

SRM VALLIAMMAI ENGINEERING COLLEGE
(An Autonomous Institution)

SRM NAGAR, KATTANKULATHUR – 603 203.

DEPARTMENT OF MEDICAL ELECTRONICS

LABORATORY MANUAL

190661 MICROPROCESSOR AND MICROCONTROLLER
LABORATORY

III-YEAR VI-SEM

ACADEMIC YEAR: 2024-2025(EVEN SEMESTER)

Prepared by

Mr. M.SELVARAJ,

Assistant Professor / MDE

SRM VALLIAMMAI ENGINEERING COLLEGE
(An Autonomous Institution)

SRM Nagar, Kattankulathur -603 203

DEPARTMENT OF MEDICAL ELECTRONICS

 VISION OF THE INSTITUTE

“Educate to excel in social transformation”

To accomplish and maintain international eminence and become a model institution for

higher learning through dedicated development of minds, advancement of knowledge and

professional application of skills to meet the global demands.

 MISSION OF THE INSTITUTE

 To contribute to the development of human resources in the form of professional

engineers and managers of international excellence and competence with high motivation

and dynamism, who besides serving as ideal citizen of our country will contribute

substantially to the economic development and advancement in their chosen areas of

specialization.

 To build the institution with international repute in education in several areas at several

levels with specific emphasis to promote higher education and research through strong

institute-industry interaction and consultancy.

VISION OF THE DEPARTMENT

To excel in the field of Medical Electronics and to develop highly competent technocrats

with global intellectual qualities.

MISSION OF THE DEPARTMENT

 To educate the students with the state of art technologies to compete internationally, able

to produce creative solutions to the society`s needs, conscious to the universal moral

values, adherent to the professional ethical code

 To encourage the students for professional and software development career

 To equip the students with strong foundations to enable them for continuing education

and research.

PROGRAMME OUTCOMES (POs)

PO1: Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering
problems.

PO2: Problem analysis: Identify, formulate, review research literature, and analyze complex
engineering problems reaching substantiated conclusions using first principles of
mathematics, natural sciences, and engineering sciences.

PO3: Design/development of solutions: Design solutions for complex engineering
problems and design system components or processes that meet the specified needs with
appropriate consideration for the public health and safety, and the cultural, societal, and
environmental considerations.

PO4: Conduct investigations of complex problems: Use research-based knowledge and
research methods including design of experiments, analysis and interpretation of data, and
synthesis of the information to provide valid conclusions.

PO5: Modern tool usage: Create, select, and apply appropriate techniques, resources, and
modern engineering and IT tools including prediction and modeling to complex
engineering activities with an understanding of the limitations.

PO6: The Engineer and society: Apply reasoning informed by the contextual knowledge to
assess societal, health, safety, legal and cultural issues and the consequent responsibilities
relevant to the professional engineering practice.

PO7: Environment and sustainability: Understand the impact of the professional
engineering solutions in societal and environmental contexts, and demonstrate the
knowledge of, and need for sustainable development.

PO8: Ethics: Apply ethical principles and commit to professional ethics and responsibilities
and norms of the engineering practice.

PO9: Individual and team work: Function effectively as an individual, and as a member or
leader in diverse teams, and in multidisciplinary settings.

PO10: Communication: Communicate effectively on complex engineering activities with the
engineering community and with society at large, such as, being able to comprehend and
write effective reports and design documentation, make effective presentations, and give
and receive clear instructions.

PO11: Project management and finance: Demonstrate knowledge and understanding of the
engineering and management principles and apply these to one’s own work, as a member
and leader in a team, to manage projects and in multidisciplinary environments.

PO12: Life-long learning: Recognize the need for, and have the preparation and ability to
engage in independent and life-long learning in the broadest context of technological
change.

PROGRAMME SPECIFIC OUTCOMES (PSOs) of ECE DEPARTMENT
PSO1: Ability to apply the acquired knowledge of basic skills, mathematical foundations, and

principles of electronics, modeling and design of electronics based systems in solving
engineering Problems.

PSO2: Ability to understand and analyze the interdisciplinary problems for developing
innovative sustained solutions with environmental concerns.

PSO3: Ability to update knowledge continuously in the tools like MATLAB, NS2, XILINIX
and technologies like VLSI, Embedded, Wireless Communications to meet the industry
requirements.

PSO4: Ability to manage effectively as part of a team with professional behavior and ethics.

190661 –MICROPROCESSOR AND MICROCONTROLLER LAB

LIST OF EXPERIMENTS

8086 Programs using kits and MASM

1. Basic arithmetic and Logical operations

2. Move a data block without overlap

3. Code conversion, decimal arithmetic and Matrix operations.

4. Floating point operations, string manipulations, sorting and searching

5. Password checking, Print RAM size and system date

6. Counters and Time Delay

Peripherals and Interfacing Experiments

7. Traffic light control

8. Stepper motor control

9. Digital clock

10. Key board and Display

11. Printer status

12. Serial interface and Parallel interface

13. A/D and D/A interface and Waveform Generation

8051 Experiments using kits and MASM

14. Basic arithmetic and Logical operations

15. Square and Cube program, Find 2‟s complement of a number

16. Unpacked BCD to ASCII

BEYOND THE SYLLABUS

 17. Square wave generation using 8051

CONTENTS

Sl. No. Name of the Experiments Page No.

CYCLE - I

1 Basic arithmetic and Logical operations

2 Move a data block without overlap

3 Code conversion, decimal arithmetic and Matrix operations.

4 Floating point operations, string manipulations, sorting and searching

5 Password checking, Print RAM size and system date

6 Counters and Time Delay

CYCLE – II

7 Traffic light control

8 Stepper motor control

9 Digital clock

10 Key board and Display

11 Printer status

12 Serial interface and Parallel interface

13 A/D and D/A interface and Waveform Generation

CYCLE – III

14 Basic arithmetic and Logical operations

15 Square and Cube program, Find 2‟s complement of a number

16 Unpacked BCD to ASCII

TOPIC BEYOND SYLLABUS

17 Square wave generation using 8051

Flow Chart for Addition of Two Numbers:

Ex. No. 1

Date:

PROGRAMS FOR BASIC ARITHMETIC AND LOGICAL OPERATIONS

Objective:

 To write an Assembly Language Program (ALP) to perform basic Arithmetic and

Logical Operations

(a) Addition of two numbers

(b) Subtraction of two numbers

(c) Multiplication of two numbers

(d) Division of two numbers

(e) Logical operation

(A) ADDITION OF TWO 16 BIT NUMBERS

Description:

To perform addition in 8086, one of the data should be stored in a register and another

data can be stored in register / memory. After addition the sum will be available in the

destination register / memory. The sum of two 16-bit data can be either 16 bits (sum only) or

17 bits (sum and carry). The destination register / memory can accommodate only the sum and

if there is a carry the 8086 will indicate by setting carry flag. Hence one of the register is used

for the account of carry.

Algorithm:

1. Start the program.

2. Set the origin as 1000H.

3. Store the 1st data in AX register.

4. Clear BX register pair for carry.

5. Set SI to 1202H to point the second data.

6. Add the content in AX with data pointed by SI register.

7. If carry occurs, increment BX register by one.

8. Move the content of AX to 1300H.

9. Move the content of BX to 1302H.

10. End of segment.

11. Stop the program

PROGRAM

Example 1:

 With Carry

Input:

1200: 46
1201: B6 [Addend]
1202: D3
1203: 98 [Augend]

Output:
 1300: 19
 1301: 4F [Sum]
 1302: 01
 1303: 00 [Carry]

Label Program Comments

Next:

ORG 1000H

MOV BX, 0000H

MOV SI, 1200H

MOV AX, [SI]

ADD SI, 02H

ADD AX, [SI]

JNC Next

INC BX

MOV DI, 1300H

MOV [DI], AX

ADD DI, 02H

MOV [DI], BX

HLT

Set starting address as 1000H.

Initialize BX to 0000H

Move immediate data to SI

Move content of SI to AX

ADD SI with immediate data.

Add content of SI with AX register

Jump if no carry to loop

Increment BX register

Move immediate data to DI.

Move AX to DI.

ADD DI with immediate data

Move BX to DI

Example 2:

Without Carry
Input:
1200: 34
1201: 44 [Addend]
1202: 24
1203: 24 [Augend]

 Output:
 1300: 58
 1301: 68 [Sum]
 1302: 00
 1303: 00 [Carry]

Flow Chart of Subtraction of Two Numbers:

(B) SUBTRACTION OF TWO 16 BIT NUMBERS

Description:

 To perform subtraction in 8086 one of the data should be stored in register and another

data should be stored in register or memory. After subtraction the result will be available in

destination register/memory. The 8086 will perform 2’s complement subtraction and then

complement the carry. Therefore if the result is negative then carry flag is set and the

destination register/memory will have 2’s complement of the result. Hence one of the registers

is used to account for sign of the result. To get the magnitude of the result again take 2’s

complement of the result.

Algorithm:

1. Start the program.

2. Set the starting address as 1000H.

3. Set the SI register to 1200H address.

4. Move the 16 bit data to AX register pair.

5. Increment the SI register to 1202.

6. Get the second data.

7. Move this second value to BX register.

8. Subtract the content pointed by SI from AX and store result in AX.

9. If carry occurs go to step 13.

10. Increment BX register, then perform inversion operation to AX register.

11. Increment AX register.

12. Move the resultant to DI register.

13. Display the output.

14. End of segment.

15. Stop the program.

PROGRAM

Example 1:

With Borrow
 Input:
 1200: 03
 1201: 00 (minuend)
 1202: 05
 1203: 00 (subtrahend)

 Output:
 1300: 02
 1301: 00 (Difference)
 1302: 01
 1303: 00 (Borrow)

Label Program Comments

Next:

ORG 1000H

MOV BX, 0000H

MOV SI, 1200H

MOV AX, [SI]

ADD SI, 02H

SUB AX, [SI]

JNC Next

INC BX

NOT AX

INC AX

MOV DI, 1300H

MOV [DI], AX

ADD DI, 02H

MOV [DI], BX

HLT

Set starting address as 1000H

Move immediate data to BX register.

Move immediate data to SI

Move contents of SI to AX

Increment SI by 02H

Move contents of SI to AX

Jump if no carry loop

Increment BX

Perform NOT operation of AX

Increment AX register

Move immediate data to DI.

Move AX to DI.

Increment DI by 02H

Move BX to DI

Example 2:

Without Borrow
 Input:
 1200: 31
 1201: 82 (minuend)
 1202: 06
 1203: 34 (subtrahend)

 Output:
 1300: 2B
 1301: 4E (Difference)
 1302: 00
 1303: 00 (Borrow)

Observation:

 Input:

1200:
 1201: (minuend)
 1202:
 1203: (subtrahend)

 Output:

 1300:
 1301: (Difference)
 1302:
 1303: (Borrow)

Manual Calculation:

Flow Chart for Multiplication of Two Numbers:

SET STARTING ADDRESS = 1000H
SET SI = 1200H

GET THE FIRST DATA IN AX REGISTER POINTED BY
SI

INCREMENT SI BY 02H

GET THE SECOND DATA IN CX REGISTER POINTED BY SI

MULTIPLY THE CONTENT OF CX REG WITH AX REG

STORE THE CONTENT OF AX (LOWER WORD OF RESULT) AT 1300H

STORE THE CONTENT OF DX (HIGHER WORD OF RESULT) AT 1302H

 START

 STOP

(C) MULTIPLICATION OF TWO 16 BIT NUMBERS

Description:

 To perform multiplication in 8086 processor one of the data should be stored in AX

register and another data can be stored in register/memory. After multiplication the product

will be in AX [lower word] and DX register [Higher word].

Algorithm:

1. Start the program

2. Set the starting address as 1000H

3. Set the SI register to point the location 1200H.

4. Set the DI register to point the location 1300H.

5. Move the 16 bit data pointed by SI to AX register

6. Move this data to BX register

7. Increment SI register to 1202 and get the second data in AX register

8. Multiply the data in AX with BX register

9. Store the data in DX [higher word] and AX [lower word] addressed by DI register.

10. Display the result

11. End of segment

12. Stop the program

PROGRAM

Label Program Comments

 ORG 1000H

MOV SI, 1200H

MOV AX,[SI]

ADD SI,02H

MOV BX, [SI]

MUL BX

MOV DI, 1300H

MOV [DI], AX

MOV DI, 1302H

MOV [DI], DX

HLT

Set starting address as 1000H.

Move immediate data to SI

Move contents of SI to AX

Increment SI value to 02H

Move contents of SI to BX

Multiply BX with AX

Move immediate data to DI

Move AX to DI register

Move immediate data to DI

Move DX to DI register

Example:

 Input:
 1200: 02
 1201: 06 (Multiplicand)
 1202: 02
 1203: 06 (Multiplier)

 Output:
 1300: 04
 1301: 18 (Lower word of the Product)
 1302: 24
 1303: 00 (Higher word of the Product)
Observation:

 Input:

 1200:
 1201: (Multiplicand)
 1202:
 1203: (Multiplier)

 Output:

 1300:
 1301: (Lower word of the Product)
 1302:
 1303: (Higher word of the Product)

Manual Calculation:

Flow Chart for Division of Two Numbers:

SET STARTING ADDRESS = 1000H
SET SI = 1200H

GET THE DIVIDEND IN AX REGISTER POINTED BY
SI

INCREMENT SI BY 02H

GET THE DIVISOR IN CX REGISTER POINTED BY SI

CLEAR DX REGISTEER

STORE THE CONTENT OF AX (REMAINDER) AT 1300H

STORE THE CONTENT OF DX (QUOTIENT) AT 1300H

DIVIDE DXAX BY BX

 STOP

 START

(D) DIVISION OF TWO NUMBERS

Description:

 To perform division in 8086 processor, the 16 bit dividend should be stored in AX and

DX register (The lower word in AX and Upper word in DX). The 16 bit divisor can be stored

in register / memory. After division the quotient will be in AX register and the remainder will

be in DX register.

Algorithm:
1. Start the program

2. Set the origin as 1000H

3. Set SI as 1200H.

4. Clear DX register for 16 bit dividend. For 16 bit dividend higher word is zero.

5. Load the lower word of dividend in AX register

6. Increment SI by 02H. Load the divisor in BX register.

7. Perform division of data in DX AX by BX

8. Set DI as 1300H

9. Store the quotient in AX register at the location pointed by DI register.

10. Set DI as 1302H

11. Store the remainder in DX register at the location pointed by DI register.

12. Display the result, End of Segment

13. Stop the program

Label Program Comments

 ORG 1000H

MOV SI, 1200H

MOV AX,[SI]

ADD SI,02H

MOV BX, [SI]

MOV DX, 0000H

DIV BX

MOV DI, 1300H

MOV [DI], AX

MOV DI, 1302H

MOV [DI], DX

HLT

Set starting address as 1000H.

Move immediate data to SI

Move contents of SI to AX

Add 02H to SI

Move contents of SI to BX

Initialize DX to 0000H

Divide DXAX by BX

Move immediate data to DI

Store the quotient

Move immediate data to DI

Store the remainder

Example:
 Input:
 1200: 06
 1201: 06 (Dividend)
 1202: 03
 1203: 03 (Divisor)

 Output:
 1300: 02
 1301: 00 (Quotient)
 1302: 00
 1303: 00 (Remainder)

Observation:

 Input:
 1200:
 1201: (Dividend)
 1202:
 1203: (Divisor)

 Output:
 1300:
 1301: (Quotient)
 1302:
 1303: (Remainder)

Manual Calculation:

FLOWCHART

Label Program Comments

 ORG 1000H

MOV SI,1200H

MOV AX,[SI]

ADD SI,02H

AND AX,[SI]

MOV DI,1300H

MOV [DI],AX

HLT

Set starting address as 1000H.

Initialize SI

Get the first data in AX – reg

Increment SI to point next data

Perform AND operation of two data

Store the result in memory

SET STARTING ADDRESS = 1000H
SET SI = 1200H

GET THE FIRST DATA IN AX REGISTER POINTED BY
SI

INCREMENT SI BY 02H

PERFROM AND OPERATION

STORE THE CONTENT OF AX (RESULT) AT 1300H

 START

STOP

(E) LOGICAL OPERATIONS OF 16 BIT NUMBERS

Description:

 The two values from memory are logically AND then the result is stored in memory.

Algorithm:

1. Start the program and Set the origin as 1000H

2. Set SI as 1200H.

3. Get the first data in AX – reg

4. Increment SI to point next data

5. Perform AND operation of the data

6. Store the result in memory

7. Stop the program

Example:

Input

1200: 01
1201: 01
1202: 00
1203: 00

Output

1300: 00
1301: 00

Observation:

Input

1200:
1201:
1202:
1203:

Output

1300 :
1301 :

REVIEW QUESTIONS:

1. Write the size of the data bus of 8086.

2. Write the size of the address bus of 8086.

3. What is meant by physical addressing in 8086?

4. What is meant by an Opcode?

5. What is meant by an Operand?

6. What is meant by a Mnemonics?

7. What are the other possibilities of writing ADD, SUB and MUL instructions in other

addressing modes?

8. What is the difference between microprocessor and microcontroller?

9. What is meant by LATCH?

10. What is the difference between primary & secondary storage device?

11. What is the difference between static and dynamic RAM?

12. What is an interrupt?

13. Differentiate between RAM and ROM?

14. Define – Compiler

15. Define – Flag

16. Define – Stack

17. How clock signal is generated in 8086 microprocessor?

18. State the functions of queue status line QS0 and QS1 in 8086 microprocessor.

19. What is the purpose of BIU& EU?

20. List out the two examples of assembler directives.

Result:

 Thus the program for arithmetic and logic operation was written and executed.

Flow Chart to Move a Block of Data without Overlap:

SET STARTING ADDRESS = 1000H
SET SI = 1200H, DI = 1300H

GET THE NUMBER OF DATA IN CL REGISTER

MOVE THE DATA FROM MEMORY TO AX REG

MOVE THE DATA FROM AX TO DESTINATION

INCREMENT SI AND DI

REPEAT THE OPERATION FOR THE NUMBER OF DATA

 START

 STOP

Ex. No. 2

Date:

MOVE A DATA BLOCK WITHOUT OVERLAP

Objective:

 To write an 8086 ALP to move a block of data from source to destination without

overlap

Description:

 The block of data to be moved from one location (source) to another location

(destination) in memory. The source and destination of memory is pointed by SI and DI

respectively. The size of the block is stored in CL register. The data from source are moved to

register and then back to destination location. The steps are repeated till the value of CL register

is Zero.

Algorithm:

1. Start the program.

2. Set the starting address as 1000H.

3. Set the SI register to 1200H address.

4. Set the DI register to 1300H address.

5. Set the CL register to hold the number of data to be moved.

6. Move the 16 bit data from memory pointed by SI to AX register pair.

7. Move the 16 bit from AX register to memory pointed by DI.

8. Increment the SI register by 02H.

9. Increment the DI register by 02H.

10. Repeat steps 6 to 9 till the cl value is zero

11. Stop the program.

Label Program Comments

Next:

ORG 1000H
MOV SI, 1200H
MOV DI,1300H
MOV CL,05H
MOV AX,[SI]
MOV [DI],AX
ADD SI, 02H
ADD DI, 02H
LOOP Next
HLT

Set starting address as 1000H.
Initialise SI to 1200
Initialise DI to 1300
Initialise CL for number of data

Example:

 Input:
 1200: 05
 1201: 03
 1202: 02
 1203: 01
 1204: 00

 Output:
 1300: 05
 1301: 03
 1302: 02
 1303: 01
 1304: 00

Observation:

 Input:

 1200:
 1201:
 1202:
 1203:
 1204:

 Output:

 1300:
 1301:
 1302:
 1303:
 1304:

REVIEW QUESTIONS:

1. List out the Flag manipulation instruction.

2. Define – Variables

3. Define – Segment Override Prefix

4. How is the memory segment accessed by 8086 microprocessor identified?

5. List out the advantages of using Direct Memory Access (DMA).

6. What is BIOS function call in 8086? (May 2012)

7. List out the difference between procedures and Macros.

8. What is meant by Maskable interrupts& Non-Maskable interrupts?

9. What is the Maximum clock frequency in 8086?

10. Which Stack is used in 8086?

11. Define pipeline (Dec 2011)

12. How many address lines are available in 8086? What is the maximum address

possible?

13. What is an assembler(May 2012)

14. What is the purpose of LEA instruction in 8086? (May 2012)

15. Give the function of index and pointers in 8086

16. What are the different instruction set of 8086?

17. Give the various addressing modes in 8086

18. Give the differences between JUMP and LOOP instruction

19. Give the physical address formation of any two addressing mode

20. Give the use of “ASSUME” in 8086 programming

Result:

 Thus the program for moving a block of data without overlap was written and executed.

Ex. No. 3

Date:

CODE CONVERSION, DECIMAL ARITHMETIC & MATRIX OPERATIONS

Objective:

 To write an Assembly Language Program (ALP) to perform the following operations

(a) Code Conversion

BCD to Binary

Binary to BCD

(b) Decimal Arithmetic

BCD Addition

BCD Subtraction

(c) Matrix Operations

Matrix Addition

Matrix Multiplication

(A) CODE CONVERSION – BCD to Binary

Description:

The 2 –digit BCD data will have units digits and tens digits. When the tens digit is

multiplied by 0A H and the product is added to units digit, the result will be in binary, because

the microprocessor will perform binary arithmetic. In order to separate the units and tens digit,

masking technique is used.

Algorithm:

1. Start the program.

2. Set the origin as 1000H.

3. Get the BCD data in AL register

4. Copy the BCD data in DL register

5. Logically AND DL with 0F to mask upper nibble and get the units digit in DL

6. Logically AND AL with F0 to mask lower nibble and get the tens digit in AL

7. Rotate the content of AL register 4 times in order to change upper nibble as lower

nibble.

8. Set the multiplier 0A H in DH register.

9. Multiply AL with DH register, the product will be in AL register.

10. Add the units digit in DL register to the product in AL register

11. Save the binary digit (AL) in memory

12. Stop the program.

Label Program Comments

ORG 1000H

MOV SI, 1200H

MOV AL,[SI]

MOV DL,AL

AND DL,0F

AND AL,0F0

MOV CL,04

ROR AL,CL

MOV DH,0A

MUL DH

ADD AL,DL

MOV DI,1201H

MOV [DI],AL

HLT

Set starting address as 1000H.

Initialize SI

Move the BCD data in AL

Copy the BCD data in DL

AND DL with 0F

AND AL with F0

Rotate AL for 4 – times

Move 0A to DH

Multiply DH with AL

Add AL with DL

Store the result in memory

Example:

 Input:
 1200: 85 [BCD data]

Output:
 1201: 55

Observation:
 Input:

1200: [BCD data]

 Output:
 1201:

Manual Calculation:

Label Program Comments

HUND:

TEN:

UNIT:

ORG 1000H

MOV SI, 1200H

MOV AL,[SI]

MOV DX,0000H

CMP AL, 64H

JC TEN

SUB AL,64H

INC DL

JMP HUND

CMP AL,0AH

JC UNIT

SUB AL,0AH

INC DH

JMP TEN

MOV CL,04

ROL DH,CL

ADD AL,DH

MOV DI,1201H

MOV [DI],AL

INC DI

MOV [DI],DL

HLT

Set starting address as 1000H.

Initialize SI

Move the binary data in AL

Clear the counter

To count number of hundreds

To count number of tens

Add tens and units

Store in memory

CODE CONVERSION – BINARY TO BCD

Description:

The maximum value of 8 bit binary is FFH. The BCD equivalent is 256. Hence when

an 8 – bit binary is converted into BCD, the BCD data will have hundreds, tens and units digit.

So two counters are used to count hundreds and tens. The tens and units digit are added and

stored in a memory location and the hundreds digit is stored in the next location.

Algorithm:

1. Start the program.

2. Set the origin as 1000H.

3. Get the binary data in AL register

4. Clear DX register for storing Hundreds and tens

5. Compare AL with 64H (100 in decimal)

6. Check carry flag. If CF = 1, then go to step 10, else go to next step

7. Subtract 64H from AL register

8. Increment Hundreds register (DL)

9. Go to Step 5

10. Compare AL with 0AH (10 in decimal)

11. Check carry flag. If CF = 1, then go to step 15, else go to next step

12. Subtract 0AH from AL register

13. Increment Tens register (DH)

14. Go to step 10

15. Rotate the content of DH four times

16. Add DH to AL to combine tens and Units digit

17. Save AL and DL in memory.

18. Stop the program

Example:

Input:
1200: 55 [Binary data]

 Output:
 1201:85
Observation:

Input:

1200: [Binary data]

 Output:

 1201:

Manual Calculation:

DECIMAL ARITHMETIC – BCD ADDITION

Description:

The binary addition is performed and then the sum is corrected to get the result in BCD.

If the sum of the lower nibble exceeds 9 or if there is auxiliary carry then 6 is added to the

lower nibble. if the sum of the upper nibble exceeds 9 or if there is a carry then 6 is added to

upper nibble. These conversions are taken care by DAA instruction.

Algorithm:

1. Start the program.

2. Set the origin as 1000H.

3. Initialise SI to 1200H

4. Clear the CL register for Carry

5. Load the first data in AX reg and second data in BX reg.

6. Perform Binary addition of lower byte

7. Adjust the sum of lower bytes to BCD

8. Save the sum in memory.

9. Perform Binary addition of Higher byte along with carry from lower byte.

10. Adjust the sum of higher bytes to BCD

11. Save the sum in memory

12. Save the carry in memory

13. Stop the program.

Label Program Comments

AHEAD:

ORG 1000H

MOV SI, 1200H

MOV CL,00H

MOV AX,[SI]

MOV BX,[SI+2]

ADD AL,BL

DAA

MOV DL,AL

MOV AL,AH

ADC AL,BH

DAA

MOV DH,AL

JNC AHEAD

INC CL

MOV DI,1204H

MOV [DI],DX

MOV [DI+2],CL

HLT

Set starting address as 1000H.

Initialize SI

Clear CL register for carry

Get the 1st number in AX reg

Get the 2nd number in BX reg

Add the lower nibble

Decimal adjust for BCD

Add the higher nibble with carry

Decimal adjust for BCD

Check for Carry

Store the result in memory

Example:

Input:

1200: 01 [1st data – BCD]
1201: 04
1202: 08 [2nd data – BCD]
1203: 02

Output:

1204: 09
 1205: 06
Observation:

Input:
1200: [1st data – BCD]
1201:
1202: [2nd data – BCD]
1203:

 Output:
 1204:
 1205:
Manual Calculation:

Label Program Comments

AHEAD:

ORG 1000H

MOV SI, 1200H

MOV CL,00H

MOV AX,[SI]

MOV BX,[SI+2]

SUB AL,BL

DAS

MOV DL,AL

MOV AL,AH

SBB AL,BH

DAS

MOV DH,AL

JNC AHEAD

INC CL

MOV DI,1204H

MOV [DI],DX

MOV [DI+2],CL

HLT

Set starting address as 1000H.

Initialize SI

Clear CL register for borrow

Get the 1st number in AX reg

Get the 2nd number in BX reg

Subtract the lower nibble

Decimal adjust for BCD

Subtract the higher nibble with Borrow

Decimal adjust for BCD

Check for Borrow

Store the result in memory

Observation:

Input:

1200: 18 [1st data – BCD]
1201: 04
1202: 09 [2nd data – BCD]
1203: 02

 Output:

 1204: 09
 1205: 02

Observation:

Input:

1200: [1st data – BCD]
1201:
1202: [2nd data – BCD]
1203:

 Output:

 1204:
 1205:

Manual Calculation:

DECIMAL ARITHMETIC – BCD SUBTRACTION

Description:

The binary subtraction is performed and then the difference is corrected to get the result

in BCD. If the difference of the lower nibble exceeds 9 or if there is auxiliary carry then 6 is

subtracted from the lower nibble. if the difference of the upper nibble exceeds 9 or if there is a

carry then 6 is subtracted from upper nibble. This conversion is taken care by DAS instruction.

Algorithm:

1. Start the program.

2. Set the origin as 1000H.

3. Initialise SI to 1200H

4. Clear the CL register for borrow

5. Load the first data in AX reg and second data in BX reg.

6. Perform Binary subtraction of lower byte

7. Adjust the difference of lower bytes to BCD

8. Save the result in memory.

9. Perform Binary subtraction of Higher byte along with borrow from lower byte.

10. Adjust the difference of higher bytes to BCD

11. Save the difference in memory

12. Save the borrow in memory

13. Stop the program.

Flow Chart for Matrix Addition:

MATRIX ADDITION

Description:

The matrix addition is performed by loading the size of the matrix in CL reg and then

adding the individual elements of the matrix.

Algorithm:

1. Start the program.

2. Set the origin as 1000H.

3. Initialize the pointer to memory for data and result.

4. Load CL with count.

5. Add two matrices by each element.

6. Process continues until CL is 0.

7. Store the result into Memory.

8. Stop the program.

LABEL PROGRAM COMMENTS

 MOV CL, 09 Initialize 09 into CL register

 MOV SI, 2000 Load 2000 into SI for 1st matrix

 MOV DI, 3000 Load 3000 into DI for 2nd matrix

NEXT MOV AL, [SI] Load AL with data of first matrix

 MOV BL, [DI] Load BL with data of second matrix

 ADD AL, BL Add two data of AL and BL

 MOV [DI], AL Store AL with data into DI

 INC DI Increment DI

 INC SI Increment SI

 DEC CL Decrement CL

 JNZ NEXT
Loop continues until all elements of
Matrix to added

 HLT Halt the Program

Observation:
Input:

Matrix A
2000: 00
2001: 01
2002: 02
2003: 03
2004: 04
2005: 05
2006: 06
2007: 07
2008: 08

Matrix B
3000: 09
3001: 08
3002: 07
3003: 06
3004: 05
3005: 04
3006: 03
3007: 02
3008: 01

Output
3000: 09
3001: 09
3002: 09
3003: 09
3004: 09
3005: 09
3006: 09
3007: 09
3008: 09

Observation:
Input:

Matrix A
2000:
2001:
2002:
2003:
2004:
2005:
2006:
2007:
2008:

Matrix B
3000:
3001:
3002:
3003:
3004:
3005:
3006:
3007:
3008:

Output
3000:
3001:
3002:
3003:
3004:
3005:
3006:
3007:
3008:

REVIEW QUESTIONS:

1. Write the function of the following 8085 instructions: JP, JPE, JPO, and JNZ.
2. What is the purpose of the following commands in 8086?

a) AAD
b) RCL

3. List out the addressing modes in 8086.
4. List out the various string instructions that are available in 8086.
5. What are the 8086 instructions used for BCD arithmetic?
6. What flags get affected after executing ADD instruction?
7. Which instruction is used to add immediate data?
8. What is BCD code? Where it is used?
9. What is ASCII code? Where it is used?
10. What is the difference between carry flag and overflow flag?
11. What are the special function register associated with interrupts?
12. List the flags affected by arithmetic instructions.
13. After executing ADDC instruction, what flags get affected?
14. How many bytes the instruction ADDC will add?
15. Name the signals used by the processor to communicate with an I/O processor
16. What is the function of IP?
17. What is the use of base pointer register?
18. Mention the index registers of 8086.
19. How many memory locations are available in 8086 microprocessor?
20. What are the flags in 8086? What are the various interrupts in 8086?

Result:

Thus the program for Matrix addition was successfully executed.

Label Program Comments

ROW:

COLUMN:

NEXT:

MOV CH,03H

MOV BX,1400H

MOV SI,0200H

MOV DI,1300H

MOV CL,03H

MOV DL,03H

MOV BP,0000H

MOV AX,0000H

SAHF

MOV AL,[SI]

MUL [DI]

ADD BP,AX

INC SI

ADD DI,03H

DEC DL

JNZ NEXT

SUB DI,08H

SUB SI,03H

MOV [BX],BP

ADD BX,02H

DEC CL

JNZ COLUMN

ADD SI,03H

DEC CH

JNZ ROW

HLT

Initialize CH reg with no of rows

Initialize BX reg to 1400H

Initialize SI to 1200H

Initialize DI to 1300

Initialize CL reg with no of columns

Move 03 to DL

Initialize BP to 0000H

Initialize AX to 0000H

Store AH register into flags

Move the value pointed by SI to AL

Multiply the value pointed by DI with AL

Add the result with BP reg

Increment SI

Add 03 to point the next row element

Decrement DL

If not zero go to NEXT

Subtract DI with 08H

Subtract SI with 03H

Move the result to memory pointed by BP

Add 02 to BX

Decrement the value of CL

If not zero jump to COLUMN

Add 03H to SI

Decrement CH

If not Zero Jump to ROW

Halt

MATRIX MULTIPLICATION

Description:

The matrix multiplication is performed by loading the number of rows in CH reg and

number of columns in CL reg and then multiplying the individual elements of the matrix.

Algorithm:

1. Initialize CH reg with no of rows

2. Initialize BX reg to 1400H

3. Initialize SI to 1200H

4. Initialize DI to 1300

5. Initialize CL reg with no of columns

6. Move 03 to DL

7. Initialize BP to 0000H

8. Initialize AX to 0000H

9. Store AH register into flags

10. Move the value pointed by SI to AL

11. Multiply the value pointed by DI with AL

12. Add the result with BP reg

13. Increment SI

14. Add 03 to point the next row element

15. Decrement DL

16. If not zero go to NEXT

17. Subtract DI with 08H

18. Subtract SI with 03H

19. Move the result to memory pointed by BP

20. Add 02 to BX

21. Decrement the value of CL

22. If not zero jump to COLUMN

23. Add 03H to SI

24. Decrement CH

25. If not Zero Jump to ROW

26. Halt

Example:
Input:

Matrix A
1200:02
1201:02
1202:02
1203:02
1204:02
1205:02
1206:02
1207:02
1208:02

Matrix B
1300:02
1301:02
1302:02
1303:02
1304:02
1305:02
1306:02
1307:02
1308:02

Output
1400:0C
1401:00
1402:0C
1403:00
1404:0C
1405:00
1406:0C
1407:00
1408:0C

Observation:
Input:

Matrix A
1200:
1201:
1202:
1203:
1204:
1205:
1206:
1207:
1208:

Matrix B
1300:
1301:
1302:
1303:
1304:
1305:
1306:
1307:
1308:

Output
1400:
1401:
1402:
1403:
1404:
1405:
1406:
1407:
1408:

REVIEW QUESTIONS:

1. Write an ALP for 8086 to multiply two 16 bit unsigned numbers.

2. What is an accumulator?

3. List out the segment register available in 8086

4. List out any four program control instructions that are available in 8086

5. What is program counter?

6. Give any four logical instructions in 8086

7. How many memory locations are available in 8086 microprocessor?

8. What are the general purposes registers in 8086?

9. What are the functional units in 8086?

10. How much memory location allotted for the particular segments registers in 8086?

11. When the 8086 processor is in minimum mode and maximum mode?

12. Define – Segment Override Prefix.

13. Define – Macro and procedure

14. Define – Assembler and assembler directives

15. Define – compiler and linker

16. What is meant by modular programming?

17. Explain the uses of PUSH and POP instruction

18. Explain the uses of CALL and RET instruction

19. Identify the addressing modes in the following instructions.

AND AL, BL

SUB AL, 24H

MOV AL, (BP)

MOV CX, 1245H

20. What are the 8086 instructions used for BCD arithmetic?

Result:

Thus the program for Matrix multiplication was successfully executed.

Ex. No. 4

Date:

STRING MANIPULATION, SORTING AND SEARCHING

Objective:

 To write an 8086 ALP to perform the following functions

a) String Manipulation

Copying a String

Comparing Two Strings

Scan a character in a string

b) Sorting

Ascending order

Descending order

c) Searching

STRING MANIPULATION – COPYING A STRING

Description:

 In 8086, a dedicated string instruction MOVSB is used to copy a string. On the

MOVSB will move or copy the string of data pointed by SI to the location pointed by DI

register on copying each byte of data, the SI register and DI register are incremented or

decremented depending on the status of the direction flag DF. The CX register will hold the

size of the string to be moved from one location to another location.

Algorithm:

1. Start the program.

2. Set the starting address as 1000H.

3. Get the array size & move it to CX segment.

4. Let the starting address of elements be 1200H & move it to SI.

5. Let starting address of another set of elements 1300H & move it to DI.

6. Clear Directional Flag.

7. Repeat the move single byte instruction till the count CX is zero.

8. End of segment.

9. Stop the program.

Label Program Comments

ORG 1000H

MOV CX, 0005H

MOV SI, 1200H

MOV DI, 1300H

CLD

REP MOV SB

HLT

Set starting address as 1000H.

Move immediate data to CX.

Move immediate data to SI.

Move immediate data to DI.

Clear Directional Flag.

Repeat, Move single byte

Example:

 Input:

 1200: AA
 1201: AB
 1202: AC
 1203: DA
 1204: OA

 Output:

 1300: AA
 1301: AB
 1302: AC
 1303: DA
 1304: OA

Observation:

 Input:

 1200:
 1201:
 1202:
 1203:
 1204:

 Output:

 1300:
 1301:
 1302:
 1303:
 1304:

Label Program Comments

L1:

LAST:

ORG 1000H

MOV CX, 0005H

MOV SI, 1200H

MOV DI, 1300H

MOV BX, 3000H

CLD

REPE CMPSB

JNZ L1

MOV AH, 0FFH

MOV [BX], AH

JMP LAST

MOV AH, 00H

MOV [BX], AH

HLT

Set starting address as 1000H.

Move immediate data to CX.

Move immediate data to SI.

Move immediate data to DI.

Move immediate data to BX.

Clear directional flag.

Repeat if equal, compare single byte

Jump if no zero to loop1.

Move immediate data to AH.

Move AH to BX register

Jump to last.

Move immediate data to AH.

Move AH to BX register.

Observation:
Same String Different String
Input: Input:
 1200: 02 1200: 02
 1201: 03 1201: 03
 1202: 04 1202: 04
 1203: 05 1203: 05
 1204: 06 1204: 06

1300: 02 1300: 03
 1301: 03 1301: 04
 1302: 04 1302: 05
 1303: 05 1303: 06
 1304: 06 1304: 07

 Output: Output:

 3000: FFH 3000: 00H

STRING MANIPULATION – COMPARE TWO STRINGS

Description:

 In 8086, a dedicated string instruction CMPSB is used to compare two strings. The

CMPSB will compare two strings of data pointed by SI and DI register. The REPE is used to

repeat compare operation for each byte of the string. If both the strings are equal the CMPSB

will set zero flag. If they are unequal ZF=0. The CX register will hold the size of the string.

 In this program, if both the strings are equal, 00FFH is stored at 5000H else 0000H will

be stored at 5000H.

Algorithm:

1. Start the program.

2. Set the starting address as 1000H.

3. Get array size and move it to CX register.

4. The starting address of a string is moved to SI register.

5. The starting address of another string is moved to DI register.

6. The BX register is initialized to point 3000H.

7. Clear directional flag

8. Compare each byte of string pointed by SI with the string pointed by DI till CX is

zero.

9. If both the strings are equal, 0FFH is stored at the location pointed by BX register

(3000H). Else store 00H at the location pointed by BX register.

10. End of the segment

11. Terminate the program

STRING MANIPULATION - SCAN A CHARACTER IN A STRING

Description:

 In 8086, a dedicated string instruction SCASB is used to scan a character. The SCASB

will scan for the character pointed by SI, in the string pointed by DI register. If the character

is available in the string zero flag is set. Else zero flag is reset. The CX register will hold the

size of the string.

 In this program, if the given character is available 0FFH is stored at 5000H. If it is

unavailable, 00H is stored at 5000H.

Algorithm:

1. Start the program.

2. Set the origin as 1000H.

3. Move the data pointed by SI to AL register.

4. Assign 0004H [count] to CX register.

5. The starting address of the string is moved to DI register

6. Clear Directional Flag for auto increment mode.

7. Repeatedly scan for the character at AL with DI till CX is zero.

8. If the character is found in the string, store 0FFH at location 3000H pointed by BX

register. Else store 00H at location 3000H pointed by BX register.

9. End of segment.

10. Stop the program.

Label Program Comments

L1:

L2:

ORG 1000H

MOV CX, 0004H

MOV SI, 1200H

MOV AL, [SI]

MOV DI, 1300H

MOV BX, 3000H

CLD

REPNE SCASB

JNZ L1

MOV AH, 0FFH

JMP L2

MOV AH, 00H

MOV [BX], AH

HLT

Set the starting address as 1000H.

Move immediate data to CX.

Move immediate data to SI.

Move contents of SI to AL.

Move immediate data to DI.

Move immediate data to BX.

Clear directional flag.

Repeat not equal, Scan single byte

Jump if no zero to loop1.

Move immediate data to AH.

Jump to loop 2.

Move immediate data to AH.

Move AH to BX register.

Example:
 Input: Input:

 1200:AD (Data to be scanned) 1200: BB (Data to be scanned)

1300:AA 1300:AA
 1301:AB 1301:AB
 1302:AA 1302:AA
 1303:AD 1303:AD
 Output: Output:

 3000:FF 3000:00

Observation:

 Input: Input:
 1200: (Data to be scanned) 1200: (Data to be scanned)

1300: 1300:
 1301: 1301:
 1302: 1302:
 1303: 1303:

 Output: Output:

 3000: 3000:

SORTING – ASCENDING ORDER

Description:

 The array can be sorted in ascending order by bubble sort algorithm. In bubble sorting

of M-data, M-1 comparisons are performed by tasking two consecutive data at a time. After

each comparison the two data can be re-arranged in the ascending order in the same memory

locations i.e., smaller first and larger next. When the above M-1 comparisons are performed

M-1 times, the array will be sorted in ascending order in the same locations.

Algorithm:

1. Start the program

2. Initialize Code and Data Segment.

3. Set starting address as 1000H

4. Set SI register to 1200H address

5. Get the count in CL & decrement CL register by one

6. Copy the content of CL register to DL register.

7. Initialize SI as 1202H.

8. Move the data pointed by SI to AX

9. Compare the data in AX & data pointed by SI+2

10. If there is no carry, exchange the data and go toe next step. If there is carry go to

next step.

11. Increment the content of SI by 02H

12. Decrement the content of DL register by 01H.

13. Check whether the content of DL is zero. If zero, go to step next step. Else go to

step 8

14. Decrement the content of CL register by 01H.

15. Check whether the content of CL is zero. If zero, go to step next step. Else go to

step 6

16. Display the result

17. Stop the program

Label Program Comments

L3:

L2:

L1:

ORG 1000H
MOV SI, 1200H
MOV CL, [SI]
DEC CL

MOV DL,CL
MOV SI, 1201H

MOV AX, [SI]
CMP AX, [SI+2]
JC L1
XCHG [SI+2], AX
XCHG [SI], AX

ADD SI,02H
DEC DL
JNZ L2
DEC CL
JNZ L3
HLT

Set starting address as 1000H.
Move immediate data to SI
Move contents of SI to CL
Decrement CL

Move CL to DL register
Move immediate data to SI

Move contents of SI to AX
Compare AX with SI
Jump if carry to loop1
Exchange data of AX with SI+2
Exchange data of AX with SI

Increment SI twice
Decrement DL register
Jump if no zero to loop 2
Decrement CL register
Jump if no zero to loop 3

Example:

Input:

 1200: 04 (Array Size)
 1201: 39
 1202: 40
 1203: 30
 1204: 78
 1205: 62
 1206: 42
 1207: 32
 1208: 38

 Output:

 1200: 04 (Array Size)
 1201: 30
 1202: 32

1203: 38
 1204: 39
 1205: 40
 1206: 42
 1207: 62
 1208: 78

Observation:

Input:

 1200: 04(Array Size)

 1201:

 1202:

 1203:

 1204:

 1205:

 1206:

 1207:

 1208:

 Output:

 1200: 04(Array Size)

 1201:

 1202:

1203:

 1204:

 1205:

 1206:

 1207:

 1208:

SORTING – DESCENDING ORDER

Description:

 The array can be sorted in descending order by bubble sort algorithm. In bubble sorting

of M-data, M-1 comparisons are performed by taking two consecutive data at a time. After

each comparison, the two data can be re-arranged in the descending order in the same memory

locations, ie., larger first and smaller next. When the above M-1 comparisons are performed

M-1 timer, the array will be stored in descending order.

Algorithm:

1. Start the program

2. Set starting address as 1000H

3. Set SI register to 1200H address

4. Get the count in CL & decrement CL register by one

5. Copy the content of CL register to DL register.

6. Initialize SI as 1202H.

7. Move the data pointed by SI to AX

8. Compare the data in AX & data pointed by SI+2

9. If there is carry, exchange the data and go toe next step. If there is no carry go to

next step.

10. Increment the content of SI by 02H

11. Decrement the content of DL register by 01H.

12. Check whether the content of DL is zero. If zero, go to step next step. Else go to

step 8

13. Decrement the content of CL register by 01H.

14. Check whether the content of CL is zero. If zero, go to step next step. Else go to

step 6

15. Display the result

16. Stop the program

Label Program Comments

L3:

L2:

L1:

ORG 1000H
MOV SI, 1200H
MOV CL, [SI]
DEC CL

MOV DL,CL
MOV SI, 1201H

MOV AX, [SI]
CMP AX, [SI+2]
JNC L1
XCHG [SI+2], AX
XCHG [SI], AX

ADD SI, 02
DEC DL
JNZ L2
DEC CL
JNZ L3
HLT

Set starting address as 1000H.
Move immediate data to SI
Move contents of SI to CL
Decrement CL

Move CL to DL register
Move immediate data to SI

Move contents of SI to AX register
Compare SI+2 with AX register
Jump if no carry to loop1
Exchange content of AX with SI+2
Exchange content of AX with SI

Increment address of SI by 02
Decrement DL register
Jump if no zero to loop 2
Decrement CL register
Jump if no zero to loop 3

Example:

Input:

 1200: 04 (Array Size)
 1201:39
 1202:40
 1203:30
 1204:78
 1205:62
 1206:42
 1207:32
 1208:38

 Output:

 1200: 04 (Array Size)
 1201:78
 1202:62

1203:42
 1204:40
 1205:39
 1206:38
 1207:32
 1208:30

Observation:
Input:
 1200: 04(Array Size)
 1201:
 1202:
 1203:
 1204:
 1205:
 1206:
 1207:
 1208:

Output:

 1200: 04(Array Size)
 1201:
 1202:

1203:
 1204:
 1205:
 1206:
 1207:
 1208:

SEARCHING – EVEN AND ODD NUMBERS

Description:

 This program is used to count the number of even numbers and odd numbers in given

array. Here one right rotate operation is performed to detect the even or odd number. After

rotating operation, if carry is present, the given number is odd else it is even.

Algorithm:

1. Start the program

2. Initialize Code and Data Segment.

3. Set starting address as 1000H

4. Set SI register to 1200H address

5. Get the count in CL & decrement CL register by one

6. Initialize SI as 1202H.

7. Move the data pointed by SI to AX

8. Rotate AX register by right to one

9. If there is no carry, count the DX register for even counting else count the BX

register for odd counting

10. Check loop is over or not

11. Increment the content of SI by 02H go to step 7.

12. Store the BX contents in 1300h

13. Store the DX contents in 1302h

14. Display the result

15. Stop the program

Label Program Comments

L3:

L1:
L2:

ORG 1100H
MOV SI, 1200H
MOV DX, [SI]
MOV CL,01H
MOV BL,00H
MOV BH,00H

ADD SI, 02H
MOV AX, [SI]
RCR AX, CLH
JNC L1
INC BL
JMP L2

INC BH
DEC DX
JNZ L3
MOV DI, 1300H
MOV [DI],BL
INC DI
MOV [DI], BH
HLT

Set starting address as 1100H.
Move immediate data to SI
Move contents of SI to DX

INCREMENT SI BY 02H
Move contents of SI to AX
Rotate AX to right by one.
Jump if no carry to loop1
count the BL register for odd counting
Jump to l2

count the BH register for even counting
Count is performed until DX=0.

Store the BL(ODD) contents in 1300h

Store the BH(EVEN) contents in 1301h

Example:

Input:

 1200: 05 (Array Size)

 1201:00

 1202:01

 1203:02

 1204:04

 1205:06

Output:

 1300:01 odd

 1301:03 even

Observation:

Input:

 1200: 08 (Array Size)

 1201:

 1202:

 1203:

 1204:

 1205:

 1206:

 Output:

 1300: odd

 1301: even

1207:

 1208:

REVIEW QUESTIONS:

1. What is the relation between 8086 processor frequency & crystal Frequency?

2. What is the position of the stack pointer after the POP instruction?

3. Compare CALL and JMP instructions.

4. Define – Baud Rate

5. What is the size of instruction queue in 8086?

6. Compare JNC and JMP instructions.

7. What happens when HLT instruction is executed in processor?

8. What is the maximum internal clock frequency of 8086 processor?

9. What are the functions of BIU?

10. Write an ALP program to search a number 05 from a given array.

11. What is cache memory?

12. Can ROM be used as stack?

13. What are the 8086 instructions used for BCD arithmetic

14. What are the 8086 instructions used for ASCII arithmetic?

15. List the various string instructions available in 8086.

16. How will carry and zero flags reflect the result of instruction CMP BX, CX?

17. Give any four miscellaneous instructions in 16-bit Microprocessor

18. List the flags in 8086 and state its functions.

19. What is the purpose of segment registers in 8086?

20. What is virtual addressing mode?

Result:

 Thus the program for string manipulations, searching and sorting operations was

written and executed.

Label Program Comments

 DATA SEGMENT

PASSWORD DB 'MASM1234'

LEN EQU ($-PASSWORD)

MSG1 DB 10,13,'ENTER YOUR

PASSWORD: $'

MSG2 DB 10, 13,'YOUR

PASSWORD IS CORRECT!!$'

MSG3 DB 10, 13, 'INCORRECT

PASSWORD!$'

NEW DB 10,13,'$'

INST DB 10 DUP(0)

DATA ENDS

CODE SEGMENT

ASSUME CS:CODE,DS:DATA

ORG 1000H

START:

MOV AX,DATA

MOV DS,AX

LEA DX,MSG1

MOV AH,09H

INT 21H

MOV SI,00

UP1:

MOV AH,08H

INT 21H

CMP AL,0DH

JE DOWN

MOV [INST+SI],AL

Ex. No. 5

Date:

PASSWORD CHECKING, PRINT RAM SIZE, SYSTEM DATE

Objective:

 To write an 8086 ALP to perform the following operations

d) Password Checking

e) Print RAM Size

f) Print System Date

PASSWORD CHECKING

Description:

The password checking is done using the DOS calls and functions. First Display the

message “Enter your Password”. Then read the pass word using Dos calls and compare

with previous password “MASM1234”.If it matches, then display the message

password is correct. Else display it as incorrect password

Algorithm:

1. Start the program.

2. Set the starting address as 1000H.

3. Display the message “Enter your Password”

4. Read the pass word using Dos calls and compare with previous password

“MASM1234”

5. If it matches, then display the message password is correct

6. Else display it as incorrect password

7. Stop the program.

Label Program Comments

 MOV [INST+SI],AL

MOV DL,'*'

MOV AH,02H

INT 21H

INC SI

JMP UP1

DOWN:

MOV BX,00

MOV CX,LEN

CHECK:

MOV AL,[INST+BX]

MOV DL,[PASSWORD+BX]

CMP AL,DL

JNE FAIL

INC BX

LOOP CHECK

LEA DX,MSG2

MOV AH,09H

INT 21H

JMP FINISH

FAIL:

LEA DX,MSG3

MOV AH,009H

INT 21H

FINISH:

INT 3

CODE ENDS

END START

END

Observation:

TO PRINT RAM SIZE

Description:

 INT 12h interrupt stores in AX the amount of RAM memory in kilobytes. For modern

computers it usually returns the value 0280h (640), representing the main memory. So this

interrupt doesn’t return the extended memory. The value returned in AX by this interrupt could

also be found at address 0040:0013h.

Algorithm:

1. Start the program.

2. Initialize the Segments.

3. Set the starting address as 1000H.

4. Initiate INT21H which returns the RAM size in AX – reg.

5. Initialize DI as 1300H

6. Store the value at 1300H

7. End of the segment

8. Terminate the program

Program:

Label Program Comments

ASSUME

CS:CODE,DS:CODE

CODE SEGMENT

ORG 1000H

INT 12H

MOV DI, 1300H

MOV [DI],AX

MOV AH,4CH

INT 21H

CODE ENDS

Initialize Segments

Set the starting address as 1000H

12H interrupt is invoked

Store the size of the RAM at 1300H

Example:
 Output:
 1300: 80
Observation:

 Output:
 1300:

Program:

Label Program Comments

ASSUME

CS:CODE,DS:CODE

CODE SEGMENT

ORG 1000H

MOV AH,2AH

INT 21H

MOV DI, 1300H

MOV [DI],CX

ADD DI,02H

MOV [DI],DX

MOV AH,4CH

INT 21H

CODE ENDS

Initialize Segments

Set the starting address as 1000H

21H interrupt is invoked

Store the year at 1300H

Store the value of Month and day

Manual Calculation:

TO PRINT SYSTEM DATE

Description:

 INT 21h interrupt with AH as 2AH will return the system date. The year (1980 – 2099)

will be returned in CX register. The month will be available in DH register and day will be

available in DL register. All the returned values will be in Hex.

Algorithm:

1. Start the program.

2. Initialize the Segments.

3. Set the starting address as 1000H.

4. Initiate INT21H with AH value as 2A H.

5. Initialize DI as 1300H

6. Store the value of year at 1300H

7. Store the value of Month and Day in the consecutive memory locations

8. End of the segment

9. Terminate the program

Example:

 Output:

1300: D (Year)

 1301: 07

1302: 0B (Day)

1303: 08 (Month)

Observation:

 Output:

1300: (Year)

 1301:

1302: (Day)

1303: (Month)

REVIEW QUESTIONS:

1. What is the role of Stack?

2. What is the difference between DOS and BIOS interrupts?

3. What is an interrupt vector Tabulation: of 8086?

4. What .model small stands for?

5. Define – Interrupt Vector Tabulation

6. What are the contents of AL and CY after the execution of the following segments?

7. What is the purpose of CLK signal in an 8086 system?

8. What is the need for MN/MX pin in 8086 system?

9. What is the purpose of QUEUE in 8086 processor?

10. Give the operation of TEST instructions of 8086?

11. List few string instructions of 8086?

12. What is the use of LOCK prefix?

13. What is the purpose of REP prefix?

14. What are the types of Multiprocessor configuration?

15. Define – Co-processor?

16. List any four program control instructions available in 8086?

17. How the data and address lines are demultiplexed?

18. Define – Instruction

19. Define – Machine cycle

20. Define – T-State

Result:

 Thus the program for password checking, printing RAM size, and System date was

written and executed.

PROGRAM

Label Program Comments

ABOVE:

NEXT:

ASSUME CS:CODE,DS:CODE

CODE SEGMENT

ORG 1000H

MOV CL,08H

MOV DI,1200H

MOV AL,80H

MOV [DI],AL

INC DI

SAR AL,1

MOV [DI],AL

DEC CL

JNZ ABOVE

MOV CL,08H

SHR AL,1

MOV [DI],AL

INC DI

DEC CL

JNZ NEXT

MOV AH, 4CH

INT 21H

CODE ENDS

END

Ex. No. 6

Date:

COUNTERS AND TIME DELAY

Objective:

 To write an Assembly Language Program (ALP) for 8 bit Johnson counter and creating

time delay

8 BIT JOHNSON COUNTER

Description:

The Johnson counter is a special type of counter whose truth table is given below.

CLK DATA HEX

1 1 0 0 0 0 0 0 0 80

2 1 1 0 0 0 0 0 0 C0

3 1 1 1 0 0 0 0 0 E0

4 1 1 1 1 0 0 0 0 F0

5 1 1 1 1 1 0 0 0 F8

6 1 1 1 1 1 1 0 0 FC

7 1 1 1 1 1 1 1 0 FE

8 1 1 1 1 1 1 1 1 FF

9 0 1 1 1 1 1 1 1 7F

10 0 0 1 1 1 1 1 1 3F

11 0 0 0 1 1 1 1 1 1F

12 0 0 0 0 1 1 1 1 0F

13 0 0 0 0 0 1 1 1 07

14 0 0 0 0 0 0 1 1 03

15 0 0 0 0 0 0 0 1 01

16 0 0 0 0 0 0 0 0 00

Initialize AL with 8000H, the first value in truth table. Shift the data by inserting the

same value of MSB of previous data. Repeat the same by shifting left to generate next half of

truth table

Algorithm:

1. Start the program.

2. Set the origin as 1000H.

3. Load the count 08 in CL register

4. Initialize DI with 1200H

5. Initialize AL with 8000H, the first value in truth table

6. Shift the data by inserting the same value of MSB of previous data

7. Check for count. If it is not zero go to step 6. Else go to next step.

8. Repeat the same by shifting left to generate next half of truth table

9. Store the result

10. Stop the program.

Example:
Output:
1200: 80
1201: C0
1202: E0
1203: F0
1204: F8
1205: FC
1206: FE
1207: FF
1208: 7F
1209: 3F
120A: 1F
120B: 0F
120C: 07
120D: 03
120E: 01
120F: 00

OBSERVATION:
Output:
1200:
1201:
1202:
1203:
1204:
1205:
1206:
1207:
1208:
1209:
120A:
120B:
120C:
120D:
120E:
120F:

Label Program Comments

BACK:

WAITF1:

DATA SEGMENT

MSG2 DB 10,13,’Time $'

MSG1 DB 10,13,' delay!!$'

DATA ENDS

ASSUME CS:CODE,DS:DATA

CODE SEGMENT

ORG 1000H

MOV AX,DATA

MOV DS,AX

LEA DX,MSG2

MOV AH,09H

INT 21H

MOV BL,20

MOV CX,33150

IN AL,61H

AND AL,10H

CMP AL,AH

JE WAITF1

MOV AH,AL

LOOP WAITF1

DEC BL

JNZ BACK

MOV AX,DATA

MOV DS,AX

LEA DX,MSG1

MOV AH,09H

INT 21H

MOV AH,4CH

INT 21H

CODE ENDS

END

TIME DELAY

Description:

Time delays are often needed for various applications. Using the instructions of the x86 CPU

to generate the delay is unreliable since the CPU speed varies among the x86 PCs. To create a

CPU-independent delay, x86 makes PB4 of port 61H toggle every 15.085 microseconds. That

means that by monitoring PB4 of port 61H, a fixed time delay can be obtained, as shown below.

Upon entering this sub-routine called WAITF, register CX must hold the number of 15.085-

microsecond time delays needed.

Since the 1.5-second delay requires the counter to be set to 99,436 (1.5s/15.085 µs = 99,436)

and the maximum value of CX is 65,536, the another register is used to generate the 1.5-second

delay

Algorithm:

1. Start the program.

2. Set the origin as 1000H.

3. Display the message “Time”

4. load the count value to CX and BL reg

5. Generate the time delay

6. Display the message “Delay” after the required delay

7. Stop the program.

OUTPUT:

Time Delay!!

OBSERVATION:

REVIEW QUESTIONS:

1. What are the 8086 instructions used for BCD arithmetic?

2. What is the function of BX register?

3. How Physical address is generated?

4. List out the pointers available in 8086

5. Compare PUSH and PULL instructions

6. What is ALE? When will the data bus AD0-AD7 be enabled?

7. Define – HOLD in 8086

8. Define – HLDA in 8086

9. Give the significance of RQ/GTO and IO/M signals.

10. Name any two coprocessors and their use.

11. State the importance of sample and hold circuit

12. List the applications of programmable interval timer.

13. What is key denouncing? What are the methods to detect the denouncing?

14. Name the two modes of operation of DMA controller?

15. Give the different types of command words in 8259

16. Give the comments for MOV r,M.

17. How many T-states are in MOV instruction?

18. Explain the addressing mode of MOV r,M

19. How many machine cycles are in MOV instruction?

20. Give the comments for MOV M,r

RESULT:

Thus the program to generate Johnson counting pattern and to generate time delay has been

executed successfully.

Ex. No. 7

Date:

TRAFFIC LIGHT CONTROLLER

AIM

To write an 8086 assembly language program to interface the traffic light controller

with 8255 and verify the operation.

DESCRIPTION

The system is a simple contraption of a traffic control system wherein the signaling

lights are simulated by the blinking or ON-OFF control of light-emitting diodes. The signaling

lights for the pedestrian crossing are simulated by the ON-OFF control of dual colour light

emitting diodes.

A model of a four road – four lane junctions, the board has green, orange and red signals of an

actual system. Twelve LEDs are used on the board. In addition eight dual colour LEDs are used

which can be made to change either to red or to green.

CIRCUIT DIAGRAM TO INTERFACE TRAFFIC LIGHT WITH 8086

Program:

Label Mnemonics

START

DELAY

REPEAT

AGAIN

ORG 1100H

MOV BX, 1200

MOV CX, 000C

MOV AL, [BX]

OUT 26, AL

INC BX

MOV AL, [BX]

OUT 20, AL

INC BX

MOV AL, [BX]

OUT 22, AL

CALL DELAY

INC BX

LOOP NEXT

JMP START

PUSH CX

MOV CX,0005

MOV DX, FFFF

DEC DX

JNZ AGAIN

LOOP REPEAT

POP CX

RET

OBSERVATION
INPUT
 1200: 80, 1A, A1, 64
 1204: A4, 81, 5A, 64
 1208: 54, 8A, B1, A8
 120C: B4, 88, DA, 68
 1210: D8, 1A, E8, 46
 1214: E8, 83, 78, 86, 74
OUTPUT

REVIEW QUSETIONS:

1. List out the control ports in traffic light controller

2. What are the functions of conditional instructions?

3. List out the LAN ports in traffic light controller

4. What are the functions of Loop instructions?

5. List out the Modules in traffic light controller

6. List out the control ports in traffic light controller

7. What are the functions of conditional instructions?

8. List out the LAN ports in traffic light controller

9. What are the functions of Loop instructions?

10. List out the Modules in traffic light controller

11. List out the difference between INT 0 and INT 4.

12. Describe the steps required in the execution of an assembly language program.

13. Explain the use of EXTRN and PUBLIC directives with an example.

14. Explain the memory structure in a general purpose desktop computer Illustrate the use

of following assembler directives: DD, DW, EVEN, GROUP, ORG, ASSUME, ENDP,

PTR, OFFSET

15. Discuss how “even” and “odd” memory banks are accessed using control signals.

RESULT

 Thus the interface the traffic light controller using 8086 microprocessor with 8255 has

been executed and verified.

Flow Chart

Ex No: 8

Date:

INTERFACING STEPPER MOTOR WITH 8086 MICROPROCESSOR

AIM:

To write an 8086 assembly language program to interface stepper motor and vary

speed of motor, direction of motor.

THEORY:

A motor in which the rotor is able to assume only discrete stationary angular

position is a stepper motor. The rotor motion occurs in a stepwise manner from one

equilibrium position to next.

The motor under our consideration uses 2 – phase scheme of operation. In this scheme, any

two adjacent stator windings are energized. The switching condition for the above said

scheme is shown in Table.

Clockwise Anti - Clockwise

A1 B1 A2 B2 A1 B1 A2 B2

1 0 1 0 1 0 0 1

0 1 1 0 0 1 0 1

0 1 0 1 0 1 1 0

1 0 0 1 1 0 1 0

In order to vary the speed of the motor, the values stored in the registers R1, R2, R3 can be

changed appropriately.

ALGORITHM:

1. Store the look up table address in DI

2. Move the count value (04) to one of the register (BL)

3. Load the Data to accumulator for motor rotation.

4. Send data to out port 1 for single step rotation of motor.

5. Call the delay program

6. Decrement value of BL, if not zero go to step 3.

7. Perform steps 1 to 6 repeatedly.

PROGRAM:

Label Program Comments

START:

AGAIN:

DELAY:

RPT:

LOOK UP:

ORG 1000H

MOV BL,04H

MOV DI, LOOK UP (1200)

MOV AL, [DI]

OUT PORT1(C0), AL

CALL DELAY

INC DI

DEC BL

JNZ AGAIN

JMP START

MOV DX, 1010H (SPEED)

NOP

DEC DX

JNZ RPT

RET

09, 05, 06, 0A

(ANTICLOCKWISE)

0A,06, 05, 09

(CLOCKWISE)

Set starting address as 4100H.

Load 04h to BL register

Load data from look up table

Load Data to AL from DI

Send data to out port1 for rotation

Call delay for one movement of

rotation

Increment DI to load another data

Decrement BL if not zero goes to

Again

Go to Starting position

Delay program

REVIEW QUSETIONS:

1. What is meant by Prefix?

2. Difference between small, medium, tiny, huge?

3. Define –DD, DW and DB.

4. List out the Interrupts in 8086

5. What is meant by half wave scheme?

6. Give examples for 8 / 16 / 32 bit Microprocessor?

7. What is 1st / 2nd / 3rd / 4th generation processor?

8. What is meant by interrupt?

9. What is meant by Scratch pad of computer?

10. What is NV – RAM?

11. Which interrupts are generally used for critical events?

12. What is the position of the Stack Pointer after the PUSH instruction?

13. What is the position of the Stack Pointer after the POP instruction?

14. Logic calculations are done in which type of registers?

15. Explain how to generate the physical address with respect to code segment and any

other segment.

RESULT:

 Thus the speed and direction of motor were controlled using 8086 trainer kit.

f

e

b

c

Ex No: 9

Date:

DIGITAL CLOCK

AIM:

To write an 8086 assembly language program to interface digital clock

DESCRIPTION:

The Keyboard section consists of 16 keys, besides two keys for CNTL and SHFT. The

key board is arranged as two rows of eight keys each. The keyboard and display is configured

in the encoded mode. Display is a 6 digit, multiplexed display.

The segment definitions of the 7 segment display are shown below.

 a

In order to light up a segment the corresponding bit of data has to be written into the

display RAM should be “0”.

For example to display the character ‘A’ the segments except decimal point (dp) and d

all other segments should be ON. Hence

The data to display “A” will be “88”.

The 8279 controller IC has 10 numbers of control words. Display/Keyboard mode set

word and clear word will take care of basic initialization of 8279. However, before sending

codes to the display RAM, a write display RAM control word should be sent.

Then the data is fetched from 4500H and displayed in the first digit of the display. The

next data is displayed in the second digit of the display, since in the command word for ‘write

display RAM’ auto increment flag is set.

A time delay is given between successive digits for a lively display.

Data Bus D7 D6 D5 D4 D3 D2 D1 D0

Segments d c b a dp g f e

g

.dp
d

Program:

Memory
Location

Label Mnemonics

1000 START CALL
CONVERT

 CALL DISPLAY
1006 DELAY MOV AL,BOH
 OUT 16H,AL
 MOV CL,07H
100E S2 MOV AL,88H
 OUT 14H,AL
 MOV AL,80H
 OUT 14H,AL
1018 S1 MOV AL,80H
 OUT 16H,AL
 NOP
 NOP
 NOP
 NOP
1021 IN AL,14H
 MOV DL,AL
 IN AL,14H
 OR AL,DL
 JNZ S1
 DEC CL
102D JNZ S2
 MOV SI,1500H
 MOV AL,[SI]
 INC AL
 MOV [SI],AL
 CMP AL,3CH
103C JNZ START
103E MOV AL,00H
 MOV [SI],AL
 INC SI
 MOV AL,[SI]
 INC AL
 MOV [SI],AL
 CMP AL,3CH
104D JNZ START
 MOV AL,00H
 MOV [SI],AL
 INC SI
 MOV AL,[SI]
 INC AL
 MOV [SI],AL
 CMP AL,18H
 JNZ START
 MOV AL,00
 MOV [SI],AL
1065 JMP START
1068 DIPLAY MOV AH,06H
 MOV DX,1600H
 MOV CH,01H

 MOV CL,0H
 INT 5
 RET
1078 CONVERT MOV SI,1500H
 MOV BX,1608H
 MOV AL,24H
 MOV [BX],AL
1085 SECONDS MOV AL,[SI]
 MOV AH,00
 MOV DH,0AH
 DIV DH
108F ADD AH,30H
 DEC BX
 MOV [BX],AH
 DEC BX
1096 ADD AL,30H
 MOV [BX],AL
 DEC BX
 MOV AL,3AH
 MOV [BX],AL
10A1 DEC BX
10A2 MINUTES INC SI
 MOV AL,[SI]
 MOV AH,00H
 MOV DH,0AH
10AB DIV DH
 ADD AH,30H
 MOV [BX],AH
 DEC BX
10B3 ADD AL,30H
 MOV [BX],AL
 DEC BX
 MOV AL,3AH
 MOV [BX],AL
10BE DEC BX
 HOURS INC SI
 MOV AL,[SI]
 MOV AH,00H
 MOV DH,0AH
 DIV DH
10CA ADD AH,30H
 MOV [BX],AL
 DEC BX
10D0 ADD AL,30H
 MOV [BX],AL
 RET
 GETC
 IN AL,02H
 AND AL,FFH
 CMP AL,FOH
 JNE GETC

REVIEW QUSETIONS:

1. What is the difference between near and far procedure?

2. What are the different string instructions of 8086?

3. What is the difference between near and far procedure?

4. What is the difference between macro and sub-routine?

5. What are the functions of SI and DI registers?

6. Discuss the use of following instructions:

a. CLI

b. LOOP

c. CALL

d. AAM

7. Define – ALE

8. Where is the READY signal used?

9. What is the need for timing diagram?

10. What operation is performed during first T-state of every machine cycle in 8085?

11. What is interrupt acknowledge cycle?

12. What is vectored and non-vectored interrupt?

13. List the software and hardware interrupts of 8085?

14. Define – TRAP

15. How clock signals are generated in 8085 and what is the frequency of the internal clock?

Result:

Thus the program for Digital clock has been executed successfully.

Flow Chart

Ex. No. 10

Date:

INTERFACING KEYBOARD/DISPLAY CONTROLLER (8279)

WITH 8086 MICROPROCESSOR

AIM:

To write an 8086 assembly language program to interface the 8279 and display the

register number, as rolling message.

ALGORITHM:

1. Set the pointer to 1200H

2. Initialize the counter (CX – Reg) to 0FH

3. Send Mode Display Command word (10H) to C2H.

4. Send Clear Display Command word (0CCH) to C2H.

5. Send Write Display Command Word (90H) to C2H

6. Get the data pointed by pointer

7. Output it to C0H

8. Call a Delay program for Lively display

9. Increment memory pointer to point next data.

10. Decrement count.

11. Check if Count is zero. If yes go to step 1. Else go to step 6

Program

Label Program Comments

START:

NXTCHR:

DELAY:

LOOP1:

ORG 1000H

MOV SI, 1200H

MOV CX, 000FH

MOV AL, 10H

OUT C2H, AL

MOV AL, 0CCH

OUT C2H, AL

MOV AL, 90H

OUT C2H, AL

MOV AL, [SI]

OUT C0H, AL

CALL DELAY

INC SI

LOOP NXTCHR

JMP START

MOV DX, 0A0FFH

DEC DX

JNZ LOOP1

RET

Set starting address as 1000H.

Set Pointer

Initialize counter.

Set Mode and Display

Clear display.

Write Display

Get the data

Call Delay program for lively display

Increment Pointer

Decrement Count, If not zero go to NXTCHR

DISPLAY MODE SETUP:

0 0 0 D D K K K

CLEAR DISPLAY:

1 1 0 CD CD CD CF CA

CD CD CD - The lower two CD bits specify the blanking code to be sent to the segments to
turn them OFF while the 8279 is switching from one digit to next

CD CD CD

CF – If CF = 1, FIFO status is cleared, Interrupt output line is reset. Sensor RAM pointer is
set to row 0.
CA – Clear All bit has the combined effect of CD and CF. It uses CD clearing code on Display
RAM and clears FIFO status.

WRITE DISPLAY RAM:

1 1 0 AI A A A A

AI – Auto Increment Flag. If AI = 1, the row address selected will be incremented after each
read or write to the Display RAM.
AAA – Selects one of the 16 rows of the display RAM.

0 X A0 – 3 B0 – 3 = 00 = 0000 0000
1 0 A0 – 3 B0 – 3 = 20 = 0010 0000
1 1 A0 – 3 B0 – 3 = FF = 1111 1111

Enables clear display when CD = 1.
The rows of display RAM are cleared by the
code set by lower two CD Bits.
If CD = 0 then the contents of RAM will be
displayed

DD DISPLAY MODE
00 8 8-bit character display – Left Entry
01 16 8-bit character display – Left Entry
10 8 8-bit character display – Right Entry
11 6 8-bit character display – Right Entry

KKK KEYBOARD MODE
000 Encoded Scan Keyboard – 2 key lock out
001 Decoded Scan Keyboard – 2 key lock out
010 Encoded Scan Keyboard – N Key Roll Over
011 Decoded Scan Keyboard – N Key Roll Over
100 Encoded Scan Sensor Matrix
101 Decoded Scan Sensor Matrix
110 Strobed input, Encoded Display Scan
111 Strobed input, Decoded Display Scan

Example:
Input Data:

1200:FF
1201:FF
1202:28
1203:0C
1204:1A
1295:FF
1206:98
1207:68
1208:7C
1209:C8
120A:FF
120B:1C
120C:29
120D:F7
120E:FF

Output:
 GOD HELP US

Observation:
Input Data:

1200:
1201:
1202:
1203:
1204:
1295:
1206:
1207:
1208:
1209:
120A:
120B:
120C:
120D:
120E:
120F:

Output:

REVIEW QUSETIONS:

1. What is the size of flag register?

2. Can you perform 32 bit operation with 8086? How?

3. What is the difference between instructions DIV & IDIV?

4. What is the size of each segment?

5. What is the difference between instructions MUL & IMUL?

6. What is meant by LED/LCD?

7. How do you place a specific value in DPTR register? (Dec 2013)

8. Which of the 8051 ports need pull-up registers to functions as I/O port ? (Dec 2013)

9. What are the control words of 8251A and what are its functions?

10. What are the display modes supported by the 8279 chip?

11. Give the format of program clock word of 8279 and mention its purpose.

12. What is 2 key lockout and n key rollover?

13. Define – PPI

14. What is the use of direction flag?

15. What are the alternate functions of port0, port1, port2 and port3?

Result:

Thus the program to display the register number, as rolling message, in the display by

interfacing 8279 with 8086 was done successfully.

Ex. No. 11

Date:

PRINTER INTERFACE

Aim:

 To write an ALP to print a single character “A” by checking the printer status using

8086 Kit and Printer Interface.

Description:

The Printer is initialized by writing 05 to the control register which makes STROBE

high and SELECT low. Then check for the BUSY and ERROR signals sent out by the printer

by reading its status. After the printer is ready, the ASCII code for “A” is sent to the printer. A

carriage return (OD Hex) is sent as the next character in order to print the character.

 In the CHECK routine the printer status is again read and the printer is checked for the

paper error signals. If no error is encountered, then the data will be printed in the paper by

making STROBE low and high after 1 µS.

Algorithm:

1. Start the program.

2. Set the origin as 1000H.

3. Initialize the printer interface with 05 to make strobe high and select low.

4. Check for busy and error signals. If printer is not ready wait. Else go to next step

5. Print the character.

6. Stop the program.

Program

Label Program Comments

PRINT:

STAS:

CHECK:

ERR:

ORG 1000H
MOV AL,05H
OUT D0,AL
IN AL,C0H
AND AL,20H
CMP AL,20H
JNZ ERR
MOV AL,41H
CALL PRINT
MOV
AL,0AH
CALL PRINT
HLT
MOV BL,AL
CALL
CHECK
MOV AL,BL
OUT C8,AL
MOV AL,01H
OUT D0,AL
NOP
NOP
NOP
MOV AL,05H
OUT D0,AL
RET
IN AL,C0H
AND AL,20H
JZ CHECK
IN AL,C0H
AND AL,80H
CMP AL,80H
JNZ STAS
JMP CHECK
HLT
INT 2

OUTPUT: A

REVIEW QUSETIONS:

1. In what mode the printer interfaced?

2. Which IC used interface microprocessor and printer?

3. Define Strobe mode.

Result:

 Thus the program to print a single character “A” by checking the printer status using 8086
Kit and Printer Interface was executed successfully.

Flowchart

Ex. No. 12

Date:

SERIAL INTERFACE AND PARALLEL INTERFACE

Aim:

 To write an ALP to demonstrate

(a) Serial Interface - transmit a data 41H serially by interfacing 8086 with 8251

(b) Parallel Interface

SERIAL INTERFACE

Description:

 The 8253 and 8251 should be initialized before transmitting the character. The Program

first initialize 8253 to give an output clock frequency of 150 KHz at channel 0 which will give

a 9600 baud rate of 8251. The 8251 mode instruction (refer mode instruction format) is

initialized with the following specifications: 8bit data, No parity, Baud rate factor (16x), 1 stop

bit. Thus the mode command word is 4E for the above said specifications. The 8251 command

instruction(refer command instruction format) is initialized with 37H which enables the

transmit enable and receive enable bits, force DTR output to zero, resets the error flags, and

forces RTS output to zero.

Algorithm:

1. Start the program.

2. Set the origin as 1100H.

3. Initialize the 8253 Timer in Mode 3

4. Initialize the 8251

5. Transmit the data at transmitter end

6. Reset the system

7. At the receiver end receive the data and reset the system

8. Stop the program.

PROGRAM:

Label Program Comments

ORG 1000H

MOV AL, 36

OUT CE, AL

MOV AL, 10

OUT C8, AL

MOV AL, 00

OUT C8, AL

MOV AL, 4E

OUT C2, AL

MOV AL, 37

OUT C2, AL

MOV AL, 41

OUT C0, AL

INT 2

ORG 1200H

IN AL,C0

MOV BX,1250

MOV [BX],AL

INT 2

Set starting address as 1000H.

Mode set for 8253 – Channel 0 in Mode 3

Mode instruction for 8251

Command Instruction for 8251

Sent the data 41

Reset

Receive the data 41

Store the data at 1250H

Reset

CONTROL WORD FORMAT OF 8255

Observation:
 Output:
 1250:

REVIEW QUSETIONS:

1. Expand USART?
2. Where do we prefer the

serial communication?
3. What is the function of

instruction pointer (IP)
register?

4. What is the difference
between IN and OUT
instructions?

5. What is MODEM?

PARALLEL INTERFACE

Description:

 Initialize the Port A as Input port and Port B as Output port in Mode – 0. The input port

reads the data set by the SPDT switches and the output port outputs the same data to port B to

glow LEDs accordingly.

Algorithm:

1. Start the program.

2. Set the origin as 1100H.

3. Initialize the port A as input port

4. Initialize the port B as output port

5. Configure 8255 in mode 0

6. Read the input port

7. Write the read data to the output port

8. Stop the program.

Parallel Interface Program

Example:
 Input:

SPDT switch position: 10110011
Output:

 LED status: 10110011
 Observation:

 Input:

SPDT switch position:
Output:

 LED status:

Label Program Comments

ORG 1100H

MOV AL,90

OUT C6,AL

IN AL,C0

OUT C2,AL

HLT

Set starting address as 1100H.

Initialize 8255 in mode 0 with port A as

input port and port B as output port.

Read the data from SPDT switch

Write the data to LEDs

REVIEW QUSETIONS:

1. What is the difference between min mode and max mode of 8086?
2. What is the difference between near and far procedure?
3. What is difference between shifts and rotate instructions?
4. Which are strings related instructions?
5. Which are addressing modes and their examples in 8086?
6. Discuss the use of following instructions:

a. SCASB
b. LAHF
c. ROL
d. SHR
e. IDIV

7. List out the internal devices of 8255.
8. Define – USART
9. What is scanning in keyboard and what is scan time?
10. What is programmable peripheral device?
11. What are the tasks involved in keyboard interface?
12. How a keyboard matrix is formed in keyboard interface using 8279?
13. Define – GPIB?
14. Advantages of differential data transfer?
15. What are the modes used in keyboard display interface?

Result:

 Thus the programs for serial and parallel interface are executed successfully.

FLOWHCART

Ex. No. 13

Date:

A/D AND D/A INTERFACE

Aim:

To write an assembly language program to demonstrate

(a) Analog to Digital Conversion

(b) Digital to Analog Conversion

ANALOG TO DIGITAL CONVERSION

Features of ADC 0809

ADC 0809 is a monolithic CMOS device, with an 8-bit analog to digital converter, 8 channel

multiplexer and microprocessor compatible control logic

1. 8 bit resolution

2. 100 μs Conversion time

3. 8 channel multiplexer with latched control logic

4. No need for external zero or full scale adjustments

5. Low power consumption time

6. Latched tristate output

The device contains an 8 channel single ended analog signal multiplexer. A particular input

channel. A particular input channel is selected by using the address decoding. Table shows the

input states for the address lines to select any channel. The address is latched into the decoder

of the chip on low to high transition of the address latch enable. The A/D converter‘s successive

approximation register reset on the positive edge of the start of the conversion pulse. The

conversion is begun on the falling edge of the SOC pulse. End of conversion will go low

between 0 and 8 clock pulses after the rising edge of start of conversion

SELECTED
ANALOG

CHANNEL

ADDRESS LINE

ADD C ADD B ADD A

IN0
IN1
IN2
IN3
IN4
IN5
IN6
IN7

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

Algorithm
1. Select Channel ‘0’ and apply analog voltage
2. Send Start of conversion
3. Check End of conversion
4. Get digital data for corresponding analog voltage and display at stored location.

The buffer 74LS244 which transfers the converted data outputs to data bus is selected when

A7 A6 A5 A4 A3 A2 A1 A0

 1 1 0 0 0 X X X

 The I/O address for the latch 74LS 714 which latches the data bus to ADD A, ADD B and
ADDC and ALE 1 and ALE 2 is

A7 A6 A5 A4 A3 A2 A1 A0

 1 1 0 0 1 X X X

 The flip flop 74LS74 which transfers the D0 line status to the start of conversion pin of
ADC0809 is selected when

A7 A6 A5 A4 A3 A2 A1 A0

 1 1 0 1 0 X X X

The EOC output of ADC 1 and ADC 2 is transferred to D0 line by means of two tristate
buffers.
The EOC 1 is selected when

A7 A6 A5 A4 A3 A2 A1 A0

 1 1 0 1 1 X X X

The EOC 2 is selected when

A7 A6 A5 A4 A3 A2 A1 A0

 1 1 1 0 0 X X X

SL. NO
CHANNEL

NUMBER

EOC

ADDRESS

CHNO.

ALE LOW

OE HIGH

CHNO. ALE

HIGH OE

LOW

CHNO.

ALE LOW

OE HIGH

1 CH0 D8 10 18 10

2 CH1 D8 11 19 11

3 CH2 D8 12 1A 12

4 CH3 D8 13 1B 13

5 CH4 D8 14 1C 14

6 CH5 D8 15 1D 15

7 CH6 D8 16 1E 16

8 CH7 D8 17 1F 17

=C0H

=C8H

=D0H

=D8H

=E0H

PROGRAM

Label Program Comments

LOOP

ORG 4100H

MOV AL, 10H

OUT 0C8H, AL

MOV AL, 18H

OUT 0C8H, AL

MOV AL, 01H

OUT 0DOH, AL

MOV AL, 00H

MOV AL, 00H

MOV AL, 00H

MOV AL, 00H

OUT 0DOH, AL

IN AL, 0D8H

AND AL, 01H

CMP AL, 01H

JNZ LOOP

IN AL, 0C0

MOV BX, 1200H

MOV [BX], AL

HLT

Set starting address as 4100H.

Selection Channel ‘0’

Make ALE1 and OE1 high

Make SOC High

Make SOC low

Check EOC

Output Digital Data

Observation:

DAC 0800

REVIEW QUSETIONS:

1. Which is by default pointer for CS/ES?
2. How many segments present in it?
3. What is the size of each segment?
4. Basic difference between 8085 and 8086?
5. Which operations are not available in 8085?
6. What is the difference between Macro and procedure?
7. Which is by default pointer for CS/ES?
8. Basic difference between 8085 and 8086?
9. Which operations are not available in 8085?
10. What is the difference between instructions RET & IRET?
11. What are the functions performed by 8279?
12. What is PPI?
13. Give the control word format for I/O mode of 8255?
14. Give the BSR mode format of 8255.

INTERFACING DAC WITH 8086

THEORY:
DAC 0800 is an 8 – bit DAC and the output voltage variation is between – 5V and +

5V.The output voltage varies in steps of 10/256 = 0.04 (appx.). The digital data input and the
corresponding output voltages are presented in the Table1.

Input
Data in
HEX

Output
Voltage

00 - 5.00

01 - 4.96

02 - 4.92

… …

7F 0.00

… …

FD 4.92

FE 4.96

FF 5.00

Referring to Table1, with 00 H as input to DAC, the analog output is – 5V. Similarly,

with FF H as input, the output is +5V. Outputting digital data 00 and FF at regular intervals, to
DAC, results in different wave forms namely square, triangular, etc,. The port address of DAC
is 08 H

ALGORITHM:

(a) Square Wave Generation

1. Load the initial value (00) to Accumulator and move it to DAC

2. Call the delay program

3. Load the final value(FF) to accumulator and move it to DAC

4. Call the delay program.

5. Repeat Steps 2 to 5

FLOWCHART

PROGRAM

Label Program Comments

START:

DELAY:

L1:

ORG 4100H

MOV AL, 00H

OUT 0C0H,AL

CALL DELAY

MOV AL, 0FFH

OUT 0C0H,AL

CALL DELAY

JMP START

MOV CX, 05FFH

LOOP L1

RET

Set starting address as 4100H.

(b) Saw tooth Wave Generation

1. Load the initial value (00) to Accumulator

2. Move the accumulator content to DAC

3. Increment the accumulator content by 1.

4. Repeat Steps 3 and 4.

FLOWCHART

PROGRAM

Label Program Comments

START

L1

ORG 4100H

MOV AL, 00H

OUT 0C0H, AL

INC AL

JNZ L1

JMP START

Set starting address as 4100H.

(c) Triangular Wave Generation

1. Load the initial value (00) to Accumulator

2. Move the accumulator content to DAC

3. Increment the accumulator content by 1.

4. If accumulator content is zero proceed to next step. Else go to step 3.

5. Load value (FF) to Accumulator

6. Move the accumulator content to DAC

7. Decrement the accumulator content by 1.

8. If accumulator content is zero go to step2. Else go to step 7.

FLOWCHART

PROGRAM

Label Program Comments

START:

L1:

L2:

ORG 4100H
MOV BL, 00H
MOV AL, BL
OUT 0C0H,AL
INC BL
JNZ L1
MOV BL, 0FFH
MOV AL, BL
OUT 0C0H,AL
DEC BL
JNZ L2
JMP START

Set starting address as 4100H.

Example:

Waveform Amplitude Time Period(ms)

Square 2 56

Sawtooth 2 3

Triangular 2 2.4

Observation:

Waveform Amplitude Time Period(ms)

Square

Sawtooth

Triangular

REVIEW QUSETIONS:

1. Whether 8086 is compatible with Pentium processor?
2. Write an ALP program for multiplication of given number in location mode a) 0060,

b) 0002
3. What is 8087? How it is different from 8086?
4. Write an ALP program for addition of multi byte numbers.
5. What is the size of flag register?
6. List the operating modes of 8253 timer.
7. Give the control word format of timer.
8. What is the use of USART?
9. Compare the serial and parallel communications.
10. What is the use of Keyboard and display controller?
11. What is meant by synchronous data transfer scheme?
12. Define – Interrupt I/O?
13. Why interfacing is needed for I/O devices?
14. When the 8085 processor checks for an interrupt?
15. How the 8085 processor differentiates a memory access and I/O access?

RESULT

Thus the program to demonstrate the ADC and DAC were executed.

Flow Chart

Ex. No. 14

Date:

BASIC ARITHMETIC AND LOGIC OPERATIONS

Objective:

 To write an ALP to perform the following operations using 8051 instruction set

(a) Addition

(b) Subtraction

(c) Multiplication

(d) Division

(e) Logical operation

ADDITION OF TWO 8 BIT NUMBERS

Description:

 In order to perform addition in 8051, one of the data should be in accumulator and

another data can be in any SFR/internal RAM or can be an immediate data. After addition the

sum is stored in accumulator. The sum of two 8 – bit data can be either 8 bits (sum only) or 9

bits (sum and carry). The accumulator can accommodate only the sum and if there is carry, the

8051 will indicate by setting carry flag. Hence one of the internal register/RAM locations can

be used to account for carry.

Algorithm:

1. Set DPTR as pointer for data.

2. Move first data from external memory to accumulator and save it in R1 register.

3. Increment DPTR.

4. Move second data from external memory to accumulator

5. Clear R0 register to account for carry.

6. Add the content of R1 register to accumulator.

7. Check for carry. If carry is not set go to step 8. Otherwise go to next step.

8. Increment R0 register.

9. Increment DPTR and save the sum in external memory.

10. Increment DPTR, move carry to accumulator and save it in external memory.

11. Stop

Program

Label Program Comments

AHEAD:

HERE:

MOV DPTR,#4500

MOVX A,@DPTR

MOV R1,A

INC DPTR

MOVX A,@DPTR

MOV R0,#00

ADD A,R1

JNC AHEAD

INC R0

INC DPTR

MOVX @DPTR,A

INC DPTR

MOV A,R0

MOVX @DPTR,A

SJMP HERE

Load address of 1st data in DPTR

Move the 1st data to A

Save the first data in R1

Increment DPTR to point 2nd data

Load the 2nd data in A

Clear R0 for the account of carry

Get the sum in A reg

Check carry flag

If carry is set increment R0

Increment DPTR

Save the sum in external memory

Increment DPTR

Move carry to A reg

Save the carry in external memory

Remain idle in infinite loop

Example:

Input:

4500: 05 [Addend]
4501: 06 [Augend]

 Output:

 4502: 0B [Sum]
 4503:00 [Carry]

Observation:

Input:

4500: [Addend]
4501: [Augend]

 Output:

 4502: [Sum]
 4503: [Carry]

Manual Calculation:

Flow Chart

SUBTRACTION OF TWO 8 BIT NUMBERS

Description:

 In order to perform subtraction in 8051, one of the data should be in accumulator and

another data can be in any SFR/internal RAM or can be an immediate data. After subtraction

the result is stored in accumulator. The 8051 perform 2’s complement subtraction and then

complement the carry. Therefore if the result is negative carry flag is set and the accumulator

will have 2’s complement of the result. In order to get the magnitude of the result again take

2’s complement of the result. One of the register is used to account for the sign of the result.

The 8051 will consider previous carry while performing subtraction and so the carry should be

cleared before performing subtraction.

Algorithm:

1. Set DPTR as pointer for data.

2. Move the minuend from external memory to accumulator and save it in R1 register.

3. Increment DPTR.

4. Move subtrahend from external memory to accumulator

5. Exchange the contents of R1 and A such that minuend is in A and subtrahend is in

R1

6. Clear R0 register to account for sign.

7. Clear carry flag.

8. Subtract the content of R1 register from accumulator.

9. Check for carry. If carry is not set go to step 12. Otherwise go to next step.

10. Complement the content of A – reg and increment by 1 to get 2’s complement of

result in A – reg

11. Increment R0 register.

12. Increment DPTR and save the result in external memory.

13. Increment DPTR, move R0 (sign bit) to accumulator and then save it in external

memory.

14. Stop

Program

Label Program Comments

AHEAD:

HERE:

MOV DPTR,#4500

MOVX A,@DPTR

MOV R1,A

INC DPTR

MOVX A,@DPTR

XCH A,R1

MOV R0,#00

CLR C

SUBB A,R1

JNC AHEAD

CPL A

INC A

INC R0

INC DPTR

MOVX @DPTR,A

INC DPTR

MOV A,R0

MOVX @DPTR,A

SJMP HERE

Load address of minuend in DPTR

Move the minuend to A

Save the minuend in R1

Increment DPTR to point subtrahend

Load the subtrahend in A

Get minuend in A and Subtrahend in R1

Clear R0 for the account of Sign

Clear carry

Subtract R1 from A

Check Carry flag. If carry is set then

Get 2’s complement of result in A

Set R0 to indicate negative sign

Increment DPTR

Save the result in external memory

Increment DPTR

Move sign bit to A reg

Save the sign in external memory

Remain idle in infinite loop

Example:

Input:

4500: 0A [Minuend]
4501:05 [Subtrahend]

 Output:

 4502:05 [Difference]
 4503:00 [Sign Bit]

Observation:

Input:

4500: [Minuend]
4501: [Subtrahend]

 Output:

 4502: [Difference]
 4503: [Sign Bit]

Manual Calculation:

Flow Chart

MULTIPLICATION OF TWO 8 BIT NUMBERS

Objective:

 To write an ALP to multiply two numbers of 8-bit data using 8051 instruction set

Description:

 In order to perform subtraction in 8051, the two 8 – bit data should be stored in A and

B registers, then multiplication can be performed by using “MUL AB” instruction. After

multiplication the 16 – bit product will be in A and B register such that lower byte in A and

higher byte in B register.

Algorithm:

1. Load address of data in DPTR

2. Move the first data from external memory to A and save in B.

3. Increment DPTR and move second data from external memory to B.

4. Perform multiplication to get the product in A and B.

5. Increment DPTR and save A (lower byte of product) in memory

6. Increment DPTR , move B (lower byte of product) to A and save it in memory

7. Stop

Label Program Comments

HERE:

MOV DPTR,#4500

MOVX A,@DPTR

MOV B,A

INC DPTR

MOVX A,@DPTR

MUL AB

INC DPTR

MOVX @DPTR,A

INC DPTR

MOV A,B

MOVX @DPTR,A

SJMP HERE

Load address of 1st data in DPTR

Move the 1st data to A

Save the 1st data in B

Increment DPTR to point 2nd data

Load the 2nd data in A

Get the product in A and B

Increment DPTR

Save the lower byte of result in external memory

Increment DPTR

Move the higher byte of product to A reg

Save it in external memory

Remain idle in infinite loop

Example:

Input:

4500:02 [1st data]
4501:03 [2nd data]

 Output:

 4502:06 [Lower byte of product]
 4503:00 [Higher byte of product]

Observation:

Input:

4500: [1st data]
4501: [2nd data]

 Output:

 4502: [Lower byte of product]
 4503: [Higher byte of product]

Manual Calculation:

FLOWCHART

DIVISION OF TWO 8 BIT NUMBERS

Description:

 In order to perform subtraction in 8051, the dividend should be stored in A – reg and

divisor should be stored in B – reg. then the content of A can be divided by B using the

instruction “DIV AB”. After division the quotient will be in A – reg and remainder will be in

B – reg.

Algorithm:

1. Load address of data in DPTR

2. Move the dividend from external memory to A and save it in R0 register.

3. Increment DPTR and move the divisor from external memory to A and save it in B

reg.

4. Move the dividend from R0 to A.

5. Perform division to get quotient in A and remainder in B.

6. Increment DPTR and save quotient (content of A - reg) in memory

7. Increment DPTR.

8. Move the remainder (Content of B – reg) to A and save in memory.

9. Stop

Label Program Comments

HERE:

MOV DPTR,#4500

MOVX A,@DPTR

MOV R0,A

INC DPTR

MOVX A,@DPTR

MOV B,A

MOV A,R0

DIV AB

INC DPTR

MOVX @DPTR,A

INC DPTR

MOV A,B

MOVX @DPTR,A

SJMP HERE

Load address of dividend in DPTR

Move the dividend to A

Save the dividend in R0

Increment DPTR to point divisor

Load the divisor in A

Move the divisor to B

Move the dividend to A

Divide the content of A by B

Increment DPTR

Save the quotient in external memory

Increment DPTR

Move the remainder to A reg

Save it in external memory

Remain idle in infinite loop

Example:

Input:

4500: 04 [Dividend]
4501:02 [Divisor]

 Output:

 4502:02 [Quotient]
 4503:00 [Remainder]

Observation:

Input:

4500: [Dividend]
4501: [Divisor]

 Output:

 4502: [Quotient]
 4503: [Remainder]

Manual Calculation:

FLOWCHART

LOGICAL OPERATIONS OF 8 BIT NUMBERS

Description:

 The first value should be stored in R0 -reg, second value should be stored in R1 – reg,

First move R1 value to A, perform OR operation with R0 reg and store the result. Second move

R1 value to A performs AND operation with R0 reg stores the result.

Algorithm:

1. Load address of first data in DPTR

2. Move the data to A

3. Save first data to R0

4. Increment DPTR to Load address of second data in DPTR

5. Save second data to A, R1

6. Perform OR operation of A with R0

7. Increment DPTR to store the result

8. Move R1 data to A

9. Perform AND operation of A with R0

10. Increment DPTR to store the result

Label Program Comments

HERE:

MOV DPTR,#4500

MOVX A,@DPTR

MOV R0, A

INC DPTR

MOVX A,@DPTR

MOV R1,A

ORL A, R0

INC DPTR

MOVX @DPTR, A

MOV A, R1

ANL A, R0

INC DPTR

MOVX @DPTR, A

SJMP HERE

Load address of first data in DPTR

Move the data to A

Save first data to R0

Increment DPTR to Load address of second

data in DPTR

Save second data to A, R1

Perform OR operation

Increment DPTR to store the result

Perform AND operation

Increment DPTR to store the result

Example:

Input

4500 :00

4501:01

Output

4502 :01 (OR operation)

4503 :00 (AND operation)

Observation

Input

4500 :

4501:

Output

4502 : (OR operation)

4503 : (AND operation)

Label Program Comments

HERE:

ORG 4100H

MOV DPTR, #4500H

MOVX A,@DPTR

MOV B,A

MUL AB

INC DPTR

MOVX @DPTR,A

INC DPTR

MOV A,B

MOVX @DPTR,A

SJMP HERE

Set starting address as 4100H.

Initialise the dptr

Get the data in A – reg

Copy it in B – reg

Multiply A and B

Increment dptr

Store the lower order in memory

Increment dptr

Store the higher order in memory

Example:

 Input:

 4500:03

Output:

 4501:09
 4502:00
Observation:
 Input:

 4500:

Output:

 4501:
 4502

REVIEW QUSETIONS:

1. What is a microcontroller? How does it differ from a microprocessor?

2. List out the features of 8051.

3. Draw the PIN diagram of the 8051 microcontroller.

4. What is the role of the program counter in 8051?

5. Write the significance of oscillators in a microcontroller.

6. What are the types of memory in 8051?

7. What are special function register?

8. List some of the data transfer instructions.

9. List some of the arithmetic instructions.

10. Explain the instructions RLA, RRC.

11. Write the addressing modes of 8051.

12. What is PSW?

13. Draw the format of TMOD register.

14. Explain the 16 bit registers DPTR and SP.

15. What is the importance of SFRs available in 8051?

Result:

 Thus the program for arithmetic and logic operation was written and executed.

Ex. No. 15

Date:

SQUARE, CUBE and 2’S COMPLIMENT OF A NUMBER

Objective:

 To write 8051 ALP to determine the square, cube and 2’s compliment of a number

SQUARE OF A NUMBER

Description:

 The square of a number is determined by multiplying the value by itself. In this program

the input is obtained in A – reg and then it is copied to B – reg. The values of A and B registers

are multiplied and the result is stored in memory.

Algorithm:

1. Start the program.

2. Set the origin as 4500H.

3. Initialize DPTR

4. Get the value in A – reg and copy it in B – reg

5. Multiply the values of A – reg and B – reg

6. Store the result

7. Stop the program.

PROGRAM

Label Program Comments

HERE

 ORG 4100H

 MOV DPTR,#4500H

 MOVX A,@DPTR

 MOV R0,A

 MOV B,A

 MUL AB

 PUSH B

 MOV B,A

 MOV A,R0

 MUL AB

 INC DPTR

 MOVX @DPTR,A

 MOV R2,B

 POP B

 MOV A,R0

 MUL AB

 ADD A,R2

 INC DPTR

 MOVX @DPTR,A

 MOV A,B

 INC DPTR

 MOVX @DPTR,A

 SJMP HERE

Set starting address as 4100H.

Initialise the dptr

Get the data in A – reg

Copy it in r0 – reg

Copy it in B – reg

Multiply A and B

Push higher order to stack

Store the lower order of result

Store the higher order of the result

CUBE OF A NUMBER

Description:

 The square of a number is determined by multiplying the value by itself for two times.

In this program the input is obtained in A – reg and then it is copied to B – reg and r0 - reg.

The values are multiplied and stored tin the memory.

Algorithm:

1. Start the program.

2. Set the origin as 4100H.

3. Initialize DPTR

4. Copy the data to A – reg, B- eg , R0 – reg

5. Multiply the data to find the cube

6. Store the result

7. Stop the program

Label Program Comments

HERE:

MOV DPTR,#4500

MOVX A,@DPTR

CPL A

INC A

INC DPTR

MOVX @DPTR, A

SJMP HERE

Load address of data in DPTR

Move the data to A

Complement A

Increment A by 1.

Increment DPTR to store the result of 2’s

complement of A

Example:
 Input:

 4500:03
 Output:
 4501:27
 4502:00

Example:
Input
4500 :01
Output
4501 :F2 (Two’s complement)
Observation:
Input
4500 :
Output
4501 : (Two’s complement)

2’S COMPLIMENT OF A NUMBER

Description:

 In order to perform 2’s complement in 8051, the given value should be stored in A –

reg then take one’s complement of A and add value one to LSB.

Algorithm:

1. Load address of data in DPTR

2. Move the data to A

3. Complement A

4. Increment A by 1.

5. Increment DPTR to store the result of 2’s complement of A

6. Stop

REVIEW QUESTIONS:

1. Explain the instruction MOV DPTR, #4500H.

2. What does the PUSH instruction do?

3. What instruction is used to multiply any two numbers?

4. What is the function of POP instruction?

5. Which instruction is used to increment the value?

6. What does the ORL instruction do?

7. Explain ANL R1,#0F.

8. How do we take two’s complement of number? Give example.

9. What does the ORG 4100H mean?

10. Explain the mode 0 operating mode of 8051 serial ports.

11. Explain the mode 2 operating mode of 8051 serial ports.

12. Explain the mode 3 operating mode of 8051 serial ports.

13. What are the pins used for serial communication?

14. What is the use of SBUF register?

15. What are the methods to double the baud rate?

Result:

 Thus the program to determine square, cube and 2’s compliment of a number are

executed successfully.

Label Program Comments

HERE:

ORG 4100H

MOV A,#7

ANL A,#0F

ORL A,#30

MOV DPTR,#4500

MOVX @DPTR,A

MOV R1,#4

ANL R1,#0F

ORL A,#30

INC DPTR

MOVX @DPTR,A

L1:SJMP HERE

Input 07

Get the equivalent ASCII

Input 04

Get the equivalent ASCII

Ex. No. 16

Date:

UNPACKED BCD TO ASCII

Objective:

 To write an Assembly Language Program (ALP) to convert unpacked BCD to ASCII

using 8051 instruction set.

Description:

The 2 –digit unpacked BCD data will be directly given to the A reg. The equivalent

ASCII code is obtained by logically OR with 30. i.e., adding 30 to the BCD value will result

in its ASCII value.

Algorithm:

1. Start the program.

2. Set the origin as 4100H.

3. Get the BCD data (units Digit)in A register

4. Logically AND A with 0F to mask upper nibble

5. Logically OR A with 30 to get ASCII value

6. Store the result

7. Get the BCD data (tens digit) in A register

8. Logically AND A with 0F to mask upper nibble

9. Logically OR A with 30 to get ASCII value

10. Store the result

11. Stop the program.

OBSERVATION:
Output:
4500: 37
4501:34

REVIEW QUESTIONS:

1. Mention any two applications that use ADC and DAC.

2. Write the format of IE register.

3. What is the function of ITX bits in the TCON register?

4. What are the special function registers that controls the serial communication of

8051?

5. What are the pins used for the serial communication in 8051?

6. Write down the two activation levels for the external interrupts in 8051.

7. Explain the level triggered input.

8. Draw the organization of Interrupt Priority register.

9. Draw the format of the Interrupt Enable Register.

10. Explain ISR in a microcontroller.

11. Write about the jump statement.

12. Explain DJNZ instructions of Intel 8051 microcontroller.

13. What instruction can be used to swap two numbers?

14. Specify the single instruction which clears the MSB of the B register of 8051 without

affecting the remaining bits.

15. Write about CALL statement in 8051.

RESULT:

Thus the program to convert the unpacked BCD to ASCII has been executed

successfully.

Ex. No. 17

Date:

Square wave generation using 8051

Objective:

 To write an Assembly Language Program (ALP) to generate square waveform using

8051 instruction set.

Description:
 Square waves of any frequency (limited by the controller specifications) can be

generated using the 8051 timer. The technique is very simple. Write up a delay subroutine with

delay equal to half the time period of the square wave. Make any port pin high and call the

delay subroutine. After the delay subroutine is finished, make the corresponding port pin low

and call the delay subroutine gain. After the subroutine is finished, repeat the cycle again. The

result will be a square wave of the desired frequency at the selected port pin.

Steps:

1. Assume Duty Cycle 50%

2.Assume 12MHZ Clock is Connected to Micro-Controller

3.Use Timers

4.Check output in P3.2

Program for 1 KHz Square wave using 8051 timer

 ORG 0000H

 MOVTMOD, #01H

 UP: SETB P3.2

 LCALL DELAY

 CLR P3.2

 LCALL DELAY

 SJMP UP

DELAY: MOV TH0, #0FEH

 MOV TL0, #0CH

 CLR TF0

 SETB TR0

HERE:JNB TF0,HERE

 RET

 END

Result:

 Thus the square waveform has been generated successfully.

