

SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution) SRM Nagar, Kattankulathur–603203



## DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

## **QUESTION BANK**



## **VI SEMESTER**

### **1906008 - EMBEDDED AND REAL TIME SYSTEMS**

## **Regulation–2019**

Academic Year 2024–2025 (Even Semester)

Prepared by

Dr. J.Logeswaran, Assistant Professor Ms. K.Arthi, Assistant Professor Dr. J.Premalatha, Associate Professor



# SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution) SRM Nagar, Kattankulathur–603203



#### **DEPARTMENT OF ECE**

#### **Question Bank**

#### SUBJECT : 1906008 – EMBEDDED AND REAL TIME SYSTEMS

#### SEM / YEAR : VI / III-Year B.E.

#### **UNIT I - INTRODUCTION TO EMBEDDED SYSTEM DESIGN**

Complex systems and microprocessors– Embedded system design process –Design example: Model train controller- Design methodologies- Design flows - Requirement Analysis – Specifications-System analysis and architecture design – Quality Assurance techniques - Designing with computing platforms – consumer electronics architecture – platform-level performance analysis.

|       | PART -A                                                             |                 |               |
|-------|---------------------------------------------------------------------|-----------------|---------------|
| Q. No | Questions                                                           | <b>BT</b> level | Domain        |
| 1.    | Define Embedded system.                                             | BTL 1           | Remembering   |
| 2.    | What are the applications of an embedded system?                    | BTL 1           | Remembering   |
| 3.    | What are the typical characteristics of an embedded system?         | BTL 1           | Remembering   |
| 4.    | List the important considerations when selecting a processor.       | BTL 2           | Understanding |
| 5.    | Classify the processors in the embedded systems.                    | BTL 2           | Understanding |
| 6.    | List the steps in the embedded system design process.               | BTL 2           | Understanding |
| 7.    | Mention the challenges in the design of embedded computing systems. | BTL 2           | Understanding |
| 8.    | List the non-functional requirements of an Embedded Architecture.   | BTL 1           | Remembering   |
| 9.    | Give the major levels of abstraction in the Embedded system design. | BTL 2           | Understanding |
| 10.   | What are the services to be provided by consumer electronics?       | BTL 1           | Remembering   |
| 11.   | What do you mean by real-time computing?                            | BTL 2           | Understanding |
| 12.   | Identify the various issues in real-time computing.                 | BTL 2           | Understanding |
| 13.   | Mention the observations of quality management of ISO 9000.         | BTL 2           | Understanding |
| 14.   | Draw the functional architecture diagram of the multimedia player.  | BTL 1           | Remembering   |
| 15.   | State the importance of DCC in train controller.                    | BTL 2           | Understanding |
| 16.   | List the need for flash file systems in consumer electronics.       | BTL 2           | Understanding |
| 17.   | What are all the characteristics of embedded computing?             | BTL 1           | Remembering   |
| 18.   | List the steps involved in system analysis using the CRC card.      | BTL 2           | Understanding |
| 19.   | Write the requirements chart for the GPS moving map system.         | BTL 1           | Remembering   |

| 20. | What is the need for UML language for Embedded system design?                                                                                                                                   | E          | BTL 2 | Understanding |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------|---------------|
| 21. | State the UML notation for the display class.                                                                                                                                                   | F          | BTL 1 | Remembering   |
| 22. | List the five levels of maturity in the CMM model.                                                                                                                                              | E          | BTL 2 | Understanding |
| 23. | Sketch the block diagram of the moving map GPS system.                                                                                                                                          |            | BTL 2 | Understanding |
| 24. | What software factors might be considered when choosing a computing platform?                                                                                                                   |            | BTL 2 | Understanding |
|     | PART-B                                                                                                                                                                                          |            |       |               |
| 1.  | Discuss in detail about the characteristics features of Embedded computing applications.                                                                                                        | (13)       | BTL 3 | Applying      |
| 2.  | Write in detail about the challenges in embedded computing system design.                                                                                                                       | (13)       | BTL 4 | Analyzing     |
| 3.  | Briefly illustrate the performance of embedded computing systems.                                                                                                                               | (13)       | BTL 3 | Applying      |
| 4.  | Explain in detail about the various levels of abstraction in the embedded system design process with necessary diagrams.                                                                        | (13)       | BTL 3 | Applying      |
| 5.  | Analyze the requirements and write the requirement chart<br>needed to design a GPS moving map in the embedded system<br>design process.                                                         | (13)       | BTL 4 | Analyzing     |
| 6.  | Write down the major operations and data flows of a GPS moving map and draw its hardware and software architecture diagrams.                                                                    | (13)       | BTL 3 | Applying      |
| 7.  | <ul><li>(i). Explain a Model Train Controller with suitable diagrams.</li><li>(ii). Outline the design steps of the Model Train Controller in detail.</li></ul>                                 | (5)<br>(8) | BTL 3 | Applying      |
| 8.  | Describe the goal of the design methodology in detail.                                                                                                                                          | (13)       | BTL 3 | Applying      |
| 9.  | Illustrate the system design methods using waterfall, spiral, and successive refinement models with diagrams.                                                                                   | (13)       | BTL 3 | Applying      |
| 10. | Explain briefly about hardware/software design systems,<br>hierarchical design flows, and concurrent engineering models<br>using the necessary diagrams.                                        | (13)       | BTL 4 | Analyzing     |
| 11. | Describe in detail about Control-Oriented Specification<br>Languages used in the designing the embedded system with<br>necessary diagrams.                                                      | (13)       | BTL 3 | Applying      |
| 12. | What is CRC? Explain the system analysis and architecture design using the CRC card layout.                                                                                                     | (13)       | BTL 3 | Applying      |
| 13. | What is Quality assurance? and explain briefly about the quality assurance techniques                                                                                                           | (13)       | BTL 3 | Applying      |
| 14. | <ul><li>Write a short note on the following in terms of consumer electronics system architecture.</li><li>i. Use cases and requirements.</li><li>ii. Platforms and Operating Systems.</li></ul> | (6)<br>(7) | BTL 3 | Applying      |
| 15. | Examine in detail the about the main components of designing with computing platforms.                                                                                                          | (13)       | BTL 4 | Analyzing     |

| 16. | With the necessary diagram, explain the need for platform-level performance analysis.                                                                                | (13)       | BTL 3 | Applying  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------|-----------|
| 17. | <ul><li>(i). What factors should be considered while designing an Embedded System Process?</li><li>(ii). State the importance of Structural and Behavioral</li></ul> | (6)<br>(7) | BTL 4 | Analyzing |
|     | description in detail.                                                                                                                                               |            |       |           |
|     | PART -C                                                                                                                                                              |            |       |           |
| 1.  | Summarize the different factors involved in the embedded system design process of GPS moving map with necessary illustrations.                                       | (15)       | BTL 3 | Applying  |
| 2.  | Justify the need for Quality Assurance techniques in Embedded design and explain.                                                                                    | (15)       | BTL 3 | Analyzing |
| 3.  | Develop a model train controller's requirement, specification, and state diagram with necessary illustrations.                                                       | (15)       | BTL 3 | Applying  |
| 4.  | Analyze the steps involved in complex embedded system design<br>with a detailed example of consumer electronics architecture.                                        | (15)       | BTL 4 | Analyzing |
| 5.  | Design an Alarm clock and explain the various steps involved<br>in the design of a computing system.                                                                 | (15)       | BTL 4 | Analyzing |

#### UNIT II - ARM PROCESSOR AND PERIPHERALS

ARM Architecture Versions – ARM Architecture – Instruction Set – Stacks and Subroutines – Features of the LPC 214X Family – Peripherals – The Timer Unit – Pulse Width Modulation Unit – UART – Block Diagram of ARM9 and ARM Cortex M3 MCUhavard.

|       | PART A                                                                        |          |               |  |  |  |  |
|-------|-------------------------------------------------------------------------------|----------|---------------|--|--|--|--|
| Q. No | Questions                                                                     | BT Level | Competence    |  |  |  |  |
| 1.    | List the functions of the ARM processor in Supervisory mode.                  | BTL 1    | Remembering   |  |  |  |  |
| 2.    | Write down the main differences between Von Neumann and Harvard architecture. | BTL 2    | Understanding |  |  |  |  |
| 3.    | Differentiate CISC and RISC architectures.                                    | BTL 2    | Understanding |  |  |  |  |
| 4.    | What is a "Thumb" in an ARM processor?                                        | BTL 1    | Remembering   |  |  |  |  |
| 5.    | List the three different profiles of the ARM cortex Processor.                | BTL 1    | Remembering   |  |  |  |  |
| 6.    | Differentiate between assembler and compiler.                                 | BTL 2    | Understanding |  |  |  |  |
| 7.    | Name the registers set of the ARM processor.                                  | BTL 1    | Remembering   |  |  |  |  |
| 8.    | What is the use of the CPSR Register?                                         | BTL 1    | Remembering   |  |  |  |  |
| 9.    | What is instruction pipelining?                                               | BTL 1    | Remembering   |  |  |  |  |
| 10.   | Write down the significance of TST instruction.                               | BTL 2    | Understanding |  |  |  |  |
| 11.   | State the usage of EQU directive in programming.                              | BTL 2    | Understanding |  |  |  |  |
| 12.   | Draw the sequence of actions needed for a nested procedure.                   | BTL 1    | Remembering   |  |  |  |  |
| 13.   | What is meant by idle mode in processors?                                     | BTL 1    | Remembering   |  |  |  |  |
| 14.   | Outline the significance of SWI instruction.                                  | BTL 2    | Understanding |  |  |  |  |
| 15.   | Compare the differences between MULS and MULSEQ.                              | BTL 2    | Understanding |  |  |  |  |

| 16. | Find the methods to terminate the power-down mode.                                                                                                  | B           | TL 2         | Understanding                |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|------------------------------|
| 17. | Give the maximum size of the constant that can be used in the                                                                                       | B           | TL 1         | Remembering                  |
|     | immediate mode.                                                                                                                                     | D           | TL 2         | Understanding                |
| 18. | Distinguish between PCLK and CCLK.                                                                                                                  |             | TL 2<br>TL 1 | Understanding<br>Remembering |
| 19. | For a GPIO pin to be made to act as an ON/OFF switch, what registers are to be used?                                                                |             |              | Remembering                  |
| 20. | Write the difference between single and double-edged PWM.                                                                                           |             | TL 2         | Understanding                |
| 21. | Mention the important features that make ARM ideal for embedded applications.                                                                       | B           | TL 2         | Understanding                |
| 22. | What will be the output of the instruction MOV R11, R2?                                                                                             | B           | TL 2         | Understanding                |
| 23. | How does the prescalar in a timer unit function?                                                                                                    | B           | TL 2         | Understanding                |
| 24. | What is interrupt Latency?                                                                                                                          | B           | TL 1         | Remembering                  |
|     | PART – B                                                                                                                                            |             |              |                              |
| 1.  | With the necessary diagrams, briefly explain the register set of the ARM processor.                                                                 | (13)        | BTL 3        | Applying                     |
| 2.  | Describe the operating modes of ARM and explain mode switching.                                                                                     | (13)        | BTL 3        | Applying                     |
| 3.  | Illustrate in detail about the interrupt vector table by providing the vector address of each interrupt supported by ARM.                           | (13)        | BTL 4        | Analyzing                    |
| 4.  | <ul> <li>(i) Classify the ARM instruction set.</li> <li>(ii) Explain any one type of instruction set with example.</li> </ul>                       | (3)<br>(10) | BTL 4        | Analyzing                    |
| 5.  | Write the general structure of an assembly language line and<br>briefly explain directives used in ARM with examples for each<br>directive.         | (13)        | BTL 3        | Applying                     |
| 6.  | What are the types of stacks and subroutines supported by ARM processors? Explain the instruction sets.                                             | (13)        | BTL 3        | Applying                     |
| 7.  | Explain the following indexed addressing mode with a sample<br>instruction.<br>i) Pre-indexed Addressing mode.<br>ii) Post-indexed Addressing mode. | (7)<br>(6)  | BTL 4        | Analyzing                    |
| 8.  | Discuss in detail about Arithmetic and logical instructions of ARM with examples for each.                                                          | (13)        | BTL 4        | Analyzing                    |
| 9.  | Explain in detail about Compare and branch instructions of ARM with examples for each.                                                              | (13)        | BTL 3        | Applying                     |
| 10. | With a neat block diagram, explain the architecture of LPC2148 ARM7 MCU and its features.                                                           | (13)        | BTL 3        | Applying                     |
| 11. | Illustrate briefly the Rotate and Shift instructions for ARM with examples for each.                                                                | (13)        | BTL 3        | Applying                     |
| 12. | Explain in detail how the timer unit of LPC2148 works with its associated registers.                                                                | (13)        | BTL 4        | Analyzing                    |
| 13. | With a neat block diagram illustrates the working of a UART in LPC214x ARM.                                                                         | (13)        | BTL 3        | Applying                     |
| 14. | Draw the architecture of the ARM Cortex M3 MCU processor<br>and describe its functional units.                                                      | (13)        | BTL 6        | Creating                     |

| 15. | Describe briefly about the concepts behind single-edge controlled PWM.                                                                                                                                                                                                                                                                                | (13)                     | BTL 3 | Applying   |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------|------------|
| 16. | <ul> <li>(i) Calculate the value of the clock to be given in PWMMR0<br/>andPWMMR3 to get a pulse train of period 5 ms and duty<br/>cycle of 25%.</li> <li>(ii) List the features of LPC 214x processor.</li> </ul>                                                                                                                                    | (7)                      | BTL 5 | Evaluating |
| 17. | With necessary illustrations, explain the features of the ARM 9 processor Core.                                                                                                                                                                                                                                                                       | (13)                     | BTL 3 | Applying   |
|     | PART – C                                                                                                                                                                                                                                                                                                                                              |                          |       |            |
| 1   | Write a program to find the sum of $3X + 4Y + 9Z$ , where $X = 2$ , $Y = 3$ and $Z = 4$ using the ARM Processor instruction set.                                                                                                                                                                                                                      | (15)                     | BTL 3 | Applying   |
| 2   | Find the program output using ARM instructions for $3X^2 + 5Y^2$ ,<br>where X = 8 and Y = 5.                                                                                                                                                                                                                                                          | (15)                     | BTL 4 | Analyzing  |
| 3   | Summarize the procedure to generate the square wave from the Timer unit in the LPC214x chip with an example code.                                                                                                                                                                                                                                     | (15)                     | BTL 3 | Applying   |
| 4   | <ul> <li>(i). With necessary illustrations, explain the control registers of the PWM unit.</li> <li>(ii) Determine the values to be entered in the PWMPCR register for the following situations.</li> <li>i) Single edge control for PWM3.</li> <li>ii) Double edge control for PWM3.</li> <li>iii) Single edge control for PWM1, 2 and 3.</li> </ul> | (6)<br>(9)               | BTL 3 | Applying   |
| 5.  | The content of the registers is given below<br>R1 = 0xEF00DE12,<br>R2 = 0x0456123F,<br>R5 = 4, R6 = 28.<br>What is the output result in the destination register when the<br>following instructions are executed?<br>i) LSL R1, #8<br>ii) ASR R1,R5<br>iii) ROR R2,R6<br>iv) LSR R2,#5                                                                | (4)<br>(4)<br>(4)<br>(3) | BTL 4 | Analyzing  |

#### UNIT III EMBEDDED PROGRAMMING

Components for embedded programs- Models of programs- Assembly, linking and loading – compilation techniques- Program level performance analysis – Software performance optimization – Program level energy and power analysis and optimization – Analysis and optimization of program size- Program validation and testing.

|       | PART A                                                  |          |             |
|-------|---------------------------------------------------------|----------|-------------|
| Q. No | Questions                                               | BT Level | Competence  |
| 1     | Mention the different components of embedded programs.  | BTL 1    | Remembering |
| 2     | State the basic principle of the compilation technique. | BTL 1    | Remembering |

| 3  | Name any two techniques used to optimize the execution time of the program.                                                                          | BT          | L 1   | Remembering   |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------|---------------|
| 4  | Mention the various compilation techniques.                                                                                                          | BTL 1       |       | Remembering   |
| 5  | What does a linker do?                                                                                                                               | BTL 1       |       | Remembering   |
| 6  | State the difference between the program location counter and the program counter.                                                                   | BT          | L 1   | Remembering   |
| 7  | Illustrate the need for a symbol table in Assemblers.                                                                                                | BT          | L 2   | Understanding |
| 8  | Outline the significance of CDFG.                                                                                                                    | BT          | L 2   | Understanding |
| 9  | Summarize the two ways used for performing input and output operations                                                                               | BT          | L 2   | Understanding |
| 10 | Describe about the elements of program performance.                                                                                                  | BT          | L 2   | Understanding |
| 11 | Draw a Data Flow Graph and Control/ Data Flow Graph (CDFG) with an example.                                                                          | BT          | L 1   | Remembering   |
| 12 | Compare loop fusion and loop tiling.                                                                                                                 | BT          | L 2   | Understanding |
| 13 | What are the limitations of polling techniques?                                                                                                      | BT          | L 1   | Remembering   |
| 14 | Compare enqueueing and dequeueing                                                                                                                    | BT          | L 2   | Understanding |
| 15 | State the importance of Boot-block flash.                                                                                                            | BT          |       | Remembering   |
| 16 | Differentiate compiler and cross-compiler.                                                                                                           | BT          | L 2   | Understanding |
| 17 | Write the importance of circular buffers.                                                                                                            | BT          | L 1   | Remembering   |
| 18 | Draw the diagram of the software state machine.                                                                                                      | BT          | L 1   | Remembering   |
| 19 | Draw a Data Flow Graph for the block shown below:                                                                                                    | BT          |       | Remembering   |
| 20 | r = a+b-c; $s = a*r$ ; $t = b-d$ ; $r = d+e$ ;                                                                                                       | BT          | 1.2   | 2             |
| 20 | How can power be optimized at the program level?                                                                                                     |             |       | Understanding |
| 21 | What is program optimization in embedded systems?                                                                                                    | BT          |       | Remembering   |
| 22 | How can power be optimized at the program level in an embedded system?                                                                               | BT          |       | Understanding |
| 23 | What are the basic compilation techniques in embedded systems?                                                                                       | BT          | L 1   | Remembering   |
| 24 | List out the challenges faced in embedded software testing.                                                                                          | BT          | L 1   | Remembering   |
|    | PART – B                                                                                                                                             |             |       |               |
| 1  | Summarize the components of the embedded program and discuss each element in detail.                                                                 | (13)        | BTL 3 | Applying      |
| 2  | Describe stream-oriented programming and circular buffers with examples.                                                                             | (13)        | BTL4  | Analyzing     |
| 3  | <ul> <li>(i) List the different models of the Program.</li> <li>(ii) Briefly explain with neat diagrams of various models of the Program.</li> </ul> | (3)<br>(10) | BTL 3 | Applying      |
| 4  | Examine the Data flow graph with the help of an example.                                                                                             | (13)        | BTL 3 | Applying      |
| 5  | Illustrate the Control /Data flow graph for a While loop with necessary diagrams and explain.                                                        | (13)        | BTL 3 | Applying      |
| 6  | In compilation process, explain the role of<br>i) Assemblers<br>ii) Linkers                                                                          | (7)<br>(6)  | BTL 3 | Applying      |
| 7  | With the help of a flow chart, describe and explain the basic compilation process.                                                                   | (13)        | BTL 3 | Applying      |

| -  |                                                                                                   |       |       | I              |
|----|---------------------------------------------------------------------------------------------------|-------|-------|----------------|
| 8  | Determine the code generated for the given conditional code snippet, explain with necessary CDFG. | (13)  |       |                |
|    | if (a + b > 0)                                                                                    |       | BTL 4 | Analyzing      |
|    | x = 5;<br>else                                                                                    |       | 212 . | g              |
|    | x = 7;                                                                                            |       |       |                |
|    |                                                                                                   | (10)  |       |                |
| 9  | Outline about the Procedure and Data structure with respect to                                    | (13)  | BTL 3 | Applying       |
| 10 | compilers.<br>Interpret the need for dead code elimination to optimize the                        | (13)  |       |                |
| 10 | program with a code snippet.                                                                      | (15)  | BTL 3 | Applying       |
|    | program with a code sinppet.                                                                      |       | 2120  |                |
| 11 | Write about the Loop transformation techniques for optimization                                   | (13)  |       | A 1 '          |
|    | of code.                                                                                          |       | BTL 3 | Applying       |
| 12 | Outline the Program level energy and power analysis and                                           | (13)  |       |                |
|    | optimization.                                                                                     | ( - ) | BTL 4 | Analyzing      |
| 13 | Write about                                                                                       |       |       |                |
| 10 | i) Black box Testing                                                                              | (7)   | BTL 3 | Applying       |
|    | ii) White box Testing                                                                             | (6)   | DILS  | i ippijing     |
| 14 | (i) With necessary diagrams about the program level                                               | (7)   |       |                |
|    | performance analysis.                                                                             |       | BTL 3 | Applying       |
|    | (ii) Mention the key features of cache optimizations.                                             | (6)   |       | 11 5 0         |
| 15 | Outline the verification techniques involved in Embedded                                          | (13)  |       | A              |
|    | Systems                                                                                           |       | BTL 4 | Analyzing      |
| 16 | Describe in detail the assembly linking and loading in Embedded                                   | (13)  | BTL 3 | Applying       |
|    | system programming.                                                                               |       | DILJ  | Applying       |
| 17 | Interpret the Program level performance analysis in the embedded                                  | (15)  | BTL 3 | Applying       |
|    | system.                                                                                           |       | DILJ  | rippiying      |
|    | PART C                                                                                            |       |       |                |
| 1  | Write a symbol table for the following code snippet and explain in                                | (15)  |       |                |
|    | detail.                                                                                           |       |       |                |
|    | ORG 100                                                                                           |       |       |                |
|    | label1 ADR r4,c                                                                                   |       | BTL 3 | Applying       |
|    | LDR r0,[r4]                                                                                       |       |       |                |
|    | label2 ADR r4,d                                                                                   |       |       |                |
|    | LDR r1,[r4]                                                                                       |       |       |                |
| 2  | label3 SUB r0,r0,r1<br>Describe he statement translation into ARM instruction for the             | (15)  |       |                |
| 2  | expression $a*b + 5*(c-d)$ with necessary illustrations.                                          | (15)  | BTL 3 | Applying       |
|    |                                                                                                   |       |       |                |
| 3  | Interpret the various methods for Program optimization with                                       | (15)  | BTL 3 | Applying       |
|    | necessary examples.                                                                               |       |       | Apprying       |
| 4  | Outline the different techniques used in software performance                                     | (15)  | BTL 4 | Analyzing      |
|    | optimization.                                                                                     |       |       |                |
| 5  | Why the person generating clear-box program tests should not be                                   | (15)  | BTL 4 | Analyzing      |
|    | the person who wrote the code being tested.                                                       |       |       | 1 1111 / 21115 |

# UNIT IV REAL TIME SYSTEMS

| PART A |                                                                                 |             |               |  |
|--------|---------------------------------------------------------------------------------|-------------|---------------|--|
| Q.No.  | Questions                                                                       | BT<br>Level | Competence    |  |
| 1      | List the two Rate Monotonic scheduling conditions.                              | BTL 1       | Remembering   |  |
| 2      | Outline the uniprocessor scheduling algorithms.                                 | BTL 1       | Remembering   |  |
| 3      | Define Performance measures for real-time systems.                              | BTL 1       | Remembering   |  |
| 4      | What is meant by hardware and software fault?                                   | BTL 1       | Remembering   |  |
| 5      | State the limitation of the Rate Monotonic algorithm.                           | BTL 1       | Remembering   |  |
| 6      | Define hardware redundancy.                                                     | BTL 1       | Remembering   |  |
| 7      | Summarize the two tasks for developing a multiprocessor schedule.               | BTL 2       | Understanding |  |
| 8      | Draw the performance degradation graph of a fault-tolerant system               | BTL 2       | Understanding |  |
| 9      | Explain the forward and backward error recovery.                                | BTL 2       | Understanding |  |
| 10     | Classify the partitioning of the inter-vote interval.                           | BTL 2       | Understanding |  |
| 11     | What is the role of the static priority algorithm?                              | BTL 1       | Remembering   |  |
| 12     | Sketch the frequency response of an ideal VCO.                                  | BTL 1       | Remembering   |  |
| 13     | Distinguish between the static priority algorithm & dynamic priority algorithm. | BTL 2       | Understanding |  |
| 14     | List the features of preemptive and non-preemptive schedules.                   | BTL 1       | Remembering   |  |
| 15     | Compare the difference between release time and deadline.                       | BTL 2       | Understanding |  |
| 16     | State the fault types based on temporal behavior classification.                | BTL 1       | Remembering   |  |
| 17     | Write the ways of assigning priorities in scheduling.                           | BTL 2       | Understanding |  |
| 18     | What are the features of offline and online scheduling?                         | BTL 1       | Remembering   |  |
| 19     | Write about malicious or byzantine failures.                                    | BTL 2       | Understanding |  |
| 20     | Compare the difference between periodic, sporadic and aperiodic tasks.          | BTL 2       | Understanding |  |
| 21     | Compare between the Rate-Monotonic and Deadline-Monotonic Algorithms.           | BTL 2       | Understandin  |  |
| 22     | What are the various scheduling criteria for CPU scheduling?                    | BTL 1       | Remembering   |  |
| 23     | Draw the state diagram of the task.                                             | BTL 2       | Understanding |  |
| 24     | Mention some task-scheduling algorithms.                                        | BTL 1       | Remembering   |  |

|   | PART B                                                                   |      |       |          |
|---|--------------------------------------------------------------------------|------|-------|----------|
| 1 | Write a short note on transient faults and the use of state aggregation. | (13) | BTL 3 | Applying |

| 2  | i) List out the sequence of events resulting in triad failure.                                                                                                                                            | (7)               |       |           |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------|-----------|
| 2  | <ul><li>ii)Explain the methodology to choose the best distribution for obtaining parameter values in the model.</li></ul>                                                                                 | (7)<br>(6)        | BTL 3 | Applying  |
| 3  | Describe the typical designs for voter reliability with the example of Poisson failures.                                                                                                                  | (13)              | BTL 3 | Applying  |
| 4  | Mention the classification of faults according to their temporal and output behavior and explain.                                                                                                         | (13)              | BTL 3 | Applying  |
| 5  | Write a detailed note on a mathematical understanding of the priority ceiling algorithm using a series of results.                                                                                        | (13)              | BTL 3 | Applying  |
| б  | <ul> <li>Summarize the important features of:</li> <li>a) Software Redundancy in Fault tolerance techniques.</li> <li>b) Measuring error propagation times in Fault tolerance synchronization.</li> </ul> | (7)<br>(6)        | BTL 3 | Applying  |
| 7  | Describe the Rate Monotonic Scheduling Algorithm with examples.                                                                                                                                           | (13)              | BTL 3 | Applying  |
| 8  | <ul><li>(i) Explain the permanent faults in a series-parallel system.</li><li>(ii) Summarize the performance measures for real-time systems.</li></ul>                                                    | (6)<br>(7)        | BTL 3 | Applying  |
| 9  | Outline the features of information redundancy and its principle to obtain a code that will correct multiple bit errors.                                                                                  | (13)              | BTL 3 | Applying  |
| 10 | <ul><li>(i). Write about the limited usefulness of software error models.</li><li>(ii). Explain how the clocks are synchronized if the times are close to each other.</li></ul>                           | (5)<br>(8)        | BTL 4 | Analyzing |
| 11 | <ul><li>(i) Compare independent failure and correlated failure.</li><li>(ii) Examine the process of a completely connected zero propagation system.</li></ul>                                             | (3)<br>(10)       | BTL 4 | Analyzing |
| 12 | Summarize the impact of faults and Loss of synchrony in fault-tolerant systems.                                                                                                                           | (13)              | BTL 4 | Analyzing |
| 13 | Write about reliability models for hardware redundancy.                                                                                                                                                   | (13)              | BTL 4 | Analyzing |
| 14 | Outline the More general model assuming that the failure process<br>and fault latency are exponential and Poisson distributed.                                                                            | (13)              | BTL 3 | Applying  |
| 15 | Describe the real time system and discuss the structure of real time systems.                                                                                                                             | (13)              | BTL 3 | Applying  |
| 16 | Write in detail about System reliability and Mean Time To Failure (MTTF).                                                                                                                                 | (13)              | BTL 4 | Analyzing |
| 17 | List the characteristics of task assignment /scheduling and Multiprocessor schedule.                                                                                                                      | (13)              | BTL3  | Applying  |
|    | PART – C                                                                                                                                                                                                  |                   |       |           |
| 1  | Explain the mathematical concepts of Identical Linear Reward functions in Uniprocessor scheduling.                                                                                                        | (15)              | BTL 4 | Analyzing |
| 2  | Describe the completely connected zero propagation time system<br>in hardware fault tolerant synchronization.                                                                                             | (15)              | BTL 3 | Applying  |
| 3  | Outline the utilization bound for the RM algorithm and explain in detail.                                                                                                                                 | (15)              | BTL 3 | Applying  |
| 4  | Summarize with necessary illustrations explain the following<br>redundancy in fault tolerant systems.<br>(i) Hardware Redundancy<br>(ii) Software Redundancy<br>(iii) Information                         | (5)<br>(5)<br>(5) | BTL 3 | Applying  |

|   | Redundancy                                              |      |      |          |
|---|---------------------------------------------------------|------|------|----------|
| 5 | Write about system reliability preliminaries in detail. | (15) | BTL3 | Applying |

#### UNIT V PROCESSES AND OPERATING SYSTEMS

Introduction – Multiple tasks and multiple processes – Multirate systems- Preemptive real-time operating systems- Priority based scheduling- Interprocess communication mechanisms – Evaluating operating system performance- power optimization strategies for processes – Example Real time operating systems-POSIX-Windows CE. - Distributed embedded systems – MPSoCs and shared memory multiprocessors. – Design Example - Audio player, Engine control unit – Video accelerator.

| PART – A |                                                                                    |             |               |
|----------|------------------------------------------------------------------------------------|-------------|---------------|
| Q.No     | Questions                                                                          | BT<br>Level | Competence    |
| 1.       | Mention the networks for distributed embedded systems.                             | BTL1        | Remembering   |
| 2.       | Define the term time quantum.                                                      | BTL1        | Remembering   |
| 3.       | List the significant function of POSIX RTOS.                                       | BTL1        | Remembering   |
| 4.       | What is a Semaphore?                                                               | BTL1        | Remembering   |
| 5.       | State the needs of CPU accelerators in embedded systems.                           | BTL1        | Remembering   |
| 6.       | Outline the advantages and limitations of Priority-based process scheduling.       | BTL1        | Remembering   |
| 7.       | Summarize the essential criteria of rate monolithic scheduling.                    | BTL2        | Understanding |
| 8.       | Explain priority inversion briefly.                                                | BTL2        | Understanding |
| 9.       | Enumerate the various scheduling states of a process.                              | BTL2        | Understanding |
| 10.      | Write examples of blocking and non-blocking inter process<br>Communication         | BTL2        | Understanding |
| 11.      | Draw the block diagram of Distributed embedded systems                             | BTL1        | Remembering   |
| 12.      | State the principle of multi-rate embedded system by quoting three Examples        | BTL1        | Remembering   |
| 13.      | List the two different styles used for inter process communication.                | BTL2        | Understanding |
| 14.      | Compare a process and a thread.                                                    | BTL2        | Understanding |
| 15.      | Differentiate between initiation time and completion time                          | BTL2        | Understanding |
| 16.      | Define multi-processing systems.                                                   | BTL1        | Remembering   |
| 17.      | How do we determine the communication among processes that run at different rates? | BTL2        | Understanding |
| 18.      | Summarize the important characteristics of Multitasking.                           | BTL2        | Understanding |
| 19.      | Write about a hard real-time operating system with an example.                     | BTL1        | Remembering   |
| 20.      | Define the organization of scheduling policy.                                      | BTL1        | Remembering   |
| 21.      | Write short notes on Distributed embedded systems.                                 | BTL1        | Remembering   |
| 22.      | What are the advantages of Shared memory multiprocessors?                          | BTL2        | Understanding |

| 23. | Why power optimization strategies are required?                                                                                                                                                                   |            | BTL2 | Understanding |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|---------------|
| 24. | What is an MPSoC in embedded system?                                                                                                                                                                              |            | BTL2 | Understanding |
|     | PART – B                                                                                                                                                                                                          |            |      |               |
| 1.  | Enumerate the context switch mechanism for moving the CPU from one executing process to another.                                                                                                                  | (13)       | BTL3 | Applying      |
| 2.  | State how the Kernel determines the order of the processes which has to be executed.                                                                                                                              | (13)       | BTL3 | Applying      |
| 3.  | <ul> <li>(i) Enumerate why an automobile engine requires multi rate control.</li> <li>(ii) Describe the performance of the Earliest – Deadline – First scheduling with suitable example.</li> </ul>               | (4)<br>(9) | BTL3 | Applying      |
| 4.  | Describe the real time operating system called POSIX in detail.                                                                                                                                                   | (13)       | BTL3 | Applying      |
| 5.  | Explain about power optimization strategies in embedded system.                                                                                                                                                   | (13)       | BTL3 | Applying      |
| 6.  | <ul><li>(i) Mention in detail about Shared Resources.</li><li>(ii) Explain about Windows CE with a neat diagram.</li></ul>                                                                                        | (7)<br>(6) | BTL3 | Applying      |
| 7.  | <ul><li>(i) Write in detail about multitasking and multiprocessing.</li><li>(ii) Illustrate process state and scheduling.</li></ul>                                                                               | (4)<br>(9) | BTL3 | Applying      |
| 8.  | Infer in detail about the Characteristics of distributed embedded System.                                                                                                                                         | (13)       | BTL3 | Applying      |
| 9.  | Explain the architecture of Distributed Embedded System with neat sketch.                                                                                                                                         | (13)       | BTL3 | Applying      |
| 10. | <ul><li>(i) Outline the services of operating system in handling multiple tasks and multiple processes.</li><li>(ii) Identify the features of preemptive execution with the help of a Sequence diagram.</li></ul> | (7)<br>(6) | BTL3 | Applying      |
| 11. | <ul> <li>(i) Explain in detail about power optimization strategies for<br/>CPU operation.</li> <li>(ii) Identify how the Predictive shut down technique proved<br/>itself as more sophisticated.</li> </ul>       | (7)<br>(6) | BTL3 | Applying      |
| 12. | With necessary diagrams explain about Audio Player design.                                                                                                                                                        | (13)       | BTL3 | Applying      |
| 13. | <ul><li>(i) Outline about priority-based scheduling in detail.</li><li>(ii) With the help of an example, explain how the knowledge of data dependencies can help to use the CPU more efficiently.</li></ul>       | (7)<br>(6) | BTL4 | Analyzing     |
| 14. | <ul> <li>(i) Summarize the preemptive real time operating systems in detail.</li> <li>(ii) Analyze the special characteristics of Processes and Internet with the help of a suitable diagram.</li> </ul>          | (7)<br>(6) | BTL4 | Analyzing     |
| 15. | Explain the concepts of Multiprocessor System-On-Chip (MPSoC) and Shared memory multiprocessor are used in embedded applications.                                                                                 | (13)       | BTL4 | Analyzing     |

| 16. | Explain the principle, merits and its limitations of inter-process communication mechanisms.                                                                                                                                                                                              | (13)                                                                        | BTL4 | Analyzing |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------|-----------|
| 17. | <ul> <li>(i) Justify this statement with the help of an example. 'The timing requirements on a set of process can strongly influence the type of appropriate scheduling'.</li> <li>(ii) Write about a critical section using semaphores in operating system.</li> </ul>                   |                                                                             | BTL4 | Analyzing |
|     | PART C                                                                                                                                                                                                                                                                                    |                                                                             |      |           |
| 1   | Explain about Multiple tasks and multiple processes with suitable examples.                                                                                                                                                                                                               | (15)                                                                        | BTL3 | Applying  |
| 2   | <ul> <li>Explain the working of Engine control unit in detail.</li> <li>(i) Theory of operations and requirements</li> <li>(ii) Specification.</li> <li>(iii) System Architecture.</li> <li>(iv) Component designing and testing.</li> <li>(v) System integration and testing.</li> </ul> | <ul> <li>(4)</li> <li>(4)</li> <li>(3)</li> <li>(2)</li> <li>(2)</li> </ul> | BTL3 | Applying  |
| 3   | Outline in detail how shared memory and message passing mechanisms are used for interprocess communication.                                                                                                                                                                               | (15)                                                                        | BTL3 | Applying  |
| 4   | With necessary illustrations explain about EDF algorithm for scheduling three process with hyper period 60.                                                                                                                                                                               | (15)                                                                        | BTL4 | Analyzing |
| 5   | What is the purpose of Priority based scheduling. Discuss in detail with appropriate diagrams.                                                                                                                                                                                            | (15)                                                                        | BTL3 | Applying  |