

SRM VALLIAMMAI ENGINEERING COLLEGE
(An Autonomous Institution)

SRM NAGAR, KATTANKULATHUR – 603 203.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION
ENGINEERING

LAB MANUAL

1906605 MICROCONTROLLERS AND EMBEDDED LAB

III-YEAR VI-SEM

ACADEMIC YEAR: 2024-2025 (EVEN SEMESTER)

Prepared by

Dr. S. R. Preethi, Associate Professor /ECE

Dr. K. Durgadevi, Asst. Professor (O.G) /ECE

Ms. K. Arthi, Asst. Professor (O.G) /ECE

SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution)
SRM Nagar, Kattankulathur -603 203

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

 VISION OF THE INSTITUTE

“Educate to excel in social transformation”

To accomplish and maintain international eminence and become a model institution for

higher learning through dedicated development of minds, advancement of knowledge and

professional application of skills to meet the global demands.

 MISSION OF THE INSTITUTE

● To contribute to the development of human resources in the form of professional

engineers and managers of international excellence and competence with high motivation

and dynamism, who besides serving as ideal citizen of our country will contribute

substantially to the economic development and advancement in their chosen areas of

specialization.

● To build the institution with international repute in education in several areas at several

levels with specific emphasis to promote higher education and research through strong

institute-industry interaction and consultancy.

VISION OF THE DEPARTMENT

To excel in the field of electronics and communication engineering and to develop highly

competent technocrats with global intellectual qualities.

MISSION OF THE DEPARTMENT

● To educate the students with the state of art technologies to compete internationally, able

to produce creative solutions to the society`s needs, conscious to the universal moral

values, adherent to the professional ethical code

● To encourage the students for professional and software development career

● To equip the students with strong foundations to enable them for continuing education

and research.

PROGRAMME OUTCOMES (POs)

PO1: Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering
problems.

PO2: Problem analysis: Identify, formulate, review research literature, and analyze complex
engineering problems reaching substantiated conclusions using first principles of
mathematics, natural sciences, and engineering sciences.

PO3: Design/development of solutions: Design solutions for complex engineering
problems and design system components or processes that meet the specified needs with
appropriate consideration for the public health and safety, and the cultural, societal, and
environmental considerations.

PO4: Conduct investigations of complex problems: Use research-based knowledge and
research methods including design of experiments, analysis and interpretation of data, and
synthesis of the information to provide valid conclusions.

PO5: Modern tool usage: Create, select, and apply appropriate techniques, resources, and
modern engineering and IT tools including prediction and modeling to complex
engineering activities with an understanding of the limitations.

PO6: The Engineer and society: Apply reasoning informed by the contextual knowledge to
assess societal, health, safety, legal and cultural issues and the consequent responsibilities
relevant to the professional engineering practice.

PO7: Environment and sustainability: Understand the impact of the professional
engineering solutions in societal and environmental contexts, and demonstrate the
knowledge of, and need for sustainable development.

PO8: Ethics: Apply ethical principles and commit to professional ethics and responsibilities
and norms of the engineering practice.

PO9: Individual and team work: Function effectively as an individual, and as a member or
leader in diverse teams, and in multidisciplinary settings.

PO10: Communication: Communicate effectively on complex engineering activities with the
engineering community and with society at large, such as, being able to comprehend and
write effective reports and design documentation, make effective presentations, and give
and receive clear instructions.

PO11: Project management and finance: Demonstrate knowledge and understanding of the
engineering and management principles and apply these to one’s own work, as a member
and leader in a team, to manage projects and in multidisciplinary environments.

PO12: Life-long learning: Recognize the need for, and have the preparation and ability to
engage in independent and life-long learning in the broadest context of technological
change.

PROGRAMME SPECIFIC OUTCOMES (PSOs) of ECE DEPARTMENT
PSO1: Ability to apply the acquired knowledge of basic skills, mathematical foundations, and

principles of electronics, modeling and design of electronics based systems in solving
engineering Problems.

PSO2: Ability to understand and analyze the interdisciplinary problems for developing
innovative sustained solutions with environmental concerns.

PSO3: Ability to update knowledge continuously in the tools like MATLAB, NS2, XILINIX
and technologies like VLSI, Embedded, Wireless Communications to meet the industry
requirements.

PSO4: Ability to manage effectively as part of a team with professional behavior and ethics.

1906605 MICROCONTROLLERS AND EMBEDDED LABORATORY L T P C

0 0 4 2

OBJECTIVES:

The student should be made to:

● Write Assembly Language Program (ALP) for arithmetic and logical operations in 8086

and 8051

● Differentiate Serial and Parallel Interface.

● Understand the working of ARM Processor and study the interrupt performance.

● Enumerate programs to interface memory, I/O’s with processor.

● Explore the concepts of Hardware of various microcontrollers to enable Programming

and Interfacing of microcontroller.

LIST OF EXPERIMENTS: 8086 Programs using kits and MASM

1. Basic arithmetic and Logical operations.

2. Move a data block without overlap.

3. Code conversion, decimal arithmetic and Matrix operations.

4. String manipulations, sorting and searching.

5. Password checking, Print RAM size and system date.

LIST OF EXPERIMENTS: Peripherals and Interfacing Experiments using 8086 and

ARM – 7 Processor.

6. Interfacing Traffic light controller.

7. Interfacing Stepper motor and Temperature sensor.

8. Implementing Zigbee protocol with ARM.

9. Interfacing Key board and LCD.

10. Interfacing LED and PWM.

11. Interfacing EPROM and Interrupt.

12. Analyze Serial interface and Parallel interface.

13. Interfacing ADC and DAC and Waveform Generation.

LIST OF EXPERIMENTS: 8051 Experiments using kit and MASM.

14. Program Basic arithmetic and Logical operations.

15. Implement Square and Cube program and Find 2‘s complement of a number.

TOTAL PERIODS: 60

OUTCOMES:

On completion of this laboratory course, the student would be able to,

∙ Write ALP Programs for Arithmetic operations and Logical operations.

∙ Express the programming logics for code conversion and acquire knowledge on ADC and

DAC.

∙ Interface different I/O’s with processor and Generate waveforms using 8086 and ARM

processors.

∙ Execute microcontroller programs in 8051.

∙ Formulate a mini Project using Embedded System.

CONTENTS

Sl. No. Name of the Experiments Signature

CYCLE - I

1 Basic arithmetic and Logical operations

2 Move a data block without overlap

3 Code conversion, decimal arithmetic and Matrix operations.

4 String manipulations, sorting and searching

5 Password checking, Print RAM size and system date

CYCLE – II

6 Interfacing Traffic light control

7 Interfacing Stepper motor control and Temperature sensor

8 Implementing Zigbee protocol with ARM

9 Interfacing Key board and LCD

10 Interfacing LED and PWM

11 Interfacing EPROM and Interrupt.

12 Analyze Serial interface and Parallel interface

13 Interfacing ADC and DAC and Waveform Generation

CYCLE – III

14 Program Basic arithmetic and Logical operations

15 Implement Square and Cube program and Find 2‘s complement of a number

TOPIC BEYOND SYLLABUS

16 Square wave generation using 8051

CYCLE I
8086 PROGRAMS

Flow Chart for Addition of Two Numbers:

Ex. No. 1
Date:

PROGRAMS FOR BASIC ARITHMETIC AND LOGICAL OPERATIONS

Objective:

 To write an Assembly Language Program (ALP) to perform basic Arithmetic and Logical
Operations

(a) Addition of two numbers
(b) Subtraction of two numbers
(c) Multiplication of two numbers
(d) Division of two numbers
(e) Logical operation

(A) ADDITION OF TWO 16 BIT NUMBERS

Description:

To perform addition in 8086, one of the data should be stored in a register and another
data can be stored in register / memory. After addition the sum will be available in the destination
register / memory. The sum of two 16-bit data can be either 16 bits (sum only) or 17 bits (sum
and carry). The destination register / memory can accommodate only the sum and if there is a
carry the 8086 will indicate by setting carry flag. Hence one of the register is used for the account
of carry.

Algorithm:

1. Start the program.
2. Set the origin as 1000H.
3. Store the 1st data in AX register.
4. Clear BX register pair for carry.
5. Set SI to 1202H to point the second data.
6. Add the content in AX with data pointed by SI register.
7. If carry occurs, increment BX register by one.
8. Move the content of AX to 1300H.
9. Move the content of BX to 1302H.
10. End of segment.
11. Stop the program

PROGRAM

Example 1: Manual Calculation:

 With Carry

Input:

1200: 46H
1201: B6H [Addend]
1202: D3H
1203: 98H[Augend]

Output:
 1300: 19H
 1301: 4FH [Sum]
 1302: 01H
 1303: 00H [Carry]

Example 2:

Without Carry
Input:
1200: 34H
1201: 44H [Addend]
1202: 24H
1203: 24H [Augend]

 Output:
 1300: 58H
 1301: 68H [Sum]
 1302: 00H

Label Program Comments

Next:

ORG 1000H

MOV BX, 0000H

MOV SI, 1200H

MOV AX, [SI]

ADD SI, 02H

ADD AX, [SI]

JNC Next

INC BX

MOV DI, 1300H

MOV [DI], AX

ADD DI, 02H

MOV [DI], BX

HLT

Set starting address as 1000H.

Initialize BX to 0000H

Move immediate data to SI

Move content of SI to AX

ADD SI with immediate data.

Add content of SI with AX register

Jump if no carry to loop

Increment BX register

Move immediate data to DI.

Move AX to DI.

ADD DI with immediate data

Move BX to DI

 1303: 00H [Carry]
Flow Chart of Subtraction of Two Numbers:

(B) SUBTRACTION OF TWO 16 BIT NUMBERS

Description:

 To perform subtraction in 8086 one of the data should be stored in register and another
data should be stored in register or memory. After subtraction the result will be available in
destination register/memory. The 8086 will perform 2’s complement subtraction and then
complement the carry. Therefore, if the result is negative then carry flag is set and the destination
register/memory will have 2’s complement of the result. Hence one of the registers is used to
account for sign of the result. To get the magnitude of the result again take 2’s complement of
the result.

Algorithm:

1. Start the program.
2. Set the starting address as 1000H.
3. Set the SI register to 1200H address.
4. Move the 16-bit data to AX register pair.
5. Increment the SI register to 1202.
6. Get the second data.
7. Move this second value to BX register.
8. Subtract the content pointed by SI from AX and store result in AX.
9. If carry occurs go to step 13.
10. Increment BX register, then perform inversion operation to AX register.
11. Increment AX register.
12. Move the resultant to DI register.
13. Display the output.
14. End of segment.
15. Stop the program.

PROGRAM

Example 1: Manual Calculation:

With Borrow
 Input:
 1200: 03H
 1201: 00H (minuend)
 1202: 05H
 1203: 00H (subtrahend)

Label Program Comments

Next:

ORG 1000H

MOV BX, 0000H

MOV SI, 1200H

MOV AX, [SI]

ADD SI, 02H

SUB AX, [SI]

JNC Next

INC BX

NOT AX

INC AX

MOV DI, 1300H

MOV [DI], AX

ADD DI, 02H

MOV [DI], BX

HLT

Set starting address as 1000H

Move immediate data to BX register.

Move immediate data to SI

Move contents of SI to AX

Increment SI by 02H

Move contents of SI to AX

Jump if no carry loop

Increment BX

Perform NOT operation of AX

Increment AX register

Move immediate data to DI.

Move AX to DI.

Increment DI by 02H

Move BX to DI

 Output:
 1300: 02H
 1301: 00H (Difference)
 1302: 01H
 1303: 00H (Borrow)

Example 2:

Without Borrow
 Input:
 1200: 31H
 1201: 82H (minuend)
 1202: 06H
 1203: 34H (subtrahend)

 Output:
 1300: 2BH
 1301: 4EH (Difference)
 1302: 00H
 1303: 00H (Borrow)

Flow Chart for Multiplication of Two Numbers:

 START

SET STARTING ADDRESS = 1000H
SET SI = 1200H

GET THE FIRST DATA IN AX REGISTER POINTED BY
SI

INCREMENT SI BY 02H

GET THE SECOND DATA IN CX REGISTER POINTED BY SI

MULTIPLY THE CONTENT OF CX REG WITH AX REG

STORE THE CONTENT OF AX (LOWER WORD OF RESULT) AT 1300H

STORE THE CONTENT OF DX (HIGHER WORD OF RESULT) AT 1302H

STOP

(C) MULTIPLICATION OF TWO 16 BIT NUMBERS

Description:

 To perform multiplication in 8086 processors one of the data should be stored in AX
register and another data can be stored in register/memory. After multiplication the product will
be in AX [lower word] and DX register [Higher word].

Algorithm:

1. Start the program
2. Set the starting address as 1000H
3. Set the SI register to point the location 1200H.
4. Set the DI register to point the location 1300H.
5. Move the 16-bit data pointed by SI to AX register
6. Move this data to BX register
7. Increment SI register to 1202 and get the second data in AX register
8. Multiply the data in AX with BX register
9. Store the data in DX [higher word] and AX [lower word] addressed by DI register.
10. Display the result
11. End of segment
12. Stop the program

PROGRAM

Label Program Comments

 ORG 1000H

MOV SI, 1200H

MOV AX,[SI]

ADD SI,02H

MOV BX, [SI]

MUL BX

MOV DI, 1300H

MOV [DI], AX

MOV DI, 1302H

MOV [DI], DX

HLT

Set starting address as 1000H.

Move immediate data to SI

Move contents of SI to AX

Increment SI value to 02H

Move contents of SI to BX

Multiply BX with AX

Move immediate data to DI

Move AX to DI register

Move immediate data to DI

Move DX to DI register

Example: Manual Calculation:

 Input:

 1200: 02H
 1201: 06H (Multiplicand)
 1202: 02H
 1203: 06H (Multiplier)

Output:

 1300: 04H
 1301: 18H (Lower word of the Product)
 1302: 24H
 1303: 00H (Higher word of the Product)

Flow Chart for Division of Two Numbers:

START

SET STARTING ADDRESS = 1000H
SET SI = 1200H

GET THE DIVIDEND IN AX REGISTER POINTED BY
SI

INCREMENT SI BY 02H

GET THE DIVISOR IN CX REGISTER POINTED BY SI

CLEAR DX REGISTEER

DIVIDE DXAX BY BX

STORE THE CONTENT OF AX (REMAINDER) AT 1300H

STORE THE CONTENT OF DX (QUOTIENT) AT 1300H

STOP

(D) DIVISION OF TWO NUMBERS

Description:

 To perform division in 8086 processor, the 16 bit dividend should be stored in AX and
DX register (The lower word in AX and Upper word in DX). The 16 bit divisor can be stored in
register / memory. After division the quotient will be in AX register and the remainder will be in
DX register.
Algorithm:

1. Start the program
2. Set the origin as 1000H
3. Set SI as 1200H.
4. Clear DX register for 16 bit dividend. For 16 bit dividend higher word is zero.
5. Load the lower word of dividend in AX register
6. Increment SI by 02H. Load the divisor in BX register.
7. Perform division of data in DX AX by BX
8. Set DI as 1300H
9. Store the quotient in AX register at the location pointed by DI register.
10. Set DI as 1302H
11. Store the remainder in DX register at the location pointed by DI register.
12. Display the result, End of Segment
13. Stop the program

PROGRAM

Label Program Comments

 ORG 1000H

MOV SI, 1200H

MOV AX,[SI]

ADD SI,02H

MOV BX, [SI]

MOV DX, 0000H

DIV BX

MOV DI, 1300H

MOV [DI], AX

MOV DI, 1302H

MOV [DI], DX

HLT

Set starting address as 1000H.

Move immediate data to SI

Move contents of SI to AX

Add 02H to SI

Move contents of SI to BX

Initialize DX to 0000H

Divide DXAX by BX

Move immediate data to DI

Store the quotient

Move immediate data to DI

Store the remainder

Example: Manual Calculation:

 Input:

 1200: 06H
 1201: 06H (Dividend)
 1202: 03H
 1203: 03H (Divisor)

 Output:

 1300: 02H
 1301: 00H (Quotient)
 1302: 00H
 1303: 00H (Remainder)

FLOWCHART

(E) LOGICAL OPERATIONS OF 16 BIT NUMBERS
Description:

 The two values from memory are logically AND then the result is stored in memory.

Algorithm:

1. Start the program and Set the origin as 1000H
2. Set SI as 1200H.
3. Get the first data in AX – reg
4. Increment SI to point next data
5. Perform AND operation of the data
6. Store the result in memory
7. Stop the program

START

SET STARTING ADDRESS = 1000H
SET SI = 1200H

GET THE FIRST DATA IN AX REGISTER POINTED BY
SI

INCREMENT SI BY 02H

PERFROM AND OPERATION

STORE THE CONTENT OF AX (RESULT) AT 1300H

STOP

PROGRAM

Label Program Comments

 ORG 1000H

MOV SI,1200H

MOV AX,[SI]

ADD SI,02H

AND AX,[SI]

MOV DI,1300H

MOV [DI],AX

HLT

Set starting address as 1000H.

Initialize SI

Get the first data in AX – reg

Increment SI to point next data

Perform AND operation of two data

Store the result in memory

Example: Manual Calculation:

Input

1200: 01H
1201:01H
1202:00H
1203:00H

Output

1300:00H
1301:00H

REVIEW QUESTIONS:

1. Write the size of the data bus of 8086.
2. Write the size of the address bus of 8086.
3. What is meant by physical addressing in 8086?
4. What are the other possibilities of writing ADD, SUB and MUL instructions in other

addressing modes?
5. What is the purpose of BIU& EU?

Result:

 Thus the program for arithmetic and logic operation was written and executed.

Flow Chart to Move a Block of Data without Overlap:

START

SET STARTING ADDRESS = 1000H
SET SI = 1200H, DI = 1300H

GET THE NUMBER OF DATA IN CL REGISTER

MOVE THE DATA FROM MEMORY TO AX REG

MOVE THE DATA FROM AX TO DESTINATION

INCREMENT SI AND DI

REPEAT THE OPERATION FOR THE NUMBER OF DATA

STOP

Ex. No. 2
Date:

MOVE A DATA BLOCK WITHOUT OVERLAP

Objective:

 To write an 8086 ALP to move a block of data from source to destination without overlap

Description:

 The block of data to be moved from one location (source) to another location (destination)
in memory. The source and destination of memory is pointed by SI and DI respectively. The size
of the block is stored in CL register. The data from source are moved to register and then back to
destination location. The steps are repeated till the value of CL register is Zero.

Algorithm:

1. Start the program.
2. Set the starting address as 1000H.
3. Set the SI register to 1200H address.
4. Set the DI register to 1300H address.
5. Set the CL register to hold the number of data to be moved.
6. Move the 16-bit data from memory pointed by SI to AX register pair.
7. Move the 16-bit from AX register to memory pointed by DI.
8. Increment the SI register by 02H.
9. Increment the DI register by 02H.
10. Repeat steps 6 to 9 till the cl value is zero
11. Stop the program.

PROGRAM

Label Program Comments

Next:

ORG 1000H
MOV SI, 1200H
MOV DI,1300H
MOV CL,05H
MOV AX,[SI]
MOV [DI],AX
ADD SI,02H
ADD DI, 02H
LOOP Next
HLT

Set starting address as 1000H.
Initialise SI to 1200
Initialise DI to 1300
Initialise CL for number of data

Example: Manual Calculation:

 Input:
 1200: 05H
 1201: 03H
 1202: 02H
 1203: 01H
 1204: 00H

Output:
 1300: 05H
 1301: 03H
 1302: 02H
 1303: 01H
 1304: 00H

REVIEW QUESTIONS:

1. List out the Flag manipulation instruction.
2. Give the differences between JUMP and LOOP instruction
3. List out the advantages of using Direct Memory Access (DMA).
4. What is meant by Maskable interrupts& Non-Maskable interrupts?
5. What is the Maximum clock frequency in 8086?

Result:

 Thus the program for moving a block of data without overlap was written and executed.

Ex. No. 3
Date:

CODE CONVERSION, DECIMAL ARITHMETIC & MATRIX OPERATIONS

Objective:

 To write an Assembly Language Program (ALP) to perform the following operations

(a) Code Conversion
BCD to Binary
Binary to BCD

(b) Decimal Arithmetic
BCD Addition
BCD Subtraction

(c) Matrix Operations
Matrix Addition
Matrix Multiplication

(A) CODE CONVERSION – BCD to Binary

Description:

The 2 –digit BCD data will have units digits and tens digits. When the tens digit is
multiplied by 0A H and the product is added to units digit, the result will be in binary, because the
microprocessor will perform binary arithmetic. In order to separate the units and tens digit,
masking technique is used.

Algorithm:

1. Start the program.
2. Set the origin as 1000H.
3. Get the BCD data in AL register
4. Copy the BCD data in DL register
5. Logically AND DL with 0F to mask upper nibble and get the units digit in DL
6. Logically AND AL with F0 to mask lower nibble and get the tens digit in AL
7. Rotate the content of AL register 4 times in order to change upper nibble as lower

nibble.
8. Set the multiplier 0A H in DH register.
9. Multiply AL with DH register, the product will be in AL register.
10. Add the units digit in DL register to the product in AL register
11. Save the binary digit (AL) in memory
12. Stop the program.

PROGRAM

Label Program Comments

ORG 1000H

MOV SI, 1200H

MOV AL,[SI]

MOV DL,AL

AND DL,0F

Set starting address as 1000H.

Initialize SI

Move the BCD data in AL

Copy the BCD data in DL

AND DL with 0F

AND AL,0F0

MOV CL,04

ROR AL,CL

MOV DH,0A

MUL DH

ADD AL,DL

MOV DI,1201H

MOV [DI],AL

HLT

AND AL with F0

Rotate AL for 4 – times

Move 0A to DH

Multiply DH with AL

Add AL with DL

Store the result in memory

Example: Manual Calculation:

Input:
 1200: 85H [BCD data]

Output:
 1201: 55H
Result:

Thus the program for BCD to Binary conversion was successfully executed.

CODE CONVERSION – BINARY TO BCD

Description:

The maximum value of 8 bit binary is FFH. The BCD equivalent is 256. Hence when an
8 – bit binary is converted into BCD, the BCD data will have hundreds, tens and units digit. So
two counters are used to count hundreds and tens. The tens and units digit are added and stored
in a memory location and the hundreds digit is stored in the next location.

Algorithm:

1. Start the program.
2. Set the origin as 1000H.
3. Get the binary data in AL register
4. Clear DX register for storing Hundreds and tens
5. Compare AL with 64H (100 in decimal)
6. Check carry flag. If CF = 1, then go to step 10, else go to next step
7. Subtract 64H from AL register
8. Increment Hundreds register (DL)
9. Go to Step 5
10. Compare AL with 0AH (10 in decimal)
11. Check carry flag. If CF = 1, then go to step 15, else go to next step
12. Subtract 0AH from AL register
13. Increment Tens register (DH)
14. Go to step 10
15. Rotate the content of DH four times
16. Add DH to AL to combine tens and Units digit
17. Save AL and DL in memory.
18. Stop the program

PROGRAM

Label Program Comments

HUND:

TEN:

UNIT:

ORG 1000H

MOV SI, 1200H

MOV AL,[SI]

MOV DX,0000H

CMP AL, 64H

JC TEN

SUB AL,64H

INC DL

JMP HUND

CMP AL,0AH

JC UNIT

SUB AL,0AH

INC DH

JMP TEN

MOV CL,04

ROL DH,CL

ADD AL,DH

MOV DI,1201H

MOV [DI],AL

INC DI

MOV [DI],DL

HLT

Set starting address as 1000H.

Initialize SI

Move the binary data in AL

Clear the counter

To count number of hundreds

To count number of tens

Add tens and units

Store in memory

Example: Manual Calculation:

Input:

1200: 55H [Binary data]

 Output:

 1201:85H

Result:

Thus the program for Binary to BCD conversion was successfully executed.

DECIMAL ARITHMETIC – BCD ADDITION

Description:

The binary addition is performed and then the sum is corrected to get the result in BCD.
If the sum of the lower nibble exceeds 9 or if there is auxiliary carry then 6 is added to the lower
nibble. if the sum of the upper nibble exceeds 9 or if there is a carry then 6 is added to upper
nibble. These conversions are taken care by DAA instruction.

Algorithm:

1. Start the program.
2. Set the origin as 1000H.
3. Initialise SI to 1200H
4. Clear the CL register for Carry
5. Load the first data in AX reg and second data in BX reg.
6. Perform Binary addition of lower byte
7. Adjust the sum of lower bytes to BCD
8. Save the sum in memory.

9. Perform Binary addition of Higher byte along with carry from lower byte.
10. Adjust the sum of higher bytes to BCD
11. Save the sum in memory
12. Save the carry in memory
13. Stop the program.

PROGRAM

Label Program Comments

AHEAD:

ORG 1000H

MOV SI, 1200H

MOV CL,00H

MOV AX,[SI]

MOV BX,[SI+2]

ADD AL,BL

DAA

MOV DL,AL

MOV AL,AH

ADC AL,BH

DAA

MOV DH,AL

JNC AHEAD

INC CL

MOV DI,1204H

MOV [DI],DX

MOV [DI+2],CL

HLT

Set starting address as 1000H.

Initialize SI

Clear CL register for carry

Get the 1st number in AX reg

Get the 2nd number in BX reg

Add the lower nibble

Decimal adjust for BCD

Add the higher nibble with carry

Decimal adjust for BCD

Check for Carry

Store the result in memory

Example: Manual Calculation:

Input:

1200: 01H [1st data – BCD]
1201: 04H
1202: 08H [2nd data – BCD]
1203: 02H

Output:

1204: 09H
 1205: 06H

Result:

Thus the program for BCD addition was successfully executed.

DECIMAL ARITHMETIC – BCD SUBTRACTION

Description:

The binary subtraction is performed and then the difference is corrected to get the result
in BCD. If the difference of the lower nibble exceeds 9 or if there is auxiliary carry then 6 is
subtracted from the lower nibble. if the difference of the upper nibble exceeds 9 or if there is a
carry then 6 is subtracted from upper nibble. This conversion is taken care by DAS instruction.

Algorithm:

1. Start the program.
2. Set the origin as 1000H.
3. Initialise SI to 1200H
4. Clear the CL register for borrow
5. Load the first data in AX reg and second data in BX reg.
6. Perform Binary subtraction of lower byte
7. Adjust the difference of lower bytes to BCD
8. Save the result in memory.
9. Perform Binary subtraction of Higher byte along with borrow from lower byte.
10. Adjust the difference of higher bytes to BCD
11. Save the difference in memory
12. Save the borrow in memory
13. Stop the program.

PROGRAM:

Label Program Comments

AHEAD:

ORG 1000H

MOV SI, 1200H

MOV CL,00H

MOV AX,[SI]

MOV BX,[SI+2]

SUB AL,BL

DAS

MOV DL,AL

MOV AL,AH

SBB AL,BH

DAS

MOV DH,AL

JNC AHEAD

INC CL

MOV DI,1204H

MOV [DI],DX

MOV [DI+2],CL

HLT

Set starting address as 1000H.

Initialize SI

Clear CL register for borrow

Get the 1st number in AX reg

Get the 2nd number in BX reg

Subtract the lower nibble

Decimal adjust for BCD

Subtract the higher nibble with Borrow

Decimal adjust for BCD

Check for Borrow

Store the result in memory

Example:
Input:

1200: 18[1st data – BCD]
1201: 04
1202: 09[2nd data – BCD]
Output:

 1204: 09
 1205: 02

1203: 02

Result:

Thus the program for BCD subtraction was successfully executed.

Flow Chart for Matrix Addition:

MATRIX ADDITION

Description:

The matrix addition is performed by loading the size of the matrix in CL reg and then
adding the individual elements of the matrix.

Algorithm:

1. Start the program.
2. Set the origin as 1000H.
3. Initialize the pointer to memory for data and result.
4. Load CL with count.
5. Add two matrices by each element.
6. Process continues until CL is 0.
7. Store the result into Memory.
8. Stop the program.

PROGRAM

LABEL PROGRAM COMMENTS

 MOV CL, 09 Initialize 09 into CL register

 MOV SI, 2000 Load 2000 into SI for 1st matrix

 MOV DI, 3000 Load 3000 into DI for 2nd matrix

NEXT MOV AL, [SI] Load AL with data of first matrix

 MOV BL, [DI] Load BL with data of second matrix

 ADD AL, BL Add two data of AL and BL

 MOV [DI], AL Store AL with data into DI

 INC DI Increment DI

 INC SI Increment SI

 DEC CL Decrement CL

 JNZ NEXT
Loop continues until all elements of
Matrix to added

 HLT Halt the Program

Example: Manual Calculation:
Input:

Matrix A
2000: 00H
2001: 01H
2002: 02H
2003: 03H
2004: 04H
2005: 05H
2006: 06H
2007: 07H
2008: 08H

Matrix B
3000: 09H
3001: 08H
3002: 07H
3003: 06H
3004: 05H
3005: 04H
3006: 03H
3007: 02H
3008: 01H

Output
3000: 09H
3001: 09H
3002: 09H
3003: 09H
3004: 09H
3005: 09H
3006: 09H
3007: 09H
3008: 09H

REVIEW QUESTIONS:

1. Write the function of the following 8085 instructions: JP, JPE, JPO, and JNZ.
2. What is the purpose of the following commands in 8086?

a) AAD
b) RCL

3. List out the addressing modes in 8086.
4. What are the 8086 instructions used for BCD arithmetic?
5. What flags get affected after executing ADD instruction?

Result:

Thus the program for Matrix addition was successfully executed.

MATRIX MULTIPLICATION

Description:

The matrix multiplication is performed by loading the number of rows in CH reg and
number of columns in CL reg and then multiplying the individual elements of the matrix.

Algorithm:

1. Initialize CH reg with no of rows
2. Initialize BX reg to 1400H
3. Initialize SI to 1200H
4. Initialize DI to 1300
5. Initialize CL reg with no of columns
6. Move 03 to DL
7. Initialize BP to 0000H
8. Initialize AX to 0000H
9. Store AH register into flags
10. Move the value pointed by SI to AL
11. Multiply the value pointed by DI with AL
12. Add the result with BP reg
13. Increment SI
14. Add 03 to point the next row element
15. Decrement DL
16. If not zero go to NEXT
17. Subtract DI with 08H
18. Subtract SI with 03H
19. Move the result to memory pointed by BP
20. Add 02 to BX
21. Decrement the value of CL
22. If not zero jump to COLUMN
23. Add 03H to SI
24. Decrement CH
25. If not Zero Jump to ROW
26. Halt

PROGRAM:

Label Program Comments

ROW:

COLUMN

:

MOV CH,03H

MOV BX,1400H

MOV SI,0200H

MOV DI,1300H

MOV CL,03H

MOV DL,03H

MOV BP,0000H

MOV AX,0000H

SAHF

Initialize CH reg with no of rows

Initialize BX reg to 1400H

Initialize SI to 1200H

Initialize DI to 1300

Initialize CL reg with no of columns

Move 03 to DL

Initialize BP to 0000H

Initialize AX to 0000H

Store AH register into flags

NEXT:

MOV AL,[SI]

MUL [DI]

ADD BP,AX

INC SI

ADD DI,03H

DEC DL

JNZ NEXT

SUB DI,08H

SUB SI,03H

MOV [BX],BP

ADD BX,02H

DEC CL

JNZ COLUMN

ADD SI,03H

DEC CH

JNZ ROW

HLT

Move the value pointed by SI to AL

Multiply the value pointed by DI with AL

Add the result with BP reg

Increment SI

Add 03 to point the next row element

Decrement DL

If not zero go to NEXT

Subtract DI with 08H

Subtract SI with 03H

Move the result to memory pointed by BP

Add 02 to BX

Decrement the value of CL

If not zero jump to COLUMN

Add 03H to SI

Decrement CH

If not Zero Jump to ROW

Halt

Example:
Input:

Matrix A
1200:02H
1201:02H
1202:02H
1203:02H
1204:02H
1205:02H
1206:02H
1207:02H
1208:02H

Matrix B
1300:02H
1301:02H
1302:02H
1303:02H
1304:02H
1305:02H
1306:02H
1307:02H
1308:02H

Output
1400:0CH
1401:00H

1402:0CH
1403:00H
1404:0CH
1405:00H
1406:0CH
1407:00H
1408:0CH

Manual Calculation:

REVIEW QUESTIONS:
1. Write an ALP for 8086 to multiply two 16 bit unsigned numbers.
2. What is an accumulator?
3. Explain the uses of PUSH and POP instruction
4. When the 8086 processor is in minimum mode and maximum mode?
5. What is program counter?

Result:
Thus the program for Matrix multiplication was successfully executed.

Ex. No. 4
Date:

STRING MANIPULATION, SORTING AND SEARCHING
Objective:

 To write an 8086 ALP to perform the following functions

a) String Manipulation
Copying a String
Comparing Two Strings
Scan a character in a string

b) Sorting
Ascending order
Descending order

c) Searching

STRING MANIPULATION – COPYING A STRING
Description:

 In 8086, a dedicated string instruction MOVSB is used to copy a string. On the MOVSB
will move or copy the string of data pointed by SI to the location pointed by DI register on copying
each byte of data, the SI register and DI register are incremented or decremented depending on
the status of the direction flag DF. The CX register will hold the size of the string to be moved
from one location to another location.

Algorithm:

1. Start the program.
2. Set the starting address as 1000H.
3. Get the array size & move it to CX segment.
4. Let the starting address of elements be 1200H & move it to SI.
5. Let starting address of another set of elements 1300H & move it to DI.
6. Clear Directional Flag.
7. Repeat the move single byte instruction till the count CX is zero.
8. End of segment.
9. Stop the program.

PROGRAM

Label Program Comments

ORG 1000H

MOV CX, 0005H

MOV SI, 1200H

MOV DI, 1300H

CLD

REP MOVSB

HLT

Set starting address as 1000H.

Move immediate data to CX.

Move immediate data to SI.

Move immediate data to DI.

Clear Directional Flag.

Repeat, Move single byte

Example: Manual Calculation:

 Input:

 1200: AA
 1201: AB
 1202: AC
 1203: DA
 1204: OA

 Output:

 1300: AA
 1301: AB
 1302: AC
 1303: DA
 1304: OA

STRING MANIPULATION – COMPARE TWO STRINGS

Description:

 In 8086, a dedicated string instruction CMPSB is used to compare two strings. The
CMPSB will compare two strings of data pointed by SI and DI register. The REPE is used to
repeat compare operation for each byte of the string. If both the strings are equal the CMPSB will
set zero flag. If they are unequal ZF=0. The CX register will hold the size of the string.

 In this program, if both the strings are equal, 00FFH is stored at 5000H else 0000H will
be stored at 5000H.

Algorithm:

1. Start the program.
2. Set the starting address as 1000H.
3. Get array size and move it to CX register.
4. The starting address of a string is moved to SI register.
5. The starting address of another string is moved to DI register.
6. The BX register is initialized to point 3000H.
7. Clear directional flag
8. Compare each byte of string pointed by SI with the string pointed by DI till CX is

zero.
9. If both the strings are equal, 0FFH is stored at the location pointed by BX register

(3000H). Else store 00H at the location pointed by BX register.
10. End of the segment
11. Terminate the program

PROGRAM:

Label Program Comments

ORG 1000H

MOV CX, 0005H

MOV SI, 1200H

MOV DI, 1300H

Set starting address as 1000H.

Move immediate data to CX.

Move immediate data to SI.

Move immediate data to DI.

L1:

LAST:

MOV BX, 3000H

CLD

REPE CMPSB

JNZ L1

MOV AH, 0FFH

MOV [BX], AH

JMP LAST

MOV AH, 00H

MOV [BX], AH

HLT

Move immediate data to BX.

Clear directional flag.

Repeat if equal, compare single byte

Jump if no zero to loop1.

Move immediate data to AH.

Move AH to BX register

Jump to last.

Move immediate data to AH.

Move AH to BX register.

Example: Manual Calculation:
Same String Different String
Input: Input:
 1200: 02 1200: 02
 1201: 03 1201: 03
 1202: 04 1202: 04
 1203: 05 1203: 05
 1204: 06 1204: 06

1300: 02 1300: 03
 1301: 03 1301: 04
 1302: 04 1302: 05
 1303: 05 1303: 06
 1304: 06 1304: 07

 Output: Output:

 3000: FFH 3000: 00H

Flow Chart for Scan a Character in a String:

STRING MANIPULATION - SCAN A CHARACTER IN A STRING

Description:

 In 8086, a dedicated string instruction SCASB is used to scan a character. The SCASB will
scan for the character pointed by SI, in the string pointed by DI register. If the character is
available in the string zero flag is set. Else zero flag is reset. The CX register will hold the size of
the string.

 In this program, if the given character is available 0FFH is stored at 5000H. If it is
unavailable, 00H is stored at 5000H.

Algorithm:

1. Start the program.
2. Set the origin as 1000H.

3. Move the data pointed by SI to AL register.
4. Assign 0004H [count] to CX register.
5. The starting address of the string is moved to DI register
6. Clear Directional Flag for auto increment mode.
7. Repeatedly scan for the character at AL with DI till CX is zero.
8. If the character is found in the string, store 0FFH at location 3000H pointed by BX

register. Else store 00H at location 3000H pointed by BX register.
9. End of segment.
10. Stop the program.

PROGRAM:

Label Program Comments

L1:

L2:

ORG 1000H

MOV CX, 0004H

MOV SI, 1200H

MOV AL, [SI]

MOV DI, 1300H

MOV BX, 3000H

CLD

REPNE SCASB

JNZ L1

MOV AH, 0FFH

JMP L2

MOV AH, 00H

MOV [BX], AH

HLT

Set the starting address as 1000H.

Move immediate data to CX.

Move immediate data to SI.

Move contents of SI to AL.

Move immediate data to DI.

Move immediate data to BX.

Clear directional flag.

Repeat not equal, Scan single byte

Jump if no zero to loop1.

Move immediate data to AH.

Jump to loop 2.

Move immediate data to AH.

Move AH to BX register.

Example:
 Input: Input:

 1200:AD (Data to be scanned) 1200: BB (Data to be scanned)

1300:AA 1300:AA
 1301:AB 1301:AB
 1302:AA 1302:AA
 1303:AD 1303:AD
 Output: Output:

 3000:FF 3000:00

Manual Calculation:

SORTING – ASCENDING ORDER
Description:

 The array can be sorted in ascending order by bubble sort algorithm. In bubble sorting of
M-data, M-1 comparisons are performed by tasking two consecutive data at a time. After each
comparison the two data can be re-arranged in the ascending order in the same memory locations
i.e., smaller first and larger next. When the above M-1 comparisons are performed M-1 times, the
array will be sorted in ascending order in the same locations.

Algorithm:

1. Start the program
2. Initialize Code and Data Segment.

3. Set starting address as 1000H
4. Set SI register to 1200H address
5. Get the count in CL & decrement CL register by one
6. Copy the content of CL register to DL register.
7. Initialize SI as 1202H.
8. Move the data pointed by SI to AX
9. Compare the data in AX & data pointed by SI+2
10. If there is no carry, exchange the data and go toe next step. If there is carry go to next

step.
11. Increment the content of SI by 02H
12. Decrement the content of DL register by 01H.
13. Check whether the content of DL is zero. If zero, go to step next step. Else go to step

8
14. Decrement the content of CL register by 01H.
15. Check whether the content of CL is zero. If zero, go to step next step. Else go to step

6
16. Display the result
17. Stop the program

PROGRAM:

Label Program Comments

L3:

L2:

L1:

ORG 1000H
MOV SI, 1200H
MOV CL, [SI]
DEC CL

MOV DL,CL
MOV SI, 1201H

MOV AX, [SI]
CMP AX, [SI+2]
JC L1
XCHG [SI+2], AX
XCHG [SI], AX

ADD SI,02H
DEC DL
JNZ L2
DEC CL
JNZ L3
HLT

Set starting address as 1000H.
Move immediate data to SI
Move contents of SI to CL
Decrement CL

Move CL to DL register
Move immediate data to SI

Move contents of SI to AX
Compare AX with SI
Jump if carry to loop1
Exchange data of AX with SI+2
Exchange data of AX with SI

Increment SI twice
Decrement DL register
Jump if no zero to loop 2
Decrement CL register
Jump if no zero to loop 3

Example:
Input:
1200: 04 (Array Size)
1201: 39
1202: 40
1203: 30
1204: 78
1205: 62
1206: 42
1207: 32
1208: 38

Output:
1200: 04 (Array Size)
1201: 30
1202: 32
1203: 38
1204: 39
1205: 40
1206: 42
1207: 62
1208: 78

SORTING – DESCENDING ORDER

Description:

 The array can be sorted in descending order by bubble sort algorithm. In bubble sorting
of M-data, M-1 comparisons are performed by taking two consecutive data at a time. After each
comparison, the two data can be re-arranged in the descending order in the same memory

locations, ie., larger first and smaller next. When the above M-1 comparisons are performed M-1
timer, the array will be stored in descending order.

Algorithm:
1. Start the program
2. Set starting address as 1000H
3. Set SI register to 1200H address
4. Get the count in CL & decrement CL register by one
5. Copy the content of CL register to DL register.
6. Initialize SI as 1202H.
7. Move the data pointed by SI to AX
8. Compare the data in AX & data pointed by SI+2
9. If there is carry, exchange the data and go toe next step. If there is no carry go to next

step.
10. Increment the content of SI by 02H
11. Decrement the content of DL register by 01H.
12. Check whether the content of DL is zero. If zero, go to step next step. Else go to step

8
13. Decrement the content of CL register by 01H.
14. Check whether the content of CL is zero. If zero, go to step next step. Else go to step

6
15. Display the result
16. Stop the program

PROGRAM:

Label Program Comments

L3:

L2:

L1:

ORG 1000H
MOV SI, 1200H
MOV CL, [SI]
DEC CL

MOV DL,CL
MOV SI, 1201H

MOV AX, [SI]
CMP AX, [SI+2]
JNC L1
XCHG [SI+2], AX
XCHG [SI], AX

ADD SI, 02
DEC DL
JNZ L2
DEC CL
JNZ L3
HLT

Set starting address as 1000H.
Move immediate data to SI
Move contents of SI to CL
Decrement CL

Move CL to DL register
Move immediate data to SI

Move contents of SI to AX register
Compare SI+2 with AX register
Jump if no carry to loop1
Exchange content of AX with SI+2
Exchange content of AX with SI

Increment address of SI by 02
Decrement DL register
Jump if no zero to loop 2
Decrement CL register
Jump if no zero to loop 3

Example:
Input:

 1200: 04 (Array Size)
 1201:39
 1202:40
 1203:30

 1204:78
 1205:62
 1206:42
 1207:32
 1208:38

 Output:

 1200: 04 (Array Size)
 1201:78
 1202:62

1203:42

 1204:40
 1205:39
 1206:38
 1207:32
 1208:30

Manual Calculation:

Flow Chart for Searching Odd-Even Numbers:

SEARCHING – EVEN AND ODD NUMBERS
Description:

 This program is used to count the number of even numbers and odd numbers in given
array. Here one right rotate operation is performed to detect the even or odd number. After
rotating operation, if carry is present, the given number is odd else it is even.

Algorithm:

1. Start the program
2. Initialize Code and Data Segment.
3. Set starting address as 1000H
4. Set SI register to 1200H address
5. Get the count in CL & decrement CL register by one
6. Initialize SI as 1202H.
7. Move the data pointed by SI to AX
8. Rotate AX register by right to one
9. If there is no carry, count the DX register for even counting else count the BX register

for odd counting
10. Check loop is over or not
11. Increment the content of SI by 02H goto step 7.
12. Store the BX contents in 1300h
13. Store the DX contents in 1302h
14. Display the result
15. Stop the program

PROGRAM:

Label Program Comments

L3:

L1:
L2:

ORG 1100H
MOV SI, 1200H
MOV DX, [SI]
MOV CL,01H
MOV BL,00H
MOV BH,00H

ADD SI, 02H
MOV AX, [SI]
RCR AX, CLH
JNC L1
INC BL
JMP L2

INC BH
DEC DX
JNZ L3
MOV DI, 1300H
MOV [DI],BL
INC DI
MOV [DI], BH
HLT

Set starting address as 1100H.
Move immediate data to SI
Move contents of SI to DX

INCREMENT SI BY 02H
Move contents of SI to AX
Rotate AX to right by one.
Jump if no carry to loop1
count the BL register for odd counting
Jump to l2

count the BH register for even counting
Count is performed until DX=0.

Store the BL(ODD) contents in 1300h

Store the BH(EVEN) contents in 1301h

Example:

Input:

 1200: 05 (Array Size)

 1201:00

 1202:01

 1203:02

 Manual Calculation:

 1204:04

 1205:06

Output:

 1300:01 odd

 1301:03 even

REVIEW QUESTIONS:

1. What is the relation between 8086 processor frequency & crystal Frequency?
2. What is the position of the stack pointer after the POP instruction?
3. Can ROM be used as stack?
4. Define – Baud Rate
5. What is cache memory?

Result:

 Thus the program for string manipulations, searching and sorting operations was written
and executed.

Ex. No. 5
Date:

PASSWORD CHECKING, PRINT RAM SIZE, SYSTEM DATE

Objective:

 To write an 8086 ALP to perform the following operations

d) Password Checking
e) Print RAM Size
f) Print System Date

PASSWORD CHECKING

Description:

The password checking is done using the DOS calls and functions. First Display the
message “Enter your Password”. Then read the pass word using Dos calls and compare
with previous password “MASM1234”. If it matches, then display the message password
is correct. Else display it as incorrect password

Algorithm:

1. Start the program.
2. Set the starting address as 1000H.
3. Display the message “Enter your Password”
4. Read the pass word using Dos calls and compare with previous password

“MASM1234”
5. If it matches, then display the message password is correct
6. Else display it as incorrect password
7. Stop the program.

PROGRAM:

Label Program Comments

 DATA SEGMENT

PASSWORD DB 'MASM1234'

LEN EQU ($-PASSWORD)

MSG1 DB 10,13,'ENTER YOUR

PASSWORD: $'

MSG2 DB 10,13,'YOUR

PASSWORD IS CORRECT!!$'

MSG3 DB 10,13,'INCORRECT

PASSWORD!$'

NEW DB 10,13,'$'

INST DB 10 DUP(0)

DATA ENDS

CODE SEGMENT

ASSUME CS:CODE,DS:DATA

ORG 1000H

START:

MOV AX,DATA

MOV DS,AX

LEA DX,MSG1

MOV AH,09H

INT 21H

MOV SI,00

UP1:

MOV AH,08H

INT 21H

CMP AL,0DH

JE DOWN

MOV [INST+SI],AL

Label Program Comments

 MOV [INST+SI],AL

MOV DL,'*'

MOV AH,02H

INT 21H

INC SI

JMP UP1

DOWN:

MOV BX,00

MOV CX,LEN

CHECK:

MOV AL,[INST+BX]

MOV DL,[PASSWORD+BX]

CMP AL,DL

JNE FAIL

INC BX

LOOP CHECK

LEA DX,MSG2

MOV AH,09H

INT 21H

JMP FINISH

FAIL:

LEA DX,MSG3

MOV AH,009H

INT 21H

FINISH:

INT 3

CODE ENDS

END START

END

Observation:

TO PRINT RAM SIZE
Description:

 INT 12h interrupt stores in AX the amount of RAM memory in kilobytes. For modern
computers it usually returns the value 0280h (640), representing the main memory. So this interrupt
doesn’t return the extended memory. The value returned in AX by this interrupt could also be
found at address 0040:0013h.

Algorithm:
1. Start the program.
2. Initialize the Segments.
3. Set the starting address as 1000H.
4. Initiate INT21H which returns the RAM size in AX – reg.
5. Initialize DI as 1300H
6. Store the value at 1300H
7. End of the segment
8. Terminate the program

PROGRAM:

Label Program Comments

ASSUME

CS:CODE,DS:CODE

CODE SEGMENT

ORG 1000H

INT 12H

MOV DI, 1300H

MOV [DI],AX

MOV AH,4CH

INT 21H

CODE ENDS

Initialize Segments

Set the starting address as 1000H

12H interrupt is invoked

Store the size of the RAM at 1300H

Example: Manual Calculation:
 Output:
 1300: 80

Program:

Label Program Comments

ASSUME

CS:CODE,DS:CODE

CODE SEGMENT

ORG 1000H

MOV AH,2AH

INT 21H

MOV DI, 1300H

MOV [DI],CX

ADD DI,02H

MOV [DI],DX

MOV AH,4CH

INT 21H

Initialize Segments

Set the starting address as 1000H

21H interrupt is invoked

Store the year at 1300H

Store the value of Month and day

CODE ENDS

Manual Calculation:

TO PRINT SYSTEM DATE

Description:
 INT 21h interrupt with AH as 2AH will return the system date. The year (1980 – 2099)
will be returned in CX register. The month will be available in DH register and day will be available
in DL register. All the returned values will be in Hex.

Algorithm:

1. Start the program.
2. Initialize the Segments.
3. Set the starting address as 1000H.
4. Initiate INT21H with AH value as 2A H.
5. Initialize DI as 1300H
6. Store the value of year at 1300H
7. Store the value of Month and Day in the consecutive memory locations
8. End of the segment
9. Terminate the program

Example: Manual Calculation:

 Output:

1300: D (Year)
 1301: 07

1302: 0B (Day)
1303: 08 (Month)

REVIEW QUESTIONS:

1. What is the role of Stack?
2. What is the difference between DOS and BIOS interrupts?
3. What is an interrupt vector Tabulation: of 8086?
4. Define – Machine cycle and T-State.
5. Define – Interrupt Vector Tabulation

Result:

 Thus the program for password checking, printing RAM size, and System date was written
and executed.

CYCLE II
Peripherals &

Interfacing Programs
(8086)

Ex. No. 6
Date:

INTERFACING TRAFFIC LIGHT CONTROL

AIM

To write an 8086 assembly language program to interface the traffic light controller with 8255 and
verify the operation.

DESCRIPTION

The system is a simple contraption of a traffic control system wherein the signaling lights are simulated
by the blinking or ON-OFF control of light-emitting diodes. The signaling lights for the pedestrian crossing are
simulated by the ON-OFF control of dual colour light emitting diodes.
A model of a four road – four lane junctions, the board has green, orange and red signals of an actual system.
Twelve LEDs are used on the board. In addition eight dual colour LEDs are used which can be made to change
either to red or to green.

CIRCUIT DIAGRAM TO INTERFACE TRAFFIC LIGHT WITH 8086

PROGRAM:

Label Mnemonics

ART

DELAY

REPEAT

AGAIN

ORG 1100H

MOV BX, 1200

MOV CX, 000C

MOV AL, [BX]

OUT 26, AL

INC BX

MOV AL, [BX]

OUT 20, AL

INC BX

MOV AL, [BX]

OUT 22, AL

CALL DELAY

INC BX

LOOP NEXT

JMP START

PUSH CX

MOV CX,0005

MOV DX, FFFF

DEC DX

JNZ AGAIN

LOOP REPEAT

POP CX

RET

OBSERVATION
INPUT OUTPUT

 1200: 80, 1A, A1, 64
 1204: A4, 81, 5A, 64
 1208: 54, 8A, B1, A8
 120C: B4, 88, DA, 68
 1210: D8, 1A, E8, 46
 1214: E8, 83, 78, 86, 74

REVIEW QUSETIONS:

1. List out the control ports in traffic light controller
2. What are the functions of conditional instructions?
3. List out the LAN ports in traffic light controller
4. What are the functions of Loop instructions?
5. List out the Modules in traffic light controller

RESULT

 Thus the interface the traffic light controller using 8086 microprocessors with 8255 has been
executed and verified.

Ex. No. :7
Date:

INTERFACING STEPPER MOTOR AND TEMPERATURE SENSOR

Aim:

To write C Programs for running stepper motor either in clock- wise or counter-clock-

wise and the direction of the rotation of the stepper motor depends on the variation in the

temperature sensor.

 Pre Lab Questions

1. What is LM35?

2. List the devices used to sense temperature.

3. What is the purpose of a thermocouple?

4. What is signal conditioning?

5. What is the output voltage of a thermocouple?

Apparatus & Software Required

1. LPC2148 Development board.

2. Keil µV isi on5 software.

3. Flash Magic.

4. USB cable.

5. Stepper Motor.

Theory:

Stepper motors, effectively have multiple "toothed" electromagnets arranged around a

central metal gear. To make the motor shaft turn, first one electromagnet is given power, which

makes the gear's teeth magnetically attracted to the electromagnet's teeth. When the gear's

teeth are thus aligned to the first electromagnet, they are slightly offset from the next

electromagnet. So when the next electromagnet is turned on and the first will turn off, the gear

rotates slightly to align with the next one and from there the process is repeated. Each of those

slight rotations is called a "step." In that way, the motor can be turned to a précised angle.

There are two basic arrangements for the electromagnetic coils: bipolar and unipolar.

Procedure:

1. Follow the steps to create a New project

2. Type the below code and save it with the name (any name.c)

3. Follow the steps to create a New Project to compile and build the program

4. Follow the procedures in to download your Hex code to processor using Flash Magic

Software.

STEPPER MOTOR PROGRAM

/* This is a test program to stepper motor interface in the ARM LPC2148*/

/* development board itself*/

/***

******/

#include <LPC214x.H> /* LPC214x definitions */

#define step1 0x00010000 /* P1.16

/ #define step2 0x00020000 / P1.17

*/

void wait (void)

{ /* wait function */

int d;
for (d = 0; d < 10000; d++); /* only to delay for LED flashes */

}

call_stepper_forw()

{

IOCLR1 = 0X00FF0000;

IOSET1 = 0X00040000;

// wait();

// wait();

wait();

wait();

IOCLR1 = 0X00FF0000;

IOSET1 = 0X00060000;

// wait();

// wait();

wait();

wait();

IOCLR1 = 0X00FF0000;

IOSET1 = 0X00070000;

// wait();

// wait();

wait();

wait();

IOCLR1 = 0X00FF0000;

IOSET1 = 0X00050000;

// wait();

// wait();
wait();
wait();

}

int main (void)

{

IODIR1 |=

0xFFFFFFFF;

IOCLR1|=

0X00FF0000;

wait();

while(1) /*Loop Forever*/

{

call_stepper_forw();

 // wait();

 // wait();

wait();

wait();

IOCLR1 = 0X00FF0000;

}

}

STEPPER MOTOR PROGRAM PORT DETAILS

ARM DETAILS

P1.16 STEP 1

P1.17 STEP 2

 TEMPERATURE SENSOR PROGRAM

/***/

MAIN ADC TEST

/***/

/* This is a test program to temperature sensor in the ARM LPC2148 development board*/

/**/

#include <LPC214x.H> /* LPC214x definitions */

#include "ADC_Driver.c" /* contains prototypes of driver functions*/

#include "lcd.c"
#include <stdio.h>

int main (void)

{

unsigned int

adc_val; unsigned

int temp;

unsigned char buf[4] = {0,0,0,0};

ADCInit();

lcdinit();

//wait();

clrscr(10

);

printstr("ADC

Test",0,0); wait();

while (1) /* Loop forever */

{

adc_val = ADC_ReadChannel();

temp = (unsigned int)((3*adc_val*100)/1024);

sprintf(buf,"%d",temp);

printstr(buf,0,1);

}

}

/**/

LCD.C

/***

******/

#include <LPC214x.h>

#define RS 0x00000400 /* P0.10

/ #define CE 0x00001800 / P1.11

*/

void clrscr(char ch);

void lcdinit(void);

void lcdcmd(char);

void lcddat(char);

void gotoxy(char,char); //x,y ; x-char position(0 - 16) y-line number 0 or 1

void printstr(unsigned char *,char,char); //string,column(x),line(y)

void wait (void);

void split_numbers(unsigned int number);

#define SET 1

#define OFF 0

unsigned int thousands,hundreds,tens,ones;

void wait (void) { /* wait function

*/

 int d;

for (d = 0; d < 100000; d++); /* only to delay for LED flashes */

}

void lcdinit()

{

IODIR0 |= 0xFFFFFFFF;

IOCLR0 |=0X00000FFF;

lcdcmd(0x

28);

lcdcmd(0x28)

;

lcdcmd(0x0c)

;

lcdcmd(0x06)

;

lcdcmd(0x01)

;

lcdcmd(0x0f);

wait();
}

void gotoxy(char x, char y)

{

if(y == 0)

lcdcmd(0x80+x);

else

lcdcmd(0xc0+x);

}

void printstr(unsigned char *str, char x, char y)

{

char i;

gotoxy(x,y);

wait();//(500)

;

for(i=0;str[i]!='\0';i++)

lcddat(str[i]);

}

void lcdcmd(char cmd)

{

unsigned char LCDDAT;

LCDDAT = (cmd & 0xf0); //higher

nibble IOSET0 = LCDDAT;

IOCLR0 = RS; IOSET0 =

CE;

wait();//(100); //enable lcd

IOCLR0 = CE;

IOCLR0 = 0X00000FFF;

LCDDAT = ((cmd<<0x04) & 0xf0); //lower

nibble IOSET0 = LCDDAT;

IOCLR0 = RS;

IOSET0 = CE;

wait();//(100); //enable lcd

IOCLR0 = CE;

IOCLR0 = 0X00000FFF;

}

void lcddat(char cmd)

{
unsigned char LCDDAT;

LCDDAT = (cmd & 0xf0); //higher

nibble IOSET0 = LCDDAT;

IOSET0 = RS;

IOSET0 = CE;

wait();//(100); //enable lcd

IOCLR0 = CE;

IOCLR0 = 0X00000FFF;

LCDDAT = ((cmd<<0x04) & 0xf0); //lower

nibble IOSET0 = LCDDAT;

IOSET0 = RS;

IOSET0 = CE;

wait();//(100); //enable lcd

IOCLR0 = CE;

IOCLR0 = 0X00000FFF;

}

void clrscr(char ch)

{

if(ch==0)

{

printstr("",0,0);

gotoxy(0,0);

}

else if(ch == 1)

{

printstr("",0,1);

gotoxy(0,1);

}

else

{

lcdcmd(0x01);

// delay(100);

}

}

void split_numbers(unsigned int number)
{

thousands = (number

/1000); number %= 1000;

hundreds = (number /

100); number %= 100;

tens = (number /

10); number %= 10;

ones = number ;

}

void Wait_Msg(void)

{

lcdcmd(0x01);

printstr("Please Wait ", 0, 0);

}

void Welcome_Msg(void)

{

lcdcmd(0x01);

printstr("Welcome to ", 0, 0);

printstr("SMMICRRO ", 0, 1);

}

ADC_ DRIVER.C

/**/

#include <LPC214x.H> /* LPC214x definitions

*/

Void ADCInit (void)

{

PINSEL1 |= 0x04000000; /*For Channel AD0.2 is

P0.29*/

 IODIR0 |= ~(0x04000000);

AD0CR |= 0x00200204; /*0x04 selects AD0.2 to mux output, 0x20 makes ADC

in operational*/

AD0GDR; /*A read on AD0GDR clears the DONE bit*/

}

void ADC_StartConversion(void)

{

AD0CR |= (1<<24);

}

void ADC_StopConversion(void)

{
AD0CR &= (~(1<<24));

}

unsigned int ADC_ReadChannel(void)

{

// unsigned int i;

 unsigned long ADC_Val, t;

ADC_StartConversion();

while((AD0DR2&0x80000000)==0); /*wait until ADC conversion completes*/

if(AD0STAT & 0x00000400)

{

//printstr("OVR",0,1)

; return(0);

}

t = AD0DR2;

ADC_Val = ((t>>6) & 0x000003FF);//(AD0DR2 & 0x000003FF); //((AD0CR>>6) &

0x000003FF);

//ADC_StopConversion();

return(ADC_Val);

}

TEMPERATURE SENSOR PROGRAM PORT DETAILS

ARM DETAILS

P0.29 ADC0.2

PO.10 RS LCD PIN

P1.11 CE LCD PIN

REVIEW QUESTIONS:

1. Why LM35 is used to Measure Temperature?

2. Compare the difference between LM 34 and LM 35 sensors?

3. What is the operating temperature range in LM35?

4. How many pins are available in LM35?

5. What is the main function of analog pin in LPC 2148?

Result:

 The C-Language program for running stepper motor either in clock-wise or counter-

clock-wise Depending on the temperature is developed in the sensor LM35 and the output is

verified in LCD.

Ex. No. : 8
Date:

Implementing zigbee protocol with ARM
Aim:

To write C Programs for Zigbee Protocol and verify the communication between Xbee Module

Transmitter and Receiver.

Pre Lab Questions

1. What are the applications of zigbee protocol?

2. Why Zigbee based is preferred for wireless communication?

3. What is the function of a scheduler?

4. What is the main function of voltage convertors in UART?

5. List the advantages of using Zigbee protocol.

Apparatus & Software Required:

1. LPC2148 Development board.

2. Keil µV isi on5 software.

3. Flash Magic.

4. USB cable.

5. Zigbee Mod ule Tx a nd Rx .

Theory:

The X Bee/X Bee-PRO ZNet 2.5 (formerly known as Series 2 and Series 2 PRO) RF

Modules were directed to operate within the ZigBee protocol. The modules provide reliable

delivery of data between remote devices. Zigbee is the communication protocol like wifi and

Bluetooth. Xbee is the module using Zigbee protocol.

Some of its features are:

● ZigBee is targeted at radio-frequency (RF) applications

● Low data rate, long battery life, and secure networking

● Transmission range is between 10 and 75 meters (33~246 feet)

● The addressing space allows of extreme node density up to 18,450,000,000,000,000,000 devices

(64 bit IEEE address)

● Using local addressing, simple networks of more than 65,000 nodes can be configured,

with reduced address overhead

● The radios use direct-sequence spread spectrum coding, which is managed by the digital

stream into the modulator.

● To ensure reliable data transmission

● Binary phase shift keying (BPSK) in the 868/915 MHz

● Offset quadrature phase shift keying (O-QPSK) at 2.4 GHz

Procedure:

1. Follow the steps to create a New project

2. Type the below code and save it with the name (anyname.c)

3. Follow the steps to create a New Project to compile and build the program

4. Follow the procedures in to download your Hex code to processor using Flash Magic

Software.

 /**/

ARM TRANSMITTER

PROGRAM LCD.C

/**/

#include

<LPC214x.h>

#include "lcd.h"

#define RS 0x00000400 /* P0.10

/ #define CE 0x00001800 / P1.11

*/

/*void clrscr(char ch);

void lcdinit(void);

void lcdcmd(char);

void lcddat(char);

void gotoxy(char,char); //x,y ; x-char position(0 - 16) y-line number 0 or 1 void

printstr(char *,char,char); //string,column(x),line(y)

void wait (void);

void split_numbers(unsigned int number);*/

#define SET 1

#define OFF 0

unsigned int thousands,hundreds,tens,ones;

void wait (void)

{ /* wait function */

int d;

for (d = 0; d < 100000; d++); /* only to delay for LED flashes */

}

void lcdinit()
{

IODIR0 |=

0xFFFFFFFF;

IOCLR0 |=

0X00000FFF;

lcdcmd(0x

28);

lcdcmd(0x28)

;

lcdcmd(0x0c)

;

lcdcmd(0x06)

;

lcdcmd(0x01)

;

lcdcmd(0x0f);

wait();

}

void gotoxy(char x, char y)

{

if(y == 0)

lcdcmd(0x80+x);

else

lcdcmd(0xc0+x);

}

void printstr(char *str, char x, char y)

{

char i;
gotoxy(x,y);

wait();//(500)
;

for(i=0;str[i]!='\0';i++)

lcddat(str[i]);

}

void lcdcmd(char cmd)

{

unsigned char LCDDAT;

LCDDAT = (cmd & 0xf0); //higher

nibble IOSET0 = LCDDAT;

IOCLR0 = RS; IOSET0 =

CE;

wait(); //(100);

//enable lcd
IOCLR0 = CE;
IOCLR0 = 0X00000FFF;

LCDDAT = ((cmd<<0x04) & 0xf0); //lower

nibble IOSET0 = LCDDAT;

IOCLR0 = RS;

IOSET0 = CE;

wait();//(100); //enable lcd

IOCLR0 = CE;

IOCLR0 = 0X00000FFF;

}

void lcddat(char cmd)

{

unsigned char LCDDAT;

LCDDAT = (cmd & 0xf0); //higher

nibble IOSET0 = LCDDAT;

IOSET0 = RS; IOSET0 = CE;

wait();//(100); //enable lcd

IOCLR0 = CE;

IOCLR0 = 0X00000FFF;

LCDDAT = ((cmd<<0x04) & 0xf0); //lower

nibble IOSET0 = LCDDAT;

IOSET0 = RS; IOSET0 = CE;

wait();//(100); //enable lcd

IOCLR0 = CE;

IOCLR0 = 0X00000FFF;

}

void clrscr(char ch)

{

if(ch==0)

{

printstr("",0,0);

gotoxy(0,0);

}

else if(ch == 1)

{

printstr("",0,1);

gotoxy(0,1);

}

else

{

lcdcmd(0x01);

// delay(100);

}

}

void split_numbers(unsigned int number)

{

thousands = (number

/1000); number %= 1000;

hundreds = (number /

100); number %= 100;

tens = (number /

10); number %= 10;

ones = number ;

}

void Wait_Msg(void)

{

lcdcmd(0x01);

printstr("Please Wait ", 0, 0);

}

void Welcome_Msg(void)

{

lcdcmd(0x01);

printstr("Welcome to ", 0, 0);

printstr("SM MICRRO ", 0, 1);

}

/**

*/

LCD.h

/**

*****/

void clrscr(char ch);

void lcdinit(void);

void lcdcmd(char);

void lcddat(char);

void gotoxy(char,char); //x,y ; x-char position(0 - 16) y-line number 0 or 1

void printstr(char *,char,char); //string,column(x),line(y)

void wait (void);

void split_numbers(unsigned int number);

void Wait_Msg(void);

void Welcome_Msg(void);

/**/

UART_1.C

/**/

#include

<LPC214X.H>

#include "lcd.c"

#define TEMT 0X40

void

uart_1(void);

void delay(void);

void putcharr (unsigned char ch); /* Writes character to Serial Port*/

void tx_string(char str);

int main(void)

{

uart_1(); lcdinit(); delay();

delay();

 delay();

delay();

printstr("SM MICRRO SYSTEM",0,0);

while(1)

{

tx_string('C');

gotoxy(7,1);

lcddat('C'

); delay();

delay();

delay();

delay();
while(1);

}
}

void uart_1(void)

{

PINSEL0 = 0x00050000;

U1LCR = 0x83;

U1FDR = 0x00000010;

U1DLL = 98;

U1LCR = 0x03;

U1IER = 0x01;

}

void delay(void)

{

int d;

for (d = 0; d < 100000; d++); /* only to delay for LED flashes */

}

void tx_string(char str)

{

putcharr(str);

}

void putcharr (unsigned char ch) /* Writes character to Serial Port*/
{

while (!(U1LSR & TEMT)); /* U1LSR --> Status register

*/

U1THR = ch;

}

/**/

ARM RECEIVER PROGRAM

/**/

#include

<LPC214X.H>

#include "lcd.c"

void

uart_1(void);

void

delay(void);

unsigned char getcharr (void); /* Reads character from Serial Port*/

int main(void)

{

char rx_data;

uart_1(

);

lcdinit(

);

printstr("SM MICRRO SYSTEM",0,0);

while(1)

{

void uart_1(void) /* UART Installation */

{

PINSEL0 = 0x00050000;

U1LCR = 0x83;

U1FDR = 0x00000010;

U1DLL = 98;

U1LCR = 0x03;

U1IER = 0x01;

}

void delay(void)

{

int d;

for (d = 0; d < 100000; d++); /* only to delay for LED flashes */

}

unsigned char getcharr (void) /* Reads character from Serial Port*/

{

while (!(U1LSR &

0x01)); return

(U1RBR);

}

Implementing zigbee protocol with ARM PROGRAMS PORT DETAIL
TRANSMITTER PROGRAM RECEIVER PROGRAM

ARM Details

P0.8 TXD1

P0.9 RXD1

P0.10 RS LCD PIN

P1.11 CE LCD PIN

ARM Details

P0.8 TXD1

P0.9 RXD1

P0.10 RS LCD PIN

P1.11 CE LCD PIN

Post Lab Questions:

1. How to verify the communication between Transmitter and Receiver?

2. Which module is using Zigbee protocol?

3. How many UART ports available in LPC2148?

4. Write the two modes of communication are used in a ZigBee network.

5. Mention the transmission range for Zigbee protocol.

Result:

The C-Language program for Zigbee Protocol is written and the communication

between Zigbee Module Transmitter and Receiver is verified.

Ex. No. : 9
Date:

INTERFACING KEYBOARD AND LCD MATRIX KEYBOARD PROGRAM

Aim:

To develop a C-Language program for displaying the Key pressed in the Keypad in the

LCD module. The display should come in the desired line and column.

Pre Lab Questions

1. Mention the function of pull up resistor?

2. Outline the keyboard matrix.

3. Summarize the working principal of LCD.

4. What kind of interrupt is generated if a key has to be operated in an interrupt mode?

5. How many rows and columns are present in a 16 x 2 alphanumeric LCD?

Apparatus & Software Required

1. LPC2148 Development board.

2. Keil µV isi on5 software.

3. Flash Magic.

4. USB cable.

Theory:

The Matrix keyboard is used to minimize the number of I/O lines. Normally it is possible

to connect only one key or switch with an I/O line. If the number of keys in the system

exceeds the more I/O lines are required. To reduce the number of I/O lines the keys are

connected in the matrix circuit. Keyboards use a matrix with the rows and columns made up

of wires. Each key acts like a switch. When a key is pressed a column wire makes contact

with row wire and completes a circuit. For example, 16 keys arranged in a matrix circuit uses

only 8 I/O lines.

Procedure:

1. Follow the steps to create a New project

2. Type the below code and save it with the name (anyname.c)

3. Follow the steps to create a New Project to compile and build the program

4. Follow the procedures in to download your Hex code to processor using Flash

Magic Software.

/**/

MAIN.C
/**
*/

/* Description: This program gets input from Matrix key board and displays

corresponding */

/* Key value in 7segment display. Hence this program demonstrates both

*/ 7 segment display as well as Matrix key board. */

/* P1.16 to P1.23 are inputs from matrix key board,*/

/* P1.24 to P1.31 are outputs to 7 segment display

*/

/***

**

****/

/* ------- matrix key board description----------

*/

/* -- -- -- --
*/
/* row1 --| c |-- --| d |-- --| e |-- --| F |-- (SW1,SW2,SW3,SW4)
*/

/* -- -- -- --

*/

/* -- -- -- --

*/

/* row2 --| 8 |-- --| 9 |-- --| A |-- --| b |-- (SW5,SW6,SW7,SW8)

*/

/* -- -- -- --

*/

/* -- -- -- --

*/

/* row3 --| 4 |-- --| 5 |-- --| 6 |-- --| 7 |-- (SW9,SW10,SW11,SW12)

*/

/* -- -- -- --

*/

/* -- -- -- --

*/

/* row4 --| 0 |-- --| 1 |-- --| 2 |-- --| 3 |-- (SW13,SW14,SW15,SW16)

*/

/* -- -- -- --*/

/**/

#include

<LPC214x.h>
#include

"mat_7seg.h"

int main()

{

unsigned int key, last_key, Disp_key;

init_Matrix_7seg(); // Initialize matrix keyboard and 7segment dispaly

clearall_7seg(); // clear 7 segment display

last_key = 0; // Initialize this variable to zero

while(1)

{

key = catch_key(); // scan for a valid key press

if(key != 0) // zero means no key is pressed

{

if(key != last_key) // check whether the same key is pressed again(assume

this as STEP1)

{

Disp_key = key; // valid new key is stored in another variable

last_key = key; // this variable's value is used for STEP1

}

}

//Display_Number(Disp_key); /*this function is used to display number in

decimal format*/

Alpha_Dispay(4,Disp_key); /*this function is used to display number in

hex format (single digit only)*/

}

}

/**/

MATRIX SEVEN SEGMENT DRIVER.C

/**/

#include<LPC214

x.h> #include

"defs.h"
/*******************************Global
variables**/
unsigned int thousands,hundreds,tens,ones;

/**

******/

void init_Matrix_7seg(void)

{

IODIR1 |= 0xff0f0000; // set 7seg LEDs as output ports and matrix's MSB as

inputs and LSB as outputs

IODIR0 |= S7SEG_ENB; // set P0.19 to P0.22 as outputs to drive 7seg enable

pins

}

IOPIN0 |= S7SEG_ENB; // since we are using

active low 7 seg display, the

enable signals

// should be initially set to

HIGH.

/***

**

*******/

unsigned long scan_row(unsigned int row_num)

{

//unsigned int row,i;

unsigned long val;

IOSET1 = ROW_MASK; //clear the previous scan row output ie

make all row ops high

switch(row_num)
{

case 1: IOCLR1 = ROW1;break; // make P1.16

low

case 2: IOCLR1 = ROW2;break; // make P1.17

low

case 3: IOCLR1 = ROW3;break; // make P1.18

low

case 4: IOCLR1 = ROW4;break; // make P1.19

low

//default: row = ERR;

}

// for(i=0;i<=65000;i++);

val = IOPIN1; // read the matrix inputs

val = ((val >> 20) & 0x0000000F)^0x0000000F; // shift the colum value so that it

comes to LSB

complement of shifted value. return(val);

}

// XORing is done to take 1's//

unsigned int catch_key(void)

{

unsigned long

v; v =

scan_row(1);

switch(v)

{

case 1: return(13);

case 2: return(14);

case 4: return(15);

case 8: return(16);
}

v =

scan_row(2

); switch(v)

{

case 1: return(9);

case 2: return(10);

case 4: return(11);

case 8: return(12);

}

v =

scan_row(3

); switch(v)

{

case 1: return(5);

case 2: return(6);

case 4: return(7);

case 8: return(8);

}

v =

scan_row(4

); switch(v)

{

case 1: return(1);

case 2: return(2);

case 4: return(3);

case 8: return(4);

default: return(0);

}
}

/***
**
*****/

void clearall_7seg(void)

{

IOPIN1 &= ~S7SEG_LED; // make all the 7seg led pins to

LOW IOPIN0 |= S7SEG_ENB // Disable all the 7 seg display

}

/***

**

****/

void clearDigit_7seg(int digit_num)

{

IOPIN0 |= S7SEG_ENB; // clear enables first

switch(digit_num)

{

case 1: {

 IOPIN0

=
break;

~DIGI1_ENB; // no
w

enable only the digit1

}
case 2: {

 IOPIN0 = ~DIGI2_ENB; // no
w

enable only the digit2

 break;

 }
case 3: {

 IOPIN0 = ~DIGI3_ENB; // no
w

enable only the digit3

break;

}

case 4: {

IOPIN0 = ~DIGI4_ENB; // now enable only the digit4

break;

}

}

IOPIN1 &= ~S7SEG_LED; // make all the 7seg LED pins LOW

}

/***

**

*****/

void Digit_Dispay(int digit_num, unsigned int value)
{

clearDigit_7seg(digit_num

); switch(value)

{
case 0: IOPIN

1
|= ZERO;break;

case 1: IOPIN
1

|= ONE; break;

case 2: IOPIN
1

|= TWO; break;

case 3: IOPIN
1

|= THREE;
break;

case 4: IOPIN
1

|= FOUR; break;

case 5: IOPIN
1

|= FIVE; break;

case 6: IOPIN
1

|= SIX; break;

case 7: IOPIN
1

|= SEVEN;
break;

case 8: IOPIN
1

|= EIGHT; break;

case 9: IOPIN
1

|= NINE; break;

}

}

/***

**

*****/

void Alpha_Dispay(int digit_num, unsigned int value)

{

clearDigit_7seg(digit_num

); switch(value)

{
case 1: IOPIN

1
|= ZERO;break;

case 2: IOPIN
1

|= ONE; break;

case 3: IOPIN
1

|= TWO; break;

case 4: IOPIN
1

|= THREE;
break;

case 5: IOPIN
1

|= FOUR; break;

case 6: IOPIN
1

|= FIVE; break;

case 7: IOPIN
1

|= SIX; break;

case 8: IOPIN
1

|= SEVEN;
break;

case 9: IOPIN
1

|= EIGHT; break;

case 10: IOPIN1 |= NINE;

break; case 11: IOPIN1 |= AAA;

break; case 12: IOPIN1 |= bbb;

break; case 13: IOPIN1 |= ccc;

break; case 14: IOPIN1 |= ddd;

break; case 15: IOPIN1 |= eee;

break; case 16: IOPIN1 |= fff;

break;

}

}

/***

**

******/

void split_numbers(unsigned int number)

{

thousands = (number

/1000); number %= 1000;

hundreds = (number /

100); number %= 100;

tens = (number /

10); number %= 10;

ones = number ;

}

/***

**

******/

void Display_Number(unsigned int num)

{

unsigned int

i; if(num <=

9999)

{

clearall_7seg();

split_numbers((unsigned

int)num); Digit_Dispay(4, ones);

for(i=0;i<10000;i++);

Digit_Dispay(3,

tens);

for(i=0;i<10000;i++)

;

Digit_Dispay(2,

hundreds);

for(i=0;i<10000;i++);

Digit_Dispay(1,

thousands);

for(i=0;i<10000;i++);

}

}

MATRIX SEVEN SEGMENT PROGRAM PORT DETAIL

ARM DETAILS

P0.19 SEGMENT ENABLE PIN

P0.21 SEGMENT ENABLE PIN

P0.22 SEGMENT ENABLE PIN

P1.16 KEY BOARD INPUT

P1.17 KEY BOARD INPUT

P1.18 KEY BOARD INPUT

P1.19 KEY BOARD INPUT

P1.20 KEY BOARD INPUT

P1.21 KEY BOARD INPUT

P1.22 KEY BOARD INPUT

P1.23 KEY BOARD INPUT

P1.24 OUTPUT SEGMENT

P1.25 OUTPUT SEGMENT

P1.26 OUTPUT SEGMENT

P1.27 OUTPUT SEGMENT

P1.28 OUTPUT SEGMENT

P1.29 OUTPUT SEGMENT

P1.30 OUTPUT SEGMENT

LCD PROGRAM

/**/

LCD.h

/**/

void clrscr(char ch);

void lcdinit(void);

void lcdcmd(char);

void lcddat(char);

void gotoxy(char,char); //x,y ; x-char position(0 - 16) y-line number 0 or 1

void printstr(char *,char,char); //string, column(x),line(y)

void wait (void);

void split_numbers(unsigned int number);

void Wait_Msg(void);
void Welcome_Msg(void);

/**/

LCD.c

/**/

#include <LPC214x.h>

#define RS 0x00000400 /* P0.10

/ #define CE 0x00001800 / P1.11

*/

void clrscr(char ch);

void lcdinit(void);

void lcdcmd(char);

void lcddat(char);

void gotoxy(char,char); //x,y ; x-char position(0 - 16) y-line number 0 or 1 void

printstr(char *,char,char); //string, column(x),line(y)

void wait (void);

void split_numbers(unsigned int number);

#define SET 1

#define OFF 0

unsigned int thousands,hundreds,tens,ones;

void wait (void) { /* wait function

*/ int d;

for (d = 0; d < 100000; d++); /* only to delay for LED flashes */

}

void lcdinit()

{

IODIR0 |=

0x0000FFFF;

IOCLR0 |=

0X00000FFF;

lcdcmd(0x

28);

lcdcmd(0x28)

;

lcdcmd(0x0c)

;

lcdcmd(0x06)

;

lcdcmd(0x01)

;

 lcdcmd(0x0f)

; wait();

}

void gotoxy(char x, char y)

{

if(y == 0)

lcdcmd(0x80+x);

else

lcdcmd(0xc0+x);

}

void printstr(char *str, char x, char y)

{

char i;

gotoxy(x,y);

wait();//(500)

;

for(i=0;str[i]!='\0';i++)

lcddat(str[i]);

}

void lcdcmd(char cmd)

{

unsigned char LCDDAT;

LCDDAT = (cmd & 0xf0); //higher

nibble IOSET0 = LCDDAT;

IOCLR0 =

RS;

IOSET0 =

CE;

wait();//(100); //enable lcd

IOCLR0 = CE;

IOCLR0 = 0X00000FFF;

LCDDAT = ((cmd<<0x04) & 0xf0); //lower

nibble IOSET0 = LCDDAT;

IOCLR0 =

RS;
IOSET0 =

CE;

wait();//(100); //enable lcd

IOCLR0 = CE;

IOCLR0 = 0X00000FFF;

}

void lcddat(char cmd)

{

unsigned char LCDDAT;

LCDDAT = (cmd & 0xf0); //higher

nibble IOSET0 = LCDDAT;

IOSET0 =

RS;

IOSET0 =

CE;

wait();//(100); //enable lcd

IOCLR0 = CE;

IOCLR0 = 0X00000FFF;

LCDDAT = ((cmd<<0x04) & 0xf0); //lower

nibble IOSET0 = LCDDAT;

IOSET0 =

RS;

IOSET0 =

CE;

wait();//(100); //enable lcd

IOCLR0 = CE;

IOCLR0 = 0X00000FFF;

}

void clrscr(char ch)

{

if(ch==0)

{

printstr("",0,0);

gotoxy(0,0);

}

else if(ch == 1)

{
printstr("",0,1);
gotoxy(0,1);

}

else

{

lcdcmd(0x01);

// delay(100);

}

}

void split_numbers(unsigned int number)

{

thousands = (number

/1000); number %= 1000;

hundreds = (number /

100); number %= 100;

tens = (number /

10); number %= 10;

ones = number ;

}

void Wait_Msg(void)

{

lcdcmd(0x01);

printstr(" PLEASE WAIT ", 0, 0);

}
void Welcome_Msg(void)
{
lcdcmd(0x01);

printstr(" WELCOME TO ", 0, 0);

printstr("SM MICRRO SYSTEM", 0, 1);

}

/***/

LCD main.c
/***
*******/

/* This is a test program to display strings in LCD module in the ARM LPC2148 Development board itself

*/

/***

***********************/

#include <LPC214x.H> /* LPC214x definitions */

#include "lcd.h" /* includes lcd driver funtions*/

int main (void)

{

lcdinit(); /*Initialize lcd*/

Wait_Msg(); /*Display message - "Please Wait"*/

Welcome_Msg(); /*Display message - "Welcome to SM

MICRRO"*/

while(1) /*Loop Forever*/

{

}

LCD PROGRAM PORT DETAILS

ARM Details

PO.10 RS LCD PIN

P1.11 CE LCD PIN

REVIEW QUESTIONS:

1. Outline the operations involved when the key in a 4 x 4 keyboard matrix is being pressed.

2. List the registers used to store the keyboard, display modes and other operations

programmed by CPU.

3. What is switch bouncing? How to prevent it using de-bounce circuit?

4. How to adjust the contrast of the LCD?

5. Which command of an LCD is used to shift the entire display to the right?

Result:The C-Language program for displaying the Key pressed in the Keyboard is displayed in the seven

segment display and LCD module and the output was verified on the LCD on the desires line and

column/address.

Ex. No. : 10

Date:

INTERFACING LED & PWM

Aim:

a) To write a C program for Sw itch & L ED to activate LED’s

b) To write a C program generate a PWM and to vary the duty cycle.

Apparatus & Software Required:

1. LPC2148 Development board.

2. Keil µV isi on5 software.

3. Flash Magic.

4. USB cable.

5. CRO.

Theory:

The PWM is based on the standard timer block and inherits all of its features,

although only the PWM function is pinned out on the LPC2148. The timer is

designed to count cycles of the peripheral clock (PCLK) and optionally generate

interrupts or perform other actions when specified timer values occur, based on

seven match registers. The PWM function is also based on match register

events.

Procedure:

1. Follow the steps to create a New project

2. Type the below code and save it with the name

(anyname.c)

3. Follow the steps to create a New Project to compile and build the

program

4. Follow the procedures in to download your Hex code to processor

using Flash Magic Software.

/***

*************************/

SWITCH AND LED PROGRAM
/**

****************/
/* Description: This program gets DIP switch inputs and switches ON corresponding

LED
*/

/* P1.16 to P1.31 are output switch */

************/

 #include<LPC214x.H>

int main()

{

IO1DIR = 0xFFFF0000; // P1.16 TO P1.31 OUTPUT PIN

while(1)

{

IOCLR1 = 0xFFFF0000; // output pin cleared for enable the led

}

}

SWITCH AND LED PORT DETAILS

ARM DETAILS

P1.16 S&L ENABLE PIN

P1.17 S&L ENABLE PIN

P1.18 S&L ENABLE PIN

P1.19 S&L ENABLE PIN

P1.20 S&L ENABLE PIN

P1.21 S&L ENABLE PIN

P1.22 S&L ENABLE PIN

P1.23 S&L ENABLE PIN

P1.24 S&L ENABLE PIN

P1.25 S&L ENABLE PIN

P1.26 S&L ENABLE PIN

P1.27 S&L ENABLE PIN

P1.28 S&L ENABLE PIN

P1.29 S&L ENABLE PIN

P1.30 S&L ENABLE PIN

P1.31 S&L ENABLE PIN

/**

********/

PWM.C

/**

********/

/* Place lcd.c file into following directories C:\Keil\ARM\INC\Philips.*/

/* This program is used to Generate the PWM, Frequency and Duty cycle can be

changed*/

**

*******/

#include<LPC214x.H>

int main(void

{

PINSEL1 |= 0x00000400; //Enable pin0.7 as PWM2

PWMPR = 0x00000100; //Load prescaler (to vary the frequency can

modify here)

PWMPCR = 0x00002000; //PWM channel single edge control,

output enabled

PWMMCR = 0x00000003; //On match with timer reset the

counter

/* PWMR0 AND PWMR5 Both Value can change the duty cyle ex : PWMR0 = 10

AND PWMR5 = 2*/

 PWMMR0 = 0x00000010; //set cycle rate to sixteen ticks

PWMMR5 = 0x00000008; //set rising edge of PWM2 to 2 ticks

PWMLER = 0x00000021; //enable shadow latch for

match 0 - 2

PWMTCR = 0x00000002; //Reset counter and

prescaler

PWMTCR = 0x00000009; //enable counter and PWM, release

counter from reset

while(1) // main loop

{

}

}

PWM PROGRAM PORT DETAIL

ARM DETAILS

P0.7 PWM2

REVIEW QUESTIONS:

1. How do the variations in an average value get affected by PWM period?

2. Name the common formats available for LED display

3. Why are the pulse width modulated outputs required in most of the applications?

4. How do you determine the duty cycle of the waveform ?

5. What is the function of GPIO?

Result:

a. The C code is generated for Switch & LED and output is verified in LED’s by

Switches.

b. The C code is generated for PWM and to vary the duty cycle and verified in CRO

output.

Flowchart

Ex. No. 11
Date:

INTERFACING EPROM AND INTERRUPT
Aim:

To develop a C-Language program to write and read a data in EEPROM and also to analyze
its performance with the interrupt.

Apparatus & Software Required:

1. LPC2148 Development board.

2. Keil µV isi on5 software.

3. Flash Magic.

4. USB cable.

Theory:

Serial-interface EEPROM’s are used in a broad spectrum of consumer, automotive,

telecommunication, medical, industrial and PC related markets. Primarily used to store

personal preference data and configuration/setup data, Serial EEPROM’s are the most

flexible type of nonvolatile memory utilized today. Compared to other NVM solutions,

Serial EEPROM devices offer a lower pin count, smaller packages, lower voltages, as

well as lower power consumption.

Procedure:
1. Follow the steps to create a New project

2. Type the below code and save it with the name (anyname.c)

3. Follow the steps to create a New Project to compile and build the program

4. Follow the procedures in to download your Hex code to processor using Flash Magic

Software.

EPROM PROGRAM

/***

*******/

I2C.C

/***

***/

/* This Program For I2C

Interface */

#include<LPC214x.H>

#include "lcd.c"

void InitI2C(void);

void SendI2CAddress(unsigned char Addr_S);

void WriteI2C(unsigned char

Data);

void StopI2C(void);

void StartI2C(void);

#define STA 0x20

 #define SIC 0x08

#define SI 0x08

#define STO 0x10

#define STAC 0x20

#define AA 0x04

void InitI2C(void)

{
I2C0CONCLR = 0xFF;
PINSEL0 |= 0x50; // Set pinouts as scl and sda
I2C0SCLL =19; //speed at 100Khz for a VPB Clock Divider= 4 at 12 MHz

I2C0SCLH =19;

I2C0CONSET = 0x40; //Active Master Mode on I2C bus

}

void SendI2CAddress(unsigned char Addr_S)

{

while(I2C0STAT!=0x08); // Wait for start to be

completed

 I2C0DAT = Addr_S; // Charge slave

Address

I2C0CONCLR = SIC | STAC; // Clear i2c interrupt bit to send

the data

while(!(I2C0CONSET & SI)) ; // wait till status available

}

unsigned char ReadI2C(void)

{

unsigned char r;

I2C0CONCLR = SIC;

I2C0CONSET = 0x04; // clear SIC;

while(!(I2C0CONSET & 0x8)); // wait till status

available r=I2C0STAT;

wait(); // check for error

if (r == 0x50){ // look for "Data byte has been

received; ACK has been returned"

lcdcmd(0x01);

printstr("Read Sucess",0,0);

}

return I2C0DAT;

}

void WriteI2C(unsigned char Data)

{

unsigned char r;

I2C0DAT = Data; // Charge Data

I2C0CONCLR = 0x8; // SIC; Clear i2c interrupt bit to send

the data while(!(I2C0CONSET & 0x8)); // wait till status available

r=I2C0STAT;

if (r == 0x28)

{ // look for "Data byte in S1DAT has been

transmitted; ACK has been received"

lcdcmd(0x01);

printstr("Write Sucess",0,0);

}

}

void StopI2C(void)

{

I2C0CONCLR = SIC;

I2C0CONSET = STO;

while((I2C0CONSET&STO)); // wait for Stopped bus I2C

}

void StartI2C(void)

{

I2C0CONCLR = 0xFF; // clear I2C - included if User

forgot to "StopI2C()"

// else this function would hang.

I2C0CONSET = 0x40; // Active Master Mode on I2C bus

 I2C0CONSET = 0x00000020; // Start condition

}

int main()

{

unsigned char r;

wait();

wait();

wait();

wait();

lcdinit();

clrscr();

printstr("SM MICRRO SYSTEM",0,0);

printstr(" ARM DEV KIT ",0,1);

InitI2C();

StartI2C();

SendI2CAddress(0xa0); // EEPROM device address

WriteI2C(0); // Set the control port value

WriteI2C('B');

StopI2C();

wait();

wait();

StartI2C();

SendI2CAddress(0xa0); // EEPROM device address

WriteI2C(0); // Set the control port value

StopI2C();

StartI2C();

SendI2CAddress(0xa1); // Start the read

 r=ReadI2C(); // read the result StopI2C();

gotoxy(0,1);

split_numbers(r);

 lcddat(0x30+hundreds);

 lcddat(0x30+tens);

 lcddat(0x30+ones);

while(1);

}

/***/

LCD.C

/***/

#define RS 0x00000400 /* P0.10 */

 #define CE 0x00001800 /* P1.11 */

Void clrscr(char ch);

void lcdinit(void);

void lcdcmd(char); void lcddat(char);

void gotoxy(char,char); //x,y ; x-char position(0 - 16) y-line number 0

or 1

void printstr(char *,char,char); //string,column(x),line(y)

void wait (void);

void split_numbers(unsigned int number);

#define SET 1

#define OFF 0

unsigned int thousands,hundreds,tens,ones;

void wait (void) /* wait function */

int d;
for (d = 0; d < 100000; d++); /* only to delay for LED flashes */

}

void lcdinit()

{

IODIR0 = 0xFFFFFFFF;

IOCLR0 = 0X00000FFF;

lcdcmd(0x28);

lcdcmd(0x28);

 lcdcmd(0x0c);

lcdcmd(0x06);

 lcdcmd(0x01);

 lcdcmd(0x0f);

wait();//(1600);

}

 void gotoxy(char x, char y)

{

if(y == 0)

lcdcmd(0x80+x);

else

lcdcmd(0xc0+x);

}

void printstr(char *str, char x, char y)

{

char i; gotoxy(x,y); wait();//(500);

for(i=0;str[i]!='\0';i++) lcddat(str[i]);

}

void lcdcmd(char cmd)

{

unsigned char LCDDAT;

LCDDAT = (cmd & 0xf0); //higher nibble IOSET0 = LCDDAT;

IOCLR0 = RS; IOSET0 = CE;

wait();//(100); //enable lcd

IOCLR0 = CE;

IOCLR0 = 0X00000FFF;

LCDDAT = ((cmd<<0x04) & 0xf0); //lower nibble IOSET0 = LCDDAT;

IOCLR0 = RS; IOSET0 = CE;

wait();//(100); //enable lcd

IOCLR0 = CE;

IOCLR0 = 0X00000FFF;

}

void lcddat(char cmd)

{

unsigned char LCDDAT;

LCDDAT = (cmd & 0xf0); //higher nibble IOSET0 = LCDDAT;

IOSET0 = RS; IOSET0 = CE;

wait();//(100); //enable lcd

IOCLR0 = CE;

IOCLR0 = 0X00000FFF;

LCDDAT = ((cmd<<0x04) & 0xf0); //lower nibble IOSET0 = LCDDAT;

IOSET0 = RS; IOSET0 = CE;

wait();//(100); //enable lcd

IOCLR0 = CE;

IOCLR0 = 0X00000FFF;

}

void clrscr(char ch)

{

 if(ch==0)

{

printstr(" ",0,0);

gotoxy(0,0);

}

else if(ch == 1)

{

printstr(" ",0,1);

gotoxy(0,1);

}

else

{
lcdcmd(0

x01);

//
delay(10

0);
}

}

void split_numbers(unsigned int number)

{

thousands =

(number

/1000);

number %=

1000;

hundreds =

(number /

100);

number %=

100;

tens =

(numbe

r / 10);

number

%= 10;

ones = number;

}

EPROM (I2C) PROGRAM PORT SETAILS

ARM DETAILS

PO.10 RS LCD PIN

P1.11 CE LCD PIN

P0.11 SCL

P0.14 SDA

INTERRUPT BUZZER PROGRAM

/**

***/

Ext Driver.C

/***/

#inclu

de

<LP

C21

4x.h

>

void

init_

VIC(

void)

{

/*

initialize

VIC*/

VICIntEnClr = 0xffffffff; VICVectAddr = 0;

VICIntSelect = 0;

}

void ExtInt_ISR(void) irq

{

//EXTINT = (1<<2); /* clear EINT2 flag by writing HIGH to coresponding bit*/

//IOCLR0 = 0x40000000; /* Trigger the relay*/

IOCLR1 = 0x400f0000; /* P1.18 Trigger the relay*/

//IOPIN

1 =

0x00000000;

EXTINT =

(1<<2);

VICVectAddr = 0; /* Acknowledge Interrupt */

}

void init_Interrupt(void)
{

PINSEL0 = 0x80000000; // select P0.15 for

EINT2

VICIntEnable = (1 << 16); // External

interrupt 2 (EINT2)

VICVectCntl0 = (1<<5)|(16); // set the VIC control reg

for EINT2 VICVectAddr0 = (unsigned long)ExtInt_ISR;

EXTMODE &= ~(1<<2); // set VIC for egdse sensitive for EINT2

// EXTPOLAR = ~(1<<2); // set VIC for falling edge sensitive for EINT2

}

void init_ports(void)

{

IODI

R0 =

0x400

00000

;

IODI

R1 =

0x400

f0000

;

IOPI

N1 =

0xff0

10000

;

IOSE

T0 =

0x400

00000

;

IOSET1 = 0x400f0000;

}

/*void wait_for_turnoffRelay(void)

{

int val;

val = IOPIN1; // read the ports for key board

input while((~(val>>20)) != 0); // wait until 1st key in the matrix

keyboard

is pressed

IOCLR0 = 0x00010000; // switch off the relay

}*/

/**

*********/

XINTR _RELAY.C

**/

#include <LPC214x.h>

 #include "ext.h"

int main()

{

init_VIC();

init_Interrupt();

 init_ports();

while(1)

{

//wait_for_turnoffRelay();

}

}

INTERRUPT BUZZER PROGRAM

ARM DETAILS

P1.18 TRIGGER THE RELAY

P0.15 EINT2

Review Questions

1. What will be the initial values in all the cells of an EPROM?

2. What are the contents of the IE register, when the interrupt of the memory location

0x00 is caused?

3. Why normally LJMP instructions are the topmost lines of the ISR?

4. Enumerate the features of nested interrupt.

5. Illustrate the Master Slave mode.

Result:
The C-Language program to write and read a data in EEPROM and also to analyze its

performance with the interrupt is developed and is verified.

Ex. No. 11
Date:

ANALYZE SERIAL INTERFACE AND PARALLEL INTERFACE
Aim:
 To write an ALP to demonstrate

(a) Serial Interface - transmit a data 41H serially by interfacing 8086 with 8251
(b) Parallel Interface

SERIAL INTERFACE
Description:

 The 8253 and 8251 should be initialized before transmitting the character. The Program
first initialize 8253 to give an output clock frequency of 150 KHz at channel 0 which will give a
9600 baud rate of 8251. The 8251 mode instruction (refer mode instruction format) is initialized
with the following specifications: 8bit data, No parity, Baud rate factor (16x), 1 stop bit. Thus the
mode command word is 4E for the above said specifications. The 8251 command instruction
(refer command instruction format) is initialized with 37H which enables the transmit enable and
receive enable bits, force DTR output to zero, resets the error flags, and forces RTS output to
zero.

Algorithm:

1. Start the program.
2. Set the origin as 1100H.
3. Initialize the 8253 Timer in Mode 3
4. Initialize the 8251
5. Transmit the data at transmitter end
6. Reset the system
7. At the receiver end receive the data and reset the system
8. Stop the program.

CONTROL WORD FORMAT OF 8255

PROGRAM:

Label Program Comments

ORG 1000H

MOV AL, 36

OUT CE, AL

MOV AL, 10

OUT C8, AL

MOV AL, 00

OUT C8, AL

MOV AL, 4E

OUT C2, AL

MOV AL, 37

OUT C2, AL

MOV AL, 41

OUT C0, AL

INT 2

ORG 1200H

IN AL,C0

MOV BX,1250

MOV [BX],AL

INT 2

Set starting address as 1000H.

Mode set for 8253 – Channel 0 in Mode 3

Mode instruction for 8251

Command Instruction for 8251

Sent the data 41

Reset

Receive the data 41

Store the data at 1250H

Reset

Observation:
 Output:
 1250:

REVIEW QUSETIONS:

1. Expand USART?
2. Where do we prefer the serial communication?
3. What is the function of instruction pointer (IP) register?
4. What is the difference between IN and OUT instructions?
5. What is MODEM?

PARALLEL INTERFACE

Description:

 Initialize the Port A as Input port and Port B as Output port in Mode – 0. The input port
reads the data set by the SPDT switches and the output port outputs the same data to port B to
glow LEDs accordingly.

Algorithm:

1. Start the program.
2. Set the origin as 1100H.
3. Initialize the port A as input port
4. Initialize the port B as output port
5. Configure 8255 in mode 0
6. Read the input port
7. Write the read data to the output port
8. Stop the program.

Parallel Interface Program

Example:
 Input:

SPDT switch position: 10110011
Output:

 LED status: 10110011
Manual Calculation:

REVIEW QUSETIONS:

1. What is the difference between near and far procedure?
2. What is difference between shifts and rotate instructions?
3. Which are strings related instructions?
4. Which are addressing modes and their examples in 8086?
5. Discuss the use of following instructions:

a. SCASB
b. LAHF
c. ROL
d. SHR
e. IDIV

Result:

 Thus the programs for serial and parallel interface are executed successfully.

Label Program Comments

ORG 1100H

MOV AL,90

OUT C6,AL

IN AL,C0

OUT C2,AL

HLT

Set starting address as 1100H.

Initialize 8255 in mode 0 with port A as

input port and port B as output port.

Read the data from SPDT switch

Write the data to LEDs

Ex. No. 12
Date:

A/D AND D/A INTERFACE
Aim:

To write an assembly language program to demonstrate
(a) Analog to Digital Conversion
(b) Digital to Analog Conversion

ANALOG TO DIGITAL CONVERSION
Features of ADC 0809

ADC 0809 is a monolithic CMOS device, with an 8-bit analog to digital converter, 8 channel
multiplexer and microprocessor compatible control logic

1. 8 bit resolution
2. 100 μs Conversion time
3. 8 channel multiplexer with latched control logic
4. No need for external zero or full scale adjustments
5. Low power consumption time
6. Latched tristate output

The device contains an 8 channel single ended analog signal multiplexer. A particular input
channel. A particular input channel is selected by using the address decoding. Table shows the
input states for the address lines to select any channel. The address is latched into the decoder of
the chip on low to high transition of the address latch enable. The A/D converter‘s successive
approximation register reset on the positive edge of the start of the conversion pulse. The
conversion is begun on the falling edge of the SOC pulse. End of conversion will go low between
0 and 8 clock pulses after the rising edge of start of conversion

SELECTED
ANALOG

CHANNEL

ADDRESS LINE

ADD C ADD B ADD A

IN0
IN1
IN2
IN3
IN4
IN5
IN6
IN7

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

Algorithm

1. Select Channel ‘0’ and apply analog voltage
2. Send Start of conversion
3. Check End of conversion
4. Get digital data for corresponding analog voltage and display at stored location.

The buffer 74LS244 which transfers the converted data outputs to data bus is selected when

A7 A6 A5 A4 A3 A2 A1 A0

 1 1 0 0 0 X X X

 The I/O address for the latch 74LS 714 which latches the data bus to ADD A, ADD B and
ADDC and ALE 1 and ALE 2 is

A7 A6 A5 A4 A3 A2 A1 A0

 1 1 0 0 1 X X X

 The flip flop 74LS74 which transfers the D0 line status to the start of conversion pin of
ADC0809 is selected when

A7 A6 A5 A4 A3 A2 A1 A0

 1 1 0 1 0 X X X

=C0H

=C8H

=D0H

The EOC output of ADC 1 and ADC 2 is transferred to D0 line by means of two tristate
buffers.
The EOC 1 is selected when

A7 A6 A5 A4 A3 A2 A1 A0

 1 1 0 1 1 X X X

The EOC 2 is selected when

A7 A6 A5 A4 A3 A2 A1 A0

 1 1 1 0 0 X X X

SL. NO
CHANNEL

NUMBER

EOC

ADDRESS

CHNO.

ALE LOW

OE HIGH

CHNO.

ALE HIGH

OE LOW

CHNO.

ALE LOW

OE HIGH

1 CH0 D8 10 18 10

2 CH1 D8 11 19 11

3 CH2 D8 12 1A 12

4 CH3 D8 13 1B 13

5 CH4 D8 14 1C 14

6 CH5 D8 15 1D 15

7 CH6 D8 16 1E 16

8 CH7 D8 17 1F 17

=D8H

=E0H

FLOWCHART

PROGRAM

Label Program Comments

LOOP

ORG 4100H

MOV AL, 10H

OUT 0C8H, AL

MOV AL, 18H

OUT 0C8H, AL

MOV AL, 01H

OUT 0DOH, AL

MOV AL, 00H

MOV AL, 00H

MOV AL, 00H

MOV AL, 00H

OUT 0DOH, AL

IN AL, 0D8H

AND AL, 01H

CMP AL, 01H

Set starting address as 4100H.

Selection Channel ‘0’

Make ALE1 and OE1 high

Make SOC High

Make SOC low

Check EOC

JNZ LOOP

IN AL, 0C0

MOV BX, 1200H

MOV [BX], AL

HLT

Output Digital Data

Observation:

DAC 0800

REVIEW QUSETIONS:

1. Which is by default pointer for CS/ES?
2. What is the difference between instructions RET & IRET?
3. What are the functions performed by 8279?
4. What is PPI?
5. Give the control word format for I/O mode of 8255?

INTERFACING DAC WITH 8086

THEORY:

DAC 0800 is an 8 – bit DAC and the output voltage variation is between – 5V and +
5V.The output voltage varies in steps of 10/256 = 0.04 (appx.). The digital data input and the
corresponding output voltages are presented in the Table1.

Input
Data in
HEX

Output
Voltage

00 - 5.00

01 - 4.96

02 - 4.92

… …

7F 0.00

… …

FD 4.92

FE 4.96

FF 5.00

Referring to Table1, with 00 H as input to DAC, the analog output is – 5V. Similarly,

with FF H as input, the output is +5V. Outputting digital data 00 and FF at regular intervals, to
DAC, results in different wave forms namely square, triangular, etc,. The port address of DAC
is 08 H

ALGORITHM:

(a) Square Wave Generation

1. Load the initial value (00) to Accumulator and move it to DAC

2. Call the delay program

3. Load the final value(FF) to accumulator and move it to DAC

4. Call the delay program.

5. Repeat Steps 2 to 5

FLOWCHART

PROGRAM

Label Program Comments

START:

DELAY:

L1:

ORG 4100H

MOV AL, 00H

OUT 0C0H,AL

CALL DELAY

MOV AL, 0FFH

OUT 0C0H,AL

CALL DELAY

JMP START

MOV CX, 05FFH

LOOP L1

RET

Set starting address as 4100H.

(b) Saw tooth Wave Generation

1. Load the initial value (00) to Accumulator

2. Move the accumulator content to DAC

3. Increment the accumulator content by 1.

4. Repeat Steps 3 and 4.

FLOWCHART

PROGRAM

Label Program Comments

START

L1

ORG 4100H

MOV AL, 00H

OUT 0C0H, AL

INC AL

JNZ L1

JMP START

Set starting address as 4100H.

(c) Triangular Wave Generation

1. Load the initial value (00) to Accumulator

2. Move the accumulator content to DAC

3. Increment the accumulator content by 1.

4. If accumulator content is zero proceed to next step. Else go to step 3.

5. Load value (FF) to Accumulator

6. Move the accumulator content to DAC

7. Decrement the accumulator content by 1.

8. If accumulator content is zero go to step2. Else go to step 7.

FLOWCHART

PROGRAM

Label Program Comments

START:

L1:

L2:

ORG 4100H
MOV BL, 00H
MOV AL, BL
OUT 0C0H,AL
INC BL
JNZ L1
MOV BL, 0FFH
MOV AL, BL
OUT 0C0H,AL
DEC BL
JNZ L2
JMP START

Set starting address as 4100H.

Example:

Waveform Amplitude Time Period(ms)

Square 2 56

Sawtooth 2 3

Triangular 2 2.4

Observation:

Waveform Amplitude Time
Period(ms)

Square

Sawtooth

Triangular

REVIEW QUSETIONS:

1. Whether 8086 is compatible with Pentium processor?
2. Write an ALP program for multiplication of given number in location mode a) 0060,

b) 0002
3. List the operating modes of 8253 timer.
4. What is the use of USART?
5. Compare the serial and parallel communications.

RESULT

Thus the program to demonstrate the ADC and DAC were executed.

CYCLE III
8051 Programs

Flow Chart

Ex. No. 13
Date:

BASIC ARITHMETIC AND LOGIC OPERATIONS
Objective:
 To write an ALP to perform the following operations using 8051 instruction set

(a) Addition
(b) Subtraction
(c) Multiplication
(d) Division
(e) Logical operation

ADDITION OF TWO 8 BIT NUMBERS
Description:

 In order to perform addition in 8051, one of the data should be in accumulator and another
data can be in any SFR/internal RAM or can be an immediate data. After addition the sum is
stored in accumulator. The sum of two 8 – bit data can be either 8 bits (sum only) or 9 bits (sum
and carry). The accumulator can accommodate only the sum and if there is carry, the 8051 will
indicate by setting carry flag. Hence one of the internal register/RAM locations can be used to
account for carry.

Algorithm:

1. Set DPTR as pointer for data.
2. Move first data from external memory to accumulator and save it in R1 register.
3. Increment DPTR.
4. Move second data from external memory to accumulator
5. Clear R0 register to account for carry.
6. Add the content of R1 register to accumulator.
7. Check for carry. If carry is not set go to step 8. Otherwise go to next step.
8. Increment R0 register.
9. Increment DPTR and save the sum in external memory.
10. Increment DPTR, move carry to accumulator and save it in external memory.
11. Stop

PROGRAM:

Label Program Comments

AHEAD:

MOV DPTR,#4500

MOVX A,@DPTR

MOV R1,A

INC DPTR

MOVX A,@DPTR

MOV R0,#00

ADD A,R1

JNC AHEAD

INC R0

INC DPTR

MOVX @DPTR,A

INC DPTR

Load address of 1st data in DPTR

Move the 1st data to A

Save the first data in R1

Increment DPTR to point 2nd data

Load the 2nd data in A

Clear R0 for the account of carry

Get the sum in A reg

Check carry flag

If carry is set increment R0

Increment DPTR

Save the sum in external memory

Increment DPTR

HERE:

MOV A,R0

MOVX @DPTR,A

SJMP HERE

Move carry to A reg

Save the carry in external memory

Remain idle in infinite loop

Example: Manual Calculation:

Input:

4500: 05 [Addend]
4501: 06 [Augend]

 Output:

 4502: 0B [Sum]
 4503:00 [Carry]

Flow Chart

SUBTRACTION OF TWO 8 BIT NUMBERS

Description:

 In order to perform subtraction in 8051, one of the data should be in accumulator and
another data can be in any SFR/internal RAM or can be an immediate data. After subtraction the
result is stored in accumulator. The 8051 perform 2’s complement subtraction and then
complement the carry. Therefore if the result is negative carry flag is set and the accumulator will
have 2’s complement of the result. In order to get the magnitude of the result again take 2’s
complement of the result. One of the register is used to account for the sign of the result. The
8051 will consider previous carry while performing subtraction and so the carry should be cleared
before performing subtraction.

Algorithm:

1. Set DPTR as pointer for data.

2. Move the minuend from external memory to accumulator and save it in R1 register.
3. Increment DPTR.
4. Move subtrahend from external memory to accumulator
5. Exchange the contents of R1 and A such that minuend is in A and subtrahend is in R1
6. Clear R0 register to account for sign.
7. Clear carry flag.
8. Subtract the content of R1 register from accumulator.
9. Check for carry. If carry is not set go to step 12. Otherwise go to next step.
10. Complement the content of A – reg and increment by 1 to get 2’s complement of

result in A – reg
11. Increment R0 register.
12. Increment DPTR and save the result in external memory.
13. Increment DPTR, move R0 (sign bit) to accumulator and then save it in external

memory.
14. Stop

PROGRAM:

Label Program Comments

AHEAD:

HERE:

MOV DPTR,#4500

MOVX A,@DPTR

MOV R1,A

INC DPTR

MOVX A,@DPTR

XCH A,R1

MOV R0,#00

CLR C

SUBB A,R1

JNC AHEAD

CPL A

INC A

INC R0

INC DPTR

MOVX @DPTR,A

INC DPTR

MOV A,R0

MOVX @DPTR,A

SJMP HERE

Load address of minuend in DPTR

Move the minuend to A

Save the minuend in R1

Increment DPTR to point subtrahend

Load the subtrahend in A

Get minuend in A and Subtrahend in R1

Clear R0 for the account of Sign

Clear carry

Subtract R1 from A

Check Carry flag. If carry is set then

Get 2’s complement of result in A

Set R0 to indicate negative sign

Increment DPTR

Save the result in external memory

Increment DPTR

Move sign bit to A reg

Save the sign in external memory

Remain idle in infinite loop

Example: Manual Calculation:

Input:

4500: 0A [Minuend]
4501:05 [Subtrahend]

 Output:

 4502:05 [Difference]
 4503:00 [Sign Bit]

Flow Chart

MULTIPLICATION OF TWO 8 BIT NUMBERS
Objective:
 To write an ALP to multiply two numbers of 8-bit data using 8051 instruction set

Description:
 In order to perform subtraction in 8051, the two 8 – bit data should be stored in A and B
registers, then multiplication can be performed by using “MUL AB” instruction. After
multiplication the 16 – bit product will be in A and B register such that lower byte in A and higher
byte in B register.

Algorithm:

1. Load address of data in DPTR
2. Move the first data from external memory to A and save in B.
3. Increment DPTR and move second data from external memory to B.

4. Perform multiplication to get the product in A and B.
5. Increment DPTR and save A (lower byte of product) in memory
6. Increment DPTR , move B (lower byte of product) to A and save it in memory
7. Stop

PROGRAM:

Label Program Comments

HERE:

MOV DPTR,#4500

MOVX A,@DPTR

MOV B,A

INC DPTR

MOVX A,@DPTR

MUL AB

INC DPTR

MOVX @DPTR,A

INC DPTR

MOV A,B

MOVX @DPTR,A

SJMP HERE

Load address of 1st data in DPTR

Move the 1st data to A

Save the 1st data in B

Increment DPTR to point 2nd data

Load the 2nd data in A

Get the product in A and B

Increment DPTR

Save the lower byte of result in external memory

Increment DPTR

Move the higher byte of product to A reg

Save it in external memory

Remain idle in infinite loop

Example: Manual Calculation:

Input:

4500:02 [1st data]
4501:03 [2nd data]

 Output:

 4502:06 [Lower byte of product]
 4503:00 [Higher byte of product]

FLOWCHART

DIVISION OF TWO 8 BIT NUMBERS
Description:
 In order to perform subtraction in 8051, the dividend should be stored in A – reg and
divisor should be stored in B – reg. then the content of A can be divided by B using the instruction
“DIV AB”. After division the quotient will be in A – reg and remainder will be in B – reg.

Algorithm:

1. Load address of data in DPTR
2. Move the dividend from external memory to A and save it in R0 register.
3. Increment DPTR and move the divisor from external memory to A and save it in B

reg.
4. Move the dividend from R0 to A.
5. Perform division to get quotient in A and remainder in B.
6. Increment DPTR and save quotient (content of A - reg) in memory
7. Increment DPTR.

8. Move the remainder (Content of B – reg) to A and save in memory.
9. Stop

Label Program Comments

HERE:

MOV DPTR,#4500

MOVX A,@DPTR

MOV R0,A

INC DPTR

MOVX A,@DPTR

MOV B,A

MOV A,R0

DIV AB

INC DPTR

MOVX @DPTR,A

INC DPTR

MOV A,B

MOVX @DPTR,A

SJMP HERE

Load address of dividend in DPTR

Move the dividend to A

Save the dividend in R0

Increment DPTR to point divisor

Load the divisor in A

Move the divisor to B

Move the dividend to A

Divide the content of A by B

Increment DPTR

Save the quotient in external memory

Increment DPTR

Move the remainder to A reg

Save it in external memory

Remain idle in infinite loop

Example: Manual Calculation:

Input:
4500: 04 [Dividend]
4501:02 [Divisor]

 Output:
 4502:02 [Quotient]
 4503:00 [Remainder]

FLOWCHART

LOGICAL OPERATIONS OF 8 BIT NUMBERS
Description:
 The first value should be stored in R0 -reg, second value should be stored in R1 – reg, First
move R1 value to A, perform OR operation with R0 reg and store the result. Second move R1
value to A performs AND operation with R0 reg stores the result.

Algorithm:

1. Load address of first data in DPTR
2. Move the data to A
3. Save first data to R0
4. Increment DPTR to Load address of second data in DPTR
5. Save second data to A, R1
6. Perform OR operation of A with R0
7. Increment DPTR to store the result
8. Move R1 data to A
9. Perform AND operation of A with R0
10. Increment DPTR to store the result

PROGRAM:

Label Program Comments

HERE:

MOV DPTR,#4500

MOVX A,@DPTR

MOV R0, A

INC DPTR

MOVX A,@DPTR

MOV R1,A

ORL A, R0

INC DPTR

MOVX @DPTR, A

MOV A, R1

ANL A, R0

INC DPTR

MOVX @DPTR, A

SJMP HERE

Load address of first data in DPTR

Move the data to A

Save first data to R0

Increment DPTR to Load address of

second data in DPTR

Save second data to A, R1

Perform OR operation

Increment DPTR to store the result

Perform AND operation

Increment DPTR to store the result

Example: Manual Calculation:
 Input

 4500 :00

 4501:01

 Output

 4502 :01 (OR operation)

 4503 :00 (AND operation)

PROGRAM:

Label Program Comments

ORG 4100H

MOV DPTR, #4500H

MOVX A,@DPTR

MOV B,A

MUL AB

INC DPTR

MOVX @DPTR,A

INC DPTR

MOV A,B

Set starting address as 4100H.

Initialise the dptr

Get the data in A – reg

Copy it in B – reg

Multiply A and B

Increment dptr

Store the lower order in memory

Increment dptr

HERE:

MOVX @DPTR,A

SJMP HERE

Store the higher order in memory

Example:

 Input:

 4500:03

Output:

 4501:09

 4502:00

REVIEW QUSETIONS:

1. What is a microcontroller? How does it differ from a microprocessor?
2. What is the role of the program counter in 8051?
3. Write the significance of oscillators in a microcontroller.
4. What are the types of memory in 8051?
5. What is PSW?
6. Draw the format of TMOD register.

Result:

 Thus the program for arithmetic and logic operation was written and executed.

Ex. No. 14
Date:

SQUARE, CUBE and 2’S COMPLIMENT OF A NUMBER

Objective:

 To write 8051 ALP to determine the square, cube and 2’s compliment of a number

SQUARE OF A NUMBER
Description:
 The square of a number is determined by multiplying the value by itself. In this program
the input is obtained in A – reg and then it is copied to B – reg. The values of A and B registers
are multiplied and the result is stored in memory.

Algorithm:

1. Start the program.
2. Set the origin as 4500H.
3. Initialize DPTR
4. Get the value in A – reg and copy it in B – reg
5. Multiply the values of A – reg and B – reg
6. Store the result
7. Stop the program.

PROGRAM:

Label Program Comments

 ORG 4100H

 MOV DPTR,#4500H

 MOVX A,@DPTR

 MOV R0,A

 MOV B,A

 MUL AB

 PUSH B

 MOV B,A

 MOV A,R0

 MUL AB

 INC DPTR

 MOVX @DPTR,A

 MOV R2,B

 POP B

 MOV A,R0

 MUL AB

 ADD A,R2

 INC DPTR

 MOVX @DPTR,A

Set starting address as 4100H.

Initialise the dptr

Get the data in A – reg

Copy it in r0 – reg

Copy it in B – reg

Multiply A and B

Push higher order to stack

Store the lower order of result

HERE

 MOV A,B

 INC DPTR

 MOVX @DPTR,A

 SJMP HERE

Store the higher order of the result

CUBE OF A NUMBER

Description:
 The square of a number is determined by multiplying the value by itself for two times. In
this program the input is obtained in A – reg and then it is copied to B – reg and r0 - reg. The
values are multiplied and stored tin the memory.

Algorithm:

1. Start the program.
2. Set the origin as 4100H.
3. Initialize DPTR
4. Copy the data to A – reg, B- eg , R0 – reg
5. Multiply the data to find the cube
6. Store the result
7. Stop the program

PROGRAM:

Label Program Comments

HERE:

MOV DPTR,#4500

MOVX A,@DPTR

CPL A

INC A

INC DPTR

MOVX @DPTR, A

SJMP HERE

Load address of data in DPTR

Move the data to A

Complement A

Increment A by 1.

Increment DPTR to store the result of 2’s

complement of A

Example:
 Input:

 4500:03

 Output:

 4501:27

 4502:00

Example:

Input

4500 :01

Output

4501 :F2 (Two’s complement)

2’S COMPLIMENT OF A NUMBER

Description:

 In order to perform 2’s complement in 8051, the given value should be stored in A – reg
then take one’s complement of A and add value one to LSB.

Algorithm:

1. Load address of data in DPTR
2. Move the data to A
3. Complement A
4. Increment A by 1.
5. Increment DPTR to store the result of 2’s complement of A
6. Stop

REVIEW QUESTIONS:

1. Explain the instruction MOV DPTR, #4500H.
2. What does the PUSH instruction do?
3. What instruction is used to multiply any two numbers?
4. What is the function of POP instruction?
5. Which instruction is used to increment the value?
6. What does the ORL instruction do?
7. Explain ANL R1,#0F.
8. How do we take two’s complement of number? Give example.
9. What does the ORG 4100H mean?
10. Explain the mode 0 operating mode of 8051 serial ports.
11. Explain the mode 2 operating mode of 8051 serial ports.
12. Explain the mode 3 operating mode of 8051 serial ports.
13. What are the pins used for serial communication?
14. What is the use of SBUF register?
15. What are the methods to double the baud rate?

Result:

 Thus the program to determine square, cube and 2’s compliment of a number are executed
successfully.

Ex. No. 15
Date:

SQUARE WAVE GENERATION USING 8051

Objective:

 To write an Assembly Language Program (ALP) to generate square waveform using 8051
instruction set.

Description:
 Square waves of any frequency (limited by the controller specifications) can be generated
using the 8051 timer. The technique is very simple. Write up a delay subroutine with delay equal
to half the time period of the square wave. Make any port pin high and call the delay subroutine.
After the delay subroutine is finished, make the corresponding port pin low and call the delay
subroutine gain. After the subroutine is finished, repeat the cycle again. The result will be a square
wave of the desired frequency at the selected port pin.

Steps:
1. Assume Duty Cycle 50%
2.Assume 12MHZ Clock is Connected to Micro-Controller
3.Use Timers
4.Check output in P3.2

Program for 1 KHz Square wave using 8051 timer
 ORG 0000H
 MOVTMOD, #01H
 UP: SETB P3.2
 LCALL DELAY
 CLR P3.2
 LCALL DELAY
 SJMP UP
DELAY:MOV TH0,#0FEH
 MOV TL0,#0CH
 CLR TF0
 SETB TR0
HERE:JNB TF0,HERE
 RET
 END

Result:

 Thus the square waveform has been generated successfully.

