SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution) SRM Nagar, Kattankulathur – 603 203

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

QUESTION BANK

VIII SEMESTER

1904801 DEEP LEARNING

Regulation – 2019

Academic Year 2024 – 2025 (EVEN)

Prepared by

Ms. SUMA.S (AP Sel. G. / CSE)

SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution) SRM Nagar, Kattankulathur-603203 DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

QUESTION BANK

SUBJECT :1904801 DEEP LEARNING SEM/YEAR : VIII/IV

CCE

UNIT - I: INTRODUCTION TO MACHINE LEARNING BASICS
Scalars – Vectors – Matrices – Tensors – Identity and Inverse Matrices – Linear Dependence and Span
– Eigen Decomposition – Probability – Random Variables – Conditional Probability – Expectation –
Variance – Covariance – Bayes' Rule – Supervised Learning Algorithm – Unsupervised Learning
Algorithm – Stochastic Gradient Descent.
PART – A

Q.N 0	Question	BT Level	Competence		
1	What is Deep Learning?	BTL-1	Remember		
2	Differentiate scalar and vector.	BTL-2	Understand		
3	Compare Deep Learning and rule based system.	BTL-4	Analyze		
4	What is Auto encoder?	BTL-1	Remember		
5	List out the special kind of matrices.	BTL-1	Remember		
6	What is representation learning?	BTL-1	Remember		
7	Compare Deep Learning with Machine learning.	BTL-5	Evaluate		
8	State the Bayes rule.	BTL-1	Remember		
9	List out some supervised learning algorithms.	BTL-1	Remember		
10	Can principle component analysis viewed as unsupervised learning algorithm? Examine .	BTL-3	Apply		
11	Discuss about supervised learning algorithms.	BTL-2	Understand		
12	Give Venn diagram for Deep Learning.	BTL-2	Understand		
13	Specify the formula for conditional probability.	BTL-6	Create		
14	Illustrate support vector machine.	BTL-3	Apply		
15	Show the formula for Variance.	BTL-3	Apply		
16	Differentiate Independence and Conditional Independence.	BTL-2	Understand		
17	Analyze Eigen Decomposition.	BTL-4	Analyze		
18	Analyze random variable.	BTL-4	Analyze		

19	Probability theory is a fundamental tool of many disciplines of science and engineering. Justify .	BTL-5	Evaluate
20	Develop a formula for unbiased sample covariance matrix associated with an m x n dimensional matrix X. Assume $E[x] = 0$.	BTL-6	Create
21	Analyze about tensor.	BTL-4	Analyze
22	Illustrate identity matrix?	BTL-3	Apply
23	Discuss about matrix inverse.	BTL-2	Understand
24	Assess linear dependence of vectors.	BTL-5	Evaluate
	PART – B	.0	
1	 i. What is Deep Learning? (3) ii. Describe how different parts of an Artificial Intelligence system relate to each other within different AI disciplines in detail with diagram.(10) 	BTL-1	Remember
2	Describe how deep learning is a kind of representation learning with the Venn diagram. (13)	BTL-1	Remember
3	List and explain the historical trends in Deep Learning.	BTL-1	Remember
4	i. Discuss about scalars.(7)ii. Give detail description of vectors. (6)	BTL-2	Understand
5	i. Give the Difference between deep learning and machine learning.(7)ii. Give the various concepts of probability. (6)	BTL-2	Understand
6	i. Demonstrate linear dependence and independence of vectors.(7)ii. Explain span of vectors. (6)	BTL-3	Analyze
7	Analyze and write short notes on the following.i. Vectors. (6)ii. Matrices.(7)	BTL-4	Analyze
8	Explain the following in detail.i. Eigen Decomposition. (7)ii. Tensors.(6)	BTL-4	Apply
9	Assess the following. i. Expectation .(5) ii. Variance.(4) iii. Covariance . (4)	BTL-5	Evaluate
10	Extrapolate conditional probability and Develop a summary of various common probability distribution. (13)	BTL-6	Create
11	Describe Stochastic Gradient Descent. (13)	BTL-1	Remember
12	i. Illustrate the importance of principal components analysis. (6)ii. Explain support vector machines in detail. (7)	BTL-3	Analyze
13	Explain supervised learning algorithm. (13)	BTL-4	Apply

14	Discuss unsupervised learning algorithm. (13)	BTL-2	Understand
15	Discuss Normal distribution. (13)	BTL-2	Understand
16	Explain Probability Mass function and Probability Density function. (13)	BTL-3	Analyze
17	Explain Principal Components Analysis. (13)	BTL-5	Evaluate
	PART – C		
1	 Develop short notes on following with respect to deep learning with examples. i) Scalar and Vectors. (6) ii) Matrices. (7) 	BTL-6	Create
2	Assess the following with respect to deep learning examples.i)Random Variables. (6)ii)Probability. (7)	BTL-5	Evaluate
3	Develop a supervised learning algorithm and explain in detail.(15)	BTL-6	Create
4	Assess unsupervised learning algorithm.(15)	BTL-5	Evaluate
5	Assess the historical developments in deep learning. (15)	BTL-5	Evaluate
Desi Regu	UNIT - II: DEEP NETWORKS o Feed Forward Network: Learning XOR – Gradient Based Learning- Hidden gn – Back Propagation Algorithms. Regularization for Deep Learning: Paran Ilarization and unconstrained Problems – Dataset Augmentation – Noise rvised Learning – Challenges in Neural Network Optimization.	neter Norm	Penalties –
Desi Regu	p Feed Forward Network: Learning XOR – Gradient Based Learning- Hidden gn – Back Propagation Algorithms. Regularization for Deep Learning: Paran alarization and unconstrained Problems – Dataset Augmentation – Noise	neter Norm	Penalties –
Desi Regu supe	o Feed Forward Network: Learning XOR – Gradient Based Learning- Hidden gn – Back Propagation Algorithms. Regularization for Deep Learning: Paran alarization and unconstrained Problems – Dataset Augmentation – Noise rvised Learning – Challenges in Neural Network Optimization. PART – A	neter Norm e Robustne	Penalties – ss – Semi
Desi Regu supe:	o Feed Forward Network: Learning XOR – Gradient Based Learning- Hidden gn – Back Propagation Algorithms. Regularization for Deep Learning: Paran alarization and unconstrained Problems – Dataset Augmentation – Noise rvised Learning – Challenges in Neural Network Optimization. PART – A	neter Norm e Robustne BT	Penalties – ss – Semi
Desi Regu super Q. No 1 2	p Feed Forward Network: Learning XOR – Gradient Based Learning- Hidden gn – Back Propagation Algorithms. Regularization for Deep Learning: Paran alarization and unconstrained Problems – Dataset Augmentation – Noise rvised Learning – Challenges in Neural Network Optimization. PART – A Questions	neter Norm e Robustne BT Level	Penalties – ss – Semi Competence
Desi Regu supe Q. No 1	 Feed Forward Network: Learning XOR – Gradient Based Learning- Hidden gn – Back Propagation Algorithms. Regularization for Deep Learning: Paran alarization and unconstrained Problems – Dataset Augmentation – Noise rvised Learning – Challenges in Neural Network Optimization. PART – A Questions Point out different set of layers in Feed forward networks. Point out the default activation function for modern neural networks. Compare linear models and neural networks. 	neter Norm e Robustne BT Level BTL-4	Penalties – ss – Semi Competence Analyze
Desi Regu super Q. No 1 2	 Feed Forward Network: Learning XOR – Gradient Based Learning- Hidden gn – Back Propagation Algorithms. Regularization for Deep Learning: Paran alarization and unconstrained Problems – Dataset Augmentation – Noise rvised Learning – Challenges in Neural Network Optimization. PART – A Questions Point out different set of layers in Feed forward networks. Point out the default activation function for modern neural networks. 	BT BTL-4 BTL-4	Penalties – ss – Semi Competence Analyze Analyze
Desi Regu super Q. No 1 2 3	 Feed Forward Network: Learning XOR – Gradient Based Learning- Hidden gn – Back Propagation Algorithms. Regularization for Deep Learning: Paran alarization and unconstrained Problems – Dataset Augmentation – Noise rvised Learning – Challenges in Neural Network Optimization. PART – A Questions Point out different set of layers in Feed forward networks. Point out the default activation function for modern neural networks. Compare linear models and neural networks. Develop three generalizations of rectified linear units based on using a 	BT BT Level BTL-4 BTL-4 BTL-5	Penalties – ss – Semi Competence Analyze Analyze Evaluate
Desi Regu super Q. No 1 2 3 4	 Feed Forward Network: Learning XOR – Gradient Based Learning- Hidder gn – Back Propagation Algorithms. Regularization for Deep Learning: Paran ilarization and unconstrained Problems – Dataset Augmentation – Noise rvised Learning – Challenges in Neural Network Optimization. PART – A Questions Point out different set of layers in Feed forward networks. Point out the default activation function for modern neural networks. Compare linear models and neural networks. Develop three generalizations of rectified linear units based on using a non-zero slope. What is Deep Feed Forward networks? List reasonably common hidden unit types. 	BT BT Level BTL-4 BTL-4 BTL-5 BTL-6	Penalties – ss – Semi Competence Analyze Analyze Evaluate Create
Desi Regu super Q. No 1 2 3 4 5 6 7	 Feed Forward Network: Learning XOR – Gradient Based Learning- Hidden gn – Back Propagation Algorithms. Regularization for Deep Learning: Paran alarization and unconstrained Problems – Dataset Augmentation – Noise rvised Learning – Challenges in Neural Network Optimization. PART – A Questions Point out different set of layers in Feed forward networks. Point out the default activation function for modern neural networks. Compare linear models and neural networks. Develop three generalizations of rectified linear units based on using a non-zero slope. What is Deep Feed Forward networks? 	BT BT Level BTL-4 BTL-4 BTL-4 BTL-5 BTL-5 BTL-6 BTL-1 BTL-1 BTL-1 BTL-2	Penalties – ss – Semi Competence Analyze Analyze Evaluate Create Remember Remember Understand
Desi Regu super Q. No 1 2 3 4 5 6 7 8	 b Feed Forward Network: Learning XOR – Gradient Based Learning- Hidder gn – Back Propagation Algorithms. Regularization for Deep Learning: Paran alarization and unconstrained Problems – Dataset Augmentation – Noise rvised Learning – Challenges in Neural Network Optimization. PART – A Questions Point out different set of layers in Feed forward networks. Point out the default activation function for modern neural networks. Compare linear models and neural networks. Develop three generalizations of rectified linear units based on using a non-zero slope. What is Deep Feed Forward networks? List reasonably common hidden unit types. Give the drawback of rectified linear units. Describe gradient descent. 	BTL-4 BTL-4 BTL-4 BTL-5 BTL-6 BTL-1 BTL-1 BTL-2 BTL-2	Penalties – ss – Semi Competence Analyze Analyze Evaluate Create Remember Remember Understand Understand
Desi Regu super Q. No 1 2 3 4 5 6 7	 b Feed Forward Network: Learning XOR – Gradient Based Learning- Hidder gn – Back Propagation Algorithms. Regularization for Deep Learning: Parata alarization and unconstrained Problems – Dataset Augmentation – Noise rvised Learning – Challenges in Neural Network Optimization. PART – A Questions Point out different set of layers in Feed forward networks. Point out the default activation function for modern neural networks. Compare linear models and neural networks. Develop three generalizations of rectified linear units based on using a non-zero slope. What is Deep Feed Forward networks? List reasonably common hidden unit types. Give the drawback of rectified linear units. 	BT BT Level BTL-4 BTL-4 BTL-4 BTL-5 BTL-5 BTL-6 BTL-1 BTL-1 BTL-1 BTL-2	Penalties – ss – Semi Competence Analyze Analyze Evaluate Create Remember Remember Understand
Desi Regu super Q. No 1 2 3 4 5 6 7 8	 b Feed Forward Network: Learning XOR – Gradient Based Learning- Hidder gn – Back Propagation Algorithms. Regularization for Deep Learning: Paran alarization and unconstrained Problems – Dataset Augmentation – Noise rvised Learning – Challenges in Neural Network Optimization. PART – A Questions Point out different set of layers in Feed forward networks. Point out the default activation function for modern neural networks. Compare linear models and neural networks. Develop three generalizations of rectified linear units based on using a non-zero slope. What is Deep Feed Forward networks? List reasonably common hidden unit types. Give the drawback of rectified linear units. Describe gradient descent. 	BTL-4 BTL-4 BTL-4 BTL-5 BTL-6 BTL-1 BTL-1 BTL-2 BTL-2	Penalties – ss – Semi Competence Analyze Analyze Evaluate Create Remember Remember Understand Understand
Desi Regu supe: Q. No 1 2 3 4 5 6 7 8 9	 Feed Forward Network: Learning XOR – Gradient Based Learning- Hidder gn – Back Propagation Algorithms. Regularization for Deep Learning: Paran larization and unconstrained Problems – Dataset Augmentation – Noise rvised Learning – Challenges in Neural Network Optimization. PART – A Questions Point out different set of layers in Feed forward networks. Point out the default activation function for modern neural networks. Compare linear models and neural networks. Develop three generalizations of rectified linear units based on using a non-zero slope. What is Deep Feed Forward networks? List reasonably common hidden unit types. Give the drawback of rectified linear units. Describe gradient descent. Give example of a feed forward neural network. 	BTL-4 BTL-4 BTL-4 BTL-5 BTL-6 BTL-1 BTL-1 BTL-1 BTL-2 BTL-2 BTL-2	Penalties – ss – Semi Competence Analyze Analyze Evaluate Create Remember Remember Understand Understand

13	What critical points or stationary points in derivative illustration of a function?	BTL-1	Remember
14	Describe regularization for deep learning.	BTL-2	Understand
15	Illustrate semi supervised learning.	BTL-3	Apply
16	Illustrate the derivative function used in gradient descent algorithm.	BTL-3	Apply
17	Explain importance of dataset augmentation.	BTL-3	Apply
18	Analyze and write chain rule of calculus.	BTL-4	Analyze
19	Reason for calling Feed forward neural networks as networks-Justify.	BTL-5	Evaluate
20	Develop a computational graph for any function.	BTL-6	Create
21	Give reason for the term "feed forward" used in the feed forward networks.	BTL-2	Understand
22	Explain XOR operation.	BTL-3	Apply
23	Analyze cost function.	BTL-4	Analyze
24	Justify the application of Dataset Augmentation various tasks	BTL-5	Evaluate
	PART – B		
1	Describe Deep feed forward networks. (13)	BTL-1	Remember
2	Explain cost function in gradient based learning. (6) Explain learning conditional distributions with maximum likelihood. (7)	BTL-3	Apply
3	 i. Describe about learning conditional statistics in gradient based learning.(7) ii. Explain linear units for Gaussian Output Distributions.(6) 	BTL-1	Remember
4	Explain output units of feed forward networks. (13)	BTL-3	Apply
5	i. Explain sigmoid units for Bernoulli Output Distributions.(8)ii. Justify the importance of Rectified linear units in Hidden units. (5)	BTL-5	Evaluate
6	i. Give Soft max units for Multinoulli Output Distributions. (7)ii. Discuss about Hidden Units. (6)	BTL-2	Understand
7	i. Describe Rectified linear units and their generalizations. (7)ii. Describe Logistic Sigmoid and Hyperbolic Tangent. (6)	BTL-2	Understand
8	i. Write a short notes on Radial Basis function, Soft plus and Hard tanh(7)ii. Write a short notes on Architecture Design. (6)	BTL-4	Analyze
9	i. Describe Back Propagation algorithm. (7)ii. Explain regularization for deep learning. (6)	BTL-1	Remember
10	Briefly describe Universal Approximation Properties and Depth. (13)	BTL-1	Remember
11	Analyze and write short notes on Dataset Augmentation. (13)	BTL-4	Analyze
12	Develop a data set and demonstrate Noise Robustness. (13)	BTL-6	Create
13	Discuss in detail about chain rule of calculus. (13)	BTL-2	Understand

14	Illustrate Computational graphs. (13)	BTL-4	Analyze		
15	Give the applications of Dataset Augmentation. (13)	BTL-2	Understand		
16	Explain Multi-Task Learning. (13)	BTL-3	Analyze		
17	Assess Computational graphs with necessary diagrams. (13)	BTL-5	Evaluate		
	PART – C				
1	Develop a Deep Feed forward network and explain. (15)	BTL-6	Create		
2	Assess the routines to implement forward propagation computation. (15)	BTL-5	Evaluate		
3	Assess the difference between linear models and neural networks. (15)	BTL-5	Evaluate		
4	Develop your own scenarios to demonstrate computational graph. (15)	BTL-6	Create		
5	Develop Chain Rule of Calculus. (15)	BTL-6	Create		

UNIT - III: CONVOLUTIONAL NETWORKS

The Convolution Operation – Motivation – Pooling – Variants of the Basic Convolution Function – Structured Outputs – Data types – Efficient Convolution Algorithm – Random or Unsupervised Features.

Q.N	Questions	BT	Competence
0		Level	
	PART – A		
1	An essential feature of any convolutional network implementation is the ability to implicitly zero-pad the input V. Justify	BTL-5	Evaluate
2	The output layer of convolutional network is usually relatively inexpensive to learning layer. Justify .	BTL-5	Evaluate
3	What is convolutional networks?	BTL-1	Remember
4	Create a chart that demonstrates convolution with a stride.	BTL-6	Create
5	How pooling handles inputs of varying size?	BTL-4	Analyze
6	What is meant by convolution?	BTL-1	Understand
7	List three important ideas that help to improve a machine learning system.	BTL-1	Remember
8	What is unshared convolution?	BTL-2	Understand
9	Define primary visual cortex.	BTL-1	Remember
10	How to reduce the cost of convolutional network training?	BTL-2	Understand
11	Simulate the idea behind reverse correlation.	BTL-6	Create
12	Discuss about parameter sharing in neural network.	BTL-2	Understand
13	Give three properties of V1 that a convolutional network layer is designed to capture.	BTL-2	Understand
14	Explain feature map.	BTL-4	Analyze
15	Explain how a convolutional layer have a property called equi-variance to translation?	BTL-3	Apply

16	List three stages of a convolutional network.	BTL-1	Remember
17	List out various formats of data that can be used with convolutional networks.	BTL-1	Remember
18	Illustrate pooling stage in convolutional network.	BTL-3	Apply
19	Differentiate complex layer terminology and simple layer terminology in convolutional network.	BTL-4	Analyze
20	Show three basic strategies for obtaining convolution kernels without supervised training.	BTL-3	Apply
21	Give example for convolution.	BTL-2	Understand
22	Illustrate reverse correlation.	BTL-3	Apply
23	Explain complex layer terminology.	BTL-4	Analyze
24	Examine equi-variance to translation.	BTL-5	Evaluate
	PART – B		
1	Write an example function for Convolution operation and explain in detail. (13)	BTL-1	Remember
2	Explain the following with suitable diagram.i. Sparse interactions. (6)ii. Parameter sharing. (7)	BTL-4	Analyze
3	Describe Pooling with suitable example. (13)	BTL-1	Remember
4	Write an expression for Unshared convolution with explanation and explain Tiled convolution.(13)	BTL-1	Remember
5	Discuss in detail the variants of the Basic Convolution Function. (13)	BTL-2	Understand
6	Construct an architecture that show complex layer terminology and Simple layer terminology in convolutional neural network.	BTL-5	Evaluate
7	Discuss local connections, convolution and full connections with diagram? (13)	BTL-2	Understand
8	Develop a table with examples of different formats of data that can be used with convolutional networks. (13)	BTL-6	Create
9	Describe in detail about the following. i. Parameter Sharing. (7) ii. Equi-variant representation. (6)	BTL-1	Remember
10	Differentiate locally connected layers, tiled convolution and standard convolution with suitable examples and diagram. (13)	BTL-4	Analyze
11	i. Write short notes Max Pooling. (6)ii. Explain Pooling with down sampling. (7)	BTL-2	Remember
12	Explain random or Unsupervised Features.(13)	BTL-4	Analyze
13	Illustrate unshared convolution with suitable examples. (13)	BTL-3	Apply
14	 i. Show three properties of V1 that a convolutional network layer is designed to capture. (6) ii. Prove the working learned invariances with necessary example and diagram. (7) 	BTL-3	Apply
15	Discuss parameter sharing. (13)	BTL-2	Understand
			1

16	Illustrate Equi-variant representation. (13)	BTL-3	Analyze
17	Evaluate the working learned invariances with necessary example and diagram. (13)	BTL-5	Evaluate
	PART – C	•	
1	Construct a graphical demonstration for sparse connectivity and explain it in detail. (15)	BTL-5	Evaluate
2	Create a graphical demonstration for parameter sharing and explain it in detail. (15)	BTL-6	Create
3	Evaluate variants of the basic convolution function. (15)	BTL-5	Evaluate
4	Construct a convolutional network to demonstrate the effect of zero padding on network size. Explain Neuro scientific basis for Convolutional Networks. (15)	BTL-6	Create
5	Create a table with examples of different formats of data that can be used with convolutional networks. (15)	BTL-6	Create

UNIT - IV: SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

Unfolding Computational Graphs – Recurrent Neural Networks – Bidirectional RNNs – Encoder Decoder Sequence to Sequence Architectures – Deep Recurrent Networks – Recursive Neural Networks – The Challenge of Long- Term Dependencies – Echo State Networks – The Long-term memory and other Gated RNNs – Optimization for Long Term Dependencies – Explicit Memory.

	PART – A				
Q.No	Questions	BT Level	Competence		
1	What is Recurrent Neural Networks?	BTL-1	Remember		
2	What is Encoder?	BTL-1	Remember		
3	Give the blocks of decomposition of computation of most Recurrent Neural Networks.	BTL-2	Understand		
4	What is Bidirectional Recurrent Neural Networks?	BTL-1	Remember		
5	Give the advantage of recursive nets over recurrent nets.	BTL-2	Understand		
6	What is decoder?	BTL-1	Remember		
7	Describe Recursive Neural Networks.	BTL-1	Remember		
8	Predict the concept of gated RNNs.	BTL-2	Understand		

9	Compare echo state network and liquid state machines.	BTL-4	Analyze
10	Distinguish content based addressing and location based addressing in memory networks.	BTL-2	Understand
11	Classify the different strategies for Multiple Time Scales.	BTL-3	Apply
12	Developa block diagram for LSTM.	BTL-6	Create
13	Illustrate important design patterns for recurrent neural networks.	BTL-3	Apply
14	Summarize about echo state networks.	BTL-5	Evaluate
15	Point out the advantage of introducing depth in Deep recurrent Networks.	BTL-4	Analyze
16	Compare gradient descent with and without gradient clipping using diagram.	BTL-4	Analyze
17	Justify the major advantages of unfolding process in computational graphs.	BTL-5	Evaluate
18	Illustrate block diagram of LSTM recurrent network "cell".	BTL-3	Apply
19	What are leaky units?	BTL-1	Remember
20	Develop a schematic diagram of a network with an explicit memory.	BTL-6	Create
21	Give a block diagram for Long Short Term Memory.	BTL-2	Understand
22	Illustrate echo state networks.	BTL-3	Apply
23	Explain liquid state machines.	BTL-4	Analyze
24	Assess explicit memory.	BTL-5	Evaluate
	PART – B		
1	i. Describe Unfolding Computational Graphs. (6) ii. Explain Bidirectional RNNs. (7)	BTL-1	Remember
2	 Describe the following. i. Teacher Forcing in Recurrent Neural Networks. (7) ii. Networks with Output Recurrence. (6) 	BTL-1	Remember
3	i. Describe Echo State Networks. (7)ii. Explain challenge of Long-Term Dependencies.(6)	BTL-1	Remember
4	Discuss Recurrent Neural Networks in detail.(13)	BTL-2	Understand
5	Describe Deep Recurrent Networks in detail.(13)	BTL-2	Understand
6	Illustrate Encoder-Decoder sequence-to-sequence Architecture. (13)	BTL-3	Apply
7	Explain Leaky Units and Other Strategies for Multiple Time Scales. (13)	BTL-4	Analyze
8	Point out various features of Echo state networks. (13)	BTL-4	Analyze
9	Explain Optimization for Long-Term Dependencies. (13)	BTL-5	Evaluate
10	Compute the gradient in a Recurrent Neural Network. (13)	BTL-6	Create

11	i. Illustrate Clipping Gradients. (7)ii. Illustrate Regularizing to Encourage Information Flow.(6)	BTL-3	Apply
12	Describe the following. i. Long Short-Term Memory. (7) ii. Other Gated RNNs. (6)	BTL-1	Remember
13	Explain in detail about the following.i. Adding Skip Connections through Time. (6)ii. Leaky Units and a Spectrum of Different Time Scales .(7)	BTL-4	Analyze
14	Describe Explicit memory. (13)	BTL-2	Understand
15	Discuss Echo State Networks. (13)	BTL-2	Understand
16	Illustrate Bidirectional RNNs.(13)	BTL-3	Analyze
17	Explain challenge of Long-Term Dependencies. (13)	BTL-5	Evaluate
	PART – C		
1	Develop an example for Unfolding Computational Graphs and describe the major advantages of unfolding process. (15)	BTL-6	Create
2	Explain how to compute the gradient in a Recurrent Neural Network.(15)	BTL-5	Evaluate
3	Explain a modeling sequences Conditioned on Context with RNNs. (15)	BTL-5	Evaluate
4	Prepare an example of Encoder- Decoder or sequence-to-sequence RNN architecture.(15)	BTL-6	Create
5	Explain various Gated RNNs. (15)	BTL-5	Evaluate

	UNIT - V: DEEP LEARNING APPLICATIO	N	
	Factor Models – Auto Encoders - Representation Learning – Structuring - Monte Carlo Methods.	red Probabilistic N	Iodels for Deep
	PART – A		
Q.No	Question	BT Level	Competence
1	What is Probabilistic PCA and Factor Analysis?	BTL-1	Remember
2	Define Linear Factor Model.	BTL-1	Remember
3	Give the various generalizations of ICA.	BTL-2	Understand
4	What is Independent Component Analysis?	BTL-1	Remember
5	Give major advantage of slow feature analysis.	BTL-2	Understand

 \mathbf{N}

4	what is independent Component Analysis?	BIL-I	Remember
5	Give major advantage of slow feature analysis.	BTL-2	Understand
6	Name the various tasks than can be done by probabilistic models.	BTL-1	Remember
7	What is Denoising Auto encoders?	BTL-1	Remember
8	Predict the primary disadvantage of the non-parametric encoder.	BTL-2	Understand
9	Point out the trade-off faced in representation learning problems.	BTL-4	Analyze

10	Distinguish between one-shot learning and zero-shot learning.	BTL-2	Understand
11	Classify the different Graphical models.	BTL-3	Apply
12	Develop distribution equation for energy based model.	BTL-6	Create
13	Which are undirected models?	BTL-3	Apply
14	Summarize Distributed representations.	BTL-5	Evaluate
15	Point out the reason for why Greedy layer-wise pre-training called Greedy.	BTL-4	Analyze
16	Compare directed models and undirected models.	BTL-4	Analyze
17	Slow Feature Analysis is an efficient application of slowness principle? Justify .	BTL-5	Evaluate
18	How many task does the learner must perform in transfer learning?	BTL-3	Apply
19	List the two different ideas combined by Unsupervised pre-training.	BTL-1	Remember
20	Develop an example for distribution equation that represent a Boltzman distribution.	BTL-6	Create
21	Give an example of learning algorithm based on non-distributed representations.	BTL-2	Understand
22	Compare distributed representation and a symbolic one.	BTL-4	Analyze
23	Illustrate the reasons for which Modeling a rich distribution is not feasible in unstructured modeling.	BTL-3	Apply
24	Evaluate Undirected models.	BTL-5	Evaluate
	PART – B		
1	Describe Sparse Coding. (13)	BTL-1	Remember
2	Describe the following i. Probabilistic PCA and. (6) ii. Factor Analysis. (7)	BTL-1	Remember
3	Describe the following. i, Independent Component Analysis, (5) ii, Slow Feature Analysis. (8)	BTL-1	Remember
4	Discuss Manifold interpretation of PCA. (13)	BTL-2	Understand
5	Discuss Auto encoders. (13)	BTL-2	Understand
6	Write in detail about Under complete Auto encoders. (13)	BTL-3	Apply
7	Explain Regularized Auto encoders. (13)	BTL-4	Analyze
8	Compare Structured Probabilistic Model and Unstructured Modeling (13)	BTL-4	Analyze
9	Summarize usage of various Graphs to describe Model Structure.(13)	BTL-5	Evaluate
10	Develop an example distribution equation for energy-based model and explain in detail. (13)	BTL-6	Create
11	i. Write short notes Sparse Autoencoders.(7)ii. Illustrate Denoising Autoencoders. (6)	BTL-4	Analyze
12	Describe the following.i. Representation learning.(6)ii. Greedy Layer-Wise Unsupervised Pretraining.(7)	BTL-1	Remember

13	Discuss in detail about transfer learning and Domain Adaptation. (13)	BTL-3	Apply
14	Describe Distributed Representation.(13)	BTL-2	Understand
15	Discuss about Slow Feature Analysis. (13)	BTL-2	Understand
16	Write about representation learning. (13)	BTL-3	Analyze
17	Explain Markov random fields. (13)	BTL-5	Evaluate
	PART – C	~	
1	Develop a short notes on Separation and D-Separation.(15)	BTL-6	Create
2	Explain Monte Carlo methods.(15)	BTL-5	Evaluate
3	Explain Auto encoders.(15)	BTL-5	Evaluate
4	Develop a various graphs to describe Model Structure. (15)	BTL-6	Create
5	Assess Independent Component Analysis. (15)	BTL-5	Evaluate