19.	Analyze the different forms of machine instructions.	Analyze	BTL4
20.	Discuss the four principle uses of registers in code generation.	Understand	BTL2
21	Examine what is the input to code generator.	Analyze	BTL4
22	What are the advantages and disadvantages of register	Understand	BTL2
22	allocation and assignments?		
23	How the use of registers is subdivided into 2 sub-problems?	Evaluate	BTL5
24	Organize the contents of activation record.	Apply	BTL3
	PART-B (13- MARKS)		
1.	(i)Illustrate the storage organization memory in the perspective (8)	Apply	BTL3
	of compiler writer with neat diagram.		
	(ii)Compare static versus dynamic memory allocation. (5)		
2.	Explain in detail about the various issues in code generation	Evaluate	BTL5
	with examples. (13)		
3.	(i)Develop a quicksort algorithm to reads nine integers into an (9)	Create	BTL6
	array a and sorts them by using the concepts of activation tree.		
	(ii)Give the structure of the action record. (4)		
4.	How to a design a call sequences and analyze the principles of(13)	Analyze	BTL4
	activation records with an example.		
5.	Discuss in detail about the activation tree and activation record(13)	Understand	BTL2
	with suitable example		
6.	(i) Analyze the data access without nested procedure and the (7)	Analyze	BTL4
	issues with nested procedure.		
	(ii)Give the version of quicksort in ML style using nested (6)		
	procedure.		
7.	(i)Discuss in detail about heap manager. (7)	Understand	BTL2
	(ii)Describe in detail about the memory hierarchy of a (6)		
	computer		
8.	Define fragmentation? Describe in detail about how to reduce(13)	Remember	BTL1
	the fragment.		
9.	Write short notes on the following	Remember	BTL1
	i. Best fit and next object placement. (7)		
	ii. Managing and coalescing free space(6)		
10.	Examine the problems with manual deallocation of memory(13)	Remember	BTL1
	and explain how the conventional tools are used to cope with		
	the complexity in managing memory.		
11.	Explain in detail about instruction selection and register(13)	Analyze	BTL4
	allocation of code generation.		
12.	Illustrate in detail about the code generation algorithm with an(13)	Apply	BTL3

	example		
13	Discuss usage of stack in the memory allocation and discuss $in(13)$	Understand	RTI 2
15.	detail about stock allocation space of memory	Understand	D1L2
1.4	D it is a line and a line and a line in the line in the line in the line is a line in the line in the line is a line in the line in the line in the line in the line is a line in the line in the line is a line in the line i		
14.	Describe the heap management of memory manager and (13)	Remember	BILI
	locality of programs in defail .		
15	Explain the problem that occurs in code generation with (13)	Evaluate	BTL5
	example		
16	Illustrate the function of code generation algorithm in detail (13)	Analyze	BTL3
17	Discuss in detail about access links, manipulation of access(13)	Understand	BTL2
	links and access links for procedure		
	PART-C (15-MARKS)		
1.	Suppose the heap consists of seven chunks, starting at address (15)	Evaluate	BTL5
	0. The sizes of the chunks, in order, are 80, 30, 60, 50, 70, 20,		
	40 bytes. When we place an object in a chunk, we put it at the		
	high end if there is enough space remaining to form a smaller		
	chunk (so that the smaller chunk can easily remain on the		
	linked list of free space) However, we cannot tolerate chunks		
	of favor that 8 bytes, so if an object is almost as large as the		
	of lewel that 8 bytes, so if all object is almost as large as the		
	selected chunk, we give it the entire chunk and place the object		
	at the low end of the chunk. If we request space for objects of		
	the following sizes: 32, 64, 48, 16, in that order, what does the		
	free space list look like after satisfying the requests, if the		
	method of selecting chunks is a) First fit.b) Best fit.		
2.	Explain the stack and heap allocation of memory in detail with(15)	Evaluate	BTL5
	suitable examples.		
3.	Generate code for the following sequence assuming that n is in (15)	Create	BTL6
	a memory location		
	s=0		
	i=0		
	L1: if I > n goto L2		
	s=s+i		
	i=i+1		
	goto L1		
	L2 :		
4.	Create following assignment statement into three address code (15)	Create	BTL6
	D:=(a-b)*(a-c)+(a-c)		-
	Apply code generation algorithm to generate a code sequence		
	for the three address statement		
5	The following program is used to compute Fiboracci numbers(15)	Evaluate	BTI 5
5	require singly. Suppose that the activation record for firstudes	Evaluate	
	the following elements in order: (return value, crowners)		
	the following elements in order: (return value, argument n,		
	iocal s, iocal t); there will normally be other elements in the		
	activation record as well. The questions below assume that the		
	initial call is f(5).		
	int f(int n) {		

	int t, s;		
	if $(n < 2)$ return 1;		
	s = f(n-1);		
	t = f(n-2);		
	return s+t;		
	}		
	a)Show the complete activation tree.		
	b)What dose the stack and its activation records look like the		
	first time f(1) is about to return?		
	c)What does the stack and its activation records look like the		
	fifth time f(1) is about to return?		
	UNIT V- CODE OPTIMIZATION		
Princip	oal Sources of Optimization - Peep-hole optimization - DAG- Optim	nization of Bas	ic Blocks
Global	Data Flow Analysis - Efficient Data Flow Algorithm.		
	PART-A (2 -MARKS)		
1.	List out the examples of function preserving transformations.	Remember	BTL1
2.	Illustrate the concepts of copy propagation.	Apply	BTL3
3.	State the use of machine Idioms.	Remember	BTL1
4.	Show the flow graph for the quicksort algorithm	Apply	BTL3
5.	Apply	Apply	BTL3
6.	Identify the constructs for optimization in basic block.	Remember	BTL1
7.	List out the properties of optimizing compilers.	Remember	BTL1
8.	Define the term data flow analysis.	Remember	BTL1
9.	How is liveness of a variable calculated? Identify it.	Analvze	BTL4
10.	What is DAG? Point out advantages of DAG.	Analyze	BTL4
11.	Give the uses of gen and Kill functions	Understand	BTL2
12.	Discuss the concepts of basic blocks and flow graphs.	Understand	BTL2
13.	Give the main idea of constant folding.	Understand	BTL2
14.	Prepare the three address code sequence for the assignment	Create	BTL6
1	statement.		
	d := (a - b) + (a - c) + (a - c).		
15.	Construct and explain the DAG for the follow basic block.	Evaluate	BTL5
	d := b * c		
	e:=a+b		
	$b := b^*c$		
	a := e - d.		
16.	What role does the target machine play on the code generation	Analyze	BTL4
	phase of the compiler? Analyze it.		
17.	Draw the DAG for the statement $a = (a*b+c) - (a*b+c)$ and	Evaluate	BTL5
_ / .	evaluate it.		
18.	Develop the code for the follow C statement assuming three	Create	BTL6
-0.	registers are available.		
	x = a / (b + c) - d * (e + f)		
19.	Point out the characteristics of peephole optimization.	Analvze	BTL4
20.	Define algebraic transformations. Give an example	Understand	BTL2

21	What is a flow graph?		Remember	BTL1
22	What is dead code elimination? Give example.		Understand	BTL2
23	Show an example for code motion.		Apply	BTL3
24	How the strength reduction is applied in code optimization?		Evaluate	BTL5
	PART-B(13 MARKS)			
1.	Explain briefly about the principal sources of optimization.	(13)	Evaluate	BTL5
2.	(i).Explain in detail about optimization of basic blocks.	(5)	Analyze	BTL4
	(ii).Construct the DAG for the following Basic block &	(8)	5	
	explain it.			
	t1: = 4 * i			
	t2:=a[t1]			
	t3: = 4 * i			
	t4:=b[t3]			
	t5:=t2*t4			
	t6:=Prod+t5			
	Prod:=t6			
	t7:=i+1			
	i:= t7			
	if i<= 20 goto (1).			
3.	Discuss the following in detail		Understand	BTL2
	(i)Semantic preserving transformation	(7)		
	(ii)Global Common subexpression	(6)		
4.	Write about the following in detail	(5)	Remember	BTL1
	(i)copy propagation	(5)		
	(ii)Dead code Elimination	(3)		
	(iii)code motion			
5.	Explain in detail about the data-flow schemas on basic block	(13)	Analyze	BTL4
	and the transfer equations for reaching definitions with			
	example	· - >		
6.	(i) Illustrate the Iterative algorithm for reaching definitions	(7)	Apply	BTL3
	(ii)Discuss the live variable analysis	(6)		
7.	Analyze Peephole optimization with suitable examples.	(13)	Analyze	BTL4
8.	Demonstrate optimization of Basic Blocks with an example.	(13)	Apply	BTL3
9.	(1)Discuss in detail about how to find Local Common Sub	(8)	Understand	BTL2
	expressions.			
10	(11)Discuss in detail about the Use of Algebraic Identities.	(5)		
10.	(1)Describe in detail about the flow of control optimization.	(7)	Remember	BILI
	(1) Identify the methods to eliminate the unreachable code,	(c)		
11	toad and store data.	(6)	D a rea o 1:	
11.	(1) Give an example to identify the dead code in the DAG.	(5)	kemember	BILI
	(1) Describe the representation of array using DAG with	(8)		
10	Example.	(12)	I Indonetor d	
12.	summarize in detail about the dataflow analysis of available	(13)	Understand	DILZ
12	expression with suitable example.	(7)	Craata	
13.	(1) Formulate steps to identify the loops in the basic block.	(1)	Create	DILO

	(ii) Describe about induction variable and end reduction in	(6)		
	strength			
14.	Describe the efficient data flow algorithms in detail.	(13)	Remember	BTL1
15	Explain in detail about optimization method performed on a	(13)	Evaluate	BTL5
16	Discuss in detail about structure preserving transformation in		Understand	BTI 2
10	detail	(13)	Onderstand	DIL2
17	Illustrate in detail about DAG Representation of basic block and Write algorithm for DAG Construction	(13)	Apply	BTL3
	PART-C(15 MARKS)			
1	Create DAG and three $-$ address code for the following C	(15)	Create	BTI 6
1.	r_{rogram} (15)	(13)	Cicale	DILO
	$i = 1 \cdot s = 0$			
	1 - 1, 5 - 0, while $(i < -10)$			
	while $(1 < -10)$			
	S - S + a[1] [1], i - i + 1;			
	1 - 1 + 1,			
2	j j	(15)	Craata	
۷.	ENTRY	(13)	Cleate	DILO
	(1) $a = 1$ B_1			
	(2) 5 - 2			
	(3) c = a+b			
	$(4) d - c - a B_{3}$			
	(5) d = b+d			
	$(0) \mathbf{d} = \mathbf{a} + \mathbf{b} \qquad (9) \mathbf{e} = \mathbf{c} - \mathbf{a}$			
	(10) $a = b * d$			
	(11) b = a-d			
	T T T T T T T T T T T T T T T T T T T			
	Identify the loops of the flow graph			
	Identify the global common sub-expression for each loop			
	Identify Induction variables for each loop			
	Identify induction variables for each loop			
	identify loop invariant computation for each loop			

3		(15)Evaluate	BTL5
5.	ENTRY		
	•		
	(1) a = 1 B_1		
	(2) b = 2		
	•		
	(3) c - a+b		
	(4) d = c-a		
	(5) d = b+d		
	(8) b = a+b ²⁵		
	$B_{A} = \begin{pmatrix} 6 \\ d \\ e \\ a + b \end{pmatrix} = \begin{pmatrix} 9 \\ e \\ e \\ c - a \end{pmatrix}$		
	() e - e+1		
	$(10) a = b^* d^{-5}$		
	(1) 5 - 8-9		
	ЕХП		
	Compute the grn and Kill sets for each Block		
	In and Out sets for each block		
	Compute e_gen and e_kill		
4.	Evaluate the available expressions on the following code by	(15) Evaluate	BTL5
	converting into basic blocks and compute global common sub		
	-expression elimination. (15)		
	$\mathbf{i} = 0$		
	a = n - 3		
	if $i < a$ then loop else end		
	label loop		
	0 = 1 - 4		
	c := p + b		
	d := M[c]		
	e:=d-2		
	f:=i-4		
	g:=p+f		
	m[g]:=e		
	i:=i+1		
	a:=n-3		
	if $i < a$ then loop else end		
	label end		
5	Evaluate the Denth-first Ordering in iterative Algorithm and	(15)Evaluate	BTI 5
5.	structure -Base Data flow Analysis in datail		
1	puluture -Dase Data now Anarysis in detain		