SRM VALLIAMMAI ENGINEERING COLLEGE

(Autonomous Institution)

SRM Nagar, Kattankulathur – 603 203

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

QUESTION BANK

VIII SEMESTER

1905807- Energy Management and Auditing

(Regulation – 2019)

Academic Year 2024–2025

Even Semester

Prepared by

Mr. S. Balaji, Assistant Professor (Sr. G)/EEE

SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution) SRM Nagar, Kattankulathur – 603 203.

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING **QUESTION BANK**

SUBJECT & SUBJECT CODE: 1905807- ENERGY MANAGEMENT AND AUDITING

SEM / YEAR: VIII / IV

UNIT-I INTRODUCTION

Racics of Energy

	Basics of Energy – Need for energy management – Energy accounting - Energy						
	monitoring, targeting and reporting - Energy audit process.						
	PART-A			_			
Q.	Questions	BT	Competence	CO			
No		Level					
1.	What is the need of energy management?	BTL1	Remembering	CO1			
2.	What is energy targeting?	BTL2	Understanding	CO1			
3.	Interpret cogeneration.	BTL1	Remembering	CO1			
4.	Define energy audit.	BTL2	Understanding	CO1			
5.	Demonstrate the objectives of energy management.	BTL3	Applying	CO1			
6.	Summarize about energy monitoring.	BTL3	Applying	CO1			
7.	List out various types of energy available.	BTL1	Remembering	CO1			
8.	Illustrate energy accounting.	BTL5	Evaluating	CO1			
9.	Analyze the objectives of the energy management program.	BTL2	Understanding	CO1			
10.	Evaluate the need for energy management.	BTL4	Analyzing	CO1			
11.	List the basics of energy.	BTL1	Remembering	CO1			
12.	Demonstrate the essential elements of energy monitoring and reporting.	BTL4	Analyzing	CO1			
13.	Justify the components of the energy management program to ensure the success.	BTL2	Understanding	CO1			
14.	Distinguish between monitoring and targeting.	BTL4	Analyzing	CO1			
15.	Evaluate parts of energy monitoring.	BTL3	Applying	CO1			
16.	List the benefits of monitoring and targeting system.	BTL1	Remembering	CO1			
17.	What is the major source of electrical power generation in India?	BTL1	Remembering	CO1			
18.	Compose the energy intensity ratio.	BTL6	Creating	CO1			
19.	Prepare the need of energy audit.	BTL6	Creating	CO1			

20.	Analyze various energy audit methods.		BTL5	Evaluating	CO1
21.	Define energy intensity.		BTL1	Remembering	CO1
22.	List the four steps of an energy audit.			Understanding	CO1
23.	Articulate the major source of electrical preparation in India.	ower	BTL3	Applying	CO1
24.	Analyze the meaning of energy monitoring how achieved.	it is	BTL4	Analyzing	CO1
	PART-B				
1.	Describe about energy audit process.	(13)	BTL1	Remembering	CO1
2.	Examine the different phase of energy auditing methodology	(13)	BTL2	Understanding	CO1
3.	Demonstrate the methods of energy monitoring.	(13)	BTL3	Applying	CO1
4.	Describe the basics of energy.	(13)	BTL2	Understanding	CO1
5.	Evaluate the methods energy accounting.	(13)	BTL1	Remembering	CO1
6.	Formulate the types of energy monitoring.	(13)	BTL3	Applying	CO1
7.	Examine the essentials of energy.	(13)	BTL4	Analyzing	CO1
8.	Examine the categories of energy accounting.	(13)	BTL1	Remembering	CO1
9.	Analyze the difference between monitoring and	(13)	BTL2	Understanding	CO1
	targeting in detail				
10.	Explain energy conservation and its importance.	(13)	BTL1	Remembering	CO1
11.	Explain the parts of energy monitoring.	(13)	BTL4	Analyzing	CO1
12.	Examine the benefits of monitoring and targeting system and explain in detail.	(13)	BTL3	Applying	CO1
13.	Summarize the need for energy management.	(13)	BTL5	Evaluating	CO1
14.	Demonstrate main source of energy and its types.	(13)	BTL6	Creating	CO1
15.	What is energy conservation? Articulate its importance.	<u> </u>	BTL1	Remembering	CO1
16.	Define energy monitoring, energy targeting and explain how it is achieved	(13)	BTL2	Understanding	CO1
17.	Articulate about PPP.	(13)	BTL3	Applying	CO1
	PART-C	1			
1.	Evaluate the methodologies for detailed energy audit process.	(15)	BTL5	Evaluating	CO1
2.	Summarize the need and importance for energy management.	(15)	BTL5	Evaluating	CO1
3.	Integrate the process of energy auditing.	(15)	BTL6	Creating	CO1

4.	Design the importance of energy monitoring	(15)	BTL6	Creating	CO1
5.	Analyze the difference between energy conservation and energy efficiency with a suitable example.	` ′	BTL4	Analyzing	CO1

UNIT-II ENERGY MANAGEMENT FOR MOTORS AND COGENERATION

Energy management for electric motors – Transformer and reactors - Capacitors and synchronous machines, energy management by cogeneration – Forms of cogeneration – Feasibility of cogeneration – Electrical interconnection.

\mathbf{P}^{A}	\mathbf{R}	Γ Λ	
	1 I I	I - A	١

Q.	Questions	BT	Competence	CO
No		Level		
1.	List the effects of capacitors in energy management.	BTL1	Remembering	CO2
2.	List the various factors to be considered for electric motors.	BTL2	Understanding	CO2
3.	List the need for current transformers.	BTL1	Remembering	CO2
4.	Describe about energy efficient motors	BTL2	Understanding	CO2
5.	Interpret few energy management possibilities in transformers.	BTL3	Applying	CO2
6.	How can we conserve energy in motor?	BTL3	Applying	CO2
7.	Analyze the energy management techniques.	BTL1	Remembering	CO2
8.	Show the need for energy management.	BTL5	Evaluating	CO2
9.	List the three parts of energy management.	BTL2	Understanding	CO2
10.	Analyze the two forms of energy are usually produced	BTL4	Analyzing	CO2
	in a cogeneration process.			
11.	Tell the other name of cogeneration.	BTL1	Remembering	CO2
12.	Show the need of cogeneration.	BTL4	Analyzing	CO2
13.	List the advantages of cogeneration.	BTL2	Understanding	CO2
14.	Compose the disadvantages of cogeneration.	BTL4	Analyzing	CO2
15.	Illustrate the applications of cogeneration.	BTL3	Applying	CO2
16.	Analyze the need of electrical interconnection.	BTL1	Remembering	CO2
17.	Decide which device is required for the electrical interconnection.	BTL1	Remembering	CO2
18.	Evaluate how electric motors can be used in an energy efficient manner.	BTL6	Creating	CO2
19.	Compose the types of energy efficient motors.	BTL6	Creating	CO2
20.	Describe an example of electrical interconnection.	BTL5	Evaluating	CO2
21.	What are the four main elements of energy management?	BTL1	Remembering	CO2
22.	Infer the schematic view of steam turbine cogeneration	BTL2	Understanding	CO2

	systems.				
23.	Articulate the schematic view of gas to cogeneration systems.	ırbine	BTL3	Applying	CO2
24.	Analyze the schematic view of reciprocating e cogeneration Systems	ngine	BTL4	Analyzing	CO2
	PART-B		•		•
1.	Examine synchronous machine control and energy management in detail.	(13)	BTL1	Remembering	CO2
2.	Analyze various factors to be considered while selecting a motor.	(13)	BTL2	Understanding	CO2
3.	List and explain the various steps in energy management for transformers.	(13)	BTL3	Applying	CO2
4.	Analyze the functions of capacitors in energy management in brief.	(13)	BTL2	Understanding	CO2
5.	Evaluate the need of reactors in energy management	(13)	BTL1	Remembering	CO2
6.	Summarize energy management in motor systems.	(13)	BTL3	Applying	CO2
7.	Define the importance of transformers in energy management in detail	(13)	BTL4	Analyzing	CO2
8.	Summarize the need of transformers in energy management in detail	(13)	BTL1	Remembering	CO2
9.	Demonstrate the forms of cogeneration.	(13)	BTL2	Understanding	CO2
10.	Integrate the features of cogeneration.	(13)	BTL1	Remembering	CO2
11.	Quote the feasibility of cogeneration.	(13)	BTL4	Analyzing	CO2
12.	Briefly analyze the objectives of reactors in energy management.	(13)	BTL3	Applying	CO2
13.	Compose the need and importance of energy management for electric motors.	(13)	BTL5	Evaluating	CO2
14.	Evaluate the various functions of reactors in energy management.	(13)	BTL6	Creating	CO2
15.	Explain gas turbine cogeneration systems.	(13)	BTL1	Remembering	CO2
16.	Interpret in detail about reciprocating engine cogeneration Systems	(13)	BTL2	Understanding	CO2
17.	Factors Influencing Cogeneration Choice-Articulate.	(13)	BTL3	Applying	CO2

PART-C						
1.	Evaluate the importance of synchronous	(15)	BTL5	Evaluating	CO2	
	machines in energy management.					
2.	Evaluate the various steps in energy	(15)	BTL5	Evaluating	CO2	
	management by cogeneration.					
3.	3. Compose the principles of cogeneration		BTL6	Creating	CO2	
4.	4. Prepare a note on electrical interconnection.		BTL6	Creating	CO2	
5.	Analyze the Factors Influencing Cogeneration.	(15)	BTL4	Analyzing	CO2	

UNIT-III LIGHTING SYSTEMS

Energy management in lighting systems – Task and the working space - Light sources – Ballasts – Lighting controls – Optimizing lighting energy – Power factor and effect of harmonics, lighting and energy standards.

	PART-A						
Q.	Questions	BT	Competence	CO			
No		Level					
1.	List various lightning sources.	BTL1	Remembering	CO3			
2.	Analyse harmonic distortion.	BTL2	Understanding	CO3			
3.	Show how to ensure energy efficiency in lightning system.	BTL1	Remembering	CO3			
4.	Analyze energy management in lighting system.	BTL2	Understanding	CO3			
5.	List out the different Ways to save energy on lighting.	BTL3	Applying	CO3			
6.	How do you ensure the efficiency and Optimize the	BTL3	Applying	CO3			
	energy consumption of the lighting system?						
7.	List the different methods of lighting energy.	BTL1	Remembering	CO3			
8.	Predict the most energy efficient lighting.	BTL5	Evaluating	CO3			
9.	Illustrate the use of task lighting	BTL2	Understanding	CO3			
10.	Define the lighting levels in a workplace be.	BTL4	Analyzing	CO3			
11.	Describe what type of lighting is task lighting.	BTL1	Remembering	CO3			
12.	Discriminate the sources of light.	BTL4	Analyzing	CO3			
13.	Analyze the meaning of source of light.	BTL2	Understanding	CO3			
14.	Describe natural source of light.	BTL4	Analyzing	CO3			
15.	Compose various artificial source of light.	BTL3	Applying	CO3			
16.	Evaluate various lighting control options to support the vision of lighting arrangement.	BTL1	Remembering	CO3			
17.	Describe the meaning of lighting control.	BTL1	Remembering	CO3			
18.	Demonstrate parts of a lighting control system.	BTL6	Creating	CO3			
19.	Define how do harmonics affect power factor.	BTL6	Creating	CO3			
20.	Compose the reason. Does power factor Correction	BTL5	Evaluating	CO3			

	reduce harmonics?				
21.	Define Lux.		BTL1	Remembering	CO3
22.	Interpret the different types of lamps.		BTL2	Understanding	CO3
23.	What do the following terms mean?		BTL3	Applying	CO3
	– Illuminance				
	– Luminous efficacy				
24.	Analyse short note on Luminaire and Control gear.	•	BTL4	Analyzing	CO3
1	PART-B	(10)	D/DY 1	D 1 '	G02
1.	Demonstrate various steps involved in design of	(13)	BTL1	Remembering	CO3
	lightning system & also explain how optimizing				
	lighting energy is done.				
2.	Discover the various types of light sources &	(13)	BTL2	Understanding	CO3
	discuss about its luminous performance				
	characteristics.				
3.	Quote the various measures for energy efficient	(13)	BTL3	Applying	CO3
	and economic use of lighting.				
4.	Describe the effect of power factor &	(13)	BTL2	Understanding	CO3
	harmonics.	, ,		C	
5.	Describe the functions of lightning sources.	(13)	BTL1	Remembering	CO3
6.	Explain how optimizing lighting energy is done.	(13)	BTL3	Applying	CO3
7.	List the various energy efficiency improvement	(13)	BTL4	Analyzing	CO3
	opportunities in lightning system.	(-)		,	
8.	Analyze the different procedure involved in design of lightning system.	(13)	BTL1	Remembering	CO3
9.	Analyze the steps involved in optimizing lighting	(13)	BTL2	Understanding	CO3
	energy.			C	
10.	Tell the effect of lightning and energy standards.	(13)	BTL1	Remembering	CO3
11.	Tabulate the effect of power factor and	(13)	BTL4	Analyzing	CO3
	harmonics.	, ,		,	
12.	Analyze the opportunities for energy efficient	(13)	BTL3	Applying	CO3
	lighting.				
13.	Discriminate the different types of ballast.	(13)	BTL5	Evaluating	CO3
14.	Integrate the function of electronic ballast.	(13)	BTL6	Creating	CO3
15.	List the energy savings opportunities in industrial	(13)	BTL1	Remembering	CO3
13.	lighting systems.	(13)	DIL		CO3
16.	Briefly describe the methodology of lighting energy audit in an industrial facility?	(13)	BTL2	Understanding	CO3

17.	Explain briefly about various lighting controls available?	(13)	BTL3	Applying	CO3
	PART-C	I			
1.	Compose a record of task and working space in	(15)	BTL5	Evaluating	CO3
	lightning system.				
2.	Discriminate the purpose of lighting control.	(15)	BTL5	Evaluating	CO3
3.	Explain about lightning and energy standards.	(15)	BTL6	Creating	CO3
4.	Prepare the functions of optimizing light energy.	(15)	BTL6	Creating	CO3
5.	Describe the methodology of lighting energy	(15)	BTL4	Analyzing	CO3
	audit in an industrial facility?				

UNIT-IV METERING FOR ENERGY MANAGEMENT

Metering for energy management – Units of measure - Utility meters – Demand meters – Paralleling of current transformers – Instrument transformer burdens – Multi tasking solid state meters, metering location vs requirements, metering techniques and practical

examples.

	PART-A				
Q.	Questions	BT	Competence	CO	
No		Level			
1.	Define demand meter.	BTL1	Remembering	CO4	
2.	List various factors to be considered for paralleling of	BTL2	Understanding	CO4	
	current transformer.				
3.	Describe smart metering.	BTL1	Remembering	CO4	
4.	Demonstrate metering in energy.	BTL2	Understanding	CO4	
5.	Differentiate energy metering and monitoring.	BTL3	Applying	CO4	
6.	Discriminate the functions of utility meter.	BTL3	Applying	CO4	
7.	How do you read a utility meter?	BTL1	Remembering	CO4	
8.	What is unit in electric meter reading?	BTL5	Evaluating	CO4	
9.	Describe how electric demand is measured.	BTL2	Understanding	CO4	
10.	Interpret demand reading in electricity meter.	BTL4	Analyzing	CO4	
11.	Illustrate the difference between energy consumption	BTL1	Remembering	CO4	
	and demand.				
12.	Compare kilowatt demand meter from typical usage	BTL4	Analyzing	CO4	
	meter like a kilowatt hour meter.				
13.	How do you evaluate maximum demand per kWh?	BTL2	Understanding	CO4	
14.	Compose the need for paralleling of current	BTL4	Analyzing	CO4	
	transformers.				
15.	Identify what happens when two transformers are	BTL3	Applying	CO4	
	connected in parallel.				

16.	List the advantage of parallel operation of transform	ners.	BTL1	Remembering	CO4
17.	Discuss the points to select a current transformer for metering.		BTL1	Remembering	CO4
18.	Demonstrate burden of current transformer.		BTL6	Creating	CO4
19.	Explain burden in instrument transformer.		BTL6	Creating	CO4
20.	Compose the errors occurs in instrument transform	ers.	BTL5	Evaluating	CO4
21.	State the scope of energy audit.		BTL1	Remembering	CO4
22.	List the minimum requirements of energy metering	Ţ.	BTL2	Understanding	CO4
23.	Articulate pressure correction factor.		BTL3	Applying	CO4
24.	Analyze steam metering.		BTL4	Analyzing	CO4
	PART-B				
1.	Describe about various cost factors associated with metering.	(13)	BTL1	Remembering	CO4
2.	Examine the need of following with respect to	(13)	BTL2	Understanding	CO4
	energy management				
	a. Utility meters				
	b. Demand meters	(4.0)	D. ETY 4		00.4
3.	Summarize the need of paralleling of CT with	(13)	BTL3	Applying	CO4
4	respect to energy management.	(12)	DEL A	TT 1 . 1'	CO 1
4.	Illustrate multi tasking solid state meters in energy management.	(13)	BTL2	Understanding	CO4
5.	Discover the importance of metering location and	(13)	BTL1	Remembering	CO4
	requirements in energy management.				
6.	Analyze the best practices of metering techniques with example	(13)	BTL3	Applying	CO4
7.	Examine the role of the Smart meters in the	(13)	BTL4	Analyzing	CO4
/ .	energy management systems.	(13)	DILT	7 Mary Zing	CO4
8.	Summarize the need, importance and objectives	(13)	BTL1	Remembering	CO4
	of demand meters.				
9.	Summarize different cost factors associated with	(13)	BTL2	Understanding	CO4
	metering in detail.				
10.	Describe the need of paralleling of current	(13)	BTL1	Remembering	CO4
	transformer with respect to energy management.				
11.	Express multi tasking solid state meters in energy	(13)	BTL4	Analyzing	CO4
	management.				
12.	Discover about linking meters to monitoring	(13)	BTL3	Applying	CO4
	systems.				
13.	Analyze the importance of metering location an	(13)	BTL5	Evaluating	CO4
	requirements in energy management.				

14.	Integrate metering techniques and practical	(13)	BTL6	Creating	CO4		
	examples.						
15.	What types of metering to use explain in practical considerations?	(13)	BTL1	Remembering	CO4		
16.	Interpret about linking meters to monitoring systems.	(13)	BTL2	Understanding	CO4		
17.	Discover the need of Utility meters.	(13)	BTL3	Applying	CO4		
	PART-C						
1.	Discriminate metering for energy management.	(15)	BTL5	Evaluating	CO4		
2.	Compose the importance of metering location	(15)	BTL5	Evaluating	CO4		
	and requirements in energy management.						
3.	Summarize Instrument transformer burdens	(15)	BTL6	Creating	CO4		
4.	Compose the steps involved in metering for	(15)	BTL6	Creating	CO4		
	energy management.						
5.	Analyze types of metering and uses in practical considerations.	(15)	BTL4	Analyzing	CO4		

UNIT-V ECONOMIC ANALYSIS AND MODELS

Economic analysis – Economic models - Time value of money - Utility rate structures – Cost of electricity – Loss evaluation, load management – Demand control techniques – Utility monitoring and control system – HVAC and energy management – Economic justification.

PART-A					
Q.	Questions	BT	Competence	CO	
No		Level	_		
1.	Examine the time value of money.	BTL1	Remembering	CO5	
2.	Describe the economic model of energy.	BTL2	Understanding	CO5	
3.	Demonstrate the advantages of load management.	BTL1	Remembering	CO5	
4.	Analyze the types of economic models.	BTL2	Understanding	CO5	
5.	Define energy cost	BTL3	Applying	CO5	
6.	Describe the time value of money.	BTL3	Applying	CO5	
7.	Demonstrate the disadvantages of load management.	BTL1	Remembering	CO5	
8.	Compose the role of models in economic analysis.	BTL5	Evaluating	CO5	
9.	Point out some examples of economic models.	BTL2	Understanding	CO5	
10.	How do you make an economic model?	BTL4	Analyzing	CO5	
11.	Describe the characteristics of economic model.	BTL1	Remembering	CO5	
12.	Analyse basic parts of the time value of money	BTL4	Analyzing	CO5	
13.	List elements of time value of money	BTL2	Understanding	CO5	
14.	Describe the rate structure.	BTL4	Analyzing	CO5	
15.	Demonstrate how to calculate electrical energy loss.	BTL3	Applying	CO5	

16.	List purposes for economic models.		BTL1	Remembering	CO5	
17.	Explain how you calculate power loss in an AC circuit.		BTL1	Remembering	CO5	
18.	Compose the elements of time value of money.		BTL6	Creating	CO5	
19.	List the basic parts of the time value of money.		BTL6	Creating	CO5	
20.	Explain rate structure.		BTL5	Evaluating	CO5	
21.	State simple pay back period.		BTL1	Remembering	CO5	
22.	Give the relationship between present and future value.		BTL2	Understanding	CO5	
23.	Articulate return on investment.		BTL3	Applying	CO5	
24.	Analyze net present value.		BTL4	Analyzing	CO5	
	PART-B					
1.	Collect the different aspects of load management.	(13)	BTL1	Remembering	CO5	
2.	Illustrate about the various demand control	(13)	BTL2	Understanding	CO5	
	possibilities to a load management					
3.	Compose the different cost factors involved in	(13)	BTL3	Applying	CO5	
	metering.					
4.	Identify various demand control techniques.	(13)	BTL2	Understanding	CO5	
5.	Illustrate Economic justification.	(13)	BTL1	Remembering	CO5	
6.	Describe the demand control techniques.	(13)	BTL3	Applying	CO5	
7.	Explain the different aspects of load	(13)	BTL4	Analyzing	CO5	
	management.					
8.	Examine HVAC and energy management.	(13)	BTL1	Remembering	CO5	
9.	Summarize about possibilities of demand control	(13)	BTL2	Understanding	CO5	
	to a load management.					
10.	Infer demand side management scheme.	(13)	BTL1	Remembering	CO5	
11.	Describe various cost factors involved in	(13)	BTL4	Analyzing	CO5	
	metering					
12.	Analyse the steps involved in cost of electricity.	(13)	BTL3	Applying	CO5	
13.	Examine different aspects of load management.	(13)	BTL5	Evaluating	CO5	
14.	Analyze different demand control techniques.	(13)	BTL6	Creating	CO5	
15.	Explain demand side management scheme.	(13)	BTL1	Remembering	CO5	
16.	Describe about implementation of energy	(13)	BTL2	Understanding	CO5	
	efficiency projects.					
17.	Compose details of utility monitoring and control	(13)	BTL3	Applying	CO5	
	system.					
PART-C						
1.	Explain HVAC and energy management.	(15)	BTL5	Evaluating	CO5	
2.	Compose details about economic models.	(15)	BTL5	Evaluating	CO5	
3.	Explain Economic justification.	(15)	BTL6	Creating	CO5	
4.	Compose the different methods of economic	(15)	BTL6	Creating	CO5	

	analysis in detail.					
5.	Analyze about implementation of energy	(15)	BTL4	Analyzing	CO5	
	efficiency projects.					
Course Outcome:						
> Engineering students will have the ability to understand the basics of Energy audit process.						
> Students will have an ability to understand the basics of energy management by						
	cogeneration.					
Ctudents will be able to acquire browledge on Engagy management in lighting systems						

- > Students will be able to acquire knowledge on Energy management in lighting systems
- Students will be able to impact concepts behind economic analysis and Load management.
 Students will have understanding on the importance of Energy management on various electrical equipment and metering and ability to acquire knowledge on HVAC.