SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution) SRM Nagar, Kattankulathur – 603 203

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

QUESTION BANK

VIII SEMESTER 1906004 ELECTRONICS PACKAGING AND TESTING Regulation – 2019

Academic Year 2024-2025

Prepared by Dr. S. R. Preethi, Associate Professor – ECE

S. Sethilmurugan, Assistant Professor- ECE

SRM VALLIAMMAI ENGINEERING COLLEGE (An Autonomous Institution) SRM Nagar, Kattankulathur – 603 203.

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

QUESTION BANK

SUBJECT : 1906004 Electronics Packaging and Testing

SEM / YEAR: VIII/ IV year B.E. ECE

UNIT - I: OVERVIEW OF ELECTRONIC SYSTEMS PACKAGING

Functions of an Electronic Package, Packaging Hierarchy, IC packaging: MEMS packaging, consumer electronics packaging, medical electronics packaging, Trends, Challenges, Driving Forces on Packaging Technology, Materials for Microelectronic packaging, Packaging Material Properties, Ceramics, Polymers, and Metals in Packaging, Material for high density interconnect substrates..

	PART – A (2 marks)					
Q.	Questions	CO	BT	Competence		
No			Level	_		
1	What are the primary functions of an electronic package?	CO1	BTL 1	Remembering		
2	Write about the concept of packaging hierarchy in electronic systems.	CO1	BTL 1	Remembering		
3	Differentiate between IC packaging and MEMS packaging.	CO1	BTL 2	Understanding		
4	How does packaging impact consumer electronics in terms of performance and durability?	CO1	BTL 1	Remembering		
5	List the critical aspects of packaging in medical electronics.	CO1	BTL 1	Remembering		
6	What are the current trends and major challenges faced in electronic packaging?	CO1	BTL 1	Remembering		
7	Identify the key driving forces influencing advancements in packaging technology.	CO1	BTL 1	Remembering		
8	Name the main categories of materials used in microelectronic packaging.	CO1	BTL 2	Understanding		
9	What properties are crucial in selecting packaging materials?	CO1	BTL 2	Understanding		
10	Illustrate the role of ceramics in electronic packaging.	CO1	BTL 2	Understanding		
11	How are polymers utilized in electronic packaging?	CO1	BTL 1	Remembering		
12	Mention the significance of metals in electronic packaging.	CO1	BTL 1	Remembering		
13	What are the specific material requirements for high-density interconnect substrates?	CO1	BTL 2	Understanding		
14	Summarize the working principle of flip-chip technology in IC packaging.	CO1	BTL 1	Remembering		
15	What is wafer-level packaging, and what advantages does it offer?	CO1	BTL 1	Remembering		
16	Interpret the concept of 3D packaging in microelectronics.	CO1	BTL 1	Remembering		
17	Why is hermetic sealing essential in certain electronic packages?	CO1	BTL 1	Remembering		
18	Analyze the environmental considerations associated with	CO1	BTL 2	Understanding		

	electronic packaging.			
	What are the key reliability tests conducted on electronic	CO1	BTL 2	Understanding
19	packages?			6
	Name two emerging technologies shaping the future of electronic	CO1	BTL 2	Understanding
20	packaging.			
21	Why is the dielectric constant crucial in substrate materials?	CO1	BTL 2	Understanding
	What are the specific challenges encountered in MEMS packaging	CO1	BTL 2	Understanding
22	compared to traditional IC packaging?			
22	Explain the significance of thermal management in electronic	CO1	BTL 2	Understanding
23	packaging.	001		TT 1 / 1'
24	Why is material selection critical for biocompatibility in medical	CO1	BTL 2	Understanding
24	electronics packaging?			
	PART- B (13 marks)			
1	Define the primary functions served by an electronic package and	CO1	BTL 3	Applying
	describe its hierarchy.			
2	Explain how hermetic sealing plays a critical role in safeguarding	CO1	BTL 3	Applying
	sensitive electronic components.			
3	Identify the key reliability tests conducted on electronic packages.	CO1	BTL 3	Applying
4	Examine the significance of material selection in medical	CO1	BTL 3	Applying
	electronics packaging for biocompatibility.	<u> </u>		
5	Describe the significance of packaging hierarchy in the context of	CO1	BTL 4	Analyzing
	electronic systems.	<u> </u>		
6	Compare and contrast IC packaging with MEMS packaging,	CO1	BTL 4	Analyzing
7	highlighting their distinctive features and applications.	CO1	BTL 4	A nalazzina
/	Explore the role of materials like metals, ceramics, and polymers in electronic packaging, emphasizing their specific contributions.	CO1	BIL 4	Analyzing
8	What is the role of packaging in MEMS products?	CO1	BTL 4	Analyzing
9	Illustrate how materials like ceramics and polymers are practically	CO1	BTL 4 BTL 3	Applying
,	utilized in electronic packaging.	0.01		· PP1J115
10	Design a hypothetical high-density interconnect substrate,	CO1	BTL 3	Applying
-	specifying material requirements and their rationale.			11 5 0
11	Formulate a future-oriented packaging strategy for emerging	CO1	BTL 3	Applying
11	technologies, integrating embedded packaging techniques and		J 1 J	· 'PP'J'''5
	novel materials.			
10	Apply the concept of 3D packaging to a specific electronic device,	CO1		Applying
12		COI	BTL 3	Applying
	outlining potential advantages and challenges.			
13	How does packaging contribute to the functionality and protection	CO1	BTL 4	Analyzing
	of electronic components used in medical devices?			5 0
14	Investigate the material properties crucial for selecting appropriate	CO1	BTL 4	Analyzing
17	packaging materials, emphasizing their roles in electronic		ыцт	
	packaging.			

15	Develop a comprehensive plan for effective thermal management	CO1	BTL 4	Analyzing
10	in electronic packaging, considering diverse environmental	001	DIL	1 mar j 2mg
	conditions.			
1.6		<i></i>		
16	How does packaging design cater to the specific demands of	CO1	BTL 4	Analyzing
	consumer electronics, particularly in achieving ultra-portability			
	while accommodating the unique characteristics of these products?			
17	Analyze the impact of packaging on the durability and performance	CO1	BTL 4	Analyzing
	of consumer electronics, citing specific examples.			
	PART – C (15 marks)			
1	Describe the Mobile phone system technology with a neat block	CO1	BTL 3	Applying
	diagram?			
2	Explain the role and significance of ceramics, polymers, and metals	CO1	BTL 3	Applying
	in microelectronic packaging.			
3	Discuss the essential material requirements for high-density	CO1	BTL 3	Applying
	interconnect substrates in electronics packaging.			
4	Compare and contrast IC packaging and MEMS packaging,	CO1	BTL 4	Analyzing
	highlighting their distinctive characteristics in electronics			
	packaging.			
5	Analyze the contemporary challenges encountered in consumer	CO1	BTL 4	Analyzing
	electronics packaging and how technological advancements			
	influence this field.			

	UNIT - II: ELECTRICAL ISSSUES IN PACKAGING					
	Electrical Issues of Systems Packaging, Signal Distribution, P	ower I	Distribution	, Electromagnetic		
	Interference, Transmission Lines, Clock Distribution, Noise Sources, Digital and RF Issues. Design					
	Process Electrical Design: Interconnect Capacitance, Resistance and		ance fundan	nentals; Packaging		
	roadmaps - Hybrid circuits - Resistive, Capacitive and Inductive par	asitic.				
	PART- A (2 marks)					
Q.	Questions	CO	BT	Competence		
No			Level			
1.	Define the concept of signal distribution in electronics packaging.	CO2	BTL 1	Remembering		
2.	List the primary sources of noise affecting electronic systems.	CO2	BTL 1	Remembering		
3.	Recall the fundamental characteristics of transmission lines in	CO2	BTL 1	Remembering		
	electronics packaging.					
4.	State the main aspects of power distribution in systems packaging.	CO2	BTL 1	Remembering		
5.	Outline the key issues related to electromagnetic interference (EMI)	CO2	BTL 1	Remembering		
	in packaging.					
6.	Enumerate the key aspects of clock distribution challenges in	CO2	BTL 1	Remembering		
	electronic systems.					
7.	How interconnect capacitance influences electrical design in	CO2	BTL 2	Understanding		
	packaging?					
8.	Outline the fundamentals of resistance in the context of electronics	CO2	BTL 2	Understanding		
	packaging.					
9.	Elucidate the significance of inductance in electrical design within	CO2	BTL 2	Understanding		

	packaging systems.			
10	Interpret the concept of packaging roadmaps and their relevance in	CO2	BTL 2	Understanding
10.	electronics.	002	DILZ	Onderstanding
11.	Discuss the role of hybrid circuits in addressing resistive,	CO2	BTL 2	Understanding
	capacitive, and inductive parasitics.			
12.	Write a note on digital and RF issues encountered in electronic	CO2	BTL 2	Understanding
	packaging.			
13.	Discuss strategies to mitigate electromagnetic interference (EMI) in	CO2	BTL 1	Remembering
	packaging applications.			
14.	Apply the concepts of transmission lines to resolve signal integrity	CO2	BTL 1	Remembering
	issues in electronics packaging.			
15.	Summarize the plan to optimize power distribution for enhanced	CO2	BTL 1	Remembering
	system performance.			
16.	Mention the methods to minimize noise sources affecting electronic	CO2	BTL 1	Remembering
1.7	systems within packaging.	GOO		
17.	Illustrate the design approach to address interconnect capacitance	CO2	BTL 1	Remembering
10	challenges in packaging.	CO2	DTI 1	Demonstration
18.	Devise a strategy to manage clock distribution challenges in electronic packaging.	CO2	BTL 1	Remembering
19.	Analyze the impact of parasitic elements (resistive, capacitive,	CO2	BTL 2	Understanding
19.	inductive) on packaging design and functionality.	002	DIL 2	Understanding
20	Assess the trade-offs between signal distribution methods in	CO2	BTL 2	Understanding
20.	electronics packaging.	002	DILL	onderstanding
21.	How do the different approaches address electromagnetic	CO2	BTL 2	Understanding
	interference (EMI) in packaging.			0
22.	Elaborate in short the effectiveness of transmission line solutions in	CO2	BTL 2	Understanding
	reducing signal degradation in packaging.			
23.	Intrepret the challenges posed by digital versus RF issues in	CO2	BTL 2	Understanding
	electronics packaging.			
24.	Investigate the role of electrical design in influencing packaging	CO2	BTL 2	Understanding
	roadmaps for emerging technologies.			
	PART – B (13 marks)			
1.	Evaluate the fundamentals of electrical packaging design?	CO2	BTL 3	Applying
	1 0 0 0		-	
2.	Summarize the fundamentals of transmission lines in electronic	CO2	BTL 3	Applying
	packaging.			
3.	Apply the key characteristics of clock distribution challenges in	CO2	BTL 3	Applying
5.	electronic systems.		DILJ	Apprying
Α	•		י זידת	A
4.	Recall the primary sources of noise affecting electronic systems	CO2	BTL 3	Applying
	within packaging.			
5.	Explain the electrical anatomy of systems packaging?	CO2	BTL 4	Analyzing
6.	Describe how resistive, capacitive, and inductive parasitic elements	CO2	BTL 4	Analyzing
	impact hybrid circuits in packaging.			

7.	Elaborate on the significance of signal distribution in devices with	CO2	BTL 4	Analyzing
<i>.</i>	respect to systems packaging?	002	DIE	Tinaryzing
8.	Elucidate the role of packaging roadmaps in guiding design	CO2	BTL 4	Analyzing
0.	processes for electronic systems.	002	DILI	Tharyzing
9.	Summarize the effective strategies to mitigate electromagnetic	CO2	BTL 4	Analyzing
	interference (EMI) within packaging applications.			
10.	Elaborate the optimization of power distribution for enhanced	CO2	BTL 3	Applying
	system performance.			
11.	Explain the comprehensive design approach to address interconnect	CO2	BTL 3	Applying
	capacitance challenges in electronic packaging.			
12.	Devise a strategic plan to manage clock distribution challenges	CO2	BTL 3	Applying
	effectively in electronic packaging.			
13.	Enumerate the electrical design procedure of the package.	CO2	BTL 4	Analyzing
14.	Analyze the inductive effects in packaging industry.	CO2	BTL 4	Analyzing
15.	Compare and contrast the challenges posed by digital and RF issues	CO2	BTL 4	Analyzing
15.	in electronics packaging.	002	DIL 4	Anaryzing
16	Assess various noise sources affecting electronic systems within	CO2	BTL 4	Analyzing
10.	packaging and their implications.	002	DIL 4	Anaryzing
17.		CO2	BTL 4	Analyzing
17.	interference (EMI) in packaging applications.	002	DIL 4	Anaryzing
1.	PART - C (15 marks) Consider a package that has a power supply inductance of 10pH and	CO2	BTL 4	Analyzing
1.	has to support the switching of 1000 on-chip circuits. This circuit	002	DILT	Anaryzing
	draw 10A of current in time 0.25ns. Calculate the power supply			
	noise voltage. Devise a method to reduce the power supply noise			
	voltage to 200mV.			
2	Elaborate on the role of transmission lines in mitigating signal	CO^{2}	BTL 4	Analyzing
۷.	degradation within electronic packaging.		DIL 4	
3.	Evaluate the effectiveness of strategies used to manage	CO2	BTL 3	Applying
э.	electromagnetic interference (EMI) in packaging.		DILJ	Thhrang
1		CO2	BTL 3	Applying
4.	Explain the significance of signal distribution in the context of		DILJ	Applying
~	electrical issues encountered in packaging.	COL		A
5.	Define the fundamental concept of 'Electromagnetic Interference'	CO2	BTL 3	Applying
	and its relevance to packaging electronics.			

	UNIT - III: CHIP PACKAGES				
	IC Assembly - Purpose, Requirements, Technologies, Wire bonding, Tape Automated Bonding, Flip				
	Chip, Wafer Level Packaging, reliability, wafer level burn - in and test. Single chip packaging:				
	functions, types, materials processes, properties, characteristics, trends. Multi chip packaging: types,				
	design, comparison, trends. System in - package (SIP); Passives: dis	crete, 11	itegrated,	and embedded.	
Q.	PART A (2 marks) Questions	СО	BT	Competence	
Q. No	Questions	co	Level	Competence	
1.	Define IC Assembly and its primary purpose in chip packaging.	CO3	BTL 1	Remembering	
2.	Write about the technologies used in IC Assembly.	CO3	BTL 1	Remembering	
3.	Recall the various bonding methods employed in chip packaging.	CO3	BTL 1	Remembering	
4.	What are the characteristics of wafer-level burn-in and test in chip packaging?	CO3	BTL 1	Remembering	
5.	List the functions of single-chip packaging.	CO3	BTL 1	Remembering	
6.	What are the key properties associated with materials used in single-chip packaging?	CO3	BTL 1	Remembering	
7.	Interpret the requirements for IC Assembly in chip packaging.	CO3	BTL 2	Understanding	
8.	Name the types and processes involved in single-chip packaging.	CO3	BTL 2	Understanding	
9.	Elaborate on the design variations in multi-chip packaging.	CO3	BTL 2	Understanding	
10.	Understand the differences between integrated and embedded passives in chip packaging.	CO3	BTL 2	Understanding	
11.		CO3	BTL 2	Understanding	
12.	How do materials and processes influence the characteristics of single-chip packaging?	CO3	BTL 2	Understanding	
13.	Apply the principles of wire bonding in a chip packaging scenario.	CO3	BTL 1	Remembering	
14.	Summarize the plan for reliable wafer-level packaging in chip production.	CO3	BTL 1	Remembering	
15.	Outline the chip packaging strategy utilizing flip-chip technology.	CO3	BTL 1	Remembering	
16.	Mention the methods to enhance the reliability of single-chip packaging.	CO3	BTL 1	Remembering	
17.	How would you implement integrated passives in a system-in- package (SIP)?	CO3	BTL 2	Understanding	
18.	Apply the knowledge of materials and trends to create an innovative chip packaging solution.	CO3	BTL 2	Understanding	
19.	Analyze the advantages and disadvantages of tape automated bonding in chip packaging.	CO3	BTL 2	Understanding	
20.		CO3	BTL 2	Understanding	
21.	Inspect the reliability concerns associated with wafer-level burn-in and test in chip packaging.	CO3	BTL 1	Remembering	

22.	Assess the impact of different bonding methods on chip packaging	CO3	BTL 1	Remembering
	reliability.			
23.	Examine the role of passives (discrete, integrated, embedded) in chip packaging.	CO3	BTL 2	Understanding
24.	Analyze the evolving trends in chip packaging and their potential implications.	CO3	BTL 2	Understanding
	PART - B (13 marks)			
1.	What is the primary requirements of IC Assembly in chip packaging?	CO3	BTL 3	Applying
2.	Describe the Failure mechanisms, its accelerating factors, and design for reliability?	CO3	BTL 3	Applying
3.	Describe a bonding method used specifically in wafer-level packaging.	CO3	BTL 3	Applying
4.	(i)What is Single chip IC packaging and list out its functions? (7)(ii)Mention the types of Single Chip IC Packages? (6)	CO3	BTL 3	Applying
5.	Discuss the distinct functions associated with multichip model?	CO3	BTL 4	Analyzing
6.	Compare the materials and processes used in different types of single-chip packaging.	CO3	BTL 4	Analyzing
7.	Outline the design considerations for multi-chip packaging and discuss their impact.	CO3	BTL 4	Analyzing
8.	Differentiate between discrete and integrated passives in chip packaging.	CO3	BTL 4	Analyzing
9.	How does tape automated bonding differ from flip-chip technology in chip packaging?	CO3	BTL 4	Analyzing
10.	Develop a reliability plan specifically for wafer-level packaging during chip production.	CO3	BTL 3	Applying
11.	Suggest strategies to enhance bonding method reliability in chip packaging.	CO3	BTL 3	Applying
12.	Explain the concept of wire bonding and the process involved in packaging? State its advantages and disadvantages?	CO3	BTL 3	Applying
13.	Analyze the feasibility of implementing system-in-package (SIP) solutions for chip packaging.	CO3	BTL 4	Analyzing
14.	Evaluate the impact of embedded passives on chip packaging advancements.	CO3	BTL 4	Analyzing
15.	Explore the foreseeable trends in chip packaging and their anticipated technological influences.	CO3	BTL 4	Analyzing
16.		CO3	BTL 4	Analyzing
17.	Compare the advantages and disadvantages of single-chip versus multi-chip packaging in the context of chip technologies.	CO3	BTL 4	Analyzing

	PART-C (15 marks)			
1	Define the primary purpose of IC Assembly in chip packaging.	CO3	BTL 3	Applying
2	Explain the IC assembly technologies with illustrative diagrams.	CO3	BTL 4	Analyzing
3	Apply the principles of wire bonding in a chip packaging scenario.	CO3	BTL 3	Applying
4	Analyze the evolving trends in multi-chip packaging and their	CO3	BTL 4	Analyzing
	potential impact on chip technologies.			
5	Assess the reliability concerns associated with flip-chip technology	CO3	BTL 4	Analyzing
	in single-chip packaging.			

	UNIT IV PCB, SURFACE MOUNT TECHNOLOGY AND THERMAL CONSIDERATIONS					
	Printed Circuit Board: Anatomy, CAD tools for PCB design, Standard	d fabrica	tion, Micro v	via Boards. Board		
	Assembly: Surface Mount Technology, Through Hole Technology, Process Control and Design challenges.					
	Thermal Management, Heat transfer fundamentals, Thermal conductivity and resistance, Conduction,					
	convection and radiation – Cooling requirements.					
	PART A (2 marks)					
Q.	Questions	CO	BT Level	Competence		
No						
1.	Define Printed Circuit Board (PCB) and list its basic anatomy.	CO4	BTL 1	Remembering		
2.	List the commonly used CAD tools for PCB design.	CO4	BTL 1	Remembering		
3.	Recall the standard fabrication processes involved in PCB manufacturing.	CO4	BTL 1	Remembering		
4.	Identify the features of Micro via Boards.	CO4	BTL 1	Remembering		
5.	Write the differences between Surface Mount Technology and Through Hole Technology in board assembly.	CO4	BTL 1	Remembering		
6.	Point out the challenges in process control encountered in board assembly.	CO4	BTL 1	Remembering		
7.	Interpret the fundamentals of heat transfer in thermal management.	CO4	BTL 2	Understanding		
8.	Outline the concepts of thermal conductivity and resistance in relation to PCBs.	CO4	BTL 2	Understanding		
9.	What are the cooling requirements in the context of conduction, convection, and radiation.	CO4	BTL 2	Understanding		
10.	How do CAD tools impact PCB design challenges?	CO4	BTL 2	Understanding		
11.	Mention the advantages of Micro via Boards in comparison to standard PCBs.	CO4	BTL 2	Understanding		
12.	Apply the principles of Surface Mount Technology in a board assembly scenario.	CO4	BTL 2	Understanding		
13.	Develop a process control plan to mitigate challenges in Through Hole Technology.	CO4	BTL 1	Remembering		
14.	Propose a thermal management strategy for a PCB considering heat transfer fundamentals.	CO4	BTL 1	Remembering		
15.	Evaluate the suitability of different cooling methods for specific PCB designs.	CO4	BTL 1	Remembering		

18.	challenges in PCB manufacturing.Compare the thermal conductivity of various materials used inDCD	CO4	BTL 1	Remembering
19.	PCBs. Evaluate the reliability issues associated with Micro via Boards.	CO4	BTL 2	Understanding
20.	Examine the trade-offs between Surface Mount Technology and Through Hole Technology in board assembly.	CO4	BTL 2	Understanding
21.	Analyze the influence of heat transfer principles on PCB performance and longevity.	CO4	BTL 2	Understanding
22.	Critique the limitations of standard PCBs concerning miniaturization and complex designs.	CO4	BTL 2	Understanding
23.	Assess the impact of thermal management on overall PCB functionality.	CO4	BTL 2	Understanding
24.	Evaluate the role of process control in minimizing defects in PCB fabrication and assembly.	CO4	BTL 2	Understanding
	PART – B (13 marks)			
1.	Describe the types of Printed Circuit Board (PCB)?	CO4	BTL 3	Applying
2.	List and explain the three CAD tools commonly used for PCB design.	CO4	BTL 3	Applying
3.	Explain the role of thermal conductivity in PCBs.	CO4	BTL 3	Applying
4.	Define the concept of process control in PCB manufacturing.	CO4	BTL 3	Applying
5.	What are the fundamental parameters of Printed Wiring Board and explain in detail?	CO4	BTL 4	Analyzing
6.	Compare and contrast Surface Mount Technology and Through Hole Technology in PCB assembly.	CO4	BTL 4	Analyzing
7.	Explain the principles of heat transfer and their relevance to thermal management in PCBs.	CO4	BTL 4	Analyzing
8.	Describe the process control measures adopted to address design flaws during PCB fabrication.	CO4	BTL 4	Analyzing
9.	Explain the plan to implement Surface Mount Technology in a PCB assembly line.	CO4	BTL 3	Applying
10.	Illustrate the methods to enhance thermal conductivity in a PCB design.	CO4	BTL 3	Applying
11.	Design a process control strategy for Micro via Boards	CO4	BTL 3	Applying
11.	fabrication.			

13.	In a low-cycle fatigue test of a solder joint, the logarithmic fatigue cycle as a function of logarithmic plastic strain is given by Figure below.	CO4	BTL 4	Analyzing
	0 - 2.5 - 2 - 1.5 -1 - 0.5 0			
	Log (PLASTIC STRAIN) Assume that the solder joints obey the Coffin-Manson frequency-			
	modified equation. Determine the constants Θ and η such that the			
	frequency is equal to 0.3 s^{-1} and K=0?			
14.	Analyze the relationship between PCB layout complexity and its	CO4	BTL 4	Analyzing
	impact on heat dissipation efficiency.			,8
15.	Evaluate the effectiveness of various process control techniques	CO4	BTL 4	Analyzing
	in minimizing PCB manufacturing errors.			, <u>,</u>
16.	Compare and contrast the thermal management capabilities	CO4	BTL 4	Analyzing
	between Surface Mount Technology and Through Hole			, , , , , , , , , , , , , , , , , , ,
	Technology in PCBs.			
17.	Assume that a Si-chip with a thermal expansion of coefficient of	CO4	BTL 4	Analyzing
	2.6 ppm/ °C assembled with eutectic soldering flip chip technique			
	on an FR-4 board with a thermal expansion of coefficient of 16			
	ppm/°C. The stand-off height after soldering is 50µm. The chip			
	edge length is 20 mm and the temperature varies from -40 to			
	+125°C. Calculate the total shear strain during the temperature			
	cycling in this interval for the solder joint. Assume the ideal case			
	where all the deformation is taken up by the solder joint.			
1	PART-C (15 marks)	CO4		A
1	Describe the chart comparing the Key packaging materials, processes and its properties.	CO4	BTL 3	Applying
2	Explain the role of thermal conductivity in managing heat dissipation in PCBs.	CO4	BTL 4	Analyzing

3	Devise a strategy to optimize cooling requirements for a specific PCB design scenario.	CO4	BTL 3	Applying
4	Analyze the effectiveness of Surface Mount Technology versus Through Hole Technology in PCB assembly.	CO4	BTL 4	Analyzing
5	Evaluate the impact of Micro via Boards on reducing PCB size and enhancing circuit density.	CO4	BTL 4	Analyzing

	UNIT V TESTING			
	Reliability, Basic concepts, Environmental interactions. Thermal mis mechanically induced –electrically induced – chemically induced. Elec testing, Interconnection tests, Active Circuit Testing, Design for Test Signal Testing, Fault Modelling.	ctrical T	esting: Syste	em level electrical
	PART A (2 marks)			
Q.No	Questions	СО	BT Level	Competence
1.	Define reliability in electronic testing.	CO5	BTL 1	Remembering
2.	Define Defect, Error and fault.	CO5	BTL 1	Remembering
3.	Recall types of failures due to thermal mismatch.	CO5	BTL 1	Remembering
4.	List environmentally induced failures.	CO5	BTL 1	Remembering
5.	What are the thermo-mechanically induced failures?	CO5	BTL 1	Remembering
6.	Outline the fault modeling in testing.	CO5	BTL 1	Remembering
7.	Interpret the design for testability in electronic testing.	CO5	BTL 2	Understanding
8.	What is Fault equivalence?	CO5	BTL 2	Understanding
9.	Discuss DSP-based testing in analog and mixed-signal circuits.	CO5	BTL 2	Understanding
10.	Analyze thermal mismatch's impact on electronic component degradation during testing.	CO5	BTL 2	Understanding
11.	Discuss chemically induced failures in components.	CO5	BTL 2	Understanding
12.	Develop a plan for design for testability in a complex circuit.	CO5	BTL 2	Understanding
13.	What are the assumptions made to characterize a single stuck at fault?	CO5	BTL 1	Remembering
14.	Categorize the methods to enhance reliability in systems prone to environmental interactions.	CO5	BTL 1	Remembering
15.	Apply interconnection tests to identify potential failures.	CO5	BTL 1	Remembering
16.	What is DFT?	CO5	BTL 1	Remembering
17.	Devise a chip packaging strategy using flip-chip technology.	CO5	BTL 1	Remembering
18.	Assess advantages and limitations of system-level electrical testing.	CO5	BTL 1	Remembering

19.	Evaluate active circuit testing in ensuring reliability.	CO5	BTL 2	Understanding
20.	Compare the effectiveness of active circuit and system-level electrical testing.	CO5	BTL 2	Understanding
21.	Analyze electrically induced failures' impact on system reliability.	CO5	BTL 2	Understanding
22.	Evaluate electronic testing's role in ensuring overall system reliability.	CO5	BTL 2	Understanding
23.	Examine fault modeling's impact on testing cost-effectiveness.	CO5	BTL 2	Understanding
24.	Investigate the influence of thermal considerations on system reliability in electronic testing.	CO5	BTL 2	Understanding
	PART-B (13 marks)			
1.	Define thermo-mechanical-induced failures in electronic testing and explain in detail.	CO5	BTL 3	Applying
2.	List the categories and explain the environmental interactions typically tested in reliability evaluations.	CO5	BTL 3	Applying
3.	Identify the primary objectives of system-level electrical testing in electronic components.	CO5	BTL 3	Applying
4.	Mention the types of faults considered in fault modeling within electronic testing and explain any 4 in detail.	CO5	BTL 3	Applying
5.	Explain the impact of thermal mismatch on the reliability of electronic systems.	CO5	BTL 4	Analyzing
6.	Describe the significance of Design for Testability (DFT) in electronic testing.	CO5	BTL 4	Analyzing
7.	Elaborate on the process involved in interconnection tests in electronic devices.	CO5	BTL 4	Analyzing
8.	Understand the concept and need for active circuit testing in electronic systems.	CO5	BTL 4	Analyzing
9.	Devise a strategy to minimize chemically induced failures in electronic testing scenarios.	CO5	BTL 4	Analyzing
10.	Summarize the methods to mitigate thermal fatigue-induced failures in electronic components.	CO5	BTL 3	Applying
11.	Enumerate a test plan for system-level electrical testing in a mixed- signal VLSI circuit.	CO5	BTL 3	Applying
12.	Apply fault modeling techniques to identify potential issues in a digital memory VLSI circuit.	CO5	BTL 3	Applying
13.	Analyze the impact of electrical testing methods on the reliability of VLSI circuits.	CO5	BTL 4	Analyzing
14.	Evaluate the occurrence of single stuck at faults for a NAND based two input XOR operation?	CO5	BTL 4	Analyzing

15.	Assess the implications of thermal mismatch and fatigue on digital	CO5	BTL 4	Analyzing
	and mixed-signal VLSI circuits.			
16.	Inspect the role of environmental stress testing in identifying	CO5	BTL 4	Analyzing
	electronic system vulnerabilities.			
17.	Examine the implications of thermo-mechanical-induced failures	CO5	BTL 4	Analyzing
	on long-term reliability in electronic devices.			
	PART – C (15 marks)			
1.	Explain the concept of thermal mismatch-induced failures in	CO5	BTL 3	Applying
	electronic components.			
2.	Apply the principles of system-level electrical testing in the	CO5	BTL 4	Analyzing
	context of electronic reliability evaluation.			
3.	Analyze the impact of chemically induced failures on electronic	CO5	BTL 3	Applying
	components during environmental stress testing.			
4.	Analyze the significance of fault modeling in identifying potential	CO5	BTL 4	Analyzing
	issues within digital memory VLSI circuits.			
5.	Examine the role of design for testability (DFT) in ensuring	CO5	BTL 4	Analyzing
	efficient electronic testing methods.			