SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution) S.R.M Nagar, Kattankulathur – 603 203.

Department of Electronics and Communication Engineering

QUESTION BANK

1906805 - ELECTROMAGNETIC INTERFERENCE AND COMPATIBILITY Regulation - 2019

Year/Semester/Branch	:	IV/VIII/ECE
Academic Year	:	2024 - 2025 (Even Semester)
Prepared By	:	Dr. S. Ramesh, Professor-ECE

SRM VALLIAMMAI ENGINEERING COLLEGE

SRM Nagar, Kattankulathur - 603 203.

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

QUESTION BANK

Subject Code & Name	: 1906805- Electromagnetic Interference and Compatibility
Year/Semester/Branch	: IV / VIII / ECE
Academic Year	: 2024 - 2025 (Even Semester)

UNIT I - EMI/EMC CONCEPTS

EMI-EMC definitions; Sources and Victims of EMI; Conducted and Radiated EMI Emission and Susceptibility; Case Histories; Radiation Hazards to humans.

	PART - A						
Q.No.	Questions	Course Outcomes	BT Level	Competence			
1.	What is the need for electromagnetic compatibility?	CO1	BTL 1	Remembering			
2.	Write some of the testing strategies in EMC.	CO1	BTL 1	Remembering			
3.	Identify the three criteria to be satisfied by any system to become electromagnetically compatible.	CO1	BTL 1	Remembering			
4.	Discuss the steps to prevent emission that causes the EMI in a system.	CO1	BTL 2	Understanding			
5.	Why EMI is a vital problem?	CO1	BTL 1	Remembering			
6.	We feel electric shock at times, when we touch TV and Computer monitors. Give the reason.	CO1	BTL 2	Understanding			
7.	List out types of electromagnetic emission.	CO1	BTL 1	Remembering			
8.	Give the explanation about the conducted coupling of EMI.	CO1	BTL 1	Remembering			
9.	Why a bike started or a mixie under running condition disturbs a TV receivers functioning.	CO1	BTL 1	Remembering			
10.	Where is a decoupling capacitor used? Why?	CO1	BTL 1	Remembering			
11.	Illustrate various types of radiation coupling in EMI.	CO1	BTL 2	Understanding			
12.	Choose which coupling happens directly between the emitter and receptor.	CO1	BTL 2	Understanding			
13.	What is the possibility to develop circuit models of EMI with correct reason?	CO1	BTL 1	Remembering			
14.	Assess on the two factors that tend to affect the amount of interference that would otherwise be transmitted along a conducted path.	CO1	BTL 2	Understanding			
15.	Define EMI and EMC.	CO1	BTL 1	Remembering			
16.	Differentiate conducted and radiated emission.	CO1	BTL 2	Understanding			
17.	Classify EMI/EMC.	CO1	BTL 2	Understanding			
18.	Summarize the effect of EMI on secured communications.	CO1	BTL 2	Understanding			

19.	What would happen if the coupling path is not properly shielded?	CO1	BTL 2	Understanding
	Justify.			
20.	How would you reduce the hazards due to radiation?	CO1	BTL 1	Remembering
21.	What is meant by electromagnetic compatibility?	CO1	BTL 1	Remembering
22.	Infer some of the EMC applications.	CO1	BTL 2	Understanding
23.	Is it possible to develop circuit models of EMI?	CO1	BTL 2	Understanding
24.	Express the different units of parameters for the measurements of	CO1	BTL 2	Understanding
	EMI.			

		PART - B				
1.		List out all the sources and victims of EMI with examples?	(13)	CO1	BTL3	Applying
2.		Write the various mechanisms in which electromagnetic interference can travel from its source to the receptor.	(13)	CO1	BTL4	Analyzing
3.		Define an intersystem EMI and explain how it affects equipment in an EM environment.	(13)	CO1	BTL4	Analyzing
4.		Select and write about the case histories related to intersystem EMI.	(13)	CO1	BTL4	Analyzing
5.	(i)	What is an intra-system EMI? How does it affect equipment in an EM environment?	(7)	CO1	BTL3	Applying
	(ii)	Write the case histories related to intersystem EMI.	(6)	CO1	BTL3	Applying
6.	(i)	Distinguish between the features of conducted EMI and radiated EMI.	(7)	CO1	BTL3	Applying
	(ii)	Outline the interference elements present in an EMI system.	(6)	CO1	BTL3	Applying
7.		Summarize in detail about the conducted EMI and radiated EMI with examples.	(13)	CO1	BTL3	Applying
8.		Illustrate the radiation hazards to humans.	(13)	CO1	BTL3	Applying
9.	(i)	Identify how a conducted emission occurs in an EM environment.	(7)	CO1	BTL3	Applying
	(ii)	Explain the tests performed for the conducted susceptibility.	(6)	CO1	BTL3	Applying
10.	(i)	Illustrate proper industrial citations to explain the significance of EMI in a system design.	(7)	CO1	BTL3	Applying
	(ii)	Show how celestial bodies act as a source of EMI.	(6)	CO1	BTL3	Applying
11.	(i)	Select a proper testing methodology for radiation emissions and susceptibility. Explain.	(7)	CO1	BTL3	Applying
	(ii)	Interpret the lightning discharge as a source of EMI and discuss on the strong sources of atmospheric noise.	(6)	CO1	BTL3	Applying
12.	(i)	Write short notes on EMI Testing categories.	(7)	CO1	BTL3	Applying
	(ii)	What are the various parameters of measurement? Give their units.	(6)	CO1	BTL3	Applying
13.		Investigate on details of how an EMI is caused by radiation hazards.	(13)	CO1	BTL4	Analyzing
14.	(i)	Examine the measurement performed for the conducted emission.	(7)	CO1	BTL4	Analyzing
	(ii)	Inspect the role of decoupling capacitors in digital IC's.	(6)	CO1	BTL4	Analyzing
15.		Analyze the various issues of EMC in brief.	(13)	CO1	BTL4	Analyzing

16.		Consider the past historical facts and criticize on the impact of radio communication. Also discuss how lightning discharges affect the transmission line communication.		CO1	BTL4	Analyzing
17.		Inspect the discrimination between time domain and frequency domain EMI. Why analysis is made in frequency approach analysis, design and location of high voltage equipment?	(13)	CO1	BTL4	Analyzing
		PART - C				l
1.		Elaborate the various sources of electromagnetic radiation and its hazards.	(15)	CO1	BTL3	Applying
2.		Examine the effect of radiation on the human body.	(15)	CO1	BTL4	Analyzing
3.	(i)	Analyze the mechanisms of EMI. Mention its applications.	(8)	CO1	BTL4	Analyzing
	(ii)	Illustrate the types of EMI with real diagram explain the sources and consequences of EMI.	(7)	CO1	BTL4	Analyzing
4.	(i)	Explain how EMI is different from RFI.	(8)	CO1	BTL4	Analyzing
	(ii)	In what frequency range are, (a) Conducted EMI, (b) Radiated	(7)	CO1	BTL4	Analyzing
		EMI likely to be predominant. Why?				
5.		With neat diagram explain the sources and consequences of EMI and explain on the types of EMI	(15)	CO1	BTL3	Applying

UNIT II - EMI COUPLING PRINCIPLES

Conducted, Radiated and Transient coupling; Common Ground impedance coupling; Common mode and Ground Loop coupling; Differential mode coupling; Near field Cable to Cable Coupling; Field to Cable Coupling; Power Mains and Power Supply coupling; Transient EMI, ESD.

	PART - A						
Q.No.	Questions	Course Outcomes	BT Level	Competence			
1.	List out the types of coupling between cables.	CO2	BTL 1	Remembering			
2.	Draw the elements of interference in a basic system with source and receptor.	CO2	BTL 1	Remembering			
3.	Show common mode coupling in circuits.	CO2	BTL 1	Remembering			
4.	Describe the effect of cross talk with reference to EMI/EMC design issues.	CO2	BTL 2	Understanding			
5.	Express the impacts of electromagnetic emission.	CO2	BTL 2	Understanding			
6.	Identify the types of fundamental sources of EMI	CO2	BTL 1	Remembering			
7.	What would happen if conductive transfer occurs?	CO2	BTL 1	Remembering			
8.	Interpret the drawbacks of various coupling mechanisms.	CO2	BTL 2	Understanding			
9.	Compare on common mode and differential mode radiated field to cable coupling	CO2	BTL 2	Understanding			
10.	Point out the important techniques to control EMI at source point.	CO2	BTL 2	Understanding			
11.	Define ground coupled interference.	CO2	BTL 1	Remembering			
12.	What is transient coupling and factors that influence grounding scheme?	CO2	BTL 1	Remembering			
13.	Give suitable explanation for ground with respect to working on electrical gadgets.	CO2	BTL 2	Understanding			

14.	Relate the way in which one can avoid power mains interference.	CO2	BTL 2	Understanding
15.	Classify the factors that the noise voltage developed in a closed	CO2	BTL 2	Understanding
	loop, depend on.			
16.	Interpret the need of ground loop coupling.	CO2	BTL 2	Understanding
17.	Infer about automotive transient.	CO2	BTL 2	Understanding
18.	Distinguish power supply and power main coupling.	CO2	BTL 2	Understanding
19.	Identify the reason for skin effect	CO2	BTL 1	Remembering
20.	Justify how the field coupling affects the system?	CO2	BTL 2	Understanding
21.	What is GLC?	CO2	BTL 1	Remembering
22.	Define ESD.	CO2	BTL 1	Remembering
23.	Draw the differential mode coupling in circuits.	CO2	BTL 1	Remembering
24.	How does one avoid power mains interference?	CO2	BTL 1	Remembering

electromagnetic environment? Explain in details.2.Define coupling. What are the types of coupling encountered in an EM environment? Discuss about it.(13)CO2BTL33.What is common mode coupling? Show how it affects a system in an electromagnetic environment.(13)CO2BTL34.Summarize about the coupling path and what are the (13)CO2BTL3	Applying Applying Applying Applying Analyzing
2.Define coupling. What are the types of coupling encountered in an EM environment? Discuss about it.(13)CO2BTL33.What is common mode coupling? Show how it affects a system in an electromagnetic environment.(13)CO2BTL34.Summarize about the coupling path and what are the (13)CO2BTL3	Applying Applying
in an electromagnetic environment.Image: Constraint of the coupling path and what are the coupling	Applying
electromagnetic interferences that occur in the coupling path?	Analyzing
5.(i)Can you recall radiated differential mode coupling? What way this is different from the radiated common mode coupling?(7)CO2BTL4	/ mary2mg
cables running parallel to each other.	Analyzing
6. (i) With neat diagrams and scenarios, describe about the inductive (7) CO2 BTL3 coupling supporting.	Applying
(ii) Discuss in detail about various EMI coupling modes with CM (6) CO2 BTL3 and DM current measurements.	Applying
7. Analyze different types of coupling models of EMI in detail. (13) CO2 BTL4	Analyzing
	Applying
(ii) Elaborate the scenario which demonstrates the electromagnetic coupling between an emitter and a receptor. Support it with neat diagrams. (6) CO2 BTL3	Applying
9. (i) Analyze the effects of inductance in a two wire cable system. (7) CO2 BTL4	Analyzing
cables.	Analyzing
	Analyzing
	Applying
(ii) Show that how ground loop coupling affects the grounding in a system that is a part of the electromagnetic environment. (6) CO2 BTL3	Applying
	Applying
(ii) Describe the common impedance ground couplings with (6) CO2 BTL3 examples.	Applying

13.	(i)	Outline the transient sources? How does the lightning discharge	(7)	CO2	BTL4	Analyzing
13.	(i)	affect the electronic equipment?	(7)	CO2	DIL4	Analyzing
	(ii)	Discuss in detail about power supply coupling.	(6)	CO2	BTL4	Analyzing
14.	(i)	Explain the cable related emissions and coupling briefly.	(0) (7)	CO2	BTL4 BTL4	Analyzing
17.	(ii)	Summarize on automotive transients.	(6)	CO2	BTL4 BTL4	Analyzing
15.	(i)	Identify how surges occurring on power supply affect the	(0) (7)	CO2	BTL4 BTL4	Analyzing
15.		appliances and explain.				
	(ii)	Inspect how the electrostatic discharge affects the digital circuits and control panels.	(6)	CO2	BTL4	Analyzing
16.	(i)	Justify the reasons of how the cable coupling, near and far	(7)	CO2	BTL4	Analyzing
		coupling of EM fields produced can be reduced. Also, suggest				
		the ways to enhance the immunity of circuits/equipment/				
		systems.				
	(ii)	Analyze the effects of radiative coupling in an EM environment.	(6)	CO2	BTL4	Analyzing
17.	(i)	How an electromagnetic field that appears in the atmosphere	(7)	CO2	BTL4	Analyzing
		does get coupled into the transmission or power cables?				
		Calculate the induced voltage and current due to this coupling				
		action.				
	(ii)	Illustrate the electromagnetic impact of cable coupling in a	(6)	CO2	BTL4	Analyzing
	, ,	system design.	. ,			
		PART - C				
1.		Elaborate the possible modes of coupling in EMC aspects and	(15)	CO2	BTL3	Applying
		enumerate the features of the coupling via supply network.				
2.		Interpret the effects of following coupling mechanisms with		CO2	BTL3	Applying
		respect to practical scenario,				
	(i)	Conducted Coupling,	(5)			
	(ii)	Near field Coupling,	(5)			
	(iii)	Far Field Coupling.	(5)			
3.		Assess the waveforms generated with respect to transient	(15)	CO2	BTL4	Analyzing
		sources and automotive transients.				
4.		Analyze proper distribution functions for the following EMI		CO2	BTL4	Analyzing
		sources,				
	(i)	Tube light,	(5)			
	(ii)	Automobile ignition,	(5)			
	(iii)	Radar transmitter.	(5)			
5.		Give suitable examples for intentional and unintentional	(15)	CO2	BTL4	Analyzing
		electromagnetic emissions during operation of various				
		equipment. How to control them? Also list out electric field				
		intensity levels of various home appliances. Also prove CE is				
		more significant than radiated one.				
	1					

UNIT III - EMI CONTROL

Shielding; EMI Filters; Grounding; Bonding; Isolation transformer; Transient suppressors; EMI Suppression Cables.

	PART - A			
Q.No.	Questions	Course Outcomes	BT Level	Competence
1.	What is EMI shielding?	CO3	BTL1	Remembering
2.	Identify the need for shielding.	CO3	BTL1	Remembering
3.	Write Murphy's law?	CO3	BTL1	Remembering
4.	Show the choice of materials for shielding.	CO3	BTL1	Remembering
5.	Define shielding effectiveness.	CO3	BTL1	Remembering
6.	Formulate the shielding effectiveness of E and H-fields.	CO3	BTL2	Understanding
7.	Summarize various shielding methods.	CO3	BTL2	Understanding
8.	Interpret the all the tests that can be carried over in a shielding room.	CO3	BTL2	Understanding
9.	Examine the need for EMI gaskets.	CO3	BTL2	Understanding
10.	Name the different gasketing for EMI sealing.	CO3	BTL1	Remembering
11.	List out the coupling situations to be addressed during the physical layout process.	CO3	BTL1	Remembering
12.	Classify the procedures for effective grounding in PCB design,	CO3	BTL2	Understanding
13.	Write the advantages of multipoint grounding.	CO3	BTL2	Understanding
14.	Chemical salting has to be repeated for every 2 or 3 years for better grounding effect. Justify.	CO3	BTL2	Understanding
15.	Illustrate the terms grounding and bonding, opto-isolator.	CO3	BTL2	Understanding
16.	Categorize EMI filters.	CO3	BTL2	Understanding
17.	Infer about the bulging capacitor.	CO3	BTL1	Remembering
18.	Express the insertion loss of the filter.	CO3	BTL2	Understanding
19.	Infer the functionality of transient suppressors.	CO3	BTL2	Understanding
20.	Draw the diagram of gas tube surge suppressor and arrestors.	CO3	BTL1	Remembering
21.	Show all the procedures that have to be considered for cable routing.	CO3	BTL1	Remembering
22.	Compare conventional and EMI suppression cables.	CO3	BTL2	Understanding
23.	What does transient suppressor mean?	CO3	BTL1	Remembering
24.	Define SEMCAP.	CO3	BTL1	Remembering

	PART - B							
1.		Discuss the various types of shielding techniques and derive the		CO3	BTL3	Applying		
		expression for the attenuation due to single shield and						
		multimedia laminated shield with neat diagram.						
2.	(i)	Show that the electromagnetic leakage occurs through shielding	(7)	CO3	BTL3	Applying		
		joints.						
	(ii)	Suggest the methods to reduce this electromagnetic leakage.	(6)	CO3	BTL3	Applying		
3.	(i)	How can a gasket be used to suppress the EM leakage at joints?	(7)	CO3	BTL3	Applying		
	(ii)	Recall on the sealing for EMI leakage.	(6)	CO3	BTL3	Applying		

4			(12)	CO2	DTI 2	A
4.		Illustrate in detail about the different types of system grounding for EMI/EMC.	(13)	CO3	BTL3	Applying
5.	(i)	Describe a filter help in suppressing undesired conducted electromagnetic interference?	(7)	CO3	BTL4	Analyzing
	(ii)	Point out your answer with the help of lumped element low pass filter.	(6)	CO3	BTL4	Analyzing
6.	(i)	List out and explain the methods to measure the grounding with examples.	(7)	CO3	BTL3	Applying
	(ii)	Brief out the preventions to be followed while earthling.	(6)	CO3	BTL3	Applying
7.		Analyze the factors considered for a telephone line filter design. How does this factor influence the filter design? Explain with necessary examples.	(13)	CO3	BTL4	Analyzing
8.		Summarize about various lumped element low pass filters for EMI mitigation. Also compare their performances.	(13)	CO3	BTL3	Applying
9.		Write notes on surge protection and suppression, transient protection and suppression, and low frequency magnetic field shielding.	(13)	CO3	BTL3	Applying
10.	(i)	Assess the two filtering methods to control EMI.	(7)	CO3	BTL4	Analyzing
	(ii)	What is an isolation transformer? Briefly describe the function of isolation transformer.	(6)	CO3	BTL4	Analyzing
11.	(i)	Analyze on how the components selection and mounting controls EMI.	(7)	CO3	BTL4	Analyzing
	(ii)	Explain about PCB to chassis ground connection and effects of apertures.	(6)	CO3	BTL4	Analyzing
12.	(i)	What are all the procedures for grounding strategies in the large systems and mixed signal systems?	(7)	CO3	BTL3	Applying
	(ii)	Brief about electromagnetic compatibility that is achieved while PCB is prepared for industry applications.	(6)	CO3	BTL3	Applying
13.	(i)	Illustrate the consequence of different shielding materials over the shielding. Tabulate some of the shielding materials and their uses.	(7)	CO3	BTL4	Analyzing
	(ii)	How does an isolation transformer control EMI?	(6)	CO3	BTL4	Analyzing
14.		What ate the factors influencing the EMI performances of the bonding? How can bonding be made? Mention some guidelines for good bonds.	(13)	CO3	BTL3	Applying
15.		Explain about the EMI suppression cables for EMI control.	(13)	CO3	BTL4	Analyzing
16.		Describe the shielding effectiveness of both solid and non-solid materials including multiple soil shields and thin film shielding.	(13)	CO3	BTL3	Applying
17.		Explain about the various types of non-solid shielding techniques.	(13)	CO3	BTL4	Analyzing
		PART - C				
1.		Describe how an opto-isolator and an EMI gasket can control EMI.		CO3	BTL3	Applying
2.		Assess the grounding strategies for large systems and grounding for mixed signal systems.	(15)	CO3	BTL4	Analyzing
3.	(i)	Elaborate the strategies used for surge protection.	(8)	CO3	BTL3	Applying
	(ii)	Explain the precautions used in earthling.	(7)	CO3	BTL3	Applying

4.	Illustrate different types of filter with neat diagram and also,	(15)	CO3	BTL4	Analyzing
	analyze the insertion loss characteristics.				
5.	For a residential power distribution system, analyze the requirements and the steps to design a safety grounding system considering the two wires and three wires grounding scenario.	(15)	CO3	BTL4	Analyzing

UNIT IV - EMC DESIGN FOR CIRCUITS AND PCBS

Noise from Relays and Switches; Nonlinearities in Circuits; Cross talk in transmission line and Cross talk control; Printed Circuit Board (PCB) Design, System Configuration and Design. Component selection and mounting; PCB trace impedance; Routing; Power distribution decoupling; Zoning; Grounding; VIAs; Terminations.

PART - A							
Q.No.	Questions	Course Outcomes	BT Level	Competence			
1.	List out the coupling situations to be addressed during the physical	CO4	BTL1	Remembering			
	layout process.			C C			
2.	How would you describe the noise from relays and switches?	CO4	BTL2	Understanding			
3.	Identify the nonlinearities in circuits.	CO4	BTL1	Remembering			
4.	Define PCB trace impedance with respect to EMI.	CO4	BTL1	Remembering			
5.	What is zoning?	CO4	BTL1	Remembering			
6.	Find the various parameters to be considered in selecting a cable.	CO4	BTL2	Understanding			
7.	How to avoid cross talk in PCB design?	CO4	BTL2	Understanding			
8.	What is meant by termination in PCB fabrication?	CO4	BTL1	Remembering			
9.	How do you understand by routing with reference to PCB design and fabrication?	CO4	BTL2	Understanding			
10.	How does cable routing avoid EMI?	CO4	BTL2	Understanding			
11.	List some procedures for reducing cross talk.	CO4	BTL1	Remembering			
12.	Define the term trace in PCB.	CO4	BTL1	Remembering			
13.	Find the use of decoupling capacitors.	CO4	BTL2	Understanding			
14.	Why grounding is such an important issue in PCB design?	CO4	BTL2	Understanding			
15.	List some procedures for effective grounding in PCB design.	CO4	BTL1	Remembering			
16.	What is impedance control in PCBs?	CO4	BTL1	Remembering			
17.	How effectively PCBs are designed?	CO4	BTL2	Understanding			
18.	List the important consideration of the PCB sizing.	CO4	BTL1	Remembering			
19.	Identify the two procedures for component mounting.	CO4	BTL2	Understanding			
20.	Point out the relation between radiation and loop area in PCB design.	CO4	BTL2	Understanding			
21.	Draw the circuit equivalent of L and C used in PCB design.	CO4	BTL2	Understanding			
22.	What is PCB via termination?	CO4	BTL1	Remembering			
23.	Define zoning.	CO4	BTL1	Remembering			
24.	Infer the need for vias in EMC.	CO4	BTL2	Understanding			

	PART - B							
1.	Describe about the effect of noise from relays and switches for EMC.	(13)	CO4	BTL3	Applying			
2.	Discuss about the various factors to be considered for EMC design of PCB.	(13)	CO4	BTL4	Analyzing			

3.		Explain in detail about VIAs connection and termination.	(13)	CO4	BTL4	Analyzing
<u> </u>	(i)	What is meant by susceptibility level? Explain the relationship	(13) (7)	CO4	BTL4 BTL3	
4.	(i)	between PCB traces and susceptibility level.	(7)	CO4	BILS	Applying
	(ii)	Discuss briefly on control devices for cross talk.	(6)	CO4	BTL3	Applying
5.	(11)	How do you control the impedance value while designing the PCB?	(13)	CO4	BTL3	Applying
5.		Explain.	(13)	COT	DILJ	Apprying
6.		Explain the power distribution decoupling concept.	(13)	CO4	BTL4	Analyzing
7.		Write short notes on the following,	(13)	CO4	BTL3	Applying
,,,	(i)	PCB Motherboard design,	(7)	CO4	BTL3	Applying
	(ii)	Propagation delay.	(6)	CO4	BTL3	Applying
8.	(i)	Discuss how electromagnetic compatibility is achieved while PCB	(7)	CO4	BTL3	Applying
		is prepared for industry applications.				11 5 0
	(ii)	Why digital circuits are so sensitive in PCBs. Explain.	(6)	CO4	BTL3	Applying
9.		Write short notes on the following,		CO4	BTL3	Applying
	(i)	Zoning in PCB design,	(7)	CO4	BTL3	Applying
	(ii)	Power distribution decoupling.	(6)	CO4	BTL3	Applying
10.		What is cross talk with reference to the design of PCBs and how to	(13)	CO4	BTL3	Applying
		minimize it when miniaturization is the concern of today's				
		technology?				
11.		Explain the importance of PCB design for EMC.	(13)	CO4	BTL4	Analyzing
12.		Write short notes on the termination and various suppression	(13)	CO4	BTL3	Applying
		techniques in PCB design.				
13.	(i)	Discuss how component selection and mounting control EMI.	(7)	CO4	BTL3	Applying
	(ii)	What are all the procedures used for effective grounding in PCB design?	(6)	CO4	BTL3	Applying
14.	(i)	How do motherboard designs and performance models help for	(7)	CO4	BTL4	Analyzing
		better performance?				
	(ii)	Explain in detail the steps involved in motherboard design.	(6)	CO4		Analyzing
15.		Elaborate the internal cable routing and connector placement,	(13)	CO4	BTL3	Applying
		subsystem placement and decoupling for system configuration and				
1.5		design.	(1.2)	961		
16.		Explain various procedures for reducing cross talk.	(13)			Analyzing
17.		Assess the cross talk in transmission line for EMC design.	(13)	CO4	BTL4	Analyzing
1	1	PART - C	(17)	004		
1.		Analyze the important aspects of system configuration and its	(15)	CO4	BTL4	Analyzing
2		subsystems for the EMC design.	(15)	<u>CO4</u>		A malarin a
2.		Examine about the power distribution decoupling for the powering	(15)	CO4	BTL3	Applying
3.		of a properly partitioned PCB from a single power supply.	(15)	CO4	DTI 2	Applying
3.		Illustrate interconnection and number of printed circuit boards for the aspect of EMC design.	(15)	CO4	BTL3	Applying
4.		Explain the importance and types of the diagnostic tools that are	(15)	CO4	BTL4	Analyzing
4.		available to the EMC engineer.	(13)	004	DIL4	Anaryzing
5.		Inspect and recommend a suitable capacitor of a standard value to	(15)	CO4	BTL4	Analyzing
5.		offer maximum filtering and also meet the safety requirement of	(10)	001		- 1101 y 21115
		less than 5 mA leakage current when connected between the line				
		and ground of a 230V, 50Hz power supply.				
	i		1		1	

UNIT V - EMI MEASUREMENTS AND STANDARDS

Open area test site; TEM cell; EMI test shielded chamber and shielded ferrite lined anechoic chamber; Line impedance stabilization networks; EMI Rx and spectrum analyser, Civilian standards - CISPR, FCC, IEC, EN; Military standards-MIL461E/462.

PART - A							
Q.No.	Questions	Course Outcomes	BT Level	Competence			
1.	Draw two arrangements of OATS.	CO5	BTL 1	Remembering			
2.	List the various measurement precautions in OATS.	CO5	BTL 1	Remembering			
3.	Why is shielded chamber needed for EMI testing?	CO5	BTL 1	Remembering			
4.	What is the need for coupling/decoupling network and show the basic arrangements.	CO5	BTL 1	Remembering			
5.	Identify at least two standards for test & measurement procedures published by IEEE/ANSI.	CO5	BTL 1	Remembering			
6.	State various types of EM modeling methodologies used in signal integrity analysis.	CO5	BTL 1	Remembering			
7.	With LISN illustrate the basic circuit used for RI measurements.	CO5	BTL 1	Remembering			
8.	List out the EMI/EMC civilian standards.	CO5	BTL 1	Remembering			
9.	Where for MILSTD-461, 462 and 463 are used?	CO5	BTL 1	Remembering			
10.	Define IEC and EN.	CO5	BTL 1	Remembering			
11.	What are the special requirements of MIL STD 461E for EMC testing?	CO5	BTL 1	Remembering			
12.	State the objective of requirements CS103/104/105.	CO5	BTL 1	Remembering			
13.	Point out two very important needs for TEM cell.	CO5	BTL2	Understanding			
14.	Differentiate military and civilian standards in measurements.	CO5	BTL2	Understanding			
15.	Give the reason why CISPR standards evolved.	CO5	BTL2	Understanding			
16.	Identify the expansion of the terms CISPR, FCC.	CO5	BTL2	Understanding			
17.	Interpret the purpose of EMC standards?	CO5	BTL2	Understanding			
18.	Infer the key for conducted emission EMC standards.	CO5	BTL2	Understanding			
19.	Express at least two standards for design guidelines and test & measurement procedures published by IEEE/ANSI.	CO5	BTL2	Understanding			
20.	Summarize the sources of inaccuracies in the TEM cell measurements.	CO5	BTL2	Understanding			
21.	How test bed is selected for ESD testing?	CO5	BTL2	Understanding			
22.	Generalize the requirements of military STD for EMC testing.	CO5	BTL2	Understanding			
23.	Give some commonly used test antenna and the useful frequency range for each.	CO5	BTL2	Understanding			
24.	Compare radiated measurements for class A devices and others.	CO5	BTL2	Understanding			

	PART - B								
1.		Describe about the open area test site measurements. What are its	(13)	CO5	BTL3	Applying			
		limitations?							
2.		Write short notes on,							
	(i)	EMI test shielded chamber,	(7)	CO5	BTL3	Applying			

	(ii)	Shielded ferrite lined anechoic chamber.	(6)	CO5	BTL3	Applying
3.	(11)	Explain about line impedance stabilization networks.	(13)	CO5	BTL3 BTL4	Applying Analyzing
		1 1	· · /		BTL4 BTL4	
4. 5.		Summarize in detail about the configurations of open area test site.	(13)	CO5		Analyzing
Э.		Analyze the construction of an anechoic chamber used for EMI	(13)	CO5	BTL4	Analyzing
	(measurement and explain the procedure for RE and RS measurement.		COL		A 1 '
6.	(i)	Elaborate the radiation susceptibility test using TEM cell.	(7)	CO5	BTL3	Applying
_	(ii)	How do you perform testing using Giga Hertz TEM cell?	(6)	CO5	BTL3	Applying
7.	(i)	Illustrate about the spectrum analyzer with neat sketch.	(7)	CO5	BTL3	Applying
	(ii)	Construct an EMI coupling network and give its need.	(6)	CO5	BTL3	Applying
8.		What does the standard MIL461E emphasize? What are the problems	(13)	CO5	BTL3	Applying
		one may face by violating the regulations in it? If possible, a case				
		study be referred to support your justification.				
9.		Describe the conducted interference controls, radiated interference	(13)	CO5	BTL3	Applying
		controls and susceptibility at intermediate levels of exposure in MIL				
		STD 461/462 standard.				
10.	(i)	Inspect the source of inaccuracies using anechoic chamber	(7)	CO5	BTL4	Analyzing
		measurements.				
	(ii)	Explain the measurements using EMI Rx and spectrum analyzer.	(6)	CO5	BTL4	Analyzing
11.		Infer about EMI specifications and its limits with respect to civilian	(13)	CO5	BTL4	Analyzing
		and military standards.				
12.		Inspect briefly about the measurements using an anechoic chamber.	(13)	CO5	BTL4	Analyzing
13.	(i)	Express the needs to meet for EMI standards? Explain.	(7)	CO5	BTL3	Applying
	(ii)	Discuss in detail the specifications for emission and susceptibility	(6)	CO5	BTL3	Applying
	. ,	given in MIL461E standard.				11 7 0
14.		Distinguish between the FCC's EMC requirement and the European	(13)	CO5	BTL3	Applying
		Union's EMC requirements? What additional emission requirements				11 5 8
		does the European Union have that the FCC does not?				
15.		Explain about civilian standards FCC, Comite Special des	(13)	CO5	BTL3	Applying
		Perturbations Radio electrique (CISPR) and International Electro	(-)	_		11 5 8
		technical commission (IEC) standards.				
16.	(i)	List out the IEC specifications adopted by ANSI standard.	(7)	CO5	BTL4	Analyzing
	(ii)	Briefly explain the MIL standards are useful in the area of EMI/EMC.	(6)	CO5		Analyzing
17.	()	Summarize FCC and CISPR Conducted Emission (CE) and Radiated	(13)	CO5	BTL4	Analyzing
1.1.1		Emission (RE) standards.	(10)	200		
		PART - C	1	L	1	
1.		Illustrate in detail about the various MIL STD test methods and	(15)	CO5	BTL3	Applying
1.		civilian STD test methods.	(10)			· •PP171115
2.		Enumerate the construction of an EMI test receiver. Explain the key	(15)	CO5	BTL3	Applying
2.		features used to design EMI test receiver.	(15)			' PPIJIIIS
3.		With neat diagram explain the super heterodyne spectrum analyzer.	(15)	CO5	BTL4	Analyzing
5.		Also, create the output waveform with illustrations.	(13)			2 11101 y 2111g
4.		Inspect the hierarchy of standards with the needs and explain on the	(15)	CO5	BTL4	Analyzing
+.		standards followed in different countries.	(13)		DIL4	Anaryzing
5.			(15)	CO5	BTL4	Analyzina
Э.		Assess the detail on the CISPR international standardizing	(13)		DIL4	Analyzing
		organization and its CE and RE standards.				