SRM VALLIAMMAI ENGINEERING COLLEGE

(Autonomous Institution)

SRM Nagar, Kattankulathur – 603 203

DEPARTMENT OF

ELECTRICAL AND ELECTRONICS ENGINEERING

QUESTION BANK

VI SEMESTER

1905603-DESIGN OF ELECTRICAL APPARATUS

Regulation – 2019

Academic Year 2024-2025 Even

Prepared by

Ms. Bency. P, Assistant Professor (Sr. G)

QUESTION BANK

SUBJECT & SUBJECT CODE: 1905603-DESIGN OF ELECTRICAL APPARATUS

SEM / YEAR: VI / III

UNIT-I DESIGN OF FIELD SYSTEM AND ARMATURE

Major considerations in Electrical Machine Design – Materials for Electrical apparatus Space factor –Choice of Specific Electrical and Magnetic loadings - Design of Magnetic circuits – Magnetising current – Flux leakage – Leakage in Armature. Design of lap winding and wave winding.

	PART-A			
Q .	Questions	BT	Competence	CO
No	that G	Level		
1.	What are the factors that affect the size of rotating	BTL1	Remembering	CO1
	machines?			
2.	Explain specific electric loading.	BTL2	Understanding	CO1
3.	List the basic components of electromagnetic apparatus.	BTL1	Remembering	CO1
4.	Describe the limitations in design.	BTL2	Understanding	CO1
5.	Sketch the properties of magnetic materials.	BTL3	Applying	CO1
6.	Execute the types of magnetic materials.	BTL3	Applying	CO1
7.	Define the properties of conducting material.	BTL1	Remembering	CO1
8.	Judge and compare the properties of copper and	BTL5	Evaluating	CO1
	aluminum.			
9.	Extract about space factor.	BTL2	Understanding	CO1
10.	Illustrate total magnetic loading.	BTL4	Analyzing	CO1
11.	Identify the components of electromagnetic apparatus.	BTL1	Remembering	CO1
12.	Organize the properties of magnetic materials.	BTL4	Analyzing	CO1
13.	Infer about total electric loading.	BTL2	Understanding	CO1
14.	Compare properties of copper and aluminum.	BTL4	Analyzing	CO1
15.	Demonstrate about liquid insulating material.	BTL3	Applying	CO1
16.	State the components of electromagnetic apparatus.	BTL1	Remembering	CO1
17.	Define space factor.	BTL1	Remembering	CO1
18.	Construct the types of ferro magnetic material.	BTL6	Creating	CO1
19.	Compose about specific magnetic loading.	BTL6	Creating	CO1

20.	Appraise the properties of insulating material.		BTL5	Evaluating	CO1
20.	Recall the classification of insulating material.		BTL1	Remembering	CO1
22.	Discuss about solid insulating material.		BTL2	Understanding	CO1
23.	Articulate about specific electric loading.		BTL2 BTL3	Applying	C01
23.	Analyze lap and wave winding.		BTL4	Analyzing	CO1
	PART-B			1 1100 9 21118	0.01
1.	Explain in detail about major considerations in electrical machine design.	(13)	BTL1	Remembering	CO1
2.	Describe about electrical engineering materials.	(13)	BTL2	Understanding	CO1
3.	Discover in detail about specific magnetic loading and electric loading.	(13)	BTL3	Applying	CO1
4.	List out the Difference between Lap Winding and Wave Winding.	(13)	BTL2	Understanding	CO1
5.	What are the main groups of electrical conducting materials? Explain the properties and applications of those materials.	(13)	BTL1	Remembering	CO1
6.	A 350 kW, 500 V,450 rpm, 6 pole DC generator is built with an armature diameter of 0.87m and core length of 0.32 m, the lap wound armature has 660 conductors. Calculate the specific electric and magnetic loading.	(13)	BTL3	Applying	CO1
7.	Analyze the advantages of wave winding over lap winding.	(13)	BTL4	Analyzing	CO1
8.	Define Lap Winding and Wave Winding and also state the difference.	(13)	BTL1	Remembering	CO1
9.	Summarize how to design simplex lap-winding.	(13)	BTL2	Understanding	CO1
10.	Explain leakage flux and leakage in armature.	(13)	BTL1	Remembering	CO1
11.	A 20 HP, 440 V, 4 poles, 50 Hz, 3 phase induction motor is built with a stator bore of 0.25m and core length of 0.16m. The specific electric loading is 23000 ampere conductors per meter. Calculate the specific magnetic loading of the machine. Assume full load efficiency of 84% and a power factor of 0.82.	(13)	BTL4	Analyzing	CO1
12.	Interpret in detail about electrical engineering materials.	(13)	BTL3	Applying	CO1
13.	Compose a developed diagram of a simple 2- layer lap-winding for a 4-pole generator with 16 coils.	(13)	BTL5	Evaluating	CO1

14.	Pivot the details of choice of specific magnetic and electric loading.	(13)	BTL6	Creating	CO1
15.	Quote the details about simplex lap-winding.	(13)	BTL1	Remembering	CO1
16.	A 250 kW, 450 V, 350 rpm, 6 pole DC generator	(13)	BTL2	Understanding	CO1
	is built with an armature diameter of 0.8m and				
	core length of 0.3m, the lap wound armature has				
	660 conductors. Calculate the specific electric				
	and magnetic loading.				
17.	Draw a developed diagram of a simple 2-layer	(13)	BTL3	Applying	CO1
	lap-winding for a 4-pole generator with 16 coils.				
	PART-C	1			
1.	Calculate the specific electric and magnetic	(15)	BTL5	Evaluating	CO1
	loading for a 300 kW, 500 V, 450 rpm, 6 pole				
	DC generator is built with an armature diameter				
	of 0.87m and core length of 0.32 m, the lap				
	wound armature has 660 conductors.				
2.	Evaluate the key Differences between Lap	(15)	BTL5	Evaluating	CO1
	Winding and Wave Winding				
3.	Generalize the major considerations to evolve a	(15)	BTL6	Creating	CO1
	good design of electrical machine.				
4.	State and explain the main factors which	(15)	BTL6	Creating	CO1
	influence the choice of specific magnetic loading				
	and specific electric loading in the design of				
	rotating machines.				
5.	Draw a developed diagram of a simplex 2-layer	(15)	BTL4	Analyzing	CO1
	wave-winding for a 4-pole dc generator with 30				
	armature conductors. Hence, point out the				
	characteristics of a simple wave winding.				
	UNIT-II DESIGN OF TRAN				
	truction - KVA output for single and three phase tra				•
-	ke, core and winding for core and shell type transfo				
-	perature rise in Transformers – Design of Tank and o	-	g tubes of	Transformers. Co	mputer
progr	cam: Complete Design of single phase core transform	ner.			
	PART-A		DE	~	
Q.	Questions		BT Lovel	Competence	CO
No	What are the advantages of standard land in the		Level	Damar-1	<u> </u>
1.	What are the advantages of stepped core in transfe	ormer	BTL1	Remembering	CO2
2	and why it is generally used?			Understanding	<u> </u>
2.	List the different losses in a transformer.		BTL2	Understanding	CO2

3.	What is window space factor?	BTL1	Remembering	CO2
4.	Explain how the heat dissipates in a transformer.	BTL2	Understanding	CO2
5.	Why the area of yoke of a transformer is usually kept	BTL3	Applying	CO2
	15-20% more than that of core?			
6.	Discuss iron space factor.	BTL3	Applying	CO2
7.	What is conservator?	BTL1	Remembering	CO2
8.	Explain why circular coils are preferred in transformers.	BTL5	Evaluating	CO2
9.	Why the efficiency of transformer is so high?	BTL2	Understanding	CO2
10.	Distinguish between shell type and core type transformer.	BTL4	Analyzing	CO2
11.	Give the relationship between emf per turn and KVA rating in a transformer.	BTL1	Remembering	CO2
12.	Prepare the list of factors affecting the choice of flux density of core in a transformer.	BTL4	Analyzing	CO2
13.	The voltage per turn of a 500KVA, 11KV, Δ /Y three phase transformer is 8.7V.Calculate the number of turns per phase of LV and HV windings.	BTL2	Understanding	CO2
14.	How is iron loss reduced in transformers?	BTL4	Analyzing	CO2
15.	What is the range of efficiency of a transformer?	BTL3	Applying	CO2
16.	Prepare the list if factors to be considered for selecting the cooling methods of a transformer.	BTL1	Remembering	CO2
17.	Explain the main function of cooling medium used in transformers.	BTL1	Remembering	CO2
18.	Define stacking factor.	BTL6	Creating	CO2
19.	Discuss about leg spacing.	BTL6	Creating	CO2
20.	Explain why stepped core are generally used for transformer.	BTL5	Evaluating	CO2
21.	List the classifications of transformer based on application.	BTL1	Remembering	CO2
22.	Compare core type and shell type transformer	BTL2	Understanding	CO2
23.	Prepare the classification of transformer based on construction.	BTL3	Applying	CO2
24.	Deduce the schematic view of core type transformer.	BTL4	Analyzing	CO2
	PART-B			
1.	Estimate the main dimensions including winding conductor area of a 3-phase delta-star core type transformer rated at 300 kVA, 6600/440V, 50 Hz. A suitable core with 3-steps having a circumscribing circle of 0.25m diameter and leg	BTL1	Remembering	CO2

2.	spacing of 0.4m is available. Emf per turn 8.5 V, current density= 2.5 A/mm sq, Kw= 0.28 , stacking factor S _f = 0.9 . The tank of 1250kVA natural oil cooled transformer has the dimensions length width and	(13)	BTL2	Understanding	CO2
	transformer has the dimensions length, width and height as 0.65*1.55*1.85 m respectively. The load loss=13.1kW, loss dissipation due to radiations 6W/m.sq-0 C, improvement in convection due to provision of tubes=40%, temperature rise is 40°C, length of each tube is 1m, diameter of each tube is 50mm. Find the number of tubes for this transformer. Neglect the top and bottom surface of the tank as regards the cooling.				
3.	(i)What are the salient features of distribution transformer?	(8)	BTL3	Applying	CO2
	(ii) State and explain the different methods of cooling the transformer.	(7)			
4.	A 250kVA, 6600/400V, 3-phase core type transformer has a total loss of 4800V on full load. The transformer tank is 1.25m in height and 1m*0.5m in plan. Design a suitable scheme for cooling tubes if the average temperature rise is to be limited to 35°C. The diameter of the tube is 50mm and is spaced 75mm from each other. The average height of the tube is 1.05m. Specific heat dissipation is 6 and 6.5 W/m ² /°C. Assume convection is improved by 35% due to provision of tubes.	(13)	BTL2	Understanding	CO2
5.	Describe the methods of cooling of transformers.	(13)	BTL1	Remembering	CO2
6.	A single-phase 400V, 50Hz transformer is built from stampings having a relative permeability of 1000. The length of the flux path is 2.5*10-3 m2 and the primary winding has 800 turns. Estimate the maximum flux and no load current of the transformer. The iron loss at the working flux density is 2.6 W/Kg. Iron weighs 7.8*1000 Kg/m3. Stacking factor is 0.9	(13)	BTL3	Applying	CO2
7.	Derive the output equation of single-phase and	(13)	BTL4	Analyzing	CO2

	three phase transformer.				
8.	Explain the step by step procedure for the design of core, shell type transformer, windings and yoke.	(13)	BTL1	Remembering	CO2
9.	Identify the full load MMF for the ratio of flux in weber to full load mmf in a 400 kVA,50 Hz, single-phase, core type transformer is 2.4*10 ⁻⁶ . Also identify calculate the net iron area and window area of the transformer. Assume maximum flux density in the core is 1.3 Wb/m ² & current density is 2.7 A/mm ² and window area constant 0.26.		BTL2	Understanding	CO2
10.	Identify overall dimensions for a three phase,250 kVA,6600/440 V, 50 Hz core type transformer with the following data. Emf/turn =11.5 V, maximum flux density =1.75 wb/m ² current density =2.5 A/mm ² window space factor = 0.32 stacking factor = 0.94 overall height= overall width, a 3 stepped core is used, width of the largest stamping = 0.9d and the net iron area = 0.6 d ² where d is the diameter of circumscribing circle.	(13)	BTL1	Remembering	CO2
11.	Calculate the core and window areas required for a 100 kVA 6600/400V 50 Hz single phase core type transformer. Assume a maximum flux density 1.25 wb/m ² and a current density of 2.5 A/mm ² voltages per turn is 30, window space factor is 0.32.	(13)	BTL4	Analyzing	CO2
12.	Calculate the main dimensions and winding details of a 100 kVA 2000/400 V 50 Hz single phase shell type, oil immersed, self cooled transformer. Assume voltage per turn 10 V, flux density in core 1.1 wb/m ² , current density 2 A/mm ² , window space factor 0.33. The ratio of window height to window width and ratio of core depth to width of central limb = 2.5, the stacking factor is 0.9.		BTL3	Applying	CO2
13.	Identify the full load MMF for the ratio of flux in weber to full load mmf in a 350 kVA,50 Hz,		BTL5	Evaluating	CO2

	-				,
	single-phase, core type transformer is $2.4*10^{-6}$.				
	Also identify calculate the net iron area and				
	window area of the transformer. Assume				
	maximum flux density in the core is 1.2 Wb/m ² &				
	current density is 2.7 A/mm ² and window area				
	constant 0.26.				
14.	Identify overall dimensions for a three phase, 300	(13)	BTL6	Creating	CO2
	kVA,6600/440 V, 50 Hz core type transformer				
	with the following data. Emf/turn $=10.5$ V,				
	maximum flux density = 1.75 wb/m^2 current				
	density =2.5 A/mm ² window space factor = 0.32				
	stacking factor = 0.94 overall height= overall				
	width, a 3 stepped core is used, width of the				
	largest stamping = $0.9d$ and the net iron area =				
	$0.6 d^2$ where d is the diameter of circumscribing				
	circle.				
15.	Calculate the core and window areas required for	(13)	BTL1	Remembering	CO2
	a 150 kVA 6600/400V 50 Hz single phase core			_	
	type transformer. Assume a maximum flux				
	density 1.25 wb/m ² and a current density of 2.5				
	A/mm ² voltages per turn is 30, window space				
	factor is 0.32.				
16.	A single-phase 350V, 50Hz transformer is built	(13)	BTL2	Understanding	CO2
	from stampings having a relative permeability of				
	1000. The length of the flux path is 2.5*10-3 m ²				
	and the primary winding has 800 turns. Estimate				
	the maximum flux and no load current of the				
	transformer. The iron loss at the working flux				
	density is 2.6 W/Kg. Iron weighs 7.8*1000				
	Kg/m3. Stacking factor is 0.9				
17.	A 200kVA, 6600/400V, 3-phase core type	(13)	BTL3	Applying	CO2
	transformer has a total loss of 4800V on full load.				
	The transformer tank is 1.25m in height and				
	1m*0.5m in plan. Design a suitable scheme for				
	cooling tubes if the average temperature rise is to				
	be limited to 35°C. The diameter of the tube is				
	50mm and is spaced 75mm from each other. The				
	average height of the tube is 1.05m. Specific heat				
	dissipation is 6 and 6.5 W/m ² /°C. Assume				
	convection is improved by 35% due to provision				

	of tubes.				
	PART-C				
1.	The tank of 1200kVA natural oil cooled transformer has the dimensions length, width and height as 0.65*1.55*1.85 m respectively. The load loss=13.1kW, loss dissipation due to radiations 6W/m.sq-0 C, improvement in convection due to provision of tubes=40%, temperature rise is 40°C, length of each tube is 1m, diameter of each tube is 50mm. Find the number of tubes for this transformer. Neglect the top and bottom surface of the tank as regards the cooling.	(15)	BTL5	Evaluating	CO2
2.	Estimate the main dimensions including winding conductor area of a three-phase delta-star core type transformer rated at 300 kVA,6600/440V 50 Hz. A suitable core with 3 steps having a circumscribing circle of 0.25 m diameter and leg spacing of 0.4m is available. Emf/turn=8.5 V, $^{\delta}$ =2.5 A/mm ² , Kw= 0.28,Ki=0.9.	(15)	BTL5	Evaluating	CO2
3.	A 3 phase, 50Hz, oil cooled core type transformer has the following dimensions: Distance between core centers= $0.2m$, height of window = $0.24m$, Diameter circumscribing Circle = $0.14m$. The flux density in the core = $1.25Wb/m^2$, the current density in the conductor = 2.5 A/mm^2 . Assume a window space factor of 0.2 and the core area factor = 0.56 . The core is two stepped. Estimate KVA rating of the transformer.	(15)	BTL6	Creating	CO2
4.	A 1000kVA, 6600/440V,50Hz, 3 phase delta/star, core type oil immersed natural cooled transformer. The design data of the transformer is: distance between adjacent links=0.47m, outer diameter of HV winding=0.44m, height of frame=1.24m, core loss=3.7kW and I ² R loss= 10.5kW. Design a suitable tank for the transformer. The average temperature rise of oil should not exceed 35 ^o C. The specific heat dissipation from the tank walls is 6W/m ² - ^o C and	(15)	BTL6	Creating	CO2

					l
	6.5W/m ² -°C due to radiation and convection				
	respectively. Assume that the convection is				
	improved by 35% due to provision of tubes.				
5.	Determine the main dimensions of the core of a	(15)	BTL4	Analyzing	CO2
	5kVA, 11000/400V, 50Hz, 1 phase core type				
	distribution transformer. The net conductor area				
	in the window is 0.6 times the net cross section				
	area of iron in the core. The core is of square				
	cross section, maximum flux density is 1Wb/m ² .				
	Current density is 1.4A/mm ² . Window space				
	factor is 0.2. Height of the window is 3 times its				
	width.				

UNIT-III DESIGN OF DC MACHINES

Construction - Output Equations – Main Dimensions – Choice of specific loadings –Carter's Coefficient - Net length of Iron –Real & Apparent flux densities - Selection of number of poles – Design of Armature – Design of commutator and brushes – design of field - Computer program: Design of Armature main dimensions.

	PART-A			
Q .	Questions	BT	Competence	CO
No		Level		
1.	Write the expression for output equation of a dc machines.	BTL1	Remembering	CO3
2.	Explain carter's gap coefficient.	BTL2	Understanding	CO3
3.	Compare electric and magnetic circuit.	BTL1	Remembering	CO3
4.	What are the constituents of magnetic circuits in a dc machine?	BTL2	Understanding	CO3
5.	What is real and apparent flux density?	BTL3	Applying	CO3
6.	List the methods for calculating mmf for teeth.	BTL3	Applying	CO3
7.	Define copper space factor of a coil.	BTL1	Remembering	CO3
8.	Define leakage flux and fringing flux.	BTL5	Evaluating	CO3
9.	Explain why square pole face is preferred.	BTL2	Understanding	CO3
10.	Give the main parts of dc machine.	BTL4	Analyzing	CO3
11.	Explain total gap contraction factor.	BTL1	Remembering	CO3
12.	Explain window space factor.	BTL4	Analyzing	CO3
13.	Define stacking factor.	BTL2	Understanding	CO3
14.	How will you calculate the net length of iron?	BTL4	Analyzing	CO3
15.	What factor decides the minimum number of armature coils?	BTL3	Applying	CO3
16.	Define field form factor.	BTL1	Remembering	CO3

machine and compare. Image: Comparison of the selection of number of poles. BTL6 Creating CO3 18. Mention guiding factors for the selection of number of poles. BTL6 Creating CO3 20. State the relationship between the number of degenerator. BTL1 Evaluating CO3 21. Define electric circuit. BTL1 Remembering CO3 22. Mention the effects of high specific electric loading. BTL2 Understanding CO3 23. Articulate field form factor. BTL4 Analyzing CO3 24. Analyze total gap contraction factor. BTL4 Analyzing CO3 24. Analyze total gap contraction factor. BTL4 Analyzing CO3 25. Find the main dimensions and the no. of poles of a 37kW, 230V, 1400 rpm shunt motor, so that a square pole face is obtained. The average gap density is 0.5 Wb/m ² and the ampere conductors per meter are 22,000. The ratio of pole are to pole pritch is 0.7 and the full load efficiency is 90% (13) BTL2 Understanding CO3 26. (i) Draw the magnetic circuit of de machine. (13) BTL3 Applying CO3 26. (i) Draw the magnetic sons of a 200 kW, 250 (13)	17.	Mention the two types of armature winding used	in de	BTL1	Remembering	CO3
18. Mention guiding factors for the selection of number of poles. BTL6 Creating CO3 19. List the factors that influence choices of commutator diameter. BTL6 Creating CO3 20. State the relationship between the number of commutator segments and number of armature coils in dc generator. BTL1 Remembering CO3 21. Define electric circuit. BTL1 Remembering CO3 22. Mention the effects of high specific electric loading. BTL2 Understanding CO3 23. Articulate field form factor. BTL4 Analyzing CO3 24. Analyze total gap contraction factor. BTL4 Analyzing CO3 24. Analyze total gap contraction factor. BTL1 Remembering CO3 25. Find the main dimensions and the no. of poles of a 37kW, 230V, 1400 rpm shunt motor, so that a square pole face is obtained. The average gap density is 0.5 Wb/m ² and the ampere conductors per metre are 22,000. The ratio of pole arc to pole pitch is 0.7 and the factors which govern the choice of specific magnetic loading in a dc machine. (13) BTL3 Applying CO3 3. Estimate the main dimensions of a 200 kW, 250 (13) BTL3 Applying CO3	17.	•••	in uc	DILI	Kennennbernig	005
poles.poles.19.List the factors that influence choices of commutator diameter.BTL6CreatingCO320.State the relationship between the number of commutator segments and number of armature coils in dc generator.BTL1RememberingCO321.Define electric circuit.BTL1RememberingCO322.Mention the effects of high specific electric loading.BTL2UnderstandingCO323.Articulate field form factor.BTL4AnalyzingCO324.Analyze total gap contraction factor.BTL4AnalyzingCO324.Analyze total gap contraction factor.BTL4AnalyzingCO324.Analyze total gap contraction factor.BTL1RememberingCO325.Tim difference is obtained. The average gap density is 0.5 Wb/m² and the anpere conductors per meter are 22,000. The ratio of pole arc to pole pitch is 0.7 and the full load efficiency is 90%BTL2UnderstandingCO32.(i) Draw the magnetic circuit of dc machine. (ii) State and explain the factors which govern the choice of specific magnetic loading in a dc machine.(13)BTL3ApplyingCO33.Estimate the main dimensions of a 200 kW, 250 volts, 6 pole, 1000, rpm DC generator. The maximum value of flux density in the air gap is 0.87 wb/m2 and the ampere conductors per metre length of armature periphery are 31000; The ratio of pole arc to pole pitch is 0.67 and the efficiency is 91 percent. Assume that the ratio of length of core to pole pitch = 0.75.Image: CO34.For a preliminary de	18	*	per of	BTL6	Creating	CO3
19. List the factors that influence choices of commutator diameter. BTL6 Creating CO3 20. State the relationship between the number of commutator segments and number of armature coils in dc generator. BTL5 Evaluating CO3 21. Define electric circuit. BTL1 Remembering CO3 22. Mention the effects of high specific electric loading. BTL2 Understanding CO3 23. Articulate field form factor. BTL3 Applying CO3 24. Analyze total gap contraction factor. BTL4 Analyzing CO3 24. Find the main dimensions and the no. of poles of a 37kW, 230V, 1400 rpm shunt motor, so that a square pole face is obtained. The average gap density is 0.5 Wb/m ² and the ampere conductors per meter are 22,000. The ratio of pole arc to pole pitch is 0.7 and the full load efficiency is 90% BTL2 Understanding CO3 2. (i) Draw the magnetic circuit of de machine. (13) BTL2 Understanding CO3 3. Estimate the main dimensions of a 200 kW, 250 (13) BTL3 Applying CO3 3. Estimate the main dimensions of a 200 kW, 250 (13) BTL3 Applying CO3 of pole arc to pole pitch	10.			DILO	Creating	005
diameter. 0 0 20. State the relationship between the number of commutator segments and number of armature coils in dc generator. BTL.5 Evaluating CO3 21. Define electric circuit. BTL1 Remembering CO3 22. Mention the effects of high specific electric loading. BTL2 Understanding CO3 23. Articulate field form factor. BTL3 Applying CO3 24. Analyze total gap contraction factor. BTL4 Analyzing CO3 24. Analyze total gap contraction factor. BTL4 Analyzing CO3 25. Find the main dimensions and the no. of poles of a 37kW, 230V, 1400 rpm shunt motor, so that a square pole face is obtained. The average gap density is 0.5 Wb/m² and the ampere conductors per meter are 22,000. The ratio of pole arc to pole pitch is 0.7 and the full load efficiency is 90% III. BTL2 Understanding CO3 2. (i) Draw the magnetic circuit of dc machine. (13) BTL3 Applying CO3 3. Estimate the main dimensions of a 200 kW, 250 (13) BTL3 Applying CO3 volts, 6 pole, 1000, rpm DC generator. The maximum value of flux density in the air gap is 0.87 wb/m2 and the ampere conductors per metre le	19.	1	utator	BTL6	Creating	CO3
commutator segments and number of armature coils in dc generator. BTL1 Remembering CO3 21. Define electric circuit. BTL1 Remembering CO3 22. Mention the effects of high specific electric loading. BTL2 Understanding CO3 23. Articulate field form factor. BTL4 Analyzing CO3 24. Analyze total gap contraction factor. BTL4 Analyzing CO3 PART-B 1. Find the main dimensions and the no. of poles of a 37kW, 230V, 1400 rpm shunt motor, so that a square pole face is obtained. The average gap density is 0.5 Wb/m ² and the ampere conductors per meter are 22,000. The ratio of pole arc to pole pitch is 0.7 and the full load efficiency is 90% III Remembering CO3 2. (i) Draw the magnetic circuit of dc machine. (13) BTL2 Understanding CO3 (ii) State and explain the factors which govern the choice of specific magnetic loading in a dc machine. IIII BTL3 Applying CO3 3. Estimate the main dimensions of a 200 kW, 250 (volts, 6 pole, 1000, rpm DC generator. The maximum value of flux density in the air gap is 0.87 wb/m2 and the ampere conductors per metre length of armature periphery are 31000; The ratio of pole arc to pole pitch is 0.67 and the efficiency is 91 percent. Assume that the ratio of length of cor				2120	01000008	000
commutator segments and number of armature coils in dc generator. BTL1 Remembering CO3 21. Define electric circuit. BTL1 Remembering CO3 22. Mention the effects of high specific electric loading. BTL2 Understanding CO3 23. Articulate field form factor. BTL4 Analyzing CO3 24. Analyze total gap contraction factor. BTL4 Analyzing CO3 PART-B 1. Find the main dimensions and the no. of poles of a 37kW, 230V, 1400 rpm shunt motor, so that a square pole face is obtained. The average gap density is 0.5 Wb/m ² and the ampere conductors per meter are 22,000. The ratio of pole arc to pole pitch is 0.7 and the full load efficiency is 90% III Remembering CO3 2. (i) Draw the magnetic circuit of dc machine. (13) BTL2 Understanding CO3 (ii) State and explain the factors which govern the choice of specific magnetic loading in a dc machine. IIII BTL3 Applying CO3 3. Estimate the main dimensions of a 200 kW, 250 (volts, 6 pole, 1000, rpm DC generator. The maximum value of flux density in the air gap is 0.87 wb/m2 and the ampere conductors per metre length of armature periphery are 31000; The ratio of pole arc to pole pitch is 0.67 and the efficiency is 91 percent. Assume that the ratio of length of cor	20.	State the relationship between the numbe	r of	BTL5	Evaluating	CO3
dc generator. BTL1 Remembering CO3 21. Define electric circuit. BTL1 Remembering CO3 22. Mention the effects of high specific electric loading. BTL2 Understanding CO3 23. Articulate field form factor. BTL3 Applying CO3 24. Analyze total gap contraction factor. BTL4 Analyzing CO3 24. Analyze total gap contraction factor. BTL1 Remembering CO3 25. Find the main dimensions and the no. of poles of a 37kW, 230V, 1400 rpm shunt motor, so that a square pole face is obtained. The average gap density is 0.5 Wb/m ² and the ampere conductors per meter are 22,000. The ratio of pole arc to pole arc to pole pitch is 0.7 and the full load efficiency is 90% III Remembering CO3 2. (i) Draw the magnetic circuit of dc machine. (13) BTL2 Understanding CO3 (ii) State and explain the factors which govern the choice of specific magnetic loading in a dc machine. (13) BTL3 Applying CO3 3. Estimate the main dimensions of a 200 kW, 250 (13) BTL3 Applying CO3 volts, 6 pole, 1000, rpm DC generator. The maximum value of flux density in the air gap is 0.87 wb/m2 and the ampe		-	oils in		C	
22. Mention the effects of high specific electric loading. BTL2 Understanding CO3 23. Articulate field form factor. BTL3 Applying CO3 24. Analyze total gap contraction factor. BTL4 Analyzing CO3 PART-B 1. Find the main dimensions and the no. of poles of a 37kW, 230V, 1400 rpm shunt motor, so that a square pole face is obtained. The average gap density is 0.5 Wb/m ² and the ampere conductors per meter are 22,000. The ratio of pole arc to pole pitch is 0.7 and the full load efficiency is 90% (13) BTL2 Understanding CO3 2. (i) Draw the magnetic circuit of dc machine. (13) BTL2 Understanding CO3 3. Estimate the main dimensions of a 200 kW, 250 volts, 6 pole, 1000, rpm DC generator. The maximum value of flux density in the air gap is 0.87 wb/m2 and the ampere conductors per metre length of armature periphery are 31000; The ratio of pole arc to pole pitch is 0.67 and the efficiency is 91 percent. Assume that the ratio of length of core to pole pitch is 0.75. BTL3 Applying CO3 4. For a preliminary design of a 50HP, 230V, 1400 (13) BTL2 Understanding CO3 yolts, 6 shunt motor. Calculate the armature diameter and core length, the no. of poles and peripheral speed. Take Bav=0.5 wb/sq.m., ac/m=25,000, efficiency=0.9. Stof poles and periphera		•				
23. Articulate field form factor. BTL3 Applying CO3 24. Analyze total gap contraction factor. BTL4 Analyzing CO3 PART-B 1. Find the main dimensions and the no. of poles of a 37kW, 230V, 1400 rpm shunt motor, so that a square pole face is obtained. The average gap density is 0.5 Wb/m ² and the ampere conductors per meter are 22,000. The ratio of pole arc to pole pitch is 0.7 and the full load efficiency is 90% (13) BTL2 Understanding CO3 2. (i) Draw the magnetic circuit of dc machine. (13) BTL2 Understanding CO3 3. Estimate the main dimensions of a 200 kW, 250 volts, 6 pole, 1000, rpm DC generator. The maximum value of flux density in the air gap is 0.87 wb/m2 and the ampere conductors per metre length of armature periphery are 31000; The ratio of pole arc to pole pitch is 0.67 and the efficiency is 91 percent. Assume that the ratio of length of core to pole pitch = 0.75. (13) BTL2 Understanding CO3 4. For a preliminary design of a 50HP, 230V, 1400 rpm, dc shunt motor. Calculate the armature diameter and core length, the no. of poles and peripheral speed. Take Bav=0.5 wb/sq.m., ac/m=25,000, efficiency=0.9. (13) BTL2 Understanding CO3 5. Derive the relation between real and apparent (13) BTL1 Remembering CO3	21.	Define electric circuit.		BTL1	Remembering	CO3
24. Analyze total gap contraction factor. BTL4 Analyzing CO3 PART-B 1. Find the main dimensions and the no. of poles of a 37kW, 230V, 1400 rpm shunt motor, so that a square pole face is obtained. The average gap density is 0.5 Wb/m ² and the ampere conductors per meter are 22,000. The ratio of pole arc to pole pitch is 0.7 and the full load efficiency is 90% Image: CO3 CO3 2. (i) Draw the magnetic circuit of dc machine. (13) BTL2 Understanding CO3 (ii) State and explain the factors which govern the choice of specific magnetic loading in a dc machine. (13) BTL3 Applying CO3 3. Estimate the main dimensions of a 200 kW, 250 (13) BTL3 Applying CO3 volts, 6 pole, 1000, rpm DC generator. The maximum value of flux density in the air gap is 0.87 wb/m2 and the ampere conductors per metre length of armature periphery are 31000; The ratio of pole arc to pole pitch = 0.75. Image: Source the amature diameter and core length, the no. of poles and peripheral speed. Take Bav=0.5 wb/sq.m., ac/m=25,000, efficiency=0.9. St. BTL2 Understanding CO3 5. Derive the relation between real and apparent (13) BTL1 Remembering CO3	22.	Mention the effects of high specific electric loading	g.	BTL2		CO3
24. Analyze total gap contraction factor. BTL4 Analyzing CO3 PART-B 1. Find the main dimensions and the no. of poles of a 37kW, 230V, 1400 rpm shunt motor, so that a square pole face is obtained. The average gap density is 0.5 Wb/m ² and the ampere conductors per meter are 22,000. The ratio of pole arc to pole pitch is 0.7 and the full load efficiency is 90% (13) BTL1 Remembering CO3 2. (i) Draw the magnetic circuit of dc machine. (13) BTL2 Understanding CO3 (ii) State and explain the factors which govern the choice of specific magnetic loading in a dc machine. (13) BTL3 Applying CO3 3. Estimate the main dimensions of a 200 kW, 250 (13) BTL3 Applying CO3 volts, 6 pole, 1000, rpm DC generator. The maximum value of flux density in the air gap is 0.87 wb/m2 and the ampere conductors per metre length of armature periphery are 31000; The ratio of pole arc to pole pitch is 0.67 and the efficiency is 91 percent. Assume that the ratio of length of core to pole pitch = 0.75. Image: State and core length, the no. of poles and peripheral speed. Take Bav=0.5 wb/sq.m., ac/m=25,000, efficiency=0.9. St. BTL1 Remembering CO3 5. Derive the relation between real and apparent (13) BTL1 Remembering CO3	23.			BTL3		CO3
1. Find the main dimensions and the no. of poles of a 37kW, 230V, 1400 rpm shunt motor, so that a square pole face is obtained. The average gap density is 0.5 Wb/m² and the ampere conductors per meter are 22,000. The ratio of pole arc to pole pitch is 0.7 and the full load efficiency is 90% BTL1 Remembering CO3 2. (i) Draw the magnetic circuit of dc machine. (13) BTL2 Understanding CO3 3. Estimate the main dimensions of a 200 kW, 250 (13) BTL3 Applying CO3 volts, 6 pole, 1000, rpm DC generator. The maximum value of flux density in the air gap is 0.87 wb/m2 and the ampere conductors per metre length of armature periphery are 31000; The ratio of pole arc to pole pitch = 0.75. (13) BTL2 Understanding CO3 4. For a preliminary design of a 50HP, 230V, 1400 rpm, dc shunt motor. Calculate the armature diameter and core length, the no. of poles and peripheral speed. Take Bav=0.5 wb/sq.m., ac/m=25,000, efficiency=0.9. (13) BTL2 Understanding CO3 5. Derive the relation between real and apparent (13) BTL1 Remembering CO3	24.	Analyze total gap contraction factor.		BTL4		CO3
 a 37kW, 230V, 1400 rpm shunt motor, so that a square pole face is obtained. The average gap density is 0.5 Wb/m² and the ampere conductors per meter are 22,000. The ratio of pole arc to pole pitch is 0.7 and the full load efficiency is 90% 2. (i) Draw the magnetic circuit of dc machine. (13) BTL2 Understanding CO3 (13) State and explain the factors which govern the choice of specific magnetic loading in a dc machine. 3. Estimate the main dimensions of a 200 kW, 250 (13) BTL3 Applying CO3 volts, 6 pole, 1000, rpm DC generator. The maximum value of flux density in the air gap is 0.87 wb/m2 and the ampere conductors per metre length of armature periphery are 31000; The ratio of pole arc to pole pitch is 0.67 and the efficiency is 91 percent. Assume that the ratio of length of core to pole pitch = 0.75. 4. For a preliminary design of a 50HP, 230V, 1400 rpm, dc shunt motor. Calculate the armature diameter and core length, the no. of poles and peripheral speed. Take Bav=0.5 wb/sq.m., ac/m=25,000, efficiency=0.9. 5. Derive the relation between real and apparent (13) BTL1 Remembering CO3 						
square pole face is obtained. The average gap density is 0.5 Wb/m² and the ampere conductors per meter are 22,000. The ratio of pole arc to pole pitch is 0.7 and the full load efficiency is 90%(13)BTL2UnderstandingCO32.(i) Draw the magnetic circuit of dc machine. (ii) State and explain the factors which govern the choice of specific magnetic loading in a dc machine.(13)BTL2UnderstandingCO33.Estimate the main dimensions of a 200 kW, 250 volts, 6 pole, 1000, rpm DC generator. The maximum value of flux density in the air gap is 0.87 wb/m2 and the ampere conductors per metre length of armature periphery are 31000; The ratio of pole arc to pole pitch is 0.67 and the efficiency is 91 percent. Assume that the ratio of length of core to pole pitch = 0.75.(13)BTL2UnderstandingCO34.For a preliminary design of a 50HP, 230V, 1400 peripheral speed. Take Bav=0.5 wb/sq.m., ac/m=25,000, efficiency=0.9.(13)BTL1RememberingCO3	1.	Find the main dimensions and the no. of poles of	(13)	BTL1	Remembering	CO3
density is 0.5 Wb/m² and the ampere conductors per meter are 22,000. The ratio of pole arc to pole pitch is 0.7 and the full load efficiency is 90%(13)BTL2UnderstandingCO32.(i) Draw the magnetic circuit of dc machine. (ii) State and explain the factors which govern the choice of specific magnetic loading in a dc machine.(13)BTL2UnderstandingCO33.Estimate the main dimensions of a 200 kW, 250 volts, 6 pole, 1000, rpm DC generator. The maximum value of flux density in the air gap is 0.87 wb/m2 and the ampere conductors per metre length of armature periphery are 31000; The ratio of pole arc to pole pitch is 0.67 and the efficiency is 91 percent. Assume that the ratio of length of core to pole pitch = 0.75.(13)BTL2UnderstandingCO34.For a preliminary design of a 50HP, 230V, 1400 rpm, dc shunt motor. Calculate the armature diameter and core length, the no. of poles and peripheral speed. Take Bav=0.5 wb/sq.m., ac/m=25,000, efficiency=0.9.BTL1RememberingCO3		a 37kW, 230V, 1400 rpm shunt motor, so that a				
per meter are 22,000. The ratio of pole arc to pole pitch is 0.7 and the full load efficiency is 90%Image: CO32.(i) Draw the magnetic circuit of dc machine. (ii) State and explain the factors which govern the choice of specific magnetic loading in a dc machine.(13)BTL2UnderstandingCO33.Estimate the main dimensions of a 200 kW, 250 volts, 6 pole, 1000, rpm DC generator. The maximum value of flux density in the air gap is 0.87 wb/m2 and the ampere conductors per metre length of armature periphery are 31000; The ratio of pole arc to pole pitch is 0.67 and the efficiency is 91 percent. Assume that the ratio of length of core to pole pitch = 0.75.(13)BTL2UnderstandingCO34.For a preliminary design of a 50HP, 230V, 1400 rpm, dc shunt motor. Calculate the armature diameter and core length, the no. of poles and peripheral speed. Take Bav=0.5 wb/sq.m., ac/m=25,000, efficiency=0.9.(13)BTL1RememberingCO3						
pitch is 0.7 and the full load efficiency is 90%CO32.(i) Draw the magnetic circuit of dc machine. (ii) State and explain the factors which govern the choice of specific magnetic loading in a dc machine.(13)BTL2UnderstandingCO33.Estimate the main dimensions of a 200 kW, 250 volts, 6 pole, 1000, rpm DC generator. The maximum value of flux density in the air gap is 0.87 wb/m2 and the ampere conductors per metre length of armature periphery are 31000; The ratio of pole arc to pole pitch is 0.67 and the efficiency is 91 percent. Assume that the ratio of length of core to pole pitch = 0.75.(13)BTL2UnderstandingCO34.For a preliminary design of a 50HP, 230V, 1400 rpm, dc shunt motor. Calculate the armature diameter and core length, the no. of poles and peripheral speed. Take Bav=0.5 wb/sq.m., ac/m=25,000, efficiency=0.9.BTL1RememberingCO35.Derive the relation between real and apparent(13)BTL1RememberingCO3						
2.(i) Draw the magnetic circuit of dc machine. (ii) State and explain the factors which govern the choice of specific magnetic loading in a dc machine.(13)BTL2UnderstandingCO33.Estimate the main dimensions of a 200 kW, 250 volts, 6 pole, 1000, rpm DC generator. The maximum value of flux density in the air gap is 0.87 wb/m2 and the ampere conductors per metre length of armature periphery are 31000; The ratio of pole arc to pole pitch is 0.67 and the efficiency is 91 percent. Assume that the ratio of length of core to pole pitch = 0.75.(13)BTL2UnderstandingCO34.For a preliminary design of a 50HP, 230V, 1400 rpm, dc shunt motor. Calculate the armature diameter and core length, the no. of poles and peripheral speed. Take Bav=0.5 wb/sq.m., ac/m=25,000, efficiency=0.9.BTL1RememberingCO35.Derive the relation between real and apparent(13)BTL1RememberingCO3						
 (ii) State and explain the factors which govern the choice of specific magnetic loading in a dc machine. 3. Estimate the main dimensions of a 200 kW, 250 (13) BTL3 Applying CO3 volts, 6 pole, 1000, rpm DC generator. The maximum value of flux density in the air gap is 0.87 wb/m2 and the ampere conductors per metre length of armature periphery are 31000; The ratio of pole arc to pole pitch is 0.67 and the efficiency is 91 percent. Assume that the ratio of length of core to pole pitch = 0.75. 4. For a preliminary design of a 50HP, 230V, 1400 (13) BTL2 Understanding CO3 rpm, dc shunt motor. Calculate the armature diameter and core length, the no. of poles and peripheral speed. Take Bav=0.5 wb/sq.m., ac/m=25,000, efficiency=0.9. 5. Derive the relation between real and apparent (13) BTL1 Remembering CO3 						
the choice of specific magnetic loading in a dc machine.Image: machine dimensions of a 200 kW, 250 volts, 6 pole, 1000, rpm DC generator. The maximum value of flux density in the air gap is 0.87 wb/m2 and the ampere conductors per metre length of armature periphery are 31000; The ratio of pole arc to pole pitch is 0.67 and the efficiency is 91 percent. Assume that the ratio of length of core to pole pitch = 0.75.Image: machine dimensional dimensi dimensional dimensional dimensi dimension	2.		(13)	BTL2	Understanding	CO3
machine.Image: Constraint of the main dimensions of a 200 kW, 250 works, 6 pole, 1000, rpm DC generator. The maximum value of flux density in the air gap is 0.87 wb/m2 and the ampere conductors per metre length of armature periphery are 31000; The ratio of pole arc to pole pitch is 0.67 and the efficiency is 91 percent. Assume that the ratio of length of core to pole pitch = 0.75.Image: Constraint of the second s						
3. Estimate the main dimensions of a 200 kW, 250 volts, 6 pole, 1000, rpm DC generator. The maximum value of flux density in the air gap is 0.87 wb/m2 and the ampere conductors per metre length of armature periphery are 31000; The ratio of pole arc to pole pitch is 0.67 and the efficiency is 91 percent. Assume that the ratio of length of core to pole pitch = 0.75. (13) BTL3 Applying CO3 4. For a preliminary design of a 50HP, 230V, 1400 rpm, dc shunt motor. Calculate the armature diameter and core length, the no. of poles and peripheral speed. Take Bav=0.5 wb/sq.m,. ac/m=25,000, efficiency=0.9. (13) BTL2 Understanding CO3 5. Derive the relation between real and apparent (13) BTL1 Remembering CO3		· · · ·				
 volts, 6 pole, 1000, rpm DC generator. The maximum value of flux density in the air gap is 0.87 wb/m2 and the ampere conductors per metre length of armature periphery are 31000; The ratio of pole arc to pole pitch is 0.67 and the efficiency is 91 percent. Assume that the ratio of length of core to pole pitch = 0.75. 4. For a preliminary design of a 50HP, 230V, 1400 (13) BTL2 Understanding CO3 rpm, dc shunt motor. Calculate the armature diameter and core length, the no. of poles and peripheral speed. Take Bav=0.5 wb/sq.m,. ac/m=25,000, efficiency=0.9. 5. Derive the relation between real and apparent (13) BTL1 Remembering CO3 						~ ~ •
 maximum value of flux density in the air gap is 0.87 wb/m2 and the ampere conductors per metre length of armature periphery are 31000; The ratio of pole arc to pole pitch is 0.67 and the efficiency is 91 percent. Assume that the ratio of length of core to pole pitch = 0.75. 4. For a preliminary design of a 50HP, 230V, 1400 rpm, dc shunt motor. Calculate the armature diameter and core length, the no. of poles and peripheral speed. Take Bav=0.5 wb/sq.m,. ac/m=25,000, efficiency=0.9. 5. Derive the relation between real and apparent (13) BTL1 Remembering CO3 	3.		(13)	BTL3	Applying	CO3
0.87 wb/m2 and the ampere conductors per metre length of armature periphery are 31000; The ratio of pole arc to pole pitch is 0.67 and the efficiency is 91 percent. Assume that the ratio of length of core to pole pitch = 0.75.Image: CO34.For a preliminary design of a 50HP, 230V, 1400 rpm, dc shunt motor. Calculate the armature diameter and core length, the no. of poles and peripheral speed. Take Bav=0.5 wb/sq.m,. ac/m=25,000, efficiency=0.9.(13)BTL2UnderstandingCO35.Derive the relation between real and apparent(13)BTL1RememberingCO3						
length of armature periphery are 31000; The ratio of pole arc to pole pitch is 0.67 and the efficiency is 91 percent. Assume that the ratio of length of core to pole pitch = 0.75.Image: CO34.For a preliminary design of a 50HP, 230V, 1400 						
of pole arc to pole pitch is 0.67 and the efficiency is 91 percent. Assume that the ratio of length of core to pole pitch = 0.75.Image: Color of the second se						
is 91 percent. Assume that the ratio of length of core to pole pitch = 0.75.Image: constraint of the ratio of length of core to pole pitch = 0.75.4.For a preliminary design of a 50HP, 230V, 1400 rpm, dc shunt motor. Calculate the armature diameter and core length, the no. of poles and peripheral speed. Take Bav=0.5 wb/sq.m,. ac/m=25,000, efficiency=0.9.(13)BTL2UnderstandingCO35.Derive the relation between real and apparent(13)BTL1RememberingCO3		• • • • •				
core to pole pitch = 0.75.Image: Core to pole pitch = 0.75.4.For a preliminary design of a 50HP, 230V, 1400 rpm, dc shunt motor. Calculate the armature diameter and core length, the no. of poles and peripheral speed. Take Bav=0.5 wb/sq.m,. ac/m=25,000, efficiency=0.9.(13)BTL2UnderstandingCO35.Derive the relation between real and apparent(13)BTL1RememberingCO3						
 4. For a preliminary design of a 50HP, 230V, 1400 (13) BTL2 Understanding CO3 rpm, dc shunt motor. Calculate the armature diameter and core length, the no. of poles and peripheral speed. Take Bav=0.5 wb/sq.m,. ac/m=25,000, efficiency=0.9. 5. Derive the relation between real and apparent (13) BTL1 Remembering CO3 		-				
rpm, dc shunt motor. Calculate the armature diameter and core length, the no. of poles and peripheral speed. Take Bav=0.5 wb/sq.m,. ac/m=25,000, efficiency=0.9.Image: Color of the second se	Λ		(12)	BTI 2	Understanding	CO^{2}
diameter and core length, the no. of poles and peripheral speed. Take Bav=0.5 wb/sq.m,. ac/m=25,000, efficiency=0.9.diameter and poles and between real and apparentBTL15.Derive the relation between real and apparent(13)BTL1RememberingCO3	4 .		(13)	DILL	Understanding	
peripheral speed. Take Bav=0.5 wb/sq.m,. ac/m=25,000, efficiency=0.9.below5. Derive the relation between real and apparent(13)BTL1RememberingCO3		-				
ac/m=25,000, efficiency=0.9.Image: CO35.Derive the relation between real and apparent (13)BTL1RememberingCO3						
5. Derive the relation between real and apparent (13) BTL1 Remembering CO3						
	5		(13)	BTL1	Remembering	CO3
	5.	flux densities in dc machine.	(10)	DILI		

6.	Design the diameter and length of armature core for a 55 kW, 110 V,1000 rpm, 4 pole shunt generator, assuming specific electric and magnetic loadings of 26000 amp. cond./m and $0.5Wb/m^2$ respectively. The pole arc should be about 70% of pole pitch and length of core about 1.1 times the pole arc. Allow 10 ampere for the	(13)	BTL3	Applying	CO3
	field current and assume a voltage of 4V for the armature circuit. Specify the winding used and also determine suitable values for the number of armature conductors and number of slots.				
7.	(i) Derive the output equation of dc machine(ii) Derive an expression for the mmf for airgap of a slotted armature with ducts.	(8) (7)	BTL4	Analyzing	CO3
8.	Identify the main dimensions, number of poles and the length of air-gap of a 1000 kW, 500V, 300rpm dc generator. Assume average gap density as 0.7 Wb/m ² and ampere conductors per meter as 40000. The pole arc to pole pitch ratio is 0.7 and the efficiency is 92%. The mmf required for air gap is 55% of armature mmf and gap contraction factor is 1.15. The following are the design constraints: peripheral speed should not exceed 30m/s, frequency of flux reversals should not exceed 50Hz, current per brush arm should not exceed 400 A, and armature mmf per pole should not exceed 10000 AT	(13)	BTL1	Remembering	CO3
9.	Deign a suitable commutator for a 350KW,600 rpm,440V, 6 pole dc generator having an armature diameter of 0.75m. The number of coils is 288. Assume suitable values wherever necessary.	(13)	BTL2	Understanding	CO3
10.	Identify the diameter and length of armature for a 7.5kW, 4 pole, 1000rpm, 220V shunt motor. Given: full load efficiency=0.83; Maximum gap flux density=0.9 Wb/m ^{2;} specific electric loading=30000 ampere conductors per meter; field form facto=0.7. Assume that the maximum efficiency occurs at full load and the field current	(13)	BTL1	Remembering	CO3

	is 2.5% of rated current. The pole face is square.				
11.	A 5 KW, 250 volts and 4 pole, 1500 rpm d.c.	(13)	BTL4	Analyzing	CO3
11.	shunt generator is designed to have a square pole	(15)	DILI	7 mary zing	005
	face. The average magnetic flux density in the air				
	gap is 0.42 wb/m2 and ampere conductors per				
	metre = 15000 . Compute the main dimensions of				
	the machine. Assume full load efficiency = 87% .				
	The ratio of pole arc to pole pitch = 0.66 .				
12.	Explain the procedure for the selection of number	(13)	BTL3	Applying	CO3
	of poles in the machine. What are the advantages	()			
	and disadvantages of large number of poles in a				
	dc machine?				
13.	Design the suitable dimensions of armature core	(13)	BTL5	Evaluating	CO3
	of a d.c. generator which is rated 50 kW. $P = 4$, N				
	= 600 rpm. Full load terminal voltage is 220				
	volts. Maximum gap flux density is 0.83 Wb/ m ²				
	and specific electric loading is 30,000. Ampere				
	conductors/metre. Full load armature voltage				
	drop is 3 percent of rated terminal voltage. Field				
	current is 1 percent of full load current Ratio of				
	pole arc to pole pitch is 0.67 pole face is a square.				
14.	A 4 pole 50 HP de shunt motor operates with	(13)	BTL6	Creating	CO3
	rated voltages of 480 volts at rated speed of rpm.				
	It has wave wound armature with 770				
	conductors. The leakage factor of the poles is 1.2.				
	The poles are of circular cross section. The flux				
	density in the poles is 1.5 Wb/ m2. Compute				
	diameter of each pole.				
15.	Identify the main dimensions of the machine for	(13)	BTL1	Remembering	CO3
	a 500 kW,250V, 4 pole, 1500 rpm shunt				
	generator is designed to have a square pole face.				
	The loadings are: average flux density in the				
	gap=0.42Wb/m ² and ampere conductors per				
	meter=15000. Assume full load efficiency 0.87				
	and ratio of pole arc to pole pitch=0.66.				
16.	Explain the various steps involved in design of	(13)	BTL2	Understanding	CO3
	shunt field winding of DC Machine.				
17.	For a preliminary design of a 40HP, 230V, 1400	(13)	BTL3	Applying	CO3
	rpm, dc shunt motor. Calculate the armature				

	1				[]
	diameter and core length, the no. of poles and				
	peripheral speed. Take Bav=0.5 wb/sq.m,.				
	ac/m=25,000, efficiency=0.9.				
	PART-C				~~~
1.	Determine the air gap length of the DC machine	(15)	BTL5	Evaluating	CO3
	from the following particulars: gross length of the				
	core =0.12, number of Ducts = one and 10mm				
	wide, slot pitch=25mm, slot width =10mm,				
	carter's coefficient for slots and ducts =0.32, gap				
	density at pole center =0.7Wb/m ² ; field mmf/pole				
	=3900AT, mmf required for iron parts of				
	magnetic circuit =800AT.				
2.	A 15 kW,230 V,4 pole dc machine has armature	(15)	BTL5	Evaluating	CO3
	diameter=0.25m, armature core length=0.125m,				
	length of airgap at pole centre=2.5mm,				
	flux/pole=11.7x10 ⁻³ Wb, ratio of pole arc/pole				
	pitch=0.66. Calculate the mmf required for airgap				
	(i)if the armature surface is treated as smooth (ii)				
	if the armature is slotted and the gap contraction				
	factor is 1.18.				
3.	Calculate the mmf required for the airgap of a	(15)	BTL6	Creating	CO3
	machine having core length=0.32m, including 4				
	ducts of 10mm each, pole arc=0.19m, slot				
	pitch=65.4mm,slot opening=5mm, airgap				
	length=5mm, flux/pole=52mWb, given carter's				
	coefficient is 0.18 for opening/gap=1 and is 0.28				
	for opening/gap=2				
4.	Estimate the effective gap area per pole of a 10	(15)	BTL6	Creating	CO3
	pole, slip ring induction motor with following				
	data: stator bore=0.65m, core length =0.25m,				
	number of stator slots=90, stator slot				
	opening=3mm, rotor slots=120, rotor slot				
	opening=3 mm, airgap length=0.95mm, carter's				
	coefficient for ducts=0.68, carter's coefficient for				
	slots=0.46, number of ventilating ducts=3 each				
	on rotor and stator, width of each ventilating				
	duct=10mm.				
5.	Determine the main dimensions, number of poles	(15)	BTL4	Analyzing	CO3
	and length of airgap of a 600kW,500V,900 rpm			-	

generator. Assume average gap density as	
$0.6Wb/m^2$ and ampere conductors/m as 35000.	
The ratio of pole arc/pole pitch is 0.75 and the	
efficiency is 91%. The following are the design	
constraints: Peripheral speed > 40 m/s,	
frequency of flux reversals \Rightarrow 50Hz,	
current/brush arm ≯400A and armature	
mmf/pole \geq 7500A. The mmf required for airgap	
is 50% of armature mmf and gap contraction	
factor is 1.15.	

UNIT-IV DESIGN OF INDUCTION MOTORS

Construction - Output equation of Induction motor – Main dimensions – choice of specific loadings – Length of air gap - Design of squirrel cage rotor and wound rotor –Magnetic leakage calculations – Operating characteristics : Magnetizing current - Short circuit current – Circle diagram - Computer program: Design of slip-ring rotor.

	PART-A			
Q.	Questions	BT	Competence	CO
No		Level		
1.	List the advantages of using open slots.	BTL1	Remembering	CO4
2.	Why induction motor is called as rotating transformer?	BTL2	Understanding	CO4
3.	What are the factors to be considered for the choice of specific electric loading?	BTL1	Remembering	CO4
4.	How the induction motor can be designed for best power factor?	BTL2	Understanding	CO4
5.	Discuss the reason for the unbalanced magnetic pull in an induction motor.	BTL3	Applying	CO4
6.	Articulate the merits of using open slots.	BTL3	Applying	CO4
7.	How the dimensions of induction generator differ from	BTL1	Remembering	CO4
	that of an induction motor?			
8.	State the use of slip ring rotor.	BTL5	Evaluating	CO4
9.	Define runaway speed.	BTL2	Understanding	CO4
10.	Why is the length of air gap in an induction motor kept at minimum possible range?	BTL4	Analyzing	CO4
11.		BTL1	Remembering	CO4
11.	Explain the effects of change of air gap length in an induction motor?	DILI	Kennennbernig	04
12.	Define dispersion coefficient and give its significance	BTL4	Analyzing	CO4
	in an induction motor.			
13.	What are the factors to be considered for estimating the	BTL2	Understanding	CO4
	length of air-gap in induction motor?			

14.	Differentiate crawling and cogging. How cogging is avoided in IM?		BTL4	Analyzing	CO4
15.	Why fractional slot winding is not used for induction motor?		BTL3	Applying	CO4
16.	Define integral slot winding and fractional slot win	ding.	BTL1	Remembering	CO4
17.	Name the losses that occur in three phase IM.	-	BTL1	Remembering	CO4
18.	Estimate the ranges of efficiency and power fact induction motor.	or in	BTL6	Creating	CO4
19.	Describe full pitch and short pitch or chording.		BTL6	Creating	CO4
20.	Name the methods used for reducing harmonic to in induction motor.	rques	BTL5	Evaluating	CO4
21.	List out the losses in Induction Motor.		BTL1	Remembering	CO4
22.	Define crawling.		BTL2	Understanding	CO4
23.	Interpret cogging.		BTL3	Applying	CO4
24.	Analyze the ranges of efficiency and power fact induction motor.	or in	BTL4	Analyzing	CO4
	PART-B				
1.	Determine the main dimensions, number of radial ventilating ducts, number of stator slots and number of turns/ phase of a 3.7kW,400 V, 3 phase, 4 pole, 50Hz, squi.cage IM. to be started by a star delta starter. Workout the winding details assume Average flux density=0.45Wb/m ² ac=23000 amp.cond/m, full load efficiency=0.85, pf=0.84. choose main dimensions to achieve cheap design. winding factor=0.955, stacking factor=0.9.	(13)	BTL1	Remembering	CO4
2.	Calculate the magnetising current of a 450V, 4 pole, 3-phase, 50Hz, induction motor having the following data. No. of slots=36, No. of stator conductors/ slot=30, stator core diameter=13com, axial length of stator=13cm, effective airgap length=0.1cm, winding is full pitched, phase spread angle is 60°, gap contraction factor=1, assume that the iron loss has infinite permeability.	(13)	BTL2	Understanding	CO4
3.	Determine the approximate diameter and length of stator core, the no. of stator slots and the no. of stator conductors for a 11kW, 400V, 3-phase, 4	(13)	BTL3	Applying	CO4

		1			,
	pole, 1425rpm, delta connected IM.				
	Bav=0.45wb/sq.m, ac=23000 amp.cond/m, full				
	load efficiency=0.85, pf=0.88, pole arc to pole				
	pitch is 1. The stator employs a double layer				
	winding.				
4.	Design a cage rotor for a 40HP, 3-phase, 400V,	(13)	BTL2	Understanding	CO4
	50Hz, 6 pole delta connected IM having a full				
	load efficiency of 87% and a full load pf of 0.85.				
	Take D=33cm and L=17cm. stator slots=54,				
	conductors/slot=14. Assume suitably the missing				
	data of any.				
5.	Identify the main dimension, air gap length,	(13)	BTL1	Remembering	CO4
	stator slots, slots/ phase and cross sectional area				
	of stator and rotor conductors for three phase,				
	15HP, 400V, 6 pole, 50Hz, 975 rpm induction				
	motor. The motor is suitable for star – delta				
	starting. Bav = 0.45 wb/m2. ac = 20000 AC/m.L				
	$/\tau = 0.85. \eta = 0.9$, P.F = 0.85.				
6.	A 15 kW, three phase, 6 pole, 50 Hz, squirrel	(13)	BTL3	Applying	CO4
	cage induction motor has the following data,				
	stator bore dia = $0.32m$, axial length of stator				
	core = 0.125 m, number of stator slots = 54,				
	number of conductor / stator slot = 24 , current in				
	each stator conductor =17.5 A, full load $P.F =$				
	0.85 lag. Evaluate number of rotor slots section				
	of each bar and section of each ring for a suitable				
	cage rotor. The full speed is to be 950 rpm, use				
	copper for rotor bar and end ring conductor.				
	Resistivity of copper is $0.02 \ \Omega m$.				
7.	A 90 kW, 500V, 50 Hz, three phase, 8 pole	(13)	BTL4	Analyzing	CO4
	induction motor has a star connected stator				
	winding accommodated is 63 slots with a 6				
	conductors / slot. If slip ring voltage, an open				
	circuit is to be about 400V at no load find				
	suitable rotor winding. Identify number of rotor				
	slots, number conductors / slot, coil span, number				
	of slots per pole. $P.F = 0.9$ and the efficiency is				
	0.85.				
8.	Identify the approximate diameter and length of	(13)	BTL1	Remembering	CO4

				1	
	stator core, the number of stator slots and the				
	number of conductors for a 20 kW, 400V, 3				
	phase, 4pole, 1200rpm, delta connected induction				
	motor. Bav =0.5T, η = 0.82, ac = 26,000				
	amp.cond /m, power factor = 0.8, $L/\tau = 1$, double				
	layer stator winding.				
0		(10)		TT 1 / 1'	004
9.	Estimate the main dimensions, air-gap length,	(13)	BTL2	Understanding	CO4
	stator slots, stator turns per phase and cross				
	sectional area of stator and rotor conductors for 3				
	phase, 110 kW, 3300V, 50 Hz, 10 poles, 600				
	rpm, Y connected induction motor, $Bav = 0.48$				
	Wb/m2, ac = 28,000 amp.cond/m, $L/\tau = 1.25$, $\eta =$				
	0.9, power factor = 0.86 .				
10.	Design a cage rotor for a 18.8HP, 3phase, 440V,	(13)	BTL1	Remembering	CO4
	50Hz, 1000rpm, induction motor having full load				
	efficiency of 0.86 , power factor = 0.86 ,				
	D=0.25m, L=0.14m, Zss/Ss= 54. Assume				
	missing data if any.				
11.	Discuss the advantages and disadvantages of	(13)	BTL4	Analyzing	CO4
	having small airgap of a 3 phase IM.				
12.	Derive the expression for output equation of	(13)	BTL3	Applying	CO4
	induction motor.	~ /			
13.	Determine D and L of a 70HP, 415 V, three	(13)	BTL5	Evaluating	CO4
	phase, 50Hz, star connected, 6 pole IM for which				
	ac=30000 A.con/m and $B_{av}= 0.51$ Wb/m ² . Take				
	efficiency=90% and PF=0.91. Assume τ =L.				
	Estimate the number of stator conductors				
	required for a winding in which the conductors				
	are connected in two parallel paths. Choose a				
	suitable number of conductors per slots so that				
	the slot loading does not exceed 750Amp.cond.				
14.	Find the main dimensions of a 15kW,	(13)	BTL6	Creating	CO4
17.	3phase,400V, 50Hz, 2810rpm, sq. Cage	(13)	DILU		
	induction motor having an efficiency of 88% and				
	Č .				
	full load PF=0.9. Assume specific magnetic loading=0.5T, specific electrical				
	loading=25000A/m. The rotor peripheral speed				
	should be approximately 20m/s at synchronous				
	speed.				

		1 1			
15.	What are the advantages of squirrel cage IM and slip ring IM?	(13)	BTL1	Remembering	CO4
16.	Find the values of diameter and length of stator	(13)	BTL2	Understanding	CO4
	core of a. 7.5 kW. 220 V, 50 Hz. 4 pole.3 phase				
17	induction motor for best power factor.	(12)		Annlying	<u> </u>
17.	Estimate the main dimensions, air-gap length,	(13)	BTL3	Applying	CO4
	stator slots, stator turns per phase and cross sectional area of stator and rotor conductors for 3				
	phase, 115 kW, 3300V, 50 Hz, 10 poles, 600				
	rpm, Y connected induction motor, $Bav = 0.48$				
	Wb/m2, ac = 28,000 amp.cond/m, $L/\tau = 1.25$, $\eta =$				
	0.9, power factor = 0.86.				
	PART-C				
1.	Determine the approximate diameter and length	(15)	BTL5	Evaluating	CO4
	of stator core, the no. of stator slots and the no. of				
	stator conductors for a 10kW, 400V, 3-phase, 4				
	pole, 1425rpm, delta connected IM.				
	Bav=0.45wb/sq.m, ac=23000 amp.cond/m, full				
	load efficiency=0.85, pf=0.88, pole arc to pole				
	pitch is 1. The stator employs a double layer				
	winding.				
2.	Identify the approximate diameter and length of	(15)	BTL5	Evaluating	CO4
	stator core, the number of stator slots and the				
	number of conductors for a 25 kW, 400V, 3				
	phase, 4pole, 1200rpm, delta connected induction				
	motor. Bav =0.5T, η = 0.82, ac = 26,000				
	amp.cond /m, power factor = 0.8, $L/\tau = 1$, double				
	layer stator winding.				
3.	Identify the main dimension, air gap length,	(15)	BTL6	Creating	CO4
	stator slots, slots/ phase and cross sectional area				
	of stator and rotor conductors for three phase,				
	20HP, 400V, 6 pole, 50Hz, 975 rpm induction				
	motor. The motor is suitable for star – delta				
	starting. Bav = 0.45 wb/m2. ac = 20000 AC/m.L				
	$/\tau = 0.85. \eta = 0.9$, P.F = 0.85.				
4.	Estimate the main dimensions, air-gap length,	(15)	BTL6	Creating	CO4
	stator slots, stator turns per phase and cross				
	sectional area of stator and rotor conductors for 3				
	phase, 115 kW, 3300V, 50 Hz, 10 poles, 600				

	rpm, Y connected induction motor, Bav = 0.48 Wb/m2, ac = 28,000 amp.cond/m, $L/\tau = 1.25$, $\eta = 0.9$, power factor = 0.86.				
5.	Find the values od diameter and length of stator core of a 7.5 kW 220V, 50Hz, 4 pole, three phase	` '	BTL4	Analyzing	CO4
	IM for best power factor.				

UNIT-V DESIGN OF SYNCHRONOUS MACHINES

Output equations – Main Dimensions - choice of specific loadings – Design of salient pole machines – Short circuit ratio – shape of pole face - Armature design – Estimation of air gap length – Design of rotor –Design of damper winding – Determination of full load field MMF – Design of field winding – Design of turbo alternators -Computer program: Design of Stator main dimensions-Brushless DC Machines.

	PART-A			
Q.	Questions	BT	Competence	CO
No		Level		
1.	Name the two types of synchronous machines.	BTL1	Remembering	CO5
2.	What is the use of damper winding in synchronous alternator and synchronous motor?	BTL2	Understanding	CO5
3.	Define runaway speed of an alternator.	BTL1	Remembering	CO5
4.	List the types of poles used in salient pole machines.	BTL2	Understanding	CO5
5.	Prepare the list of factors to be considered for the choice of specific electric loading.	BTL3	Applying	CO5
6.	Define short circuit Ratio (SCR)	BTL3	Applying	CO5
7.	What is salient pole rotor? What is Alternator? What are the advantages of large Air-gap in synchronous machine?	BTL1	Remembering	CO5
8.	What are the constructional differences between salient pole type alternator and cylindrical rotor type alternator?	BTL5	Evaluating	CO5
9.	State merits of Computer Aided Design of electrical machines.	BTL2	Understanding	CO5
10.	Why is length of airgap in an induction motor kept at minimum range?	BTL4	Analyzing	CO5
11.	State the important features of turbo alternator rotor.	BTL1	Remembering	CO5
12.	How is cylindrical pole different from salient pole in a synchronous machine?	BTL4	Analyzing	CO5
13.	How is computer aided design different from conventional design in the case of electrical apparatus?	BTL2	Understanding	CO5
14.	List the advantages of large air-gap in synchronous	BTL4	Analyzing	CO5

	machines.				
15.	What are the factors to be considered for the choir specific magnetic loading in synchronous machine		BTL3	Applying	CO5
16.	Define critical speed.		BTL1	Remembering	CO5
17.	List the advantages of large air-gap in synchromachines.	onous	BTL1	Remembering	CO5
18.	Write the expressions for length of air-gap in s pole synchronous machine.	alient	BTL6	Creating	CO5
19.	List the factors that govern the design of field systerator.	em of	BTL6	Creating	CO5
20.	Explain how the value of SCR affects the designation alternator?	gn of	BTL5	Evaluating	CO5
21.	State the reason - length of airgap in an induction i kept at minimum range?	notor	BTL1	Remembering	CO5
22.	Sketch the merits of large air-gap in synchromachines.	onous	BTL2	Understanding	CO5
23.	Articulate the factors to be considered for the choir specific magnetic loading in synchronous machine		BTL3	Applying	CO5
24.	Analyze how cylindrical pole is different from s pole in a synchronous machine?		BTL4	Analyzing	CO5
	PART-B				
1.	Mention the factors that govern the design of field system alternator.	(13)	BTL1	Remembering	CO5
2.	Sketch the shape of a salient pole rotor and cylindrical rotor. What are the constructional differences between salient pole type alternator and cylindrical rotor type alternator?	(13)	BTL2	Understanding	CO5
3.	A 1000kVA, 3300V, 50Hz, 300rpm, 3-phase alternator has 180 slots with 5 conductors/ slot, single layer winding with full pitched coil is used. The winding is star connected with 1 circuit per phase. Determine the specific electric and magnetic loading, if the stator bore is 2.0m and the core length is 0.4m. Using the same loading determine corresponding data for a 1250kVA, 3300V, 50Hz, 250rpm, 3-phase star connected alternator having 2 circuit per phase. The machines have 60° phase spread.		BTL3	Applying	CO5
4.	State and explain the main factors which	(13)	BTL2	Understanding	CO5

		<u>т т</u>			
	influence the choice of specific magnetic loading				
	and specific electric loading in a synchronous				
<i>_</i>	machine.	(12)	1 חידת	Domant	005
5.	Derive output equation of synchronous machine.	(13)	BTL1	Remembering	CO5
6.	For a 250kVA, 1100V, 12 pole 500rpm, 3-phase	(13)	BTL3	Applying	CO5
	alternator. Determine the airgap diameter, core				
	length, No. of stator conductors, No. of stator				
	slots and cross section of stator conductors.				
	Assuming average gap density as 0.6wb/sq.m.				
	and specific electric loading of 30000				
-	amp.cond./m. pole arc to pole pitch is 1.5.				<u> </u>
7.	Identify the main dimension for 1000 kVA, 50	(13)	BTL4	Analyzing	CO5
	Hz, three phase, 375 rpm alternator. The average				
	air gap flux density = 0.55 wb/m2 and ampere				
	conductors / $m = 28000$. Use rectangular pole.				
	Assume a suitable value for L / τ in order that				
	bolted on pole Construction is used for which				
	machine permissible peripheral speed is 50 m/s.				
	The runway speed is 1:8 times synchronous				
	speed.	ļ			
8.	Find main dimension of 100 MVA, 11 KV, 50	(13)	BTL1	Remembering	CO5
	Hz, 150 rpm, three phase water wheel generator.				
	The average gap density = 0.65 wb/m2 and				
	ampere conductors / m are 40000. The peripheral				
	speed should not exceed 65 m/s at normal				
	running speed in order to limit runaway				
	peripheral speed.				
9.	Describe a suitable number of slots conductors /	(13)	BTL2	Understanding	CO5
	slot for stator winding of three phase,3300V, 50				
	Hz, 300 rpm alternator, the diameter is 2.3m and				
	axial length of core = 0.35 m. Maximum flux				
	density in air gap should be approximately 0.9				
	wb / m2. Assume sinusoidal flux distribution use				
	single layer winding and star connection for				
	stator.				
10.	A 2000 kVA, 3300V, 50Hz, 300 rpm, three phase	(13)	BTL1	Remembering	CO5
	alternator has 180 slots with 5 conductors/slot,				
	single layer winding with full pitch coil is used.				
	The winding is star connected with				

	one circuit / phase. Evaluate specific electric loading and magnetic loading, IF stator core is 0.2 m and core length = 0.4 m. Using same loading determine the data for 1250 kVA, 3300V, 50 Hz, 250 rpm, three phase star connected alternator having 2 circuits / phase.				
11.	Evaluate for a 15 MVA, 11kV, 50 Hz, 2pole, star connected turbo alternator (i) air- gap diameter, (ii) core length, (iii) number of stator conductors, from the given data Bav= 0.55 wb/sq.m, ac=36000amp.cond/m, δ =5A/sq.mm, synchronous speed ns=50rps, Kws=0.98, peripheral speed=160m/s.	(13)	BTL4	Analyzing	CO5
12.	Evaluate the main dimensions of stator core for an 8 pole alternator rated at 3300KVA, 300V, 50Hz. Assume specific electric loading to be 28000 ac/m and magnetic loading to be 0.6wb/sq.m, pole arc=0.65*pole pitch. Assume square pole.	(13)	BTL3	Applying	CO5
13.	Identify the main dimensions of a 12MVA, 13.8KV, 50Hz, 1500rpm 3 phase star connected alternator. Bav= 0.6 Tesla, $ac/m = 42000$, peripheral speed = 80m/s. Find also the maximum flux, number of stator slots if one conductor per slot is used number of turns per phase.	(13)	BTL5	Evaluating	CO5
14.	The field coils of a salient pole alternator are wound with a single layer winding of bare copper strip 30mm depth with separating insulation of 0.15mm thick. Analyze winding length, no.of.turns and thickness of conductor to develop an mmf of 1200AT with a potential difference of 5V per coil and with a loss of 1200W/sq.m of total coil surface. The mean length of turn is 1.2m. The resistivity of copper is $0.021\Omega/m$	(13)	BTL6	Creating	CO5
15.	Describe the construction of turbo alternator with neat sketch.	(13)	BTL1	Remembering	CO5
16.	For a 250kVA,2200V, 12 pole, 500 rpm,3 phase alternator, determine core diameter and core	(13)	BTL2	Understanding	CO5

	longth Agazzaine 1							
	length. Assuming average gap density as							
	0.6wb/m ² and specific electric loading of 30000							
15	amp.cond/m,L/ι=1.5.				<u> </u>			
17.	Illustrate the steps required for the design of	(13)	BTL3	Applying	CO5			
	damper winding of synchronous machine and							
	show the position of damper bars in a diagram							
	PART-C							
1.	A 1000kVA, 3300V, 50Hz, 300rpm, 3-phase	(15)	BTL5	Evaluating	CO5			
	alternator has 180 slots with 5 conductors/ slot,							
	single layer winding with full pitched coil is							
	used. The winding is star connected with 1 circuit							
	per phase. Determine the specific electric and							
	magnetic loading, if the stator bore is 2.0m and							
	the core length is 0.4m. Using the same loading							
	determine corresponding data for a 1250kVA,							
	3300V, 50Hz, 250rpm, 3-phase star connected							
	alternator having 2 circuit per phase. The							
	machines have 60° phase spread.							
2.	Identify the output coefficient for a 1500kVA,	(15)	BTL5	Evaluating	CO5			
	2200 Volts,3 phase,10 pole,50Hz,Star connected			_				
	alternator with sinusoidal flux distribution. The							
	winding had 60° phase spread and full pitch coils.							
	ac=30000 amp.cond/m, Bav=0.6 Wb/m ² .If the							
	peripheral speed of the rotor must not exceed							
	100m/sec and the ratio pole pitch to core length is							
	to be between 0.6 and 1, find D and L. Assume an							
	airgap length of 6mm.Find also the approximate							
	number of stator conductors.							
3.	Identify for 500kVA, 6600V, 20Hz, 500 rpm and	(15)	BTL6	Creating	CO5			
	connected three phase salient pole machine							
	diameter, core length for square pole face number							
	of stator slots and number of stator conductors							
	for double layer winding. Assume specific							
	magnetic loading = 0.68 tesla, ac = 30000 AC/m							
	and $Kws = 0.955$.							
4.	Find the main dimensions of a 2500 KVA, 187.5	(15)	BTL6	Creating	CO5			
	rpm, 50Hz,3 phase, 3KV, salient pole alternator.	()						
	The generator is to be vertical water wheel type.							
	Use circular pole with ratio of core length to pole							
	1 000 chediai pole with failo of core lengui to pole							

		-				
	pitch=0.65. Specify the type of pole construction					
	used if the runaway speed is about 2 times the					
	normal speed.					
5.	Determine the main dimensions of a 75000 KVA,	(15)	BTL4	Analyzing	CO5	
	13.8KV, 50Hz, 62.5rpm, 3 phase star connected					
	alternator. The peripheral speed is about 40m/s.					
	Assume average gap density= 0.65 wb/m ² , ampere					
	conductors/metre= 40,000 and current					
	density= $4A/mm^2$. Also find the no. of stator slots,					
	conductors per slot, conductor area. Assume slot					
	pitch= 55mm.					
Cour	▲					
Course Outcome:						
	Engineering students will acquire the basic knowledge of Magnetic circuit parameters and					
	thermal rating of various types of electrical machines.					
\succ	Students will have an understanding on the evolution of Core, yoke, windings and cooling					
systems of transformers and the importance of computer aided design method.						
\checkmark	> Students will be able to show an understanding on Armature and field systems for D.C.					
	machines and computer aided design method.					
Students will be able to advocate on Design of stator and rotor of induction machines and						
	computer aided design method					
\succ	Students will have understanding on the Design of stator and rotor of synchronous					
	machines and the computer aided design method.					
L						