SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution)
SRM NAGAR, KATTANKULATHUR - 603 203.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION
ENGINEERING

oO
s
m
®
m

LAB MANUAL

1906605 MICROCONTROLLERS AND EMBEDDED LAB

ITII-YEAR VI-SEM
ACADEMIC YEAR: 2024-2025 (EVEN SEMESTER)

Prepared by

Dr. S. R. Preethi, Associate Professor /ECE
Dr. K. Durgadevi, Asst. Professor (0.G) /ECE
Ms. K. Arthi, Asst. Professor (O.G) /ECE

SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution)
SRM Nagar, Kattankulathur -603 203

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

/VISION OF THE INSTITUTE \
“Educate to excel in social transformation”
To accomplish and maintain international eminence and become a model institution for

higher learning through dedicated development of minds, advancement of knowledge and

professional application of skills to meet the global demands.

)

MISSION OF THE INSTITUTE \

® To contribute to the development of human resources in the form of professional

engineers and managers of international excellence and competence with high motivation
and dynamism, who besides serving as ideal citizen of our country will contribute
substantially to the economic development and advancement in their chosen areas of
specialization.

® To build the institution with international repute in education in several areas at several

levels with specific emphasis to promote higher education and research through strong

\ institute-industry interaction and consultancy.

VISION OF THE DEPARTMENT
To excel in the field of electronics and communication engineering and to develop highly

competent technocrats with global intellectual qualities.

MSSION OF THE DEPARTMENT \
® To educate the students with the state of art technologies to compete internationally, able
to produce creative solutions to the society's needs, conscious to the universal moral
values, adherent to the professional ethical code
® To encourage the students for professional and software development career

® To equip the students with strong foundations to enable them for continuing education

\ and research. /

PROGRAMME OUTCOMES (POs)

Engineering knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals, and an engineering specialization to the solution of complex engineering
problems.

PO2: Problem analysis: Identify, formulate, review research literature, and analyze complex
engineering problems reaching substantiated conclusions using first principles of
mathematics, natural sciences, and engineering sciences.

PO3: Design/development of solutions: Design solutions for complex engineering
problems and design system components or processes that meet the specified needs with
appropriate consideration for the public health and safety, and the cultural, societal, and
environmental considerations.

PO4: Conduct investigations of complex problems: Use research-based knowledge and
research methods including design of experiments, analysis and interpretation of data, and
synthesis of the information to provide valid conclusions.

PO5: Modern tool usage: Create, select, and apply appropriate techniques, resources, and
modern engineering and IT tools including prediction and modeling to complex
engineering activities with an understanding of the limitations.

PO6: The Engineer and society: Apply reasoning informed by the contextual knowledge to
assess societal, health, safety, legal and cultural issues and the consequent responsibilities
relevant to the professional engineering practice.

PO7: Environment and sustainability: Understand the impact of the professional
engineering solutions in societal and environmental contexts, and demonstrate the
knowledge of, and need for sustainable development.

PO8: Ethics: Apply ethical principles and commit to professional ethics and responsibilities
and norms of the engineering practice.

PO9: Individual and team work: Function effectively as an individual, and as a member or
leader in diverse teams, and in multidisciplinary settings.

PO10: Communication: Communicate effectively on complex engineering activities with the
engineering community and with society at large, such as, being able to comprehend and
write effective reports and design documentation, make effective presentations, and give
and receive clear instructions.

PO11: Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a member

and leader in a team, to manage projects and in multidisciplinary environments.

Life-long learning: Recognize the need for, and have the preparation and ability to

engage in independent and life-long learning in the broadest context of technological

change.

/ PROGRAMME SPECIFIC OUTCOMES (PSOs) of ECE DEPARTMENT \
PSO1: Ability to apply the acquired knowledge of basic skills, mathematical foundations, and
principles of electronics, modeling and design of electronics based systems in solving
engineering Problems.
PSO2: Ability to understand and analyze the interdisciplinary problems for developing
innovative sustained solutions with environmental concerns.
PSO3: Ability to update knowledge continuously in the tools like MATLAB, NS2, XILINIX
and technologies like VLSI, Embedded, Wireless Communications to meet the industry
requirements.
\PSO4: Ability to manage effectively as part of a team with professional behavior and ethics. /

1906605 MICROCONTROLLERS AND EMBEDDED LABORATORY LTPC
0042
OBJECTIVES:

The student should be made to:

e Write Assembly Language Program (ALP) for arithmetic and logical operations in 8086
and 8051
Differentiate Serial and Parallel Interface.
Understand the working of ARM Processor and study the interrupt performance.
Enumerate programs to interface memory, I/O’s with processor.
Explore the concepts of Hardware of various microcontrollers to enable Programming
and Interfacing of microcontroller.

LIST OF EXPERIMENTS: 8086 Programs using kits and MASM
Basic arithmetic and Logical operations.

Move a data block without overlap.

Code conversion, decimal arithmetic and Matrix operations.
String manipulations, sorting and searching.

Password checking, Print RAM size and system date.

arowdE

LIST OF EXPERIMENTS: Peripherals and Interfacing Experiments using 8086 and
ARM -7 Processor.

6. Interfacing Traffic light controller.

7. Interfacing Stepper motor and Temperature sensor.

8. Implementing Zigbee protocol with ARM.

9. Interfacing Key board and LCD.

10. Interfacing LED and PWM.

11. Interfacing EPROM and Interrupt.

12. Analyze Serial interface and Parallel interface.

13. Interfacing ADC and DAC and Waveform Generation.

LIST OF EXPERIMENTS: 8051 Experiments using kit and MASM.
14. Program Basic arithmetic and Logical operations.
15. Implement Square and Cube program and Find 2‘s complement of a number.

TOTAL PERIODS: 60

OUTCOMES:

On completion of this laboratory course, the student would be able to,

- Write ALP Programs for Arithmetic operations and Logical operations.

- Express the programming logics for code conversion and acquire knowledge on ADC and
DAC.

- Interface different I/O’s with processor and Generate waveforms using 8086 and ARM
processors.

- Execute microcontroller programs in 8051.

- Formulate a mini Project using Embedded System.

CONTENTS

S1. No. Name of the Experiments Signature
CYCLE -1

1 Basic arithmetic and Logical operations

2 Move a data block without overlap

3 Code conversion, decimal arithmetic and Matrix operations.

4 String manipulations, sorting and searching

5 Password checking, Print RAM size and system date
CYCLE -11I

6 Interfacing Traffic light control

7 Interfacing Stepper motor control and Temperature sensor

8 Implementing Zigbee protocol with ARM

9 Interfacing Key board and LCD

10 Interfacing LED and PWM

11 Interfacing EPROM and Interrupt.

12 Analyze Serial interface and Parallel interface

13 Interfacing ADC and DAC and Waveform Generation
CYCLE - 111

14 Program Basic arithmetic and Logical operations

15 Implement Square and Cube program and Find 2‘s complement of a number

TOPIC BEYOND SYLLABUS
16 Square wave generation using 8051

CYCLE I
8086 PROGRAMS

Flow Chart for Addition of Two Numbers:

SET STARTING ADDRESS = 1000H
SET 51 = 1200H

v

CLEAR BX REGISTER FOR CARRY

v

GET THE FIRST DATA IN AX REGISTER

v

INCREMENT SI BY 02H

v

ADD THE DATA POINTED BY SI REG FROM AX

CF=1 INCREMENT BX REG

STORE THE CONTENT OF AX (SULL AT 1300H

¥
STORE THE CONTENT OF BX (CARRY) AT 1302H

Ex. No. 1
Date:

PROGRAMS FOR BASIC ARITHMETIC AND LOGICAL OPERATIONS
Obijective:

To write an Assembly Language Program (ALP) to perform basic Arithmetic and Logical
Operations
(a) Addition of two numbers
(b) Subtraction of two numbers
(c) Multiplication of two numbers
(d) Division of two numbers
(e) Logical operation

(A) ADDITION OF TWO 16 BIT NUMBERS
Description:

To perform addition in 80806, one of the data should be stored in a register and another
data can be stored in register / memory. After addition the sum will be available in the destination
register / memory. The sum of two 16-bit data can be either 16 bits (sum only) or 17 bits (sum
and carry). The destination register / memory can accommodate only the sum and if there is a
carry the 8086 will indicate by setting carry flag. Hence one of the register is used for the account
of carry.

Algorithm:
1. Start the program.
2. Set the origin as 1000H.
3. Store the 1% data in AX register.
4. Clear BX register pair for carry.
5. Set SI to 1202H to point the second data.
6. Add the content in AX with data pointed by SI register.
7. If carry occurs, increment BX register by one.
8. Move the content of AX to 1300H.

9. Move the content of BX to 1302H.
10. End of segment.
11. Stop the program

PROGRAM

Label

Program

Comments

Next:

ORG 1000H
MOV BX, 0000H
MOV SI, 1200H
MOV AX, [S]]
ADD SI, 02H
ADD AX, [S]]
JNC Next

INC BX
MOV DI, 1300H
MOV [DI], AX
ADD DI, 02H
MOV [DI], BX
HLT

Set starting address as 1000H.
Initialize BX to 0000H

Move immediate data to SI
Move content of SI to AX
ADD SI with immediate data.
Add content of SI with AX register
Jump if no carry to loop
Increment BX register

Move immediate data to DI.
Move AX to DI

ADD DI with immediate data
Move BX to DI

Example 1:

With Carry

Input:
1200:
1201:
1202:
1203:

Output:
1300:
1301:
1302:
1303:

Example 2:

46H

B6H [Addend]
D3H
98H[Augend|]

19H

4FH [Sum]
01H

00H [Carry]

Without Carry

Input:
1200: 34H
1201: 44H
1202: 24H
1203: 24H
Output:
1300: 58H
1301: 68H
1302: 00OH

[Addend]

[Augend]

[Sum]

Manual Calculation:

1303: 00H [Carty]
Flow Chart of Subtraction of Two Numbers:

SET STARTING ADDRESS = 1000H
SET SI = 1200H

v

CLEAR BX REGISTER FOR BORROW

!

GET THE FIRST DATA IN AW REGISTER

v

INCREMENT SI BY 02H

¥
SUBTRACT THE DATA POINTED BY SI REG FROM AX

INCREMENT BX REG

!

TAKE 2°S COMPLEMENT OF AX
I

STORE THE CONTENT OF AX (DIFFERENCE) AT 1300H

L 4
STORE THE CONTENT OF BX (BORROW) AT 1302H

(B) SUBTRACTION OF TWO 16 BIT NUMBERS

Description:

To perform subtraction in 8086 one of the data should be stored in register and another
data should be stored in register or memory. After subtraction the result will be available in
destination register/memory. The 8086 will perform 2’s complement subtraction and then
complement the carry. Therefore, if the result is negative then carry flag is set and the destination
register/memory will have 2’s complement of the result. Hence one of the registers is used to
account for sign of the result. To get the magnitude of the result again take 2’s complement of
the result.

Algorithm:

1. Start the program.

2. Set the starting address as 1000H.

3. Set the SI register to 1200H address.

4. Move the 16-bit data to AX register pair.

5. Increment the SI register to 1202.

6. Get the second data.

7. Move this second value to BX register.

8. Subtract the content pointed by SI from AX and store result in AX.

9. If carry occurs go to step 13.

10. Increment BX register, then perform inversion operation to AX register.

11. Increment AX register.

12. Move the resultant to DI register.

13. Display the output.

14. End of segment.

15. Stop the program.

PROGRAM
Label Program Comments
ORG 1000H Set starting address as 1000H
MOV BX, 0000H Move immediate data to BX register.
MOV 81, 1200H Move immediate data to SI
MOV AX, [S]] Move contents of SI to AX
ADD SI, 02H Increment SI by 02H
SUB AX, [SI] Move contents of SI to AX
JNC Next Jump if no carry loop
INC BX Increment BX
NOT AX Perform NOT operation of AX
INC AX Increment AX register
Next: MOV DI, 1300H Move immediate data to DI.
MOV [DI], AX Move AX to DI
ADD DI, 02H Increment DI by 02H
MOV [DI], BX Move BX to DI
HLT
Example 1: Manual Calculation:

With Borrow

Input:

1200: 03H

1201: O0OH (minuend)

1202: 05H

1203: 00H (subtrahend)

Output:

1300: 02H

1301: 00H (Difference)
1302: 01H

1303: 00H (Borrow)

Example 2:
Without Borrow
Input:
1200: 31H
1201: 82H (minuend)
1202: 06H
1203: 34H (subtrahend)

Output:

1300: 2BH

1301: 4EH (Difference)
1302: O0OH

1303: 00H (Borrow)

Flow Chart for Multiplication of Two Numbers:

START

\4

SET STARTING ADDRESS = 1000H
SET SI = 1200H

v

GET THE FIRST DATA IN AX REGISTER POINTED BY

v

INCREMENT SI BY 02H

v

GET THE SECOND DATA IN CX REGISTER POINTED BY SI

v

MULTIPLY THE CONTENT OF CX REG WITH AX REG

A 4

STORE THE CONTENT OF AX (LOWER WORD OF RESULT) AT 1300H

A

STORE THE CONTENT OF DX (HIGHER WORD OF RESULT) AT 1302H

\ 4

STOP

(C) MULTIPLICATION OF TWO 16 BIT NUMBERS
Description:
To perform multiplication in 8086 processors one of the data should be stored in AX

register and another data can be stored in register/memory. After multiplication the product will
be in AX [lower word] and DX register [Higher word].

Algorithm:
1. Start the program
2. Set the starting address as 1000H
3. Set the SI register to point the location 1200H.
4. Set the DI register to point the location 1300H.
5. Move the 16-bit data pointed by SI to AX register
6. Move this data to BX register
7. Increment SI register to 1202 and get the second data in AX register
8. Multiply the data in AX with BX register

9. Store the data in DX [higher word] and AX [lower word] addressed by DI register.
10. Display the result

11. End of segment

12. Stop the program

PROGRAM
Label Program Comments
ORG 1000H Set starting address as 1000H.
MOV SI, 1200H Move immediate data to SI
MOV AX[SI] Move contents of SI to AX
ADD SI,02H Increment SI value to 02H
MOV BX, [S]] Move contents of SI to BX
MUL BX Multiply BX with AX
MOV DI, 1300H Move immediate data to DI
MOV [DI], AX Move AX to DI register
MOV DI, 1302H Move immediate data to DI
MOV [DI], DX Move DX to DI register
HLT
Example: Manual Calculation:
Input:
1200: 02H
1201: O6H (Multiplicand)
1202: 02H

1203: O6H (Multiplier)

Output:

1300: 04H
1301: 18H (Lower word of the Product)
1302: 24H
1303: 00H (Higher word of the Product)

Flow Chart for Division of Two Numbers:

START

A

SET STARTING ADDRESS = 1000H
SET SI = 1200H

!

GET THE DIVIDEND IN AX REGISTER POINTED BY

v

INCREMENT SI BY 02H

v

GET THE DIVISOR IN CX REGISTER POINTED BY SI

v

CLEAR DX REGISTEER

A

DIVIDE DXAX BY BX

A\ 4

STORE THE CONTENT OF AX (REMAINDER) AT 1300H

A 4

STORE THE CONTENT OF DX (QUOTIENT) AT 1300H

(D) DIVISION OF TWO NUMBERS

Description:

To perform division in 8086 processor, the 16 bit dividend should be stored in AX and
DX register (The lower word in AX and Upper word in DX). The 16 bit divisor can be stored in
register / memory. After division the quotient will be in AX register and the remainder will be in
DX register.
Algorithm:

1.

Start the program

2. Set the origin as 1000H

3. Set SI as 1200H.

4. Clear DX register for 16 bit dividend. For 16 bit dividend higher word is zero.

5. Load the lower word of dividend in AX register

6. Increment SI by 02H. Load the divisor in BX register.

7. Perform division of data in DX AX by BX

8. Set DI as 1300H

9. Store the quotient in AX register at the location pointed by DI register.

10. Set DI as 1302H

11. Store the remainder in DX register at the location pointed by DI register.

12. Display the result, End of Segment

13. Stop the program

PROGRAM
Label Program Comments
ORG 1000H Set starting address as 1000H.
MOV SI, 1200H Move immediate data to SI
MOV AX,[SI] Move contents of SI to AX
ADD SI,02H Add 02H to SI
MOV BX, [S]] Move contents of SI to BX
MOV DX, 0000H Initialize DX to 0000H
DIV BX Divide DXAX by BX
MOV DI, 1300H Move immediate data to DI
MOV [DI], AX Store the quotient
MOV DI, 1302H Move immediate data to DI
MOV [DI], DX Store the remainder
HLT
Example: Manual Calculation:

Input:

1200: 06H
1201: 06H (Dividend)
1202: 03H

1203: 03H (Divisor)

Output:

1300: 02H
1301: 00H (Quotient)
1302: 00H

1303: 00H (Remainder)

FLOWCHART
START

SET STARTING ADDRESS = 1000H
SET SI = 1200H

v

GET THE FIRST DATA IN AX REGISTER POINTED BY

v

INCREMENT SI BY 02H

v

PERFROM AND OPERATION

v

STORE THE CONTENT OF AX (RESULT) AT 1300H

A\ 4

STOP

(E) LOGICAL OPERATIONS OF 16 BIT NUMBERS
Description:

The two values from memory are logically AND then the result is stored in memory.
Algorithm:

Start the program and Set the origin as 1000H
Set SI as 1200H.

Get the first data in AX — reg

Increment SI to point next data

Perform AND operation of the data

Store the result in memory

Stop the program

Ntk L -

PROGRAM

HLT

Label Program Comments
ORG 1000H Set starting address as 1000H.
MOV SL1200H Initialize SI
MOV AX,[S]] Get the first data in AX — reg
ADD SL02H Increment SI to point next data
AND AX[SI] Perform AND operation of two data
MOV DI, 1300H
MOV [DI],AX Store the result in memory

Example: Manual Calculation:
Input
1200: 01H
1201:01H

1202:00H
1203:00H

Output

1300:00H
1301:00H

REVIEW QUESTIONS:

Write the size of the data bus of 8086.
Write the size of the address bus of 80806.
What is meant by physical addressing in 80867
What are the other possibilities of writing ADD, SUB and MUL instructions in other
addressing modes?
5. What is the purpose of BIU& EU?
Result:

el s

Thus the program for arithmetic and logic operation was written and executed.

Flow Chart to Move a Block of Data without Overlap:

SET STARTING ADDRESS = 1000H
SET SI = 1200H, DI = 1300H

v

GET THE NUMBER OF DATA IN CL. REGISTER

v

MOVE THE DATA FROM MEMORY TO AX REG

v

MOVE THE DATA FROM AX TO DESTINATION

v

INCREMENT SI AND DI

REPEAT THE OPERATION FOR THE NUMBER OF DATA

A 4

STOP

Ex. No. 2

Date:
MOVE A DATA BLOCK WITHOUT OVERLAP
Obijective:
To write an 8086 ALP to move a block of data from source to destination without overlap
Description:

The block of data to be moved from one location (source) to another location (destination)
in memory. The source and destination of memory is pointed by SI and DI respectively. The size
of the block is stored in CL register. The data from source are moved to register and then back to
destination location. The steps are repeated till the value of CL register is Zero.

Algorithm:
1. Start the program.
2. Set the starting address as 1000H.
3. Set the SI register to 1200H address.
4. Set the DI register to 1300H address.
5. Set the CL register to hold the number of data to be moved.
6. Move the 16-bit data from memory pointed by SI to AX register pair.
7. Move the 16-bit from AX register to memory pointed by DI.
8. Increment the SI register by 02H.

9. Increment the DI register by 02H.
10. Repeat steps 6 to 9 till the cl value is zero
11. Stop the program.

PROGRAM
Label Program Comments
ORG 1000H Set starting address as 1000H.
MOV S1, 1200H Initialise SI to 1200
MOV DI 1300H Initialise DI to 1300
MOV CL,05H Initialise CL for number of data
Next: MOV AX,[S]]
MOV [DI],AX
ADD SI,02H
ADD DI, 02H
LOOP Next
HLT
Example: Manual Calculation:
Input:
1200: 05H
1201: 03H
1202: 02H
1203: 01H

1204: 00H

Output:

1300: 05H
1301: 03H
1302: 02H
1303: 01H
1304: 00H

REVIEW QUESTIONS:

List out the Flag manipulation instruction.

Give the differences between JUMP and LOOP instruction

List out the advantages of using Direct Memory Access (DMA).
What is meant by Maskable interrupts& Non-Maskable interrupts?
What is the Maximum clock frequency in 80867

Bl B

Result:

Thus the program for moving a block of data without overlap was written and executed.

Flow Chart for Binary to BCD Conversion Flow Chart for BCD to Binary Conversion

SET STARTING ADDRESS = 1000H
SET Sl = 1200H

v

SET STARTING ADDRESS = 1000H
SET Sl = 12004

GET THE BCD DATA IN AL REGISTER
AND COPY ITTO DLREG

¥

[

GET THE BINARY DATA IN AL REGISTER
AND CLEAR DX REG

AND DL WITH OFH TO GET UNITS DIGIT

+

v

AND AL WITH FOH TO GET TENS DIGIT

GET THE NUMBER OF HUNDREDS IN DL
REG

¥

SET THE MULTIPLIER OAH IN DH REG

GET THE NUMBER OF TENS IN DH REG

+

¥

MULTIPLY DH WITH AL

GET THE NUMBER OF UNITS IN AL REG

}

'

ADD DL WITH AL

COMEBINE UNITS AND TENS DIGIT AND
STORE IN AL REG

¥

!}

STORE THE RESULT IN MEMORY

STORE THE RESULT FROM AL REG AND
DL REG IN MEMORY

Ex. No. 3

Date:

CODE CONVERSION, DECIMAL ARITHMETIC & MATRIX OPERATIONS

Obijective:

To write an Assembly Language Program (ALP) to perform the following operations

(a) Code Conversion
BCD to Binary
Binary to BCD

(b) Decimal Arithmetic
BCD Addition
BCD Subtraction

(c) Matrix Operations
Matrix Addition
Matrix Multiplication

(A) CODE CONVERSION - BCD to Binary

Description:

The 2 —digit BCD data will have units digits and tens digits. When the tens digit is
multiplied by OA H and the product is added to units digit, the result will be in binary, because the
microprocessor will perform binary arithmetic. In order to separate the units and tens digit,
masking technique is used.

Algorithm:

Nk b e

8.

9.

Start the program.

Set the origin as 1000H.

Get the BCD data in AL register

Copy the BCD data in DL register

Logically AND DL with OF to mask upper nibble and get the units digit in DL
Logically AND AL with FO to mask lower nibble and get the tens digit in AL

Rotate the content of AL register 4 times in order to change upper nibble as lower
nibble.

Set the multiplier 0OA H in DH register.

Multiply AL with DH register, the product will be in AL register.

10. Add the units digit in DL register to the product in AL register
11. Save the binary digit (AL) in memory
12. Stop the program.

PROGRAM
Label Program Comments
ORG 1000H Set starting address as 1000H.
MOV 81, 1200H Initialize SI
MOV AL,[S]] Move the BCD data in AL
MOV DL,AL Copy the BCD data in DL
AND DL,0F AND DL with OF

AND AL,0F0 AND AL with FO
MOV CL,04
ROR AL,CL Rotate AL for 4 — times
MOV DH,0A Move 0A to DH
MUL DH Multiply DH with AL
ADD AL,DL Add AL with DL
MOV DL1201H
MOV [DI],AL Store the result in memory
HLT

Example: Manual Calculation:

Input:
1200: 85H [BCD data]

Output:
1201: 55H
Result:
Thus the program for BCD to Binary conversion was successfully executed.

CODE CONVERSION - BINARY TO BCD
Description:

The maximum value of 8 bit binary is FFFH. The BCD equivalent is 256. Hence when an
8 — bit binary is converted into BCD, the BCD data will have hundreds, tens and units digit. So
two counters are used to count hundreds and tens. The tens and units digit are added and stored
in a memory location and the hundreds digit is stored in the next location.

Algorithm:

Start the program.

Set the origin as 1000H.

Get the binary data in AL register

Clear DX register for storing Hundreds and tens

Compare AL with 64H (100 in decimal)

Check carry flag. If CF = 1, then go to step 10, else go to next step
Subtract 64H from AL register

Increment Hundreds register (DL)

9. GotoStep5

10. Compare AL with 0OAH (10 in decimal)

11. Check carry flag. If CF = 1, then go to step 15, else go to next step
12. Subtract OAH from AL register

13. Increment Tens register (DH)

14. Go to step 10

15. Rotate the content of DH four times

16. Add DH to AL to combine tens and Units digit

17. Save AL and DL in memory.

18. Stop the program

A e

PROGRAM

Label Program Comments

ORG 1000H Set starting address as 1000H.
MOV §1, 1200H Initialize SI

MOV AL,[S]] Move the binary data in AL
MOV DX, 0000H Clear the counter

HUND: CMP AL, 64H To count number of hundreds
JC TEN
SUB AL,64H
INC DL
JMP HUND
TEN: CMP AL,OAH To count number of tens
JC UNIT
SUB AL, 0AH
INC DH
JMP TEN
UNIT: MOV CL,04
ROL DH,CL
ADD ALDH Add tens and units
MOV DIL1201H
MOV [DI],AL Store in memory
INC DI

MOV [DI],DL
HLT

Example: Manual Calculation:

Input:

1200: 55H [Binary data]
Output:

1201:85H

Result:
Thus the program for Binary to BCD conversion was successfully executed.

Flow Chart for BCD Addition

SET STARTING ADDRESS = 1000H
SET Si = 1200H

Flow Chart for BCD Subtraction

i

SET STARTING ADDRESS = 1000H
SET SI = 1200H

GET THE 1ST DATA IN AX REGISTER
AND 2"° DATA IN BXREG

i

4

GET THE 1ST DATA IN AX REGISTER
AND 2"° DATA IN BXREG

PERFORM BINARY ADDITION OF
LOWER BYTE

'

v

PERFORM BINARY SUBTRACTION OF
LOWER BYTE

ADJUST THE SUMTO BCD

v

v

ADJUST THE DIFFERENCE TO BCD

SAVE THE SUM IN MEMORY

‘

}

SAVE THE RESULT IN MEMORY

PERFORM BINARY ADDITION OF
HIGHER BYTE ALONG WITH CARRY

+

+

PERFORM BINARY SUBTRACTION OF
HIGHER BYTE ALONG WITH BORROW

ADJUST THE SUM TO BCD

4

v

ADJUST THE DIFFERENCE TO BCD

SAVE THE SUM AND CARRY IN
MEMORY

v

SAVE THE DIFFERENCE AND BORROW
IN MEMORY

DECIMAL ARITHMETIC - BCD ADDITION
Description:

The binary addition is performed and then the sum is corrected to get the result in BCD.
If the sum of the lower nibble exceeds 9 or if there is auxiliary carry then 6 is added to the lower
nibble. if the sum of the upper nibble exceeds 9 or if there is a carry then 6 is added to upper
nibble. These conversions are taken care by DAA instruction.

Algorithm:

Start the program.

Set the origin as 1000H.

Initialise SI to 1200H

Clear the CL register for Carry

Load the first data in AX reg and second data in BX reg.
Perform Binary addition of lower byte

Adjust the sum of lower bytes to BCD

Save the sum in memory.

PHI AN

9. Perform Binary addition of Higher byte along with carry from lower byte.
10. Adjust the sum of higher bytes to BCD

11. Save the sum in memory

12. Save the carry in memory

13. Stop the program.

PROGRAM
Label Program Comments
ORG 1000H Set starting address as 1000H.
MOV SI, 1200H Initialize SI
MOV CL,00H Clear CL register for carry
MOV AX,[S]] Get the 1% number in AX reg
MOV BX,|[SI+2] Get the 2™ number in BX reg
ADD AL BL Add the lower nibble
DAA Decimal adjust for BCD
MOV DL,AL
MOV AL,AH
ADC AL,BH Add the higher nibble with carry
DAA Decimal adjust for BCD
MOV DH,AL
JNC AHEAD Check for Carry
INC CL
AHEAD: | MOV DI,1204H

MOV [DI],DX Store the result in memory
MOV |DI+2],CL
HLT

Example: Manual Calculation:

Input:

1200: 01H [1%data—BCD]
1201: 04H
1202: 08H [2"data—BCD]
1203: 02H

Output:

1204: 09H
1205: 0O6H

Result:
Thus the program for BCD addition was successfully executed.

DECIMAL ARITHMETIC - BCD SUBTRACTION

Description:

The binary subtraction is performed and then the difference is corrected to get the result
in BCD. If the difference of the lower nibble exceeds 9 or if there is auxiliary carry then 6 is
subtracted from the lower nibble. if the difference of the upper nibble exceeds 9 or if there is a
carry then 6 is subtracted from upper nibble. This conversion is taken care by DAS instruction.

Algorithm:

1.

S A i

Start the program.

Set the origin as 1000H.

Initialise SI to 1200H

Clear the CL register for borrow

Load the first data in AX reg and second data in BX reg.
Perform Binary subtraction of lower byte

Adjust the difference of lower bytes to BCD

Save the result in memory.

9. Perform Binary subtraction of Higher byte along with borrow from lower byte.

10. Adjust the difference of higher bytes to BCD

11. Save the difference in memory

12. Save the borrow in memory

13. Stop the program.

PROGRAM:
Label Program Comments
ORG 1000H Set starting address as 1000H.
MOV §1, 1200H Initialize SI
MOV CL,00H Clear CL register for borrow
MOV AX[SI] Get the 1% number in AX reg
MOV BX,[SI+2] Get the 2™ number in BX reg
SUB AL,BL Subtract the lower nibble
DAS Decimal adjust for BCD
MOV DL,AL
MOV AL,AH
SBB AL,BH Subtract the higher nibble with Borrow
DAS Decimal adjust for BCD
MOV DH,AL
JNC AHEAD Check for Borrow
INC CL.
AHEAD: | MOV DI,1204H

MOV [DI],DX Store the result in memory
MOV [DI+2],CL
HLT

Example:
Input:

1200: 18[1st data — BCD]

1201: 04
1202: 09]2nd data — BCD]
Output:
1204: 09
1205: 02
1203: 02
Result:

Thus the program for BCD subtraction was successfully executed.

START

r

Initinlize memory pointer for the twomatrix 51 and DI

Flow Chart for Matrix Addition:

L

Load themput dat’ s into CL = Count, AL = data

I

Add AL register with BL register

m
v

Store the result int Memory

r

Decrement the connt valuein CL register

NO

MATRIX ADDITION
Description:

The matrix addition is performed by loading the size of the matrix in CL reg and then
adding the individual elements of the matrix.

Algorithm:

1. Start the program.
2. Set the origin as T000H.
3. Initialize the pointer to memory for data and result.
4. Load CL with count.
5. Add two matrices by each element.
6. Process continues until CL is 0.
7. Store the result into Memory.
8. Stop the program.
PROGRAM
LABEL PROGRAM COMMENTS
MOV CL, 09 Initialize 09 into CL register
MOV §1, 2000 Load 2000 into SI for 1% matrix
MOV DI, 3000 Load 3000 into DI for 2™ matrix
NEXT MOV AL, [S]] Load AL with data of first matrix
MOV BL, [D]] Load BL with data of second matrix
ADD AL, BL Add two data of AL and BL
MOV [DI], AL Store AL with data into DI
INC DI Increment DI
INC SI Increment SI
DEC CL Decrement CLL
Loop continues until all elements of
JNZ NEXT Matrix to added
HLT Halt the Program
Example: Manual Calculation:
Input:
Matrix A
2000: 00H
2001: 01H
2002: 02H
2003: 03H
2004: 04H
2005: 05H
2006: 06H
2007: 07H

2008: 08H

Matrix B

3000: 09H
3001: 08H
3002: 07H
3003: 06H
3004: 05H
3005: 04H
3006: 03H
3007: 02H
3008: 01H

Output

3000: 09H
3001: 09H
3002: 09H
3003: 09H
3004: 09H
3005: 09H
3006: 09H
3007: 09H
3008: 09H

REVIEW QUESTIONS:

1. Write the function of the following 8085 instructions: JP, JPE, JPO, and JNZ.
2. What is the purpose of the following commands in 80862
a) AAD
b) RCL
List out the addressing modes in 8086.
What are the 8086 instructions used for BCD arithmetic?
What flags get affected after executing ADD instruction?

oA W

Result:

Thus the program for Matrix addition was successfully executed.

MATRIX MULTIPLICATION
Description:

The matrix multiplication is performed by loading the number of rows in CH reg and
number of columns in CL reg and then multiplying the individual elements of the matrix.

Algorithm:

Initialize CH reg with no of rows
Initialize BX reg to 1400H

Initialize SI to 1200H

Initialize DI to 1300

Initialize CL reg with no of columns
Move 03 to DL

Initialize BP to 0000H

Initialize AX to 0000H

9. Store AH register into flags

10. Move the value pointed by SI to AL
11. Multiply the value pointed by DI with AL
12. Add the result with BP reg

13. Increment SI

14. Add 03 to point the next row element
15. Decrement DL

16. If not zero go to NEXT

17. Subtract DI with 08H

18. Subtract SI with 03H

19. Move the result to memory pointed by BP
20. Add 02 to BX

21. Decrement the value of CL

22. If not zero jump to COLUMN

23. Add 03H to SI

24. Decrement CH

25. If not Zero Jump to ROW

S e N

26. Halt
PROGRAM:

Label Program Comments
MOV CH,03H Initialize CH reg with no of rows
MOV BX,1400H Initialize BX reg to 1400H
MOV S§1,0200H Initialize SI to 1200H

ROW: | MOV DIL,1300H Initialize DI to 1300
MOV CL,03H Initialize CL reg with no of columns
COLUMN | MOV DL,03H Move 03 to DL

MOV BP,0000H Initialize BP to 0000H
MOV AX,0000H Initialize AX to 0000H
SAHF Store AH register into flags

MOV AL,[S]] Move the value pointed by SI to AL
NEXT: | MUL [DI] Multiply the value pointed by DI with AL

ADD BP AX Add the result with BP reg
INC SI Increment SI
ADD DI,03H Add 03 to point the next row element
DEC DL Decrement DL
JNZ NEXT If not zero go to NEXT
SUB DI1,08H Subtract DI with 08H
SUB SI,03H Subtract SI with 03H
MOV [BX],BP Move the result to memory pointed by BP
ADD BX,02H Add 02 to BX
DEC CL Decrement the value of CLL
JNZ COLUMN If not zero jump to COLUMN
ADD SI,03H Add 03H to SI
DEC CH Decrement CH
JNZ ROW If not Zero Jump to ROW
HLT Halt

Example: 1402:0CH

Input: 1403:00H

1404.0CH

Matrix A 1405:00H

1200:02H 1406:0CH

1201:02H 1407:00H

1202:02H 1408:0CH

1203:02H

1204:02H Manual Calculation:

1205:02H

1206:02H

1207:02H

1208:02H

Matrix B

1300:02H

1301:02H

1302:02H

1303:02H

1304:02H

1305:02H

1306:02H

1307:02H

1308:02H

Output

1400:0CH

1401:00H

REVIEW QUESTIONS:
1. Write an ALP for 8086 to multiply two 16 bit unsigned numbers.
2. What is an accumulator?
3. Explain the uses of PUSH and POP instruction
4. When the 8086 processor is in minimum mode and maximum mode?
5. What is program counter?
Result:
Thus the program for Matrix multiplication was successfully executed.

Flowchart for Copying a String

START

INITIALIZE CODE AND DATA SEGMENT
SET ORIGIN AS 1000H

v

MOVE THE SIZE OF THE STRING TO CX REGISTER

.

SET SI = 12004 AND DI = 1300H

+

CLEAR DIRECTION FLAG FOR AUTO INCREMENT

!

MOVE THE STRING OF BYTES POINTED BY SI TO THE
LOCATION POINTED BY DI, TILL CX IS ZERO

STOP

Flowchart for Comparing two Strings

START

INITIALIZE CODE AND DATA SEGMENT
SET ORIGIN AS 1000H

v

MOVE THE SIZE OF THE STRING TO CX REGISTER

v

SET SI = 1200H ,DI = 1300H AND BX = 3000H

'

CLEAR DIRECTION FLAG FOR AUTO INCREMENT

!

COMPARE EACH BYTE OF STRING POINTED BY SI
WITH THE STRING POINTED BY DI, TILL CX IS ZERO

NO Is YES

EQUAL

LA

STORE OOH AT 3000H

[

STORE FFH AT 3000H

J

STOP

Ex. No. 4

Date:
STRING MANIPULATION, SORTING AND SEARCHING
Obijective:
To write an 8086 ALP to perform the following functions
a) String Manipulation
Copying a String
Comparing Two Strings
Scan a character in a string
b) Sorting
Ascending order
Descending order
c) Searching
STRING MANIPULATION - COPYING A STRING
Description:

In 8086, a dedicated string instruction MOVSB is used to copy a string. On the MOVSB
will move or copy the string of data pointed by SI to the location pointed by DI register on copying
each byte of data, the SI register and DI register are incremented or decremented depending on
the status of the direction flag DF. The CX register will hold the size of the string to be moved
from one location to another location.

Algorithm:
1. Start the program.
2. Set the starting address as 1000H.
3. Get the array size & move it to CX segment.
4. Let the starting address of elements be 1200H & move it to SI.
5. Let starting address of another set of elements 1300H & move it to DI.
6. Clear Directional Flag.
7. Repeat the move single byte instruction till the count CX is zero.
8. End of segment.
9. Stop the program.
PROGRAM
Label Program Comments
ORG 1000H Set starting address as 1000H.

MOV CX, 0005H
MOV SI, 1200H
MOV DI, 1300H
CLD

REP MOVSB
HLT

Move immediate data to CX.
Move immediate data to SI.
Move immediate data to DI.
Clear Directional Flag.

Repeat, Move single byte

Example:

Manual Calculation:

Input:
1200: AA
1201: AB
1202: AC
1203: DA
1204: OA
Output:
1300: AA
1301: AB
1302: AC
1303: DA
1304: OA

STRING MANIPULATION - COMPARE TWO STRINGS

Description:

In 80806, a dedicated string instruction CMPSB is used to compare two strings. The
CMPSB will compare two strings of data pointed by SI and DI register. The REPE is used to
repeat compare operation for each byte of the string. If both the strings are equal the CMPSB will
set zero flag. If they are unequal ZF=0. The CX register will hold the size of the string.

In this program, if both the strings are equal, OOFFH is stored at 5000H else 0000H will
be stored at 5000H.

Algorithm:

PRI 2D

9.

Start the program.

Set the starting address as 1000H.

Get array size and move it to CX register.

The starting address of a string is moved to SI register.

The starting address of another string is moved to DI register.

The BX register is initialized to point 3000H.

Clear directional flag

Compare each byte of string pointed by SI with the string pointed by DI till CX is
zeto.

If both the strings are equal, OFFH is stored at the location pointed by BX register
(3000H). Else store 00H at the location pointed by BX register.

10. End of the segment
11. Terminate the program
PROGRAM:
Label Program Comments

ORG 1000H Set starting address as 1000H.
MOV CX, 0005H Move immediate data to CX.
MOV SI, 1200H Move immediate data to SI.
MOV DI, 1300H Move immediate data to DI

MOV BX, 3000H
CLD

Move immediate data to BX.

Clear directional flag.

REPE CMPSB Repeat if equal, compare single byte
JNZ L1 Jump if no zero to loop.
MOV AH, OFFH Move immediate data to AH.
MOV [BX], AH Move AH to BX register
JMP LAST Jump to last.
L1: MOV AH, 00H Move immediate data to AH.
MOV [BX], AH Move AH to BX register.
LAST: HLT
Example: Manual Calculation:
Same String Different String
Input: Input:
1200: 02 1200: 02
1201: 03 1201: 03
1202: 04 1202: 04
1203: 05 1203: 05
1204: 06 1204: 06
1300: 02 1300: 03
1301: 03 1301: 04
1302: 04 1302: 05
1303: 05 1303: 06
1304: 06 1304: 07
Output: Output:
3000: FFH 3000: 00H

Flow Chart for Scan a Character in a String:

INITIALIZE CODE AND DATA SEGMENT
SET ORIGIN AS 1000H

!

MOVE THE SIZE OF THE STRING TO CX
REGIFTER

SET 5I = 1200H, DI = 1300H AND BX = 3000H

l

CLEAFR DIRECTION FLAG FOR AUTO INCREMENT

b

SCAN FOR THE CHARACTER POINTED BY SI IN THE
STRING POINTED BY DI, TILL CX IS ZERO

NO YES5

L STORE FFH AT
STORE 00H AT 3000H 3000H

| STOP |

STRING MANIPULATION - SCAN A CHARACTER IN A STRING
Description:

In 8080, a dedicated string instruction SCASB is used to scan a character. The SCASB will
scan for the character pointed by SI, in the string pointed by DI register. If the character is
available in the string zero flag is set. Else zero flag is reset. The CX register will hold the size of
the string.

In this program, if the given character is available OFFH is stored at 5000H. If it is
unavailable, O0H is stored at 5000H.

Algorithm:
1. Start the program.
2. Set the origin as 1000H.

Assign 0004H [count] to CX register.

PN W

Move the data pointed by SI to AL register.

The starting address of the string is moved to DI register
Clear Directional Flag for auto increment mode.
Repeatedly scan for the character at AL with DI till CX is zero.
If the character is found in the string, store OFFH at location 3000H pointed by BX

register. Else store 00H at location 3000H pointed by BX register.

9. End of segment.
10. Stop the program.

PROGRAM:

Label Program

Comments

ORG 1000H
MOV CX, 0004H
MOV SI, 1200H
MOV AL, [S]]
MOV DI, 1300H
MOV BX, 3000H

Set the starting address as 1000H.

Move immediate data to CX.

Move immediate data to SI.

Move contents of SI to AlL.

Move immediate data to DI.

Move immediate data to BX.

Clear directional flag.

Repeat not equal, Scan single byte

Jump if no zero to loopl.

Move immediate data to AH.

Jump to loop 2.

Move immediate data to AH.

Move AH to BX register.

CLD
REPNE SCASB
JNZ L1
MOV AH, OFFH
JMP L2

L1: MOV AH, 00H

L2: MOV [BX], AH
HLT

Example:
Input:

1200:AD (Data to be scanned)

1300:AA
1301:AB
1302:AA
1303:AD
Output:

3000:FF

Manual Calculation:

Input:
1200: BB

1300:AA
1301:AB
1302:AA
1303:AD
Output:

3000:00

(Data to be scanned)

Flow Chart for Sorting = Ascending Order

START

SET STARTING ADDRESS = 1000H
SET Sl = 1200H
v
[GET THE ARRAY SIZE IN CL REGISTER POINTED BY SI]

+

| DECREMENT CLREG CONTENTBYO1H |

vy

[COPY THE CONTENT OF CL REG TO DL REG]
v

I LOAD S! = 1201H |
N

N
I MOVE THE DATA POINTED BY SI TO AXREG]

1

[COMPARE THE CONTENT OF AX REG AND DATA POINTED BY Si+2 I

IF YES
CF=1
NO

| EXCHANGE THE CONTENT OF AX REG WITH DATA POINTED BY S1 +2 |

B

I EXCHANGE THE CONTENT OF AX REG WITH DATA POINTED BY SI [
Ie

)

[ADD 02H TO 51 REG |

'

I DECREMENT CONTENT OF DL REG BY O1H I

NO i
ZF=1

YES

DECREMENT CONTENT OF CL REG BY O1H

NO

SORTING - ASCENDING ORDER
Description:

The array can be sorted in ascending order by bubble sort algorithm. In bubble sorting of
M-data, M-1 comparisons are performed by tasking two consecutive data at a time. After each
comparison the two data can be re-arranged in the ascending order in the same memory locations
i.e., smaller first and larger next. When the above M-1 comparisons are performed M-1 times, the
array will be sorted in ascending order in the same locations.

Algorithm:
1. Start the program
2. Initialize Code and Data Segment.

e e A

Set starting address as 1000H

Set SI register to 1200H address

Get the count in CL. & decrement CL register by one
Copy the content of CL register to DL register.
Initialize SI as 1202H.
Move the data pointed by SI to AX

Compare the data in AX & data pointed by SI+2
0. If there is no carry, exchange the data and go toe next step. If there is carry go to next

step.

11. Increment the content of SI by 02H

12. Decrement the content of DL register by 01H.

13. Check whether the content of DL is zero. If zero, go to step next step. Else go to step

8

14. Decrement the content of CL register by 01H.

15. Check whether the content of CL is zero. If zero, go to step next step. Else go to step

6

16. Display the result
17. Stop the program

PROGRAM:
Label Program Comments
ORG 1000H Set starting address as 1000H.
MOV SI, 1200H Move immediate data to SI
MOV CL, [S]] Move contents of SI to CL.
DEC CL Decrement CL
L3: MOV DL,CL Move CL to DL register

MOV 81, 1201H

Move immediate data to SI

L2: MOV AX, [SI] Move contents of SI to AX
CMP AX, [SI+2] Compare AX with SI
JCL1 Jump if carry to loopl
XCHG [SI+2], AX Exchange data of AX with SI+2
XCHG [S]], AX Exchange data of AX with SI
L1: ADD SI,02H Increment S1 twice

DEC DL Decrement DL register
JNZ L2 Jump if no zero to loop 2
DEC CL Decrement CL register
JNZ L3 Jump if no zero to loop 3
HLT

Example:

Input: Output:

1200: 04 (Array Size) 1200: 04 (Array Size)

1201: 39 1201: 30

1202: 40 1202: 32

1203: 30 1203: 38

1204: 78 1204: 39

1205: 62 1205: 40

1206: 42 1206: 42

1207: 32 1207: 62

1208: 38 1208: 78

Flow Chart for Sorting - Descending Order

START

SET STARTING ADDRESS = 1000H.
SET $1 = 1200H
v
| GETTHE ARRAY SIZE IN CLREGISTER POINTED BY S| |

v

| DECREMENT CL REG CONTENT BY 01H |

| 7

*
| COPY THE CONTENT OF CL REG TO DL REG I

¥
[LOAD $I = 1201H |

o)

I MOVE THE DATA POINTED BY Si TO AXREG I

}

l COMPARE THE CONTENT OF AX REG AND DATA POINTED BY Si+2 |

IF YES

| EXCHANGE THE CONTENT OF AX REG WITH DATA POINTED BY S1 +2 |

¥

I EXCHANGE THE CONTENT OF AX REG WITH DATA POINTED BY SI |

[ADD oz:noa REG]

'

[DECREMENT CONTENT OF DL REG BY O1H]

NO IF
F=1

YES

DECREMENT CONTENT OF CL REG BY 01H

NO

SORTING - DESCENDING ORDER

Description:

The array can be sorted in descending order by bubble sort algorithm. In bubble sorting
of M-data, M-1 comparisons are performed by taking two consecutive data at a time. After each
comparison, the two data can be re-arranged in the descending order in the same memory

locations, ie., larger first and smaller next. When the above M-1 comparisons are performed M-1

timer, the array will be stored in descending order.

Algorithm:
1. Start the program

Initialize ST as 1202H.

A I A o

step.

10. Increment the content of SI by 02H

Set starting address as 1000H

Set SI register to 1200H address

Get the count in CL & decrement CL register by one
Copy the content of CL register to DL register.

Move the data pointed by SI to AX
Compare the data in AX & data pointed by SI+2
If there is carry, exchange the data and go toe next step. If there is no carry go to next

11. Decrement the content of DL register by 01H.

12. Check whether the content of DL is zero. If zero, go to step next step. Else go to step

8

13. Decrement the content of CL register by 01H.

14. Check whether the content of CL is zero. If zero, go to step next step. Else go to step

6
15. Display the result
16. Stop the program

PROGRAM:
Label Program Comments
ORG 1000H Set starting address as 1000H.
MOV SI, 1200H Move immediate data to SI
MOV CL, [S]] Move contents of SI to CL.
DEC CL Decrement CL
L3: MOV DL,CL Move CL to DL register
MOV SI, 1201H Move immediate data to SI
L2: MOV AX, [S]] Move contents of SI to AX register
CMP AX, [SI+2] Compare SI+2 with AX register
JNCL1 Jump if no carry to loop1
XCHG [SI+2], AX Exchange content of AX with SI+2
XCHG [S]], AX Exchange content of AX with SI
L1: ADD 81, 02 Increment address of SI by 02
DEC DL Decrement DL register
JNZ L2 Jump if no zero to loop 2
DEC CL Decrement CL register
JNZ L3 Jump if no zero to loop 3
HLT
Example:
Input: 1204:78
1205:62
1200: 04 (Array Size) 1206:42
1201:39 1207:32
1202:40 1208:38

1203:30

Output: 1204:40

1205:39
1200: 04 (Array Size) 1206:38
1201:78 1207:32
1202:62 1208:30

1203:42

Manual Calculation:

Flow Chart for Searching Odd-Even Numbers:

START

SET STARTING ADDRESS = 1000H
SET SI = 1200H

!

INITIALISE BX AND DX REGISTER WITH 0000

.

MOVE THE DATA POINTED BY SI TO CX REGISTER

.

7 INCREMENT SI BY 02H

v

MOVE THE CONTENTS OF SI TO AX REGISTER

'

ROTATE AX REGISTER TO RIGHT BY 1

INCREMENT BX REGISTER FOR ODD COUNTING

v
INCREMENT DX REGISTER FOR EVEN —

ISLOOP
OVER?

STORE THE BX CONTENTS IN 1300H AND STORE
THE DX CONTENTS IN 1302H

SEARCHING - EVEN AND ODD NUMBERS

Description:

This program is used to count the number of even numbers and odd numbers in given
array. Here one right rotate operation is performed to detect the even or odd number. After
rotating operation, if carry is present, the given number is odd else it is even.

Algorithm:

SRR

10.
11.
12.
13.
14.

Start the program

Initialize Code and Data Segment.

Set starting address as 1000H

Set SI register to 1200H address

Get the count in CL. & decrement CL register by one
Initialize SI as 1202H.

Move the data pointed by SI to AX

Rotate AX register by right to one

If there is no carry, count the DX register for even counting else count the BX register
for odd counting

Check loop is over or not

Increment the content of SI by 02H goto step 7.
Store the BX contents in 1300h

Store the DX contents in 1302h

Display the result

15. Stop the program
PROGRAM:
Label Program Comments

ORG 1100H Set starting address as 1100H.
MOV SI, 1200H Move immediate data to SI
MOV DX, [S1] Move contents of SI to DX
MOV CL,01H
MOV BL,00H
MOV BH,00H

L3: ADD 81, 02H INCREMENT SI BY 02H
MOV AX, [S]] Move contents of SI to AX
RCR AX, CLH Rotate AX to right by one.
JNC L1 Jump if no carry to loop1
INC BL count the BL register for odd counting
JMP L2 Jump to 12

L1: INC BH count the BH register for even counting

L2: DEC DX Count is performed until DX=0.
JNZ L3
MOV DI, 1300H
MOV [DI],BL Store the BL(ODD) contents in 1300h
INC DI
MOV [DI], BH Store the BH(EVEN) contents in 1301h
HLT

Example:
Input: Manual Calculation:
1200: 05 (Array Size)
1201:00
1202:01
1203:02
1204:04
1205:06
Output:

1300:01 odd
1301:03 even

REVIEW QUESTIONS:

What is the relation between 8086 processor frequency & crystal Frequency?
What is the position of the stack pointer after the POP instruction?

Can ROM be used as stack?

Define — Baud Rate

What is cache memory?

ARl S

Result:

Thus the program for string manipulations, searching and sorting operations was written
and executed.

Ex. No. 5
Date:

PASSWORD CHECKING, PRINT RAM SIZE, SYSTEM DATE

Obijective:

To write an 8086 ALP to perform the following operations

Description:

The password checking is done using the DOS calls and functions. First Display the
message “Enter your Password”. Then read the pass word using Dos calls and compare
with previous password “MASM1234”. If it matches, then display the message password

d) Password Checking
e) Print RAM Size

Print System Date

PASSWORD CHECKING

is correct. Else display it as incorrect password

Algorithm:

el e

Start the program.

Set the starting address as 1000H.

Display the message “Enter your Password”
Read the pass word using Dos calls and compare with previous password

“MASM1234”

o w

If it matches, then display the message password is correct
Else display it as incorrect password

7. Stop the program.

PROGRAM:

Label

Program

Comments

DATA SEGMENT

PASSWORD DB 'MASM1234'
LEN EQU (§-PASSWORD)

MSG1 DB 10,13;ENTER YOUR
PASSWORD: §'

MSG2 DB 10,13, YOUR
PASSWORD IS CORRECT!!S'
MSG3 DB 10,13, INCORRECT
PASSWORD!S'

NEW DB 10,13,'$'

INST DB 10 DUP(0)

DATA ENDS

CODE SEGMENT

ASSUME CS:CODE,DS:DATA
ORG 1000H

START:

MOV AX,DATA

MOV DS,AX
LEA DX,MSG1
MOV AH,09H
INT 21H

MOV SL,00
UP1:

MOV AH,08H
INT 21H

CMP AL,0DH
JE DOWN
MOV [INST+SI],AL

Label

Program

Comments

MOV [INST+SI],AL
MOV DL,

MOV AH,02H

INT 21H

INC SI

JMP UP1

DOWN:

MOV BX,00

MOV CX,LEN
CHECK:

MOV AL,[INST+BX]
MOV DL,[PASSWORD+BX]
CMP AL,DL

JNE FAIL

INC BX

LOOP CHECK
LEA DX, MSG2
MOV AH,09H

INT 21H

JMP FINISH

FAIL:

LEA DX, MSG3
MOV AH,009H
INT 21H

FINISH:

INT 3

CODE ENDS

END START

END

Observation:

Flow Chart to Print RAM Size
START
v

INITIALIZE CODE AND DATA SEGMENT
SET ORIGIN AS 1000H

:

INVOKE INT 12H WHICH RETURNS THE RAM SIZE IN
AX - REG

.

SET DI =1300H

’

STORE THE RAM SIZE AT 1300H

STOP

Flow Chart to Print System Date

START
Y

INITIALIZE CODE AND DATA SEGMENT
SET ORIGIN AS 1000H

:

INVOKE INT 21H WITH AH AS 2AH

.

SET DI = 1300H

.

STORE THE YEAR, MONTH, DATE IN MEMORY

STOP

TO PRINT RAM SIZE

Description:

INT 12h interrupt stores in AX the amount of RAM memory in kilobytes. For modern
computers it usually returns the value 0280h (640), representing the main memory. So this interrupt
doesn’t return the extended memory. The value returned in AX by this interrupt could also be
found at address 0040:0013h.

Algorithm:
1. Start the program.

2. Initialize the Segments.

3. Set the starting address as 1000H.

4. Initiate INT21H which returns the RAM size in AX — reg.

5. Initialize DI as 1300H

6. Store the value at 1300H

7. End of the segment

8. Terminate the program

PROGRAM:

Label Program Comments
ASSUME Initialize Segments
CS:CODE,DS:CODE
CODE SEGMENT Set the starting address as 1000H
ORG 1000H 12H interrupt is invoked
INT 12H
MOV DI, 1300H Store the size of the RAM at 1300H
MOV [DI],AX
MOV AH,4CH
INT 21H
CODE ENDS

Example: Manual Calculation:
Output:
1300: 80

Program:

Label Program Comments
ASSUME Initialize Segments
CS:CODE,DS:CODE
CODE SEGMENT Set the starting address as 1000H
ORG 1000H
MOV AH,2AH 21H interrupt is invoked
INT 21H
MOV DI, 1300H Store the year at 1300H
MOV [DI],CX
ADD DI,02H Store the value of Month and day
MOV [DI],DX
MOV AH,4CH
INT 21H

CODE ENDS

Manual Calculation:
TO PRINT SYSTEM DATE

Description:

INT 21h interrupt with AH as 2AH will return the system date. The year (1980 — 2099)
will be returned in CX register. The month will be available in DH register and day will be available
in DL register. All the returned values will be in Hex.

Algorithm:
1. Start the program.

2. Initialize the Segments.
3. Set the starting address as 1000H.
4. Initiate INT21H with AH value as 2A H.
5. Initialize DI as 1300H
6. Store the value of year at 1300H
7. Store the value of Month and Day in the consecutive memory locations
8. End of the segment
9. Terminate the program
Example: Manual Calculation:
Output:

1300: D (Year)
1301: 07

1302: 0B (Day)
1303: 08 (Month)

REVIEW QUESTIONS:
1. What is the role of Stack?
2. What is the difference between DOS and BIOS interrupts?
3. What is an interrupt vector Tabulation: of 80867
4. Detine — Machine cycle and T-State.
5. Define — Interrupt Vector Tabulation

Result:

Thus the program for password checking, printing RAM size, and System date was written
and executed.

CYCLE II
Peripherals &
Interfacing Programs

(8086)

Ex. No. 6
Date:
INTERFACING TRAFFIC LIGHT CONTROL

AIM

To write an 8086 assembly language program to interface the traffic light controller with 8255 and
verify the operation.

DESCRIPTION

The system is a simple contraption of a traffic control system wherein the signaling lights are simulated
by the blinking or ON-OFF control of light-emitting diodes. The signaling lights for the pedestrian crossing are
simulated by the ON-OFF control of dual colour light emitting diodes.

A model of a four road — four lane junctions, the board has green, orange and red signals of an actual system.
Twelve LEDs are used on the board. In addition eight dual colour LEDs are used which can be made to change
either to red or to green.

CIRCUIT DIAGRAM TO INTERFACE TRAFFIC LIGHT WITH 8086

- LED10 R10 330E
:N AN\
V_CTC e LEDT! R11 330E
e i LED12 R12 330E
ug_ > AANAAN—
4
B— {0023 reo |3 -
'U!—?'Fg;og :2 Z PRZ Sa LED? R7? 330E —=
| 93 37 03 PAG 2 | o< 4N AN\
- — o B m— 3 e LEDS R8 330E
Lo a— PRO 37— FAT Pt e |
9 i - 18 P L5o° hoien
Al e e PBO 26 > S
Al P8B! 20— —PET
RST 35 PB2 27 PET
BReST PBO 1 R1 330E —=
P26 ”LEP NP g
cs .W LED? R2 330E
‘N ATV —
- LEDS R3 330E
:N T W, P —
1.591 R1 330E
P26

8255

Y
|

PA7 *Lsgz " e
-y, S—
L

|

FOE
AAA

G H _L

USTEN BwE
I? VA k- AW

sTop dUE

PN N
<

PROGRAM:

LLNE

[E]

L3 NE

eee

aoe

L NE

Make highto -LED On

Male low to-LED Off

Label

Mnemonics

ART

AGAIN

DELAY

REPEAT

ORG 1100H
MOV BX, 1200
MOV CX, 000C
MOV AL, [BX]
OUT 26, AL
INC BX

MOV AL, [BX]
OUT 20, AL
INC BX

MOV AL, [BX]
OUT 22, AL
CALL DELAY
INC BX
LOOP NEXT
JMP START

PUSH CX
MOV CX,0005
MOV DX, FFFF
DEC DX

JNZ AGAIN
LOOP REPEAT
POP CX

RET

OBSERVATION
INPUT

OuUTPUT

1200: 80, 1A, A1, 64
1204: A4, 81, 5A, 64
1208: 54, 8A, B1, A8
120C: B4, 88, DA, 68
1210: D8, 1A, ES, 46
1214: ES, 83,78, 86, 74

REVIEW QUSETIONS:
1. List out the control ports in traffic light controller
2. What are the functions of conditional instructions?
3. List out the LAN ports in traffic light controller
4. What are the functions of Loop instructions?
5. List out the Modules in traffic light controller

RESULT

Thus the interface the traffic light controller using 8086 microprocessors with 8255 has been
executed and verified.

Ex. No. :7
Date:
INTERFACING STEPPER MOTOR AND TEMPERATURE SENSOR

Aim:

To write C Programs for running stepper motor either in clock- wise or counter-clock-
wise and the direction of the rotation of the stepper motor depends on the variation in the
temperature sensor.

Pre Lab Questions

1. Whatis LM35?

2. List the devices used to sense temperature.

3. What is the purpose of a thermocouple?

4. What is signal conditioning?

5. What is the output voltage of a thermocouple?
Apparatus & Software Required

1. LPC2148 Development board.

2. Keil pV isi on5 software.
3. Flash Magic.
4. USB cable.
5. Stepper Motor.
Theory:

Stepper motors, effectively have multiple "toothed" electromagnets arranged around a
central metal gear. To make the motor shaft turn, first one electromagnet is given power, which
makes the gear's teeth magnetically attracted to the electromagnet's teeth. When the gear's
teeth are thus aligned to the first electromagnet, they are slightly offset from the next
electromagnet. So when the next electromagnet is turned on and the first will turn off, the gear
rotates slightly to align with the next one and from there the process is repeated. Each of those
slight rotations is called a "step." In that way, the motor can be turned to a précised angle.
There are two basic arrangements for the electromagnetic coils: bipolar and unipolar.

Procedure:
1. Follow the steps to create a New project

2. Type the below code and save it with the name (any name.c)

3. Follow the steps to create a New Project to compile and build the program

4. Follow the procedures in to download your Hex code to processor using Flash Magic
Software.

STEPPER MOTOR PROGRAM

/[* This is a test program to stepper motor interface in the ARM LPC2148*/
/* development board itself*/

/***

******/

#include <LPC214x.H> [* LPC214x definitions */

#define stepl 0x00010000 /* P1.16
/ #define step2 ~ 0x00020000 / P1.17
*/

void wait (void)

{ /* wait function */
int d;
for (d = 0; d < 10000; d++); /* only to delay for LED flashes */
}
call_stepper_forw()
{

IOCLR1 = 0X00FF0000;
IOSET1 = 0X00040000;
Il wait();
Il wait();
wait();
wait();
IOCLR1 = 0X00FF0000;
IOSET1 = 0X00060000;
Il wait();
Il wait();

wait();

wait();

IOCLR1 = 0X00FF0000;

IOSET1 = 0X00070000;
I/ wait();
Il wait();

wait();

wait();

IOCLR1 = 0X00FF0000;

IOSET1 = 0X00050000;
Il wait();

Il wait();
wait();
wait();

}
int main (void)
{
IODIR1 |=
OXFFFFFFFF;
IOCLR1|=
0X00FF0000;
wait();
while(1)

{
call_stepper_forw();
[Twait();
[Iwait();
wait();
wait();
IOCLR1 = 0X00FF0000;
}

[*Loop Forever*/

STEPPER MOTOR PROGRAM PORT DETAILS

ARM DETAILS
P1.16 STEP 1
P1.17 STEP 2

TEMPERATURE SENSOR PROGRAM

/***/

MAIN ADC TEST

/***/

#include <LPC214x.H> [* LPC214x definitions */
#include "ADC_Driver.c" [* contains prototypes of driver functions*/

#include "lcd.c"
#include <stdio.h>

int main (void)
{
unsigned int
adc_val; unsigned
int temp;
unsigned char buf[4] = {0,0,0,0};
ADCInit();
Icdinit();
IIwait();
clrscr(10
);
printstr("ADC
Test",0,0); wait();
while (1) /* Loop forever */
{
adc_val = ADC_ReadChannel();
temp = (unsigned int)((3*adc_val*100)/1024);
sprintf(buf,"%d" ,temp);
printstr(buf,0,1);

¥
¥

/' *

* * *x /

** ** *

LCD.C

/***

******/

#include <LPC214x.h>

#define RS 0x00000400 /* PO0.10
/ #define CE 0x00001800 / P1.11

*/

void clrscr(char ch);

void Icdinit(void);

void lcdemd(char);

void Icddat(char);

void gotoxy(char,char); //x,y ; x-char position(0 - 16) y-line number 0 or 1
void printstr(unsigned char *,char,char); /Istring,column(x),line(y)
void wait (void);

void split_numbers(unsigned int number);

#define SET 1
#define OFF 0

unsigned int thousands,hundreds,tens,ones;

void wait (void) { [* wait function
*/
int d;
for (d = 0; d < 100000; d++); /* only to delay for LED flashes */
}
void lcdinit()
{

IODIRO |= OXFFFFFFFF;
IOCLRO |=0X00000FFF;

Icdemd(0x
28);
Icdcmd(0x28)
icdcmd(OxOc)
lcdemd(0x06)
icdcmd(OxOl)
lcdemd(0xOf):
wait();
}
void gotoxy(char x, char y)
{
ifly ==0)
Icdemd(0x80+x);
else
Icdemd(0Oxc0+x);
}
void printstr(unsigned char *str, char x, char y)
{
char i;

gotoxy(x.y);

{

wait();//(500)

;‘or(i=0;str[i] 1=\0%i++)
Icddat(str[i]);

void Icdcmd(char cmd)
{
unsigned char LCDDAT;
LCDDAT = (cmd & 0xf0); /Ihigher
nibble IOSETO = LCDDAT,;
IOCLRO = RS; IOSETO =
CE;
wait();//(100);
IOCLRO = CE;
IOCLRO = 0X00000FFF;

LCDDAT = ((cmd<<0x04) & 0xf0);
nibble IOSETO = LCDDAT;
IOCLRO =RS;
IOSETO = CE;
wait();//(100);
IOCLRO = CE;
IOCLRO = 0X00000FFF;

}

void Icddat(char cmd)

unsigned char LCDDAT;

LCDDAT = (cmd & 0xf0); IIhigher
nibble IOSETO = LCDDAT;

IOSETO = RS;

IOSETO = CE;

wait();//(100);
IOCLRO = CE;
IOCLRO = 0X00000FFF;

LCDDAT = ((cmd<<0x04) & 0xf0);
nibble IOSETO = LCDDAT,;
IOSETO = RS;
IOSETO = CE;
wait();//(100);
IOCLRO = CE;
IOCLRO = 0X00000FFF;

}

void clrscr(char ch)

{
if(ch==0)
{
printstr(*",0,0);
gotoxy(0,0);

/lenable Icd

/llower

/lenable Icd

/lenable Icd

/llower

/lenable Icd

else if(ch == 1)
{
printstr("*,0,1);
gotoxy(0,1);
}
else
{
lcdemd(0x01);
/ delay(100);

¥
k

void split_numbers(unsigned int number)

thousands = (number
/1000); number %= 1000;
hundreds = (number /
100); number %= 100;
tens = (number /

10); number %= 10;

ones = number ;

void Wait_Msg(void)
{
Icdcmd(0x01);
printstr("Please Wait ", 0, 0);
}
void Welcome_Msg(void)
{
Icdcmd(0x01);
printstr("Welcome to ", 0,0);
printstr(*SMMICRRO ", 0,1);

by

ADC_DRIVER.C

/**/

#include <LPC214x.H> [* LPC214x definitions
*/
Void ADClnit (void)
{
PINSEL1 |= 0x04000000; /*For Channel ADO0.2 s
P0.29*/
IODIRO |= ~(0x04000000);
ADOCR |= 0x00200204; /*0x04 selects ADO.2 to mux output, 0x20 makes ADC
in operational™*/

ADOGDR,; /*A read on ADOGDR clears the DONE bit*/
}
void ADC_StartConversion(void)
{
ADOCR |= (1<<24);
}

void ADC_StopConversion(void)

ADOCR &= (~(1<<24));

unsigned int ADC_ReadChannel(void)
{
/[unsigned int i;
unsigned long ADC_Val, t;
ADC_StartConversion();

while((ADODR2&0x80000000)==0); /*wait until ADC conversion completes*/
if(ADOSTAT & 0x00000400)
{
/lprintstr("OVR",0,1)
; return(0);
}
t = ADODRZ;
ADC Val = ((t>>6) & 0x000003FF);//(ADODR2 & 0x000003FF); //((ADOCR>>6) &
0x000003FF);
//ADC_StopConversion();
return(ADC_Val);

¥
TEMPERATURE SENSOR PROGRAM PORT DETAILS

ARM DETAILS

P0.29 ADCO0.2

PO.10 RS LCD PIN

P1.11 CELCDPIN
REVIEW QUESTIONS:

1. Why LM35 is used to Measure Temperature?

2. Compare the difference between LM 34 and LM 35 sensors?
3. What is the operating temperature range in LM35?

4. How many pins are available in LM35?

5. What is the main function of analog pin in LPC 2148?

Result:

The C-Language program for running stepper motor either in clock-wise or counter-
clock-wise Depending on the temperature is developed in the sensor LM35 and the output is
verified in LCD.

Ex. No.: 8
Date:

Implementing zigbee protocol with ARM
Aim:

To write C Programs for Zigbee Protocol and verify the communication between Xbee Module

Transmitter and Receiver.
Pre Lab Questions

1. What are the applications of zigbee protocol?

2. Why Zigbee based is preferred for wireless communication?
3. What is the function of a scheduler?

4. What is the main function of voltage convertors in UART?
5. List the advantages of using Zigbee protocol.

Apparatus & Software Required:
1. LPC2148 Development board.

Keil pV isi on5 software.
Flash Magic.

USB cable.

Zigbee Mod ule Tx and Rx .

ok~ wn

Theory:
The X Bee/X Bee-PRO ZNet 2.5 (formerly known as Series 2 and Series 2 PRO) RF

Modules were directed to operate within the ZigBee protocol. The modules provide reliable
delivery of data between remote devices. Zigbee is the communication protocol like wifi and
Bluetooth. Xbee is the module using Zigbee protocol.

Some of its features are:

ZigBee is targeted at radio-frequency (RF) applications
Low data rate, long battery life, and secure networking
Transmission range is between 10 and 75 meters (33~246 feet)

(64 bit IEEE address)

The addressing space allows of extreme node density up to 18,450,000,000,000,000,000 devices

e Using local addressing, simple networks of more than 65,000 nodes can be configured,

with reduced address overhead

e The radios use direct-sequence spread spectrum coding, which is managed by the digital
stream into the modulator.

e To ensure reliable data transmission

e Binary phase shift keying (BPSK) in the 868/915 MHz

e Offset quadrature phase shift keying (O-QPSK) at 2.4 GHz

Procedure:
1. Follow the steps to create a New project
2. Type the below code and save it with the name (anyname.c)
3. Follow the steps to create a New Project to compile and build the program
4. Follow the procedures in to download your Hex code to processor using Flash Magic
Software.

/**/

ARM TRANSMITTER
PROGRAM LCD.C

/**/

#include
<LPC214x.h>
#include "lcd.h"

#define RS 0x00000400 /* P0.10
/ #define CE 0x00001800 / P1.11
*/

/*void clrscr(char ch);

void Icdinit(void);

void Icdcmd(char);

void Icddat(char);

void gotoxy(char,char); //x,y ; x-char position(0 - 16) y-line number 0 or 1 void
printstr(char *,char,char); /Istring,column(x),line(y)

void wait (void);

void split_numbers(unsigned int number);*/

#define SET 1
#define OFF 0
unsigned int thousands,hundreds,tens,ones;
void wait (void)
{ /* wait function */
int d;
for (d = 0; d < 100000; d++); /* only to delay for LED flashes */
}

void Icdinit()
{

IODIRO |=
OXFFFFFFFF;
IOCLRO
0XO00000FFF;
Icdcmd(0x

28);

Icdcmd(0x28)

icdcmd(OxOc)
icdcmd(0x06)
icdcmd(OxOl)
icdcmd(OxOf);

wait();
}

void gotoxy(char X, char y)

{
if(y == 0)

¥

Icdcmd(0x80+x);
else
Icdcmd(0xc0+x);

void printstr(char *str, char x, char y)

{

char i;

gotoxy(x,y);
wait();//(500)

‘,cor(iZO;Str[i] 1=\0";i++)

Icddat(str[i]);

ks

void Icdcmd(char cmd)

{

unsigned char LCDDAT;

LCDDAT = (cmd & 0xf0); IIhigher
nibble IOSETO = LCDDAT;

IOCLRO = RS; IOSETO =
CE;

wait();

IOCLRO = CE;
IOCLRO = 0X00000FFF;

LCDDAT = ((cmd<<0x04) & 0xf0);
nibble IOSETO = LCDDAT;
IOCLRO = RS;
IOSETO = CE;
wait();//(100);
IOCLRO = CE;
IOCLRO = 0X00000FFF;

void Icddat(char cmd)

{

unsigned char LCDDAT;
LCDDAT = (cmd & 0xf0); /Ihigher
nibble IOSETO = LCDDAT;
IOSETO = RS; IOSETO = CE;
wait();//(100);
IOCLRO = CE;
IOCLRO = 0X00000FFF;

LCDDAT = ((cmd<<0x04) & 0xf0);

nibble IOSETO = LCDDAT;
IOSETO =RS; IOSETO = CE;
wait();//(100);

IOCLRO = CE;

IOCLRO = 0X00000FFF;

//(100);
/lenable lcd

/llower

/lenable Icd

/lenable Icd

/llower

/lenable Icd

void clrscr(char ch)
{
if(ch==0)
{
printstr("*,0,0);
gotoxy(0,0);

else if(ch == 1)

{
printstr(",0,1);
gotoxy(0,1);

else
{
Icdcmd(0x01);
/I delay(100);

ks

void split_numbers(unsigned int number)
{
thousands = (number
/1000); number %= 1000;
hundreds = (hnumber /
100); number %= 100;
tens = (number /
10); number %= 10;
ones = number ;
}
void Wait_Msg(void)
{
Icdcmd(0x01);
printstr("Please Wait ", 0, 0);
}
void Welcome_Msg(void)
{
Icdcmd(0x01);
printstr("Welcome to ", 0,0);
printstr("SM MICRRO " 0,1);
}

/**
*/
/**

*****/

void clrscr(char ch);

void lcdinit(void);

void lcdemd(char);

void Icddat(char);

void gotoxy(char,char); //x,y ; x-char position(0 - 16) y-line number O or 1
void printstr(char *,char,char); /Istring,column(x),line(y)

void wait (void);

void split_numbers(unsigned int number);
void Wait_Msg(void);

void Welcome_Msg(void);

/**/

UART_ 1.C

/**/

#include
<LPC214X.H>
#include "lcd.c"

#define TEMT 0X40

void

uart_1(void);

void delay(void);

void putcharr (unsigned char ch); [* Writes character to Serial Port*/
void tx_string(char str);

int main(void)

{
uart_1(); lcdinit(); delay();
delay();
delay();

delay();
printstr("SM MICRRO SYSTEM",0,0);

while(1)

{
tx_string('C";
gotoxy(7,1);
Icddat('C'
); delay();
delay();
delay();

delay();
while(1);

¥

void uart_1(void)

{
PINSELO = 0x00050000;
U1LCR = 0x83;
U1FDR = 0x00000010;
U1DLL =98;
U1LCR = 0x03;
ULIER = 0x01;

¥

void delay(void)

{
int d;

for (d = 0; d < 100000; d++); /* only to delay for LED flashes */
}

void tx_string(char str)

{
putcharr(str);
}
void putcharr (unsigned char ch) [* Writes character to Serial Port*/
while (I(ULLSR & TEMT)); /* ULLSR --> Status register
*/
U1THR =ch;
}
/**/
ARM RECEIVER PROGRAM
[ialaiehaiaiaiaiskaiaiohaialsiaialsiaialaiaiskaiaiaiaialsiaialsiaialaiaishaiailsiaialsiaiaisiaiaiaiaisiaialsiaialsiaialaiaioh /
#include

<LPC214X.H>

#include "lcd.c”

void

uart_1(void);

void

delay(void);

unsigned char getcharr (void); /* Reads character from Serial Port*/

int main(void)

{

char rx_data;
uart_1(
);
Icdinit(
);
printstr("SM MICRRO SYSTEM",0,0);
while(1)
{

void uart_1(void) /* UART Installation */

{
PINSELO = 0x00050000;
U1LCR = 0x83;
U1FDR = 0x00000010;
U1DLL =98;
U1LCR = 0x03;
U1IER = 0x01;

}

void delay(void)

{

int d;
for (d = 0; d < 100000; d++); /* only to delay for LED flashes */
}
unsigned char getcharr (void) /[* Reads character from Serial Port*/

{

while (((UILSR &

0x01)); return
(ULRBR);
}
Implementing zigbee protocol with ARM PROGRAMS PORT DETAIL
TRANSMITTER PROGRAM RECEIVER PROGRAM
ARM Details
P0.8 TXD1
P0.9 RXD1
P0.10 RS LCD PIN
P1.11 CE LCD PIN
ARM Details
P0.8 TXD1
P0.9 RXD1
P0.10 RS LCD PIN
P1.11 CE LCD PIN

Post Lab Questions:

How to verify the communication between Transmitter and Receiver?
Which module is using Zigbee protocol?

How many UART ports available in LPC2148?

Write the two modes of communication are used in a ZigBee network.
Mention the transmission range for Zigbee protocol.

orwdPE

Result:

The C-Language program for Zigbee Protocol is written and the communication
between Zigbee Module Transmitter and Receiver is verified.

Ex. No.:9
Date:

INTERFACING KEYBOARD AND LCD MATRIX KEYBOARD PROGRAM

Aim:
To develop a C-Language program for displaying the Key pressed in the Keypad in the
LCD module. The display should come in the desired line and column,

Pre Lab Questions
Mention the function of pull up resistor?

Outline the keyboard matrix.

Summarize the working principal of LCD.

What kind of interrupt is generated if a key has to be operated in an interrupt mode?
How many rows and columns are present in a 16 x 2 alphanumeric LCD?

g~ E

Apparatus & Software Required
1. LPC2148 Development board.

2. Keil pV isi on5 software.
3. Flash Magic.
4. USB cable.

Theory:
The Matrix keyboard is used to minimize the number of 1/O lines. Normally it is possible

to connect only one key or switch with an 1/O line. If the number of keys in the system
exceeds the more 1/O lines are required. To reduce the number of I/O lines the keys are
connected in the matrix circuit. Keyboards use a matrix with the rows and columns made up
of wires. Each key acts like a switch. When a key is pressed a column wire makes contact
with row wire and completes a circuit. For example, 16 keys arranged in a matrix circuit uses
only 8 1/0O lines.

[2%=]
K&

Ui SWa

(Rt}

I
(=]
'E
o]
n
2
.g

K4

SW5

[ue]
I
@
2 2
o =]
w
= ['2
o oW

SW10
4

I
o 17
2 2
-
= ['2
I

2 I\Jg ‘gmg 2 h% ‘gm
=Y =] [¥] =Y

q

S5W1i4 SW15

2 |2
a9

{a=]
I
'

Procedure:
1. Follow the steps to create a New project

2. Type the below code and save it with the name (anyname.c)

3. Follow the steps to create a New Project to compile and build the program

4. Follow the procedures in to download your Hex code to processor using Flash
Magic Software.

/'k'k'k'k'k'k'k'k'k*'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k*'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k*********************/

MAIN.C

/**
*/

/* Description: This program gets input from Matrix key board and displays

corresponding */

I* Key value in 7segment display. Hence this program demonstrates both
*/ 7 segment display as well as Matrix key board. */

I* P1.16 to P1.23 are inputs from matrix key board,*/

I* P1.24 to P1.31 are outputs to 7 segment display

*/

/***
**

****/

A matrix key board description----------

*/

I* -- -- -- -

*/

/* rowl -|cl|---|d[|---|e|--|F]|- (SW1,SW2,SW3,SW4)
*/

I* -- -- -- -

*/

I* -- -- -- -

*/

I* row2 | 8|---|9]--|Al|---|b]- (SW5,SW6,SW7,SW8)
*/

I* -- -- -- -

*/

I* -- -- -- -

*/

I* row3 --|4|---|5]---|6]|--|7]|- (SW9,SW10,SW11,SW12)
*/

I* -- -- -- -

*/

I* -- -- -- -

*/

* rowd |0 1|--|2]--|3]|- (SW13,SW14,SW15,5W16)
*/

I* -- -- -- --*/

/**/

#include
<LPC214x.h>
#include
"mat_7seg.h"
int main()

{

unsigned int key, last_key, Disp_key;
init_Matrix_7seg(); /I Initialize matrix keyboard and 7segment dispaly

clearall_7seg(); /I clear 7 segment display
last_key = 0; /I Initialize this variable to zero
while(1)
{
key = catch_key(); /I scan for a valid key press
if(key !1=0) /I zero means no key is pressed
{

if(key != last_key) /I check whether the same key is pressed again(assume
this as STEP1)

{

Disp_key = key; // valid new key is stored in another variable

last_key = key; //this variable's value is used for STEP1

}
}
//Display_Number(Disp_key); /*this function is used to display number in
decimal format*/
Alpha_Dispay(4,Disp_key); /*this function is used to display number in
hex format (single digit only)*/

¥
¥

/**/

MATRIX SEVEN SEGMENT DRIVER.C

/**/

#include<LPC214
x.h> #include
"defs.h"

/*******************************G I Obal
varil ab I es**/

unsigned int thousands,hundreds,tens,ones;

/**
*kkhkkhkkhkkikkx

******/
void init_Matrix_7seg(void)

{
IODIRL1 |= 0xffOf0000; // set 7seg LEDs as output ports and matrix's MSB as
inputs and LSB as outputs
IODIRO |= STSEG_ENB;// set P0.19 to P0.22 as outputs to drive 7seg enable
pins
IOPINO |= STSEG_ENB; /I since we are using
active low 7 seg display, the
enable signals
} /1 should be initially set to
HIGH.

/***
**

*khkhkkkk /

unsigned long scan_row(unsigned int row_num)

/lunsigned int row,i;
unsigned long val;

IOSET1 = ROW_MASK; /[clear the previous scan row output ie
make all row ops high
switch(row_num)

case 1: IOCLR1 = ROWSZ1;break; // make P1.16

low
case 2: IOCLR1 = ROW2;break; // make P1.17
low
case 3: IOCLR1 = ROWS3;break; // make P1.18
low
case 4: IOCLR1 = ROW4;break; // make P1.19
low
/ldefault; row = ERR;
}
Il for(i=0;i<=65000;i++);
val = IOPINZ; // read the matrix inputs

val = ((val >> 20) & 0x0000000F)"0x0000000F; // shift the colum value so that it
comes to LSB
complement of shifted value. return(val);

I/ XORing is done to take 1's//
unsigned int catch_key(void)

unsigned long

V; % =

scan_row(1);

switch(v)

{

case 1: return(13);
case 2: return(14);
case 4: return(15);
case 8: return(16);

VvV =
scan_row(2
); switch(v)
{
case 1: return(9);
case 2: return(10);
case 4: return(11);
case 8: return(12);
}
VvV =
scan_row(3
); switch(v)
{

case 1: return(5);
case 2: return(6);
case 4: return(7);
case 8: return(8);
}
VvV =
scan_row(4
); switch(v)
{
case 1: return(l);
case 2: return(2);
case 4: return(3);
case 8: return(4);
default: return(0);

}

/***
**

*****/
void clearall_7seg(void)
{
IOPIN1 &= ~S7SEG_LED; /I make all the 7seg led pins to
LOW IOPINO |= STSEG_ENB // Disable all the 7 seg display
}

/***

**

****/
void clearDigit_7seg(int digit_num)
{
IOPINO |= S7TSEG_ENB; // clear enables first
switch(digit_num)
{
case 1. {
IOPINO ~DIGI1 ENB; J/ no enable only the digitl
- - w
break;
case 2: {
IOPINO = ~DIGI2_ENB; // no enable only the digit2
w
break;
}
case 3: {
IOPINO = ~DIGI3_ENB; /l no enable only the digit3
w
break;
¥
case 4: {
IOPINO = ~DIGI4_ENB; // now enable only the digit4
break;
¥
}
IOPIN1 &= ~S7SEG_LED; // make all the 7seg LED pins LOW
}

/***

**

void Digit_Dispay(int digit_num, unsigned int value)

clearDigit_7seg(digit_num
); switch(value)

{

case 0: IOI;IN |= ZERO;break;
case 1: IOI;IN |= ONE; break;
case 2: IOI;IN |= TWO; break;
case 3: I0PIN |= THREE;

1 break;
case 4: IOI;IN |= FOUR; break;
case 5: IOI;IN |= FIVE; break;
case 6: IOI;IN |= SIX; break;
case 7: I0PIN |= SEVEN;

1 break;
case 8: IOIiIN |= EIGHT,; break;
case 9: IOI;IN |= NINE; break;

¥

void Alpha_Dispay(int digit_num, unsigned int value)

clearDigit_7seg(digit_num
); switch(value)

{

case 1: IOI;IN |= ZERO;break;
case 2: IOI;IN |= ONE; break;
case 3: IOI;IN |= TWO,; break;
case 4. IOPIN |= THREE;

1 break;
case b5: IOI;IN |= FOUR; break;
case 6: IOI;IN |= FIVE; break;
case 7: IOI;IN |= SIX; break;
case 8: IOPIN |= SEVEN;

1 break;
case 9: IOI;IN |= EIGHT,; break;
case 10: IOPIN1 |= NINE;

break; case 11: IOPIN1 |= AAA;
break; case 12: IOPIN1 |= bbb;
break; case 13: IOPIN1 |= ccc;
break; case 14: IOPIN1 |= ddd;
break; case 15: IOPIN1 |= eee;
break; case 16: IOPIN1 |= fff;
break;

}

/***
**

******/

void split_numbers(unsigned int number)

{

thousands = (number
/1000); number %= 1000;
hundreds = (number /

100); number %= 100;
tens = (number /
10); number %= 10;

ones = number ;

**

******/

void Display_Number(unsigned int num)
{

unsigned int

i; if(num <=

9999)

clearall_7seg();
split_numbers((unsigned
int)num); Digit_Dispay(4, ones);
for(i=0;i<10000;i++);
Digit_Dispay(3,

tens);

for(i=0;i<10000;i++)

Digit_Dispay(2,

hundreds);

for(i=0;i<10000;i++);

Digit_Dispay(1,

thousands);

for(i=0;i<10000;i++);
¥

ky

MATRIX SEVEN SEGMENT PROGRAM PORT DETAIL

ARM DETAILS

P0.19 SEGMENT ENABLE PIN
P0.21 SEGMENT ENABLE PIN
P0.22 SEGMENT ENABLE PIN
P1.16 KEY BOARD INPUT
P1.17 KEY BOARD INPUT
P1.18 KEY BOARD INPUT
P1.19 KEY BOARD INPUT
P1.20 KEY BOARD INPUT
P1.21 KEY BOARD INPUT
P1.22 KEY BOARD INPUT
P1.23 KEY BOARD INPUT
P1.24 OUTPUT SEGMENT
P1.25 OUTPUT SEGMENT
P1.26 OUTPUT SEGMENT
P1.27 OUTPUT SEGMENT
P1.28 OUTPUT SEGMENT
P1.29 OUTPUT SEGMENT
P1.30 OUTPUT SEGMENT

LCD PROGRAM

void clrscr(char ch);

void Icdinit(void);

void lcdcmd(char);

void Icddat(char);

void gotoxy(char,char); //x,y ; x-char position(0 - 16) y-line number O or 1
void printstr(char *,char,char); /Istring, column(x),line(y)

void wait (void);

void split_numbers(unsigned int number);

void Wait_Msg(void);

void Welcome_Msg(void);

/**/

LCD.c

/**/

#include <LPC214x.h>

#define RS 0x00000400 /* P0.10
/ #define CE 0x00001800 / P1.11
*/

void clrscr(char ch);

void lcdinit(void);

void lcdemd(char);

void Icddat(char);

void gotoxy(char,char); //x,y ; x-char position(0 - 16) y-line number 0 or 1 void
printstr(char *,char,char); /Istring, column(x),line(y)

void wait (void);

void split_numbers(unsigned int number);

#define SET 1
#define OFF 0

unsigned int thousands,hundreds,tens,ones;

void wait (void) { /* wait function

*/intd;

for (d = 0; d < 100000; d++); /* only to delay for LED flashes */
}

void Icdinit()
{

IODIRO E
Ox0000FFFF;
IOCLRO |=
0XO00000FFF;
Icdemd(0x

28);

Icdcmd(0x28)

icdcmd(OxOc)

lcdemd(0x06)
icdcmd(OxOl)

'ledemd(0x0f)
; wait();

}
void gotoxy(char x, char y)

if(y == 0)
Icdcmd(0x80+x);
else
Icdcmd(0xc0+x);

ks

void printstr(char *str, char x, char y)

{
char i;
gotoxy(X,y);
wait();//(500)

‘,cor(iZO;Stf[i] 1=\0"i++)
Icddat(str[i]);

void Icdcmd(char cmd)
{
unsigned char LCDDAT;
LCDDAT = (cmd & 0xf0);
nibble IOSETO = LCDDAT;
IOCLRO =
RS;
IOSETO0 =
CE;
wait();//(100);
IOCLRO = CE;
IOCLRO = 0X00000FFF;

/Ihigher

/lenable Icd

LCDDAT = ((cmd<<0x04) & 0xf0); /llower

nibble IOSETO = LCDDAT;
IOCLRO =

RS;

IOSETO =

CE;
wait();//(100);

IOCLRO = CE;

IOCLRO = 0X00000FFF;

¥

void Icddat(char cmd)

/lenable Icd

unsigned char LCDDAT;

LCDDAT = (cmd & 0xf0); /Ihigher

nibble IOSETO = LCDDAT;
IOSETO =

RS;

IOSETO =

CE;
wait();//(100);

IOCLRO = CE;

IOCLRO = 0X00000FFF;

LCDDAT = ((cmd<<0x04) & 0xf0);
nibble IOSETO = LCDDAT;
IOSETO =
RS;
IOSETO0 =
CE;
wait();//(100);
IOCLRO = CE;
IOCLRO = 0X00000FFF;

}

void clrscr(char ch)

{
if(ch==0)
{
printstr("*,0,0);
gotoxy(0,0);

else if(ch == 1)

printstr("",0,1);
gotoxy(0,1);

else
{
Icdcmd(0x01);
/ delay(100);
}
}

void split_numbers(unsigned int number)

{

thousands = (number
/1000); number %= 1000;
hundreds = (number /

100); number %= 100;
tens = (number /
10); number %= 10;
ones = number ;

/lenable lcd

/llower

/lenable Icd

VO

{

id Wait_Msg(void)

Icdcmd(0x01);

p

VO

rintstr(* PLEASE WAIT ", 0, 0);

id Welcome_Msg(void)

lcdemd(0x01);

p
p
¥

rintstr(" WELCOME TO ", 0, 0);
rintstr("SM MICRRO SYSTEM", 0, 1);

/***/

LCD main.c

*******/

/[* This is a test program to display strings in LCD module in the ARM LPC2148 Development board itself

*/

/***

***********************/

#i

nclude <LPC214x.H> /* LPC214x definitions */

#include "lcd.h" /* includes lcd driver funtions*/

int main (void)

{
Icdinit(); [*Initialize lcd*/
Wait_Msg(); /*Display message - "Please Walit"*/
Welcome_Msg(); /*Display message - "Welcome to SM
MICRRO"*/
while(1) /*Loop Forever*/
{
}
LCD PROGRAM PORT DETAILS
ARM Details
PO.10 RS LCD PIN
P1.11 CE LCD PIN

REVIEW QUESTIONS:

1.
2.

B

programmed by CPU.
What is switch bouncing? How to prevent it using de-bounce circuit?
How to adjust the contrast of the LCD?

Outline the operations involved when the key in a 4 x 4 keyboard matrix is being pressed.
List the registers used to store the keyboard, display modes and other operations

Which command of an LCD is used to shift the entire display to the right?

Result:The C-Language program for displaying the Key pressed in the Keyboard is displayed in the seven
segment display and LCD module and the output was verified on the LCD on the desires line and
column/address.

Ex. No. : 10
Date:

INTERFACING LED & PWM
Aim:
a) To write a C program for Sw itch & L ED to activate LED’s
b) To write a C program generate a PWM and to vary the duty cycle.

Apparatus & Software Required:
1. LPC2148 Development board.

Keil pV isi on5 software.
Flash Magic.

USB cable.

CRO.

ok~ own

Theory:

The PWM is based on the standard timer block and inherits all of its features,
although only the PWM function is pinned out on the LPC2148. The timer is
designed to count cycles of the peripheral clock (PCLK) and optionally generate
interrupts or perform other actions when specified timer values occur, based on
seven match registers. The PWM function is also based on match register
events.

Procedure:

1. Follow the steps to create a New project

2. Type the below code and save it with the name
(anyname.c)

3. Follow the steps to create a New Project to compile and build the
program

4. Follow the procedures in to download your Hex code to processor
using Flash Magic Software.

/***

*************************/

SWITCH AND LED PROGRAM

****************/

/* Description: This program gets DIP switch inputs and switches ON corresponding
LED

*/
I* P1.16 to P1.31 are output switch */

R R R R R R S R R S R R S R R S R R S R R S S R R S R R S R S R R R S R R S R R S R R S R R S R R S R R S R R S S R S S RS S R S S S S S S S e

************/

#include<LPC214x.H>

int main()

{

IO1DIR = OxFFFFO000; // P1.16 TO P1.31 OUTPUT PIN

while(1)
{
IOCLR1 = OxFFFF00QO; // output pin cleared for enable the led
¥
by
SWITCH AND LED PORT DETAILS
ARM DETAILS
P1.16 S&L ENABLE PIN
P1.17 S&L ENABLE PIN
P1.18 S&L ENABLE PIN
P1.19 S&L ENABLE PIN
P1.20 S&L ENABLE PIN
P1.21 S&L ENABLE PIN
P1.22 S&L ENABLE PIN
P1.23 S&L ENABLE PIN
P1.24 S&L ENABLE PIN
P1.25 S&L ENABLE PIN
P1.26 S&L ENABLE PIN
P1.27 S&L ENABLE PIN
P1.28 S&L ENABLE PIN
P1.29 S&L ENABLE PIN
P1.30 S&L ENABLE PIN
P1.31 S&L ENABLE PIN
T
********/
PWM.C

/**

********/

/* Place Icd.c file into following directories C:\KeilNARM\INC\Philips.*/
[* This program is used to Generate the PWM, Frequency and Duty cycle can be
changed*/

R R T R A R R R R R A R R R R R A R R R A R R AR R R R R R R R R R R R R A R R R R R AR R R P e

*******/

#include<LPC214x.H>

int main(void

{

PINSEL1 |= 0x00000400; //Enable pin0.7 as PWM2

PWMPR = 0x00000100; //Load prescaler (to vary the frequency can
modify here)

PWMPCR = 0x00002000; //PWM channel single edge control,
output enabled

PWMMCR = 0x00000003; //On match with timer reset the
counter

/* PWMRO AND PWMR5 Both Value can change the duty cyle ex : PWMRO = 10
AND PWMRS5 = 2*/

PWMMRO0 = 0x00000010; //set cycle rate to sixteen ticks

PWMMR5 = 0x00000008; //set rising edge of PWM?2 to 2 ticks

PWMLER = 0x00000021; //enable shadow latch for

match 0 - 2

PWMTCR = 0x00000002; //Reset counter and

prescaler

PWMTCR = 0x00000009; //enable counter and PWM, release
counter from reset

while(1) // main loop

{
}
¥
PWM PROGRAM PORT DETAIL
ARM DETAILS
P0.7 PWM2

REVIEW QUESTIONS:
How do the variations in an average value get affected by PWM period?

Name the common formats available for LED display

Why are the pulse width modulated outputs required in most of the applications?
How do you determine the duty cycle of the waveform ?

What is the function of GPIO?

ok 0w E

Result:
a. The C code is generated for Switch & LED and output is verified in LED’s by
Switches.
b. The C code is generated for PWM and to vary the duty cycle and verified in CRO
output.

Flowchart

(sw)
:

Intialize memory pointer
| 3

nitialize character counter

Initialize 8251 l
|

-1
l Read status I

is

transmutter

ready
>

Yes

Send character 1o
transmitter

]
Increment memory pointer I

3
I Decrement counter I

Ex. No. 11
Date:

INTERFACING EPROM AND INTERRUPT
Aim:

To develop a C-Language program to write and read a data in EEPROM and also to analyze
its performance with the interrupt.

Apparatus & Software Required:
1. LPC2148 Development board.

2. Keil pV isi on5 software.

3. Flash Magic.
4. USB cable.
Theory:

Serial-interface EEPROM’s are used in a broad spectrum of consumer, automotive,
telecommunication, medical, industrial and PC related markets. Primarily used to store
petrsonal preference data and configuration/setup data, Serial EEPROM’s are the most
flexible type of nonvolatile memory utilized today. Compared to other NVM solutions,
Serial EEPROM devices offer a lower pin count, smaller packages, lower voltages, as

well as lower power consumption.

I uawre

*+3.3Ve {4
u2
I a0 vee 3
I P S FH—x
— 3 0 N
= < A2 2l 5 30 OcL
CouT v SOA
+3.3vo- %

aND 1
24L0256 b

r’'c EEPROM

Procedure:
1. Follow the steps to create a New project

2. Type the below code and save it with the name (anyname.c)

3. Follow the steps to create a New Project to compile and build the program

4 . Follow the procedures in to download your Hex code to processor using Flash Magic
Software.

EPROM PROGRAM

/***
*kkkhkkk /

12C.C

/***

***/

/* This Program For 12C
Interface */
#include<LPC214x.H>
#include "lcd.c"

void Initl2C(void);

void SendI2CAddress(unsigned char Addr_S);
void Writel2C(unsigned char

Data);

void Stopl2C(void);

void Startl2C(void);

#define STA 0x20
#define SIC 0x08
#define SI 0x08

#define STO 0x10
#define STAC 0x20
#define AA 0x04
void Initl2C(void)
{ I2COCONCLR = OxFF;
PINSELDO |= 0x50; /I Set pinouts as scl and sda
12COSCLL =19; //speed at 100Khz for a VPB Clock Divider=4 at 12 MHz
12COSCLH =19;
I2COCONSET = 0x40; //Active Master Mode on 12C bus
}
void SendI2CAddress(unsigned char Addr_S)
{
while(I2COSTAT!=0x08); // Wait for start to be
completed
I2CODAT = Addr_S; /I Charge slave
Address
I2COCONCLR =SIC | STAC; // Clear i2c interrupt bit to send
the data
while(!(I2COCONSET & Sl)) ; // wait till status available
}

unsigned char Readl2C(void)
{

unsigned char r;

[2COCONCLR = SIC;
I2COCONSET = 0x04; /I clear SIC;
while(!1(12COCONSET & 0x8)); /I wait till status

available r=12COSTAT;

wait(); /I check for error
if (r == 0x50){ /I look for "Data byte has been
received; ACK has been returned"
Icdcmd(0x01);

printstr(*Read Sucess",0,0);
}

return I2CODAT;

void Writel2C(unsigned char Data)
{

unsigned char r;
I2CODAT = Data,;
I2COCONCLR = 0x8;

the data while('(I2COCONSET & 0x8));

/I Charge Data
/I SIC; Clear i2c interrupt bit to send
I/ wait till status available

r=12COSTAT;
if (r == 0x28)
{ /I look for "Data byte in S1DAT has been
transmitted; ACK has been received"
Icdcmd(0x01);
printstr("Write Sucess",0,0);
}
}
void Stopl2C(void)
{
I2COCONCLR = SIC;
I2COCONSET = STO;
while((I2COCONSET&STO)); // wait for Stopped bus 12C
}

void Startl2C(void)

{
I2COCONCLR = OxFF;
forgot to "Stopl2C()"

I2COCONSET = 0x40;
I2COCONSET = 0x00000020;

¥
int main()

{

unsigned char r;

wait();
wait();
wait();
wait();
Icdinit();
clrscr();

/I clear 12C - included if User

/I else this function would hang.
/I Active Master Mode on 12C bus
/I Start condition

printstr("SM MICRRO SYSTEM",0,0);

printstr(*
Initl2C();
Start12C();
SendI2CAddress(0xa0);
Writel2C(0);
Writel2C('B);
Stopl2C();

wait();

wait();

Startl2C();
SendI2CAddress(0xa0);
Writel2C(0);

Stopl2C();

Start12C();

ARM DEV KIT

",0,1);

/[EEPROM device address
/I Set the control port value

/[EEPROM device address
/I Set the control port value

Sendl2CAddress(0xal); // Start the read
r=Readl2C(); // read the result Stopl2C();
gotoxy(0,1);

split_numbers(r);

Icddat(0x30+hundreds);

Icddat(0x30+tens);

Icddat(0x30+ones);

while(1);

}

/***/

LCD.C

/***/

#define RS 0x00000400 /* P0.10 */
#define CE 0x00001800 /* P1.11 */
Void clrscr(char ch);
void lcdinit(void);
void Icdcmd(char); void Icddat(char);
void gotoxy(char,char); //x,y ; x-char position(0 - 16) y-line number 0
orl
void printstr(char *,char,char); /Istring,column(x),line(y)
void wait (void);
void split_numbers(unsigned int number);
#define SET 1
#define OFF 0
unsigned int thousands,hundreds,tens,ones;
void wait (void) /* wait function */
int d;
for (d = 0; d < 100000; d++); /* only to delay for LED flashes */
}

void lcdinit()
{
IODIRO = OXFFFFFFFF;
IOCLRO = 0X00000FFF;
Icdcmd(0x28);
Icdcmd(0x28);
Icdcmd(0x0c);
Icdcmd(0x06);
Icdcmd(0x01);
Icdcmd(0x0f);
wait();//(1600);

void gotoxy(char x, char y)

if(y == 0)
Icdemd(0x80+x);
else

Icdemd(0xc0+x);

¥

void printstr(char *str, char x, char y)

{
char i; gotoxy(x,y); wait();//(500);
for(i=0;str[i]!="0";i++) lcddat(str[i]);

void lcdecmd(char cmd)

{

unsigned char LCDDAT;

LCDDAT = (cmd & 0xf0); //higher nibble IOSETO = LCDDAT,;
IOCLRO = RS; IOSETO = CE;

wait();//(100); /lenable lcd

IOCLRO = CE;

IOCLRO = 0X00000FFF;

LCDDAT = ((cmd<<0x04) & 0xf0); /llower nibble IOSETO = LCDDAT;
IOCLRO = RS; IOSETO = CE;

wait();//(100); /lenable Icd

IOCLRO = CE;

IOCLRO = 0X00000FFF;

}

void lcddat(char cmd)

{

unsigned char LCDDAT;

LCDDAT = (cmd & 0xf0); //higher nibble IOSETO = LCDDAT,;
IOSETO = RS; IOSETO = CE;

wait();//(100); /lenable Icd

IOCLRO = CE;

IOCLRO = 0X00000FFF;

LCDDAT = ((cmd<<0x04) & 0xf0); /llower nibble IOSETO = LCDDAT;
IOSETO0 = RS; IOSETO = CE;

wait();//(100); /lenable Icd

IOCLRO = CE;

IOCLRO = 0X00000FFF;

void clrscr(char ch)

{

if(ch==0)

{
printstr(" ",0,0);
gotoxy(0,0);

}

else if(ch == 1)

{
printstr(" ",0,1);
gotoxy(0,1);

}

else

{
Icdcmd(0
x01);

void split_numbers(unsigned int number)

{

thousands =
(number
/1000);
number %=
1000;
hundreds =
(number /
100);
number %=
100;

tens =
(numbe

r / 10);
number

%= 10;

ones = number;

EPROM (12C) PROGRAM PORT SETAILS

ARM DETAILS
PO.10 RS LCD PIN
P1.11 CE LCD PIN
PO.11 SCL
P0.14 SDA

INTERRUPT BUZZER PROGRAM

/**

***/

Ext Driver.C

/***/

#inclu
de
<LP
Cc21
4x.h
>
void
init_
VIC(
void)

ks

/*
initialize
VIC*/
VICINtEnClr = Oxffffffff; VICVectAddr =0;
VICIntSelect = 0;

void Extint_ISR(void)_irq

{

IIEXTINT = (1<<2); /* clear EINT2 flag by writing HIGH to coresponding bit*/
/NOCLRO = 0x40000000; /* Trigger the relay*/

1

IOCLR1 = 0x400f0000; /* P1.18 Trigger the relay*/
/IOPIN

0x00000000;

EXTINT =

(1<<2);

VICVectAddr = 0; /* Acknowledge Interrupt */

}

void init_Interrupt(void)

I

PINSELO = 0x80000000; // select PO0.15 for

EINT2

VICIntEnable = (1 << 16); 1 External

interrupt 2 (EINT2)

VICVectCntl0 = (1<<5)|(16); //setthe VIC control reg

for EINT2 VICVectAddr0 = (unsigned long)ExtInt_ISR;

EXTMODE &= ~(1<<2); /1 set VIC for egdse sensitive for EINT2
EXTPOLAR = ~(1<<2); // set VIC for falling edge sensitive for EINT2

void init_ports(void)

10Dl

RO =
0x400
00000

10Dl
R1 =
0x400
f0000

IOPI
N1 =
0xff0
10000

IOSE
TO =
0x400
00000

IOSET1 = 0x400f0000;

¥

/*void wait_for_turnoffRelay(void)

{

int val;

val = IOPINZ; /I read the ports for key board

input while((~(val>>20)) = 0); I/ wait until 1st key in the matrix

keyboard

is pressed
IOCLRO = 0x00010000; I/ switch off the relay
)

T P——
*********/

XINTR _RELAY.C

**/

#include <LPC214x.h>
#include "ext.h"

int main()
{
init_VIC();
init_Interrupt();
init_ports();
while(1)
{
/lwait_for_turnoffRelay();
}
¥
INTERRUPT BUZZER PROGRAM
ARM DETAILS
P1.18 TRIGGER THE RELAY
P0.15 EINT2

Review Questions
1. What will be the initial values in all the cells of an EPROM?
2. What are the contents of the IE register, when the interrupt of the memory location
0x00 is caused?
3. Why normally LIMP instructions are the topmost lines of the ISR?
4. Enumerate the features of nested interrupt.
5. Illustrate the Master Slave mode.

Result:
The C-Language program to write and read a data in EEPROM and also to analyze its
performance with the interrupt is developed and is verified.

Ex. No. 11
Date:
ANALYZE SERIAL INTERFACE AND PARALLEL INTERFACE
Aim:
To write an ALP to demonstrate
(a) Serial Interface - transmit a data 41H serially by interfacing 8086 with 8251
(b) Parallel Interface

SERIAL INTERFACE
Description:

The 8253 and 8251 should be initialized before transmitting the character. The Program
first initialize 8253 to give an output clock frequency of 150 KHz at channel 0 which will give a
9600 baud rate of 8251. The 8251 mode instruction (refer mode instruction format) is initialized
with the following specifications: 8bit data, No parity, Baud rate factor (16x), 1 stop bit. Thus the
mode command word is 4E for the above said specifications. The 8251 command instruction
(refer command instruction format) is initialized with 37H which enables the transmit enable and
receive enable bits, force DTR output to zero, resets the error flags, and forces RTS output to
Zero.

Algorithm:
1. Start the program.
Set the origin as 1100H.
Initialize the 8253 Timer in Mode 3
Initialize the 8251
Transmit the data at transmitter end
Reset the system
At the receiver end receive the data and reset the system
Stop the program.

NI 2D

D Dg Ds Dy Dy Dy D Dy
s s e [pn[]y [& o]

L Baud Rate Factor
0 1 0 1

0 0 1 1

SYNG 1x 16 x 64 =

Charactor Length
0 1 0 1
0 1 1
5 bits 6 bits 7 bits 8 bits

LA
o

Parity Check

= 0 1 0 1

= 0 0 1 1
. Odd - Even
Disable Parity Disable Parity

Stop bit Length
- 0 1 0 1
- 0 0 1 1

Inhabit | 1bit | 1.5bits | 2 bits

Bit Configuration of Mode Instruction (Asynchronous)

D7 Dg D Dy Dz D2 D+ Do
‘ EH | IR ‘ RTS | ER |SBRK| RXE | DTR |_}€EN|

o

1...Transmit Enable

1...Sent Break Charactor

0...Mormal Operation

1...Reset Error Flag

0...Mormal Operation

RTS

—HATS=0
— RIS =1

1...Internal Reset

0...Mormal Operation

1...Hunt Mode {MNote)
0...Nermal Operation

Mote: Seach mode for synchronous
charactors in synchronous mode.

Bit Configuration of Command

CONTROL WORD FORMAT OF 8255

CONTROL WORD

|EI|7 DEJD5 | D4 D3 | D2 D1 | DO
GROUF B

PORT C (LOWER)
1=INPUT
0= QUTPUT

PORT B
1=INPUT
0=0uUTPUT

MODE SELECTION
0 =MODE 0
1 =MODE 1

w

L J

w

GROUP A

PORT C (UPPER)
1=INPUT
0=0UTPUT

PORT A
1=INPUT
0=0UTPUT

MODE SELECTION
00 = MODE 0
01 =MODE 1
1X = MODE 2

k 4

v

L

MODE SET FLAG
1=ACTIVE

L

PROGRAM:

Label Program Comments
ORG 1000H Set starting address as 1000H.
MOV AL, 36 Mode set for 8253 — Channel 0 in Mode 3
OUT CE, AL
MOV AL, 10
OUT C8, AL
MOV AL, 00
OUT C8, AL
MOV AL, 4E | Mode instruction for 8251
OUT C2, AL
MOV AL, 37 Command Instruction for 8251
OUT C2, AL
MOV AL, 41
OUT C0, AL Sent the data 41
INT 2 Reset
ORG 1200H
IN AL,CO Receive the data 41
MOV BX,1250
MOV [BX],AL | Store the data at 1250H
INT 2 Reset
Observation:
Output:
1250:
REVIEW QUSETIONS:
1. Expand USART?
2. Where do we prefer the serial communication?
3. What is the function of instruction pointer (IP) register?
4. What is the difference between IN and OUT instructions?
5. What is MODEM?
PARALLEL INTERFACE
Description:

Initialize the Port A as Input port and Port B as Output port in Mode — 0. The input port
reads the data set by the SPDT switches and the output port outputs the same data to port B to
glow LEDs accordingly.

Algorithm:
1. Start the program.

Write the read data to the output port
Stop the program.

2. Set the origin as 1100H.

3. Initialize the port A as input port
4. Initialize the port B as output port
5. Configure 8255 in mode 0

6. Read the input port

7.

8.

Parallel Interface Program

Label Program Comments
ORG 1100H Set starting address as 1100H.
MOV AL90 Initialize 8255 in mode 0 with port A as
OUT C6,AL input port and port B as output port.
IN AL,CO Read the data from SPDT switch
OUT C2,AL Write the data to LEDs
HLT
Example:
Input:

SPDT switch position: 10110011
Output:
LED status: 10110011
Manual Calculation:

REVIEW QUSETIONS:

What is the difference between near and far procedure?
What is difference between shifts and rotate instructions?
Which are strings related instructions?

Which are addressing modes and their examples in 80867
Discuss the use of following instructions:

SCASB

LAHF

ROL

SHR

IDIV

AREl ol S

o a0 TP

Result:

Thus the programs for serial and parallel interface are executed successfully.

Ex. No. 12

Date:
A/D AND D/A INTERFACE

Aim:

To write an assembly language program to demonstrate

(a) Analog to Digital Conversion

(b) Digital to Analog Conversion

ANALOG TO DIGITAL CONVERSION

Features of ADC 0809

ADC 0809 is a monolithic CMOS device, with an 8-bit analog to digital converter, 8 channel
multiplexer and microprocessor compatible control logic
1.

SECIF SO

The

8 bit resolution

100 ps Conversion time

8 channel multiplexer with latched control logic
No need for external zero or full scale adjustments
Low power consumption time

Latched tristate output

device contains an 8 channel single ended analog signal multiplexer. A particular input
channel. A particular input channel is selected by using the address decoding. Table shows the
input states for the address lines to select any channel. The address is latched into the decoder of
the chip on low to high transition of the address latch enable. The A/D convertet's successive
approximation register reset on the positive edge of the start of the conversion pulse. The
conversion is begun on the falling edge of the SOC pulse. End of conversion will go low between
0 and 8 clock pulses after the rising edge of start of conversion

SELECTED ADDRESS LINE
ANALOG
CHANNEL ADD C ADD B ADD A
INO 0 0 0
IN1 0 0 1
IN2 0 1 0
IN3 0 1 1
N4 1 0 0
IN5 1 0 1
NG 1 1 0
IN7 1 1 1
Algorithm

1.
2. Send Start of conversion

3. Check End of conversion

4. Get digital data for corresponding analog voltage and display at stored location.

Select Channel ‘0" and apply analog voltage

The buffer 741.S244 which transfers the converted data outputs to data bus is selected when

A7 A6 A5 A4 A3 A2 Al A0
1 1 0 0 0 X X X

=COH

The I/O address for the latch 74LS 714 which latches the data bus to ADD A, ADD B and
ADDC and ALE 1 and ALE 2 is

A7 | A6 A5 A4 | A3 A2 Al A0
1 1 0 0 1 X X X

=C8H

The flip flop 741.S74 which transfers the DO line status to the start of conversion pin of

ADCO0809 is selected when

A7 | A6 A5 A4 | A3 A2 Al A0
1 1 0 1 0 X X X

=DOH

The EOC output of ADC 1 and ADC 2 is transferred to DO line by means of two tristate

buffers.
The EOC 1 is selected when
A7 A6 A5 A4 A3 A2 Al A0 _
1 1 0 1 1 X X X =D8H
The EOC 2 is selected when
A7 A6 A5 A4 A3 A2 Al A0 _
1 1 1 0 0 X X X =EOH
CHNO. CHNO. CHNO.
CHANNEL EOC
SL. NO ALE LOW ALE HIGH ALE LOW
NUMBER ADDRESS
OE HIGH OE LOW OE HIGH
1 CHO D8 10 18 10
2 CH1 D8 11 19 11
3 CH2 D8 12 1A 12
4 CH3 D8 13 1B 13
5 CH4 D8 14 1C 14
6 CH5 D8 15 1D 15
7 CHG6 D8 16 1E 16
8 CH7 D8 17 1F 17

FLOWCHART

PROGRAM

Select Channel “0F

Apply analog voltage hMake ATE High and OFE High

!

Make ATLE Low
Make 30OC high

v

Make SOC Low

e
-

(et digital data and store in

memory location

Label

Program

Comments

LOOP

ORG 4100H
MOV AL, 10H
OUT 0C8H, AL
MOV AL, 18H
OUT 0C8H, AL
MOV AL, 01H
OUT 0DOH, AL
MOV AL, 00H
MOV AL, 00H
MOV AL, 00H
MOV AL, 00H
OUT 0DOH, AL
IN AL, 0D8H
AND AL, 01H
CMP AL, 01H

Set starting address as 4100H.

Selection Channel ‘0’

Make ALE1 and OE1 high

Make SOC High

Make SOC low

Check EOC

JNZ LOOP
IN AL, 0CO Output Digital Data
MOV BX, 1200H
MOV [BX], AL
HLT
Observation:
DAC 0800
10v
DIGITAL INPUTS
“wss LSB
B1 B2 B3 B4 B5 BG BY BB
10k 10k
???T?TT?
5k 7 B 9 10 11 12 4N O
10V O=—=AAAN~— 4 -—
DAC0800 VouT TO 20 Vpp
bk
= | I_l FHF_L Tout
= Voo m oF
REVIEW QUSETIONS:
1. Which is by default pointer for CS/ES?
2. What is the difference between instructions RET & IRET?
3. What are the functions performed by 8279?
4, What is PPI?
5. Give the control word format for I/O mode of 82557

INTERFACING DAC WITH 8086

THEORY:

DAC 0800 is an 8 — bit DAC and the output voltage variation is between — 5V and +
5V.The output voltage vaties in steps of 10/256 = 0.04 (appx.). The digital data input and the
corresponding output voltages are presented in the Tablel.

Input Output
Data in Voltage
HEX
00 -5.00
01 -4.96
02 -4.92
7F 0.00

FD 4.92
FE 4.96
FF 5.00

Referring to Tablel, with 00 H as input to DAC, the analog output is — 5V. Similarly,

with FF H as
DAC, results
is 08 H

input, the output is +5V. Outputting digital data 00 and FF at regular intervals, to
in different wave forms namely square, triangular, etc,. The port address of DAC

ALGORITHM:
(a) Square Wave Generation

1. Load the initial value (00) to Accumulator and move it to DAC
2. Call the delay program
3. Load the final value(FF) to accumulator and move it to DAC
4. Call the delay program.
5. Repeat Steps 2 to 5
FLOWCHART
-
. Load the initial value {00} to
Accumulator and move it to DAC
v
Call a Delay program
Load the initial value (FF) to
Accumulator and move it to DAC
v
PROGRAM
Label Program Comments
ORG 4100H
START: | MOV AL, 00H

DELAY:
L1:

ouT 0COH,AL
CALL DELAY Set starting address as 4100H.
MOV AL, OFFH
OuUT 0COH,AL
CALL DELAY
JMP START
MOV CX, 05FFH
LOOP L1

RET

(b) Saw tooth Wave Generation

1. Load the initial value (00) to Accumulator
2. Move the accumulator content to DAC
3. Increment the accumulator content by 1.
4. Repeat Steps 3 and 4.
FLOWCHART
v
Load the initial value (00) to
Accumulator and move it to DAC
o Increment AT by one and move
it to DAC
PROGRAM
Label Program Comments
ORG 4100H Set starting address as 4100H.
START MOV AL, 00H
L1 OUT 0COH, AL

INC AL
JNZ L1
JMP START

NN

(c) Triangular Wave Generation

Load the initial value (00) to Accumulator
Move the accumulator content to DAC

Increment the accumulator content by 1.

If accumulator content is zero proceed to next step. Else go to step 3.
Load value (FF) to Accumulator
Move the accumulator content to DAC

Decrement the accumulator content by 1.
If accumulator content is zero go to step2. Else go to step 7.

FLOWCHART

PROGRAM

Load the imitial value (00} to
Accumulator and move it to DAC

v
Increment AL by one and move
it to DAC
No
Yes

Decrement AL by one and move
it to DAC

Label

Program

Comments

START: | MOV

L1: | MOV
OUT
INC
JNZ
MOV
L2: | MOV
OUT
DEC
JNZ

ORG 4100H

BL, 00H
AL, BL
0COH,AL

BL
L1

BL, OFFH
AL, BL
0COH,AL

BL
L2

JMP START

Set starting address as 4100H.

Example:

Observation:

Waveform

Amplitude

Time Period(ms)

Square

2

56

Sawtooth

2

3

Triangular

2

24

Waveform

Amplitude

Time
Period(ms)

Square

Sawtooth

Triangular

REVIEW QUSETIONS:

1. Whether 8086 is compatible with Pentium processor?

Write an ALP program for multiplication of given number in location mode a) 0060,
b) 0002

3. List the operating modes of 8253 timer.

4. What is the use of USART?

5. Compare the serial and parallel communications.
RESULT

Thus the program to demonstrate the ADC and DAC were executed.

CYCLE 111
3051 Programs

(START)

¥

LOAD THE ADDRESS IN DPTR

!

SAVEITINE] REG

MOVE THE 1¥ DATA TO A - REG AND

INCREMENT DPTR AND MOVE THE 2"P DATA TO
A-REG
CLEAR RO REGISTER
v
ADD A-REGWITHERI REGTO GET
STUM

IF YES5

CF=1 INCREMENT RO REG

NO

i

r

INCREMENT DPTE AND SAVE A —-REG
CONTENT IN MEMOEY

.

INCREMENT DPTR

T

MOVE RO TO A —REG AND THEN SAVE
A—-REG CONTENT IN MEMORY

STOP

Ex. No. 13
Date:
BASIC ARITHMETIC AND LOGIC OPERATIONS
Objective:
To write an ALP to perform the following operations using 8051 instruction set

(a) Addition

(b) Subtraction

(c) Multiplication

(d) Division

(e) Logical operation

ADDITION OF TWO 8 BIT NUMBERS

Description:

In order to perform addition in 8051, one of the data should be in accumulator and another
data can be in any SFR/internal RAM or can be an immediate data. After addition the sum is
stored in accumulator. The sum of two 8 — bit data can be either 8 bits (sum only) or 9 bits (sum
and carry). The accumulator can accommodate only the sum and if there is carry, the 8051 will
indicate by setting catry flag. Hence one of the internal register/RAM locations can be used to
account for carry.

Algorithm:
1. Set DPTR as pointer for data.
Move first data from external memory to accumulator and save it in R1 register.
Increment DPTR.
Move second data from external memory to accumulator
Clear RO register to account for carry.
Add the content of R1 register to accumulator.
Check for carry. If carry is not set go to step 8. Otherwise go to next step.
Increment RO register.
9. Increment DPTR and save the sum in external memory.
10. Increment DPTR, move carry to accumulator and save it in external memory.

S Al i

11. Stop
PROGRAM:
Label Program Comments

MOV DPTR, #4500 Load address of 1% data in DPTR
MOVX A,@DPTR Move the 1% data to A
MOV R1,A Save the first data in R1
INC DPTR Increment DPTR to point 2™ data
MOVX A,@DPTR Load the 2™ data in A
MOV RO,#00 Clear RO for the account of carry
ADD AR1 Get the sum in A reg
JNC AHEAD Check carry flag
INC RO If carry is set increment RO

AHEAD: INC DPTR Increment DPTR
MOVX @DPTR,A Save the sum in external memory
INC DPTR Increment DPTR

MOV A,RO Move carry to A reg
MOVX @DPTR,A Save the catty in external memory
HERE: SJMP HERE Remain idle in infinite loop
Example: Manual Calculation:
Input:
4500: 05 [Addend]
4501: 06 [Augend]
Output:
4502: 0B [Sum|]

4503:00 [Carry]

Flow Chart

START

LOAT THE ADDRESS IN DPTR

!

SAVEITINR1 REG

MOWVE THE MINUEND TO A — REG AND

v

INCREMEINT DPTER AND MOVE
THE STUBTRAHEND TO A —REG

v

EXCHANGE R1 WITH A - REG

+

CLEAR RO REGISTER AND CAREY FLAG

v

SUBTRACT R1 FROMA - REG

TES

COMPLEMEINT A
AND THEIN
INCREMEINT

+

NO

INCEEMEINT RO REG

¥

INCREMENT DPTR AND SAVE A —REG
CONTENT (DIFFERENCE) IN MEMORY

v

INCREMENT DPTR

r

MOVE RO TO A — REG AND THEN SAVE
A —REG CONTENT (53IGIN) IIN MEMORY

(sTOP)

SUBTRACTION OF TWO 8 BIT NUMBERS

Description:

In order to perform subtraction in 8051, one of the data should be in accumulator and
another data can be in any SFR/internal RAM or can be an immediate data. After subtraction the
result is stored in accumulator. The 8051 perform 2’s complement subtraction and then
complement the carry. Therefore if the result is negative carry flag is set and the accumulator will
have 2’s complement of the result. In order to get the magnitude of the result again take 2’s
complement of the result. One of the register is used to account for the sign of the result. The
8051 will consider previous carry while performing subtraction and so the carry should be cleared

before performing subtraction.

Algorithm:
1. Set DPTR as pointer for data.

e e A Al ol

result in A — reg
11. Increment RO register.
12. Increment DPTR and save the result in external memory.

13. Increment DPTR, move RO (sign bit) to accumulator and then save it in external

Move the minuend from external memory to accumulator and save it in R1 register.
Increment DPTR.
Move subtrahend from external memory to accumulator
Exchange the contents of R1 and A such that minuend is in A and subtrahend is in R1
Clear RO register to account for sign.

Clear carry flag.
Subtract the content of R1 register from accumulator.

Check for carry. If carry is not set go to step 12. Otherwise go to next step.
0. Complement the content of A — reg and increment by 1 to get 2’s complement of

memory.
14. Stop
PROGRAM:
Label Program Comments
MOV DPTR, #4500 Load address of minuend in DPTR
MOVX A,@DPTR Move the minuend to A
MOV R1,A Save the minuend in R1
INC DPTR Increment DPTR to point subtrahend
MOVX A,@DPTR Load the subtrahend in A
XCH AR1 Get minuend in A and Subtrahend in R1
MOV RO,#00 Clear RO for the account of Sign
CLR C Clear carry
SUBB A R1 Subtract R1 from A
JNC AHEAD Check Carry flag. If carry is set then
CPL A Get 2’s complement of result in A
INC A
INC RO Set RO to indicate negative sign
AHEAD: INC DPTR Increment DPTR
MOVX @DPTR,A Save the result in external memory
INC DPTR Increment DPTR
MOV ARO Move sign bit to A reg
MOVX @DPTR,A Save the sign in external memory
HERE: SJMP HERE Remain idle in infinite loop
Example: Manual Calculation:
Input:
4500: 0A [Minuend]
4501:05 [Subtrahend]

Output:

4502:05 [Difference]
4503:00 [Sign Bit]
Flow Chart

START

LOAD THE ADDRESS IN DPTR

v

MOVE THE 1¥DATA TO A —-REG AND
SAVEITINBREG

v

INCREMENT DPTR AND MOVE
THE 2"* DATATO A -REG

v

MULTIPLY A ANDE

v

INCEREMENT DPTE

r
S5AVE A -REG CONTENT (LOWER
BYTE OF PRODUCT) IN MEMORY

v
INCEEMENT DPTR

|

MOVE B HIGHER BYTE OF PRODUCT)
TO A-BREG AND THEN SAVE A-BREG
CONTENT IN MEMORY

STOP

MULTIPLICATION OF TWO 8 BIT NUMBERS

Objective:
To write an ALP to multiply two numbers of 8-bit data using 8051 instruction set

Description:

In order to perform subtraction in 8051, the two 8 — bit data should be stored in A and B
registers, then multiplication can be performed by using “MUL AB” instruction. After
multiplication the 16 — bit product will be in A and B register such that lower byte in A and higher
byte in B register.

Algorithm:
1. Load address of data in DPTR
2. Move the first data from external memory to A and save in B.
3. Increment DPTR and move second data from external memory to B.

4. Perform multiplication to get the product in A and B.

5. Increment DPTR and save A (lower byte of product) in memory

6. Increment DPTR , move B (lower byte of product) to A and save it in memory

7. Stop

PROGRAM:
Label Program Comments
MOV DPTR, #4500 Load address of 1% data in DPTR
MOVX A,@DPTR Move the 1* data to A
MOV B A Save the 1% data in B
INC DPTR Increment DPTR to point 2™ data
MOVX A,@DPTR Load the 2™ data in A
MUL AB Get the product in A and B
INC DPTR Increment DPTR
MOVX @DPTR,A Save the lower byte of result in external memory
INC DPTR Increment DPTR
MOV A,B Move the higher byte of product to A reg
MOVX @DPTR,A Save it in external memory
HERE: | SJMP HERE Remain idle in infinite loop
Example: Manual Calculation:

Input:

4500:02 [1* data]

4501:03 [2" data]

Output:

4502:06 [Lower byte of product]

4503:00 [Higher byte of product]

FLOWCHART

START

LOAD THE ADDRESS IN DPTR

'

LOAD THE DIVIDEND TO A - REG AND
SAVEITINROBREG

v

INCREMENT DPTR

!

LOADTHE DIVISORIN A-REGAND SAVEITINE - REG

'

MOVE THE DIVIDEND FROMEREO TO A -BREG

I

DIVIDE A-BEG CONTENT BEY BE-REG

v

INCREMENT DPTR

r

SAVE A — REG CONTENT (QUOTIENT)
IN MEMORY

v

INCREMENT DPTR

.

MOVE B (REMAINDER) TO A —REG AND THEN 5AVE
A—REG CONTENT IN MEMORY

(sTOP)

DIVISION OF TWO 8 BIT NUMBERS

Description:

In order to perform subtraction in 8051, the dividend should be stored in A — reg and
divisor should be stored in B — reg. then the content of A can be divided by B using the instruction
“DIV AB”. After division the quotient will be in A — reg and remainder will be in B — reg.

Algorithm:

1.
2.
3.

Nt s

Load address of data in DPTR

Move the dividend from external memory to A and save it in RO register.

Increment DPTR and move the divisor from external memory to A and save it in B
reg.

Move the dividend from RO to A.

Perform division to get quotient in A and remainder in B.

Increment DPTR and save quotient (content of A - reg) in memory

Increment DPTR.

8. Move the remainder (Content of B — reg) to A and save in memory.

9. Stop
Label Program Comments
MOV DPTR,#4500 Load address of dividend in DPTR
MOVX A,@DPTR Move the dividend to A
MOV ROA Save the dividend in RO
INC DPTR Increment DPTR to point divisor
MOVX A,@DPTR Load the divisor in A
MOV B,A Move the divisor to B
MOV ARO Move the dividend to A
DIV AB Divide the content of A by B
INC DPTR Increment DPTR
MOVX @DPTR,A Save the quotient in external memory
INC DPTR Increment DPTR
MOV A B Move the remainder to A reg
Hprp: | MOVX @DPTR,A Save it in external memory
SJMP HERE Remain idle in infinite loop
Example: Manual Calculation:
Input:
4500: 04 [Dividend]
4501:02 [Divisor]
Output:
4502:02 [Quotient]
4503:00 [Remainder]

FLOWCHART

START

LOAT THE ADDRESS IN DPTR

v

MOVE THE DATA TO A
SAVE FIRST DATA TO RO

v
| INCREMENT DPTR |

¥

SAVE SECONDDATA TO A, R1

!

| PERFORMOR OPERATION OF AWITH RO |

!

| INCREMENT DPTR |

v

| SAVE A —REG CONTENT IN MEMORY |

+

MOVE R1 DATA TO A PERFORM
AND OPERATION OF AWITH RO

.

INCREMENNT DPTR TO STORE THE
RESTULT

(sTOP)

LOGICAL OPERATIONS OF 8 BIT NUMBERS

Description:

The first value should be stored in RO -reg, second value should be stored in R1 — reg, First
move R1 value to A, perform OR operation with RO reg and store the result. Second move R1
value to A performs AND operation with RO reg stores the result.

Algorithm:
1. Load address of first data in DPTR
2. Move the data to A
3. Save first data to RO
4. Increment DPTR to Load address of second data in DPTR
5. Save second data to A, R1
6. Perform OR operation of A with RO
7. Increment DPTR to store the result
8. Move R1 data to A
9. Perform AND operation of A with RO
10. Increment DPTR to store the result

PROGRAM:

Label Program Comments
MOV DPTR, #4500 Load address of first data in DPTR
MOVX A,@DPTR Move the data to A
MOV RO, A Save first data to RO
INC DPTR Increment DPTR to Load address of

second data in DPTR
MOVX A,@DPTR
MOV R1,A Save second data to A, R1
ORL A, RO Perform OR operation
INC DPTR Increment DPTR to store the result
MOVX @DPTR, A
MOV A, R1
ANL A, RO Perform AND operation
INC DPTR Increment DPTR to store the result
MOVX @DPTR, A
HERE: SJMP HERE
Example: Manual Calculation:

Input

4500 :00

4501:01

Output

4502 :01 (OR operation)
4503 :00 (AND operation)

PROGRAM:
Label Program Comments

ORG 4100H Set starting address as 4100H.
MOV DPTR, #4500H Initialise the dptr
MOVX A,@DPTR Get the datain A — reg
MOV B,A Copy itin B —reg
MUL AB Multiply A and B
INC DPTR Increment dptr
MOVX @DPTR,A Store the lower order in memory
INC DPTR Increment dptr
MOV AB

MOVX @DPTR,A Store the higher order in memory
HERE: SJMP HERE

Example:

Input:
4500:03
Output:
4501:09
4502:00
REVIEW QUSETIONS:

What is a microcontroller? How does it differ from a microprocessor?
What is the role of the program counter in 80517

Write the significance of oscillators in a microcontroller.

What are the types of memory in 80517

What is PSW?

Draw the format of TMOD register.

Sk LN

Result:

Thus the program for arithmetic and logic operation was written and executed.

Ex. No. 14

D SQUARE, CUBE and 2’S§ COMPLIMENT OF A NUMBER
Objective:
To write 8051 ALP to determine the square, cube and 2’s compliment of a number
SQUARE OF A NUMBER
Description:

The square of a number is determined by multiplying the value by itself. In this program
the input is obtained in A — reg and then it is copied to B — reg. The values of A and B registers
are multiplied and the result is stored in memory.

Algorithm:

Start the program.

Set the origin as 4500H.

Initialize DPTR

Get the value in A — reg and copy itin B — reg
Multiply the values of A —reg and B — reg
Store the result

Stop the program.

Nk b e

PROGRAM:

Label Program Comments
ORG 4100H Set starting address as 4100H.
MOV DPTR,#4500H Initialise the dptr

MOVX A,@DPTR Get the data in A — reg

MOV RO,A Copy it in 10 — reg

MOV B A Copy itin B —reg

MUL AB Multiply A and B

PUSH B Push higher order to stack
MOV BA
MOV ARO
MUL AB
INC DPTR
MOVX @DPTR,A Store the lower order of result
MOV R2,B

POP B

MOV ARO

MUL AB

ADD AR2

INC DPTR
MOVX @DPTR,A

MOV A,B

INC DPTR
MOVX @DPTR,A Store the higher order of the result
HERE SJMP HERE

CUBE OF A NUMBER
Description:
The square of a number is determined by multiplying the value by itself for two times. In
this program the input is obtained in A — reg and then it is copied to B — reg and r0 - reg. The
values are multiplied and stored tin the memory.

Algorithm:
1. Start the program.

2. Set the origin as 4100H.
3. Initialize DPTR
4. Copy the data to A — reg, B- eg, RO — reg
5. Multiply the data to find the cube
6. Store the result
7. Stop the program
PROGRAM:
Label Program Comments
MOV DPTR, #4500 Load address of data in DPTR
MOVX A,@DPTR Move the data to A
CPL A Complement A
INC A Increment A by 1.
INC DPTR Increment DPTR to store the result of 2’s
MOVX @DPTR, A complement of A
HERE: SJMP HERE
Example:
Input:
4500:03
Output:
4501:27
4502:00
Example:
Input
4500 :01
Output

4501 :F2 (Two’s complement)

2’S COMPLIMENT OF A NUMBER
Description:

In order to perform 2’s complement in 8051, the given value should be stored in A — reg
then take one’s complement of A and add value one to LSB.

Algorithm:

Load address of data in DPTR

Move the data to A

Complement A

Increment A by 1.

Increment DPTR to store the result of 2’s complement of A

Stop

I e

REVIEW QUESTIONS:

Explain the instruction MOV DPTR, #4500H.
What does the PUSH instruction do?
What instruction is used to multiply any two numbers?
What is the function of POP instruction?
Which instruction is used to increment the value?
What does the ORL instruction do?
Explain ANL R1,#0F.
How do we take two’s complement of number? Give example.
What does the ORG 4100H mean?
. Explain the mode 0 operating mode of 8051 serial ports.
. Explain the mode 2 operating mode of 8051 serial ports.
. Explain the mode 3 operating mode of 8051 serial ports.
. What are the pins used for serial communication?
. What is the use of SBUF register?
. What are the methods to double the baud rate?

S el

N i S o
Ul W= O

Result:

Thus the program to determine square, cube and 2’s compliment of a number are executed
successfully.

Ex. No. 15
Date:
SQUARE WAVE GENERATION USING 8051

Objective:

To write an Assembly Language Program (ALP) to generate square waveform using 8051
instruction set.

Description:

Square waves of any frequency (limited by the controller specifications) can be generated
using the 8051 timer. The technique is very simple. Write up a delay subroutine with delay equal
to half the time period of the square wave. Make any port pin high and call the delay subroutine.
After the delay subroutine is finished, make the corresponding port pin low and call the delay
subroutine gain. After the subroutine is finished, repeat the cycle again. The result will be a square
wave of the desired frequency at the selected port pin.

Steps:

1. Assume Duty Cycle 50%

2.Assume 12MHZ. Clock is Connected to Micro-Controller
3.Use Timers

4.Check output in P3.2

Program for 1 KHz Square wave using 8051 timer
ORG 0000H
MOVTMOD, #01H
UP: SETB P3.2
LCALL DELAY
CLR P3.2
LCALL DELAY
SJMP UP

DELAY:MOV THO,#0FEH
MOV TLO,#0CH
CLR TFO
SETB TRO

HERE:JNB TFO,HERE
RET
END

Result:

Thus the square waveform has been generated successfully.

