SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution)

SRM Nagar, Kattankulathur - 603 203

DEPARTMENT

OF

ELECTRONICS AND INSTRUMENTATION ENGINEERING

QUESTION BANK

VI SEMESTER 1907607 – Analytical Instruments Regulation – 2019 Academic Year 2024 – 2025 EVEN

Prepared by Mr. B. Parameswaran M.E., Assistant Professor (Sr.G)/EIE

SRM VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur – 603 203. DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION ENGINEERING **QUESTION BANK**

: 1907607- ANALYTICAL INSTRUMENTS SUBJECT **SEM / YEAR : VI / III**

UNIT I - SPECTROPHOTOMETRY

Spectral methods of analysis – Beer-Lambert law – UV-Visible spectroscopy – IR Spectrophotometry -FTIR spectrophotometry – Atomic absorption spectrophotometry - Flame emission and atomic emission photometry – Construction, working principle, sources detectors and applications. DADT

٨

O No	Ouestions	CO	RT I aval	Competence
1	Define Beer-Lambert law		BT Level	Remember
2	Compare single beam and double beam instrument	C01	BILI RTI 2	Understand
<u>2</u> . 3	Mention the sources used in stomic absorption	CO1	BIL 2 RTI 1	Remember
5.	spectrometry.	COI	DILI	Kemember
4.	Name the different types of spectrophotometers	CO1	BTL 1	Remember
5.	What is the principle of hollow cathode lamp used in	CO1	BTL 1	Remember
	atomic absorption spectroscopy?	001		
6.	Define transmittance and absorbance.	CO1	BTL 1	Remember
7.	Distinguish between AAS and FES, CNGINERRA	CO1	BTL 2	Understand
8.	What is total internal reflection in spectrometry?	CO1	BTL 2	Understand
9.	List the wavelength range of IR radiation.	CO1	BTL 1	Remember
10.	Identify the detectors to be used in IR Spectroscopy.	CO1	BTL 1	Remember
11.	What are the basic requirements of radiation sources in	CO1	BTL 1	Remember
	absorption photometry?			
12.	Define interference filters.	CO1	BTL 1	Remember
13.	List the limitations of absorption filters.	CO1	BTL 1	Remember
14.	Why sensitive detector is required for Spectrophotometer?	CO1	BTL 2	Understand
15.	What is pyrolysis?	CO1	BTL 1	Remember
16.	What is attenuated total reflectance with respect to	CO1	BTL 2	Understand
	photometer?			
17.	Interpret the range covered by UV visible	CO1	BTL 2	Understand
	spectrophotometers.			
18.	Outline the advantages of double beam	CO1	BTL 2	Understand
40	spectrophotometer.	001		TT 1 1
19.	Demonstrate the application of flame emission	COI	BTL 2	Understand
20	Spectrometry.	CO1	DTI 1	D and a rest or re
20.	what are the major design requirements of	COI	DIL I	Keinember
21	Difference between absorption filter and interference	CO1	BTI 2	Understand
41.	filter	COI		Understand
2.2.	Define Beer's law	CO1	BTL 1	Remember
23.	Compare the detector used in IR Spectroscopy	CO1	BTL 2	Understand
24.	Write about photo multiplier detector.	CO1	BTL 2	Understand
	PART-B	~~~		
1.	i. State and derive Beer's law from basic (6)	CO1	BTL 3	Apply
-	principles. Discuss the limitations of it.	_	_	
	ii. With the Instrumentation setup, describe the (7)			
	working of single beam spectrometer.			
	working of single beam spectrometer.			

2.	Explain in detail, the sources and detectors used in (13) UV-Visible spectroscopy with necessary diagrams.	CO1	BTL 4	Analyze
3.	i. Illustrate with a neat sketch the principle and (7) operation of a typical single beam UV spectrograph. How does this differ from a double beam instrument?	C01	BTL 3	Apply
	 ii. Draw and explain the schematic diagram of a (6) typical double beam spectrophotometer. 			Apply
4.	Explain in detail about grating mono chromator (13) system with neat diagram.	CO1	BTL 4	Analyze
5.	Describe about single beam and double beam (13) instruments used in IR spectrophotometer with necessary diagrams.	CO1	BTL 3	Apply
6.	With necessary diagram, describe the principle, (13) construction and working of U-V spectrophotometer.	CO1	BTL 2	Understand
7.	 With relevant diagrams, examine the working (5) principle of various radiation sources used in IR-Spectrophotometers. 			Understand
	 With the help of a neat diagram, describe the construction and principle of FTIR, giving emphasis on its advantages over double beam IR. 	CO1	BTL 2	Understand
8.	 i. Show the detectors used in IR. Explain any (7) one detector in detail. Also mention about different sample handling techniques in IR. 	CO1	BTL 3	Apply
	ii. Illustrate the operation of attenuated total (6) reflection Spectrophotometer.			Apply
9.	With a neat instrumentation setup, examine the (13) principle of IR spectrometer and label the various components involved in it.	CO1	BTL 2	Understand
10.	Elaborate the FTIR spectrophotometer with neat (13) optical path diagram and block diagram of the instrument.	CO1	BTL 2	Understand
11.	i. Illustrate the operating principle of atomic (6) absorption spectroscopy.	001		Understand
	ii. Explain the various sources and detectors used (7) in AAS.		BTL 2	Understand
12.	Describe the operating principle of flame emission (13) photometer with neat diagram.	CO1	BTL 2	Understand
13.	Briefly, discuss the working technique and (13) applications of AAS with suitable diagrams.	CO1	BTL 2	Understand
14.	Explain in detail working principle of fluorescence (13) spectrophotometer.	CO1	BTL 4	Analyze
15.	Explain in details about filter used in spectrometer. (13)	CO1	BTL 3	Apply
16.	Elaborate the operation of double beam UV- (13) spectrometer.	CO1	BTL 3	Apply
17.	Illustrate the operating principle of NDIR (13) spectrometer.	CO1	BTL 3	Apply
	PART-C			1
1.	Explain the operation of Atomic absorption (15)	CO1	BTL4	Analyze

	spectrometer in detail. Mention its applications.				
2.	List the advantages of double beam configuration of	(15)			
	UV Spectrometer over single beam configuration.				
	Illustrate the double beam configuration of UV		CO1	BTL 3	Apply
	Spectrometer with real time application. Explain it				
	using neat sketch				
3.	What are non-dispersive spectrophotometers?	(15)			
	Explain in detail the Fourier Transform IR	. ,	001		A 1
	spectrometer. Also specify the advantages of		COI	BIL4	Analyze
	Fourier Transform IR spectrophotometer.				
4.	With a neat instrumentation setup, demonstrate the	(15)	CO1	BTL 3	Apply
	visible spectrophotometer.				
5.	Demonstrate the different sources and detectors in	(15)	CO1	BTL 3	Apply
	UV spectrometer.				

UNIT II - CHROMATOGRAPHY

General principles – classification – chromatographic behavior of solutes – quantitative determination – Gas chromatography – Liquid chromatography – High-pressure liquid chromatography – Applications. Ion exchange chromatography - size-exclusion chromatography.

PART – A					
Q.No	Questions	CO	BT Level	Competence	
1.	Define retention time in a chromatograph.	CO2	BTL 1	Remember	
2.	Discuss the function of chromatographic column.	CO2	BTL 2	Understand	
3.	What are the detectors to be used in gas	CO2	BTL 1	Remember	
	chromatography?				
4.	Why temperature programming is required for column	CO2	BTL 2	Understand	
	oven used in Gas chromatography?				
5.	What do you mean by the open tubular columns in gas	CO2	BTL 1	Remember	
	chromatography?				
6.	Define Column Chromatography.	CO2	BTL 1	Remember	
7.	What are the detectors used in Liquid	CO2	BTL 2	Understand	
	Chromatography?				
8.	Define chromatography.	CO2	BTL 1	Remember	
9.	Write about liquid chromatography.	CO2	BTL 2	Understand	
10.	Define partition ratio.	CO2	BTL 1	Remember	
11.	Identify the selection criteria for carrier gas.	CO2	BTL 2	Understand	
12.	Define thin layer chromatography.	CO2	BTL 1	Remember	
13.	Write about sample injection system.	CO2	BTL 2	Understand	
14.	What is the stationary phases in chromatography?	CO2	BTL 1	Remember	
15.	Define dead time in chromatograph.	CO2	BTL 1	Remember	
16.	Classify the various types of chromatographic column.	CO2	BTL 2	Understand	
17.	How thin layer chromatography is better than paper	CO2	BTL 2	Understand	
	chromatography?				
18.	On what factor does the choice of detector will depend	CO2	BTL 2	Understand	
	on liquid chromatography?				
19.	List the limitations of bulk property detector.	CO2	BTL 1	Remember	
20.	What the solvents to be used for mobile phase in	CO2	BTL 1	Remember	
	chromatography?				
21.	Mention the types of open tubular column.	CO2	BTL 1	Remember	
22.	Classify the chromatography.	CO2	BTL 2	Understand	
23.	What is ion exchange chromatography?	CO2	BTL 1	Remember	

47 ,	what is size-exclusion enrollatography:		$\mathbf{U}\mathbf{U}\mathbf{Z}$		
1	PAR'E_R				Remember
1.	 i. With a neat schematic diagram, quote the separation principle of HPLC (High Pressure Liquid Chromatography). ii. List the applications of HPLC. 	(10) (3)	CO2	BTL 1	Remember
2.	 i. What is meant by column chromatography? And mention the advantages of column chromatography. ii. Draw the instrumentation diagram for column chromatography and discuss how separation process will be performed in 	(4) (9)	CO2	BTL 3	Apply
3.	column chromatography.DescribethedifferentstagesstagesofGasChromatography in the separation of two phaseswith schematic diagram.	(13)	CO2	BTL 2	Understand
4.	Explain with neat sketches any two detectors used in gas chromatography.	(13)	CO2	BTL 4	Analyze
5.	Discuss the electron capture detector and flame ionization detector.	(13)	CO2	BTL 2	Understand
6.	 i. Quote the principle and applications of Refractive index detector used in HPLC. ii. Describe the different parts in gas chromatography with relevant diagrams. 	(6) (7)	CO2	BTL 1	Remember
7.	Derive the relationship between retention time and distribution constant.	(13)	CO2	BTL 4	Analyze
8.	Describe the following terms : i.Retention volume ii.Retention factor iii.Dead volume and Dead time iv.Adjusted retention volume and adjusted retention time.	(13)	CO2	BTL 1	Remember
9.	Explain any three types of detectors used in liquid chromatography.	(13)	CO2	BTL 4	Analyze
10.	With necessary diagrams, Assess the working principle of High Pressure Liquid Chromatography.	(13)	CO2	BTL 4	Analyze
11.	 i. Show the different types of chromatography. ii. What are the requirement of HPLC pumping system and discuss the advantage and disadvantages of it? 	(4) (9)	CO2	BTL 3	Apply
12.	With suitable diagrams, formulate the various sampling techniques in Gas Chromatography.	(13)	CO2	BTL 3	Apply
13.	i. Give in detail the classification of Chromatography.ii. Discuss on Liquid Chromatography	(4) (9)	CO2	BTL 2	Understand
14.	i. Name the two types of Chromatographic column used in Gas chromatography and	(6)	CO2	BTL 2	Understand

	construction and working of katharometer.			
15.	Illustrate Ion Exchange Chromatography.	CO2	BTL 3	Apply
16.	Describe the size-exclusion chromatography in (13) detail with neat sketch.	CO2	BTL 3	Apply
17.	Describe the partition chromatography in detail (13) with neat sketch.	CO2	BTL 3	Apply
	PART-C	1h		
1.	i. Explain the strategy to separate sample in (10) HPLC with a neat instrumentation set up.	- CO2	RTL 4	Analyze
	ii. Classify and explain the different types of (5) pumps used in HPLC.	02	DIL 4	Anaryze
2.	Recommend suitable chromatography for (15) separation of non volatile mixture. Also draw suitable diagrams and discuss on it.	CO2	BTL 3	Apply
3.	i. Specify the role of chromatography in (10) power plant. Also elaborate the method of gas chromatography.	CO2	RTL 3	Apply
	ii. State the factors to be considered in Carrier (5) Gas Supply System in Gas Chromatography.		DIL 3	търну
4.	Evaluate a suitable method to separate the (15) sample based on their size of molecular weight and explain it with neat diagram.	CO2	BTL 4	Analyze
5.	Recommend suitable chromatography for (15) separating compounds based on their net charge. Also draw suitable diagrams and discuss on it.	CO2	BTL 4	Analyze

UNIT III - INDUSTRIAL GAS ANALYZERS AND POLLUTION MONITORING INSTRUMENTS

Gas analyzers – Oxygen, NO₂ and H₂S types, IR analyzers, thermal conductivity detectors, analysis based on ionization of gases. Air pollution due to carbon monoxide, hydrocarbons, nitrogen oxides, sulphur dioxide estimation - Dust and smoke measurements.

PART – A					
Q.No	Questions	CO	BT Level	Competence	
1.	How the carbon-monoxide in the air is monitored?	CO3	BTL 2	Understand	
2.	Draw a typical diagram to measure dust particles.	CO3	BTL 1	Remember	
3.	What is the principle of H2S analyzer?	CO3	BTL 2	Understand	
4.	Identify the detection methods of Carbon Monoxide Analyzer.	CO3	BTL 2	Understand	
5.	What is the principle of domestic smoke alarm?	CO3	BTL 1	Remember	
6.	List the few gas pollutants.	CO3	BTL 1	Remember	
7.	Demonstrate the principle of Dust density measurement in Exhaust.	CO3	BTL 2	Understand	
8.	Define Thermal conductivity.	CO3	BTL 1	Remember	
9.	Identify the methods to estimate Nitrogen-oxides present in air.	CO3	BTL 1	Remember	
10.	Define thermal conductivity analyzer.	CO3	BTL 1	Remember	
11.	List a few types of Gas analyzers.	CO3	BTL 1	Remember	
12.	What the use of gold films in Hydrogen Sulfide analyser?	CO3	BTL 2	Understand	
13.	Define Ionization.	CO3	BTL 1	Remember	

1/	Write about the principle of Smoke meter	CO3	BTI 2	Understand
14.	White about the principle of Smoke meter.	005	DIL 2	Understand
15.	quantity.	CO3	BTL 1	Remember
16.	What is the principle of Dust measurement in Thermal power plant?	CO3	BTL 2	Understand
17.	What is the need of measuring carbon monoxide in flue gas?	CO3	BTL 2	Understand
18.	Write the applications of conductivity analyzer.	CO3	BTL 1	Remember
19.	What is the principle behind IR analyzer?	CO3	BTL 2	Understand
20.	Write the need for sulphur dioxide estimation.	CO3	BTL 2	Understand
21.	Demonstrate the principle Smoke density measurement in Exhaust.	CO3	BTL 2	Understand
22.	Write the applications of IR gas analyzer	CO3	BTL 1	Remember
23.	Where are the electrochemical sensors used?	CO3	BTL 2	Understand
24.	How is nitrogen-di-oxide prepared by chemiluminescence?	CO3	BTL 2	Understand
	PART-B			•
1.	With a neat diagram, explain how oxygen content (13) is measured using its paramagnetic property.	CO3	BTL 4	Analyze
2.	i. Demonstrate the working principle of a (10) Paramagnetic Oxygen Analyzer with a			
	functional diagram.	CO3	BTL 3	Apply
	n. Specify the need of Oxygen measurement. (3)			
3.	Write a note on: -			
	i. Method used to estimate sulphur dioxide (6)	CO3	BTL 1	Remember
-	ii. NO ₂ gas analyser. (7)	0		
4.	Describe with a neat sketch carbon monoxide (13) monitor and Nitrogen oxide analyzer	CO3	BTL 1	Remember
5.	Explain how the H ₂ S analyzer is used. (13)	CO3	BTL 3	Apply
6.	Draw the schematic diagram and show the (13)			
	operation of a thermal conductivity analyzer.	CO3	BTL 2	Understand
7.	Discuss how to estimate the amount of (13)			
	hydrocarbons present in air with neat	CO3	BTL 2	Understand
	instrumentation setup.			
8.	Describe the constructional details and working of (13)	CO3	BTL 1	Remember
0	a dust moment. With a schematic discreme combine the method of (12)			
9.	with a schematic diagram, explain the method of (13)	CO2	DTI 4	A realizing
	anductivity method	COS	BIL 4	Anaryze
10	Estimate CO level in air and how it can be (10)			
10.	analyzed using NDIP analyzer with relevant			
	diagrama	CO3	BTL 4	Analyze
	Gampage the consequences of air pollution (2)	_		
11	II. Compose the consequences of an pollution. (3)	CO2	рті э	Understand
11. 12	Discuss on dust and smoke measurements. (13)		DIL 4	Understand
14.	instruments used for monitoring sutomobile			
	expanse asses	CO2	рті <i>1</i>	Analyza
	UNIAUSI gasts.			Anaryze
	n. why should such pollution testing be carried (3)			
12	With neat diagram ovalain the working anipoints (12)			

	analyzers.				
14.	Write short notes on Air pollution due to Carbon monoxide & Nitrogen oxide	(13)	CO3	BTL 2	Understand
15.	Write short notes on Air pollution due to Hydrocarbons & Sulphur dioxide.	(13)	CO3	BTL 2	Understand
16.	Explain the measurement techniques available for sulphur Dioxide pollutant.	(13)	CO3	BTL 3	Apply
17.	With a neat diagram, explain how oxygen content is measured.	(13)	CO3	BTL 3	Apply
	PART-C				
1.	With a block diagram, propose the method of measuring carbon monoxide using Non- Dispersive Infrared Analyzer	(15)	CO3	BTL 3	Apply
2.	With a schematic diagram, explain the method of analyzing various flue gas content in smoke using Hot wire thermal conductivity analyzer.	(15)	CO3	BTL 3	Apply
3.	Propose a method to estimate the amount of sulphur-di-oxide.	(15)	CO3	BTL 4	Analyze
4.	Describe the working of an analyzer that can be used to estimate the content of NO_2 and SO_2 in a gas, also assess the working of Dust monitor.	(15)	CO3	BTL 4	Analyze
5.	Prepare a methodology to estimate the amount of nitrogen oxides.	(15)	CO3	BTL 4	Analyze

UNIT IV - pH METERS AND DISSOLVED COMPONENT ANALYZERS Principle of pH and conductivity measurements - glass electrodes - Selective ion electrodes - ammonia electrodes, biosensors - dissolved oxygen analyzer - Sodium analyzer - Silicon analyzer - Water quality Analyzer.

	$\mathbf{PART} - \mathbf{A}$				
Q.No	Questions	CO	BT Level	Competence	
1.	Define redox potential.	CO4	BTL 1	Remember	
2.	List the demerits of glass electrode.	CO4	BTL 1	Remember	
3.	Name the different types of electrodes used for pH measurements	CO4	BTL 1	Remember	
4.	Why ammonia gas is added to the sample in Sodium analyzer?	CO4	BTL 1	Remember	
5.	How will the temperature of the solution affect the measurement of pH in potentiometric method?	CO4	BTL 2	Understand	
6.	List the industrial applications of ion selective electrodes.	CO4	BTL 2	Understand	
7.	Give the pH equation.	CO4	BTL 2	Understand	
8.	Identify the sources of error in oxygen analyzer.	CO4	BTL 1	Remember	
9.	What is the need to measure pH in a solution?	CO4	BTL 1	Remember	
10.	What is the purpose of biosensors?	CO4	BTL 2	Understand	
11.	Definition of pH.	CO4	BTL 1	Remember	
12.	Distinguish between glass electrode and reference electrode.	CO4	BTL 2	Understand	
13.	Mention the applications of biosensors.	CO4	BTL 2	Understand	
14.	Name the different types of electrodes.	CO4	BTL 1	Remember	
15.	What is the role of buffer solution in pH measurement?	CO4	BTL 1	Remember	
16.	Compare pH electrodes and Ion selective electrodes.	CO4	BTL 2	Understand	
17.	List the use of blank in silica analyzer.	CO4	BTL 2	Understand	

				,
18.	Show the advantages of Ion selective electrodes.	CO4	BTL 1	Remember
19.	List out the advantages of Hydrogen electrodes.	CO4	BTL 1	Remember
20.	Why thermistors are used in thermal conductivity analyzer as a heat sensing element?	CO4	BTL 2	Understand
21.	Give the different types of electrodes used for pH measurements?	CO4	BTL 1	Remember
22.	Write the Nernst equation.	CO4	BTL 1	Remember
23.	What is chemical blank measurement?	CO4	BTL 2	Understand
24.	What are the two measurements made in Silica analyzer?	CO4	BTL 1	Remember
	PART-B			
1.	 i. List the types of electrodes used for pH (3) measurement. ii. Describe the construction of a pH electrode. (10) Draw the electronic circuit diagram for measuring pH of a liquid and explain its working. 	CO4	BTL 1	Remember
2.	Explain with neat diagram a method of measuring (13) oxygen dissolved in water.	CO4	BTL 4	Analyze
3.	How pH is measured using glass electrode with (13) suitable diagram?	CO4	BTL 3	Apply
4.	With neat diagram, describe the operating (13) principle of solid state sensors	CO4	BTL 1	Remember
5.	Describe the construction and working principle of (13) reference electrode with necessary diagram.	CO4	BTL 1	Remember
6.	 i. Obtain the advantages and limitations of biosensors as analytical instruments. ii. How a glucose biosensor can be fabricated from oxygen sensor? 	- CO4	BTL 3	Apply
7.	 i. Describe in detail about the constructional details and working principles of ion selective electrodes. ii. Discuss how pH values are measured. Explain the role of calomel electrodes in this measurement. 	- CO4	BTL 2	Understand
8.	With a schematic diagram, explain the working (13) principle of water quality analyzer.	CO4	BTL 4	Analyze
9.	With a schematic diagram, explain the working (13) principle of dissolved oxygen analyzer.	CO4	BTL 4	Analyze
10.	Illustrate the construction and working principle of (13) ammonia electrodes.	CO4	BTL 3	Apply
11.	Write short notes on Sodium analyzer(13)	CO4	BTL 2	Understand
12.	 i. Explain the construction and working (10) principle of hydrogen electrode to measure pH. Use neat diagrams to explain it. ii. List out the advantages of hydrogen electrode (3) 	CO4	BTL 1	Remember
13.	Describe the operation of industrial sodium (13) analyzer with neat sketch	CO4	BTL 2	Understand
14.	Demonstrate the operating principle of (13) kathrometer in measuring dissolved oxygen.	CO4	BTL 3	Apply
15.	Describe the operating principle of liquid matrix (13) electrodes with relevant diagram.	CO4	BTL 3	Apply

16.	With neat diagram, explain the Bio sensor.	(13)	CO4	BTL 4	Analyze
17.	Demonstrate the operation of Silicon analyzer.	(13)	CO4	BTL 3	Apply
	PART-C				
1.	What is meant by Selective Ion Electrodes? How it	(15)			
	is classified? Explain the operation of Ammonia		CO4	DTI 4	Amoleumo
	Electrode. Also Specify the advantages of		004	BIL 4	Anaryze
	Selective Ion Electrodes.				
2.	Explain the working principles of biosensors with	(15)			
	a conceptual diagram. Also assess the various		CO4	BTL 3	Apply
	parameters to be measured using Biosensor.				
3.	State the principle of measuring Dissolved Oxygen	(15)			
	in Boiler Feed Water. Why the dissolved oxygen		CO4	BTL 4	Analyze
	content is monitored in feed water?				
4.	Define pH. Assess the design criteria of pH	(15)	004		A
	meters. Explain one type of pH meter in detail.		004	BIL 3	Арріу
5.	Explain any one method to measure the dissolved	(15)			
	oxygen. Also specify the cause of dissolve oxygen	. /	CO4	BTL 4	Analyze
	content in feed water.				•

UNIT V - NUCLEAR MAGNETIC RESONANCE AND MASS SPECTROMETRY

NMR – Basic principles – Continuous and Pulsed Fourier Transform NMR spectrometer – Electron spin Resonance spectroscopy: – Basic principles, Instrumentation and applications. Mass Spectrometry – Sample system – Ionization methods – Mass analyzer Applications.

$\mathbf{PART} - \mathbf{A}$							
Q.No	Questions SRM	L	CO	BT Level	Competence		
1.	List the applications of mass spectrometers.	G	CO5	BTL 1	Remember		
2.	Point out the advantages of mass spectrometry.	П	CO5	BTL 2	Understand		
3.	Interpret the principle of Faraday cup used in M	lass	CO5	BTL 2	Understand		
	spectrometry.						
4.	Label a typical NMR spectrum.		CO5	BTL 1	Remember		
5.	How can the NMR spectrum be scanned?		CO5	BTL 3	Apply		
6.	Define the term NMR.		CO5	BTL 1	Remember		
7.	What are the selection criteria of collimator?		CO5	BTL 2	Understand		
8.	Demonstrate the principle of mass spectrometer?		CO5	BTL 2	Understand		
9.	Describe the principle of NMR spectrometer?		CO5	BTL 2	Understand		
10.	What is magnetic resonance?		CO5	BTL 1	Remember		
11.	Mention the disadvantages of ionization chamber.		CO5	BTL 2	Understand		
12.	Name the types of ion transducer used in mass analyze	er.	CO5	BTL 1	Remember		
13.	Why high intensity magnets are preferred for NMR?		CO5	BTL 2	Understand		
14.	How can we measure radioactivity?		CO5	BTL 2	Understand		
15.	Formulate the rules to determine Nuclear spin.		CO5	BTL 2	Understand		
16.	Point out the advantages of Electron spin Resonant	ince	CO5	BTL 2	Understand		
	spectroscopy.						
17.	Give the limitations of NMR.		CO5	BTL 2	Understand		
18.	Tabulate the advantages and disadvantages of time	e of	CO5	BTL 1	Remember		
	flight mass spectrometer.						
19.	What is the nuclear shielding in NMR?		CO5	BTL 1	Remember		
20.	List the limitations of quadruple mass analyzer.		CO5	BTL 2	Understand		
21.	What are the basic components of NMR Spectrometry	?	CO5	BTL 2	Understand		
22.	What are the various parts of the Mass spectrometer?		CO5	BTL 2	Understand		

23.	How can we obtain the NMR absorption spectra?	CO5	BTL 2	Understand
24.	Why do we go for a solid state detector instead	of CO5	BTL 2	Understand
	scintillation detector?			
	PART-B			
1.	i. Explain the working of NMR spectrometer ((10)		
	with a neat schematic diagram.	COS	BTL 1	Remember
	ii. List the applications of NMR spectrometer.	(3)		
2.	i. What are the basic components of Electron	(3)		
	spectroscopy?	COS	DTI 1	Domomhon
	ii. Describe the working of Electron ((10)	DILI	Kemember
	spectroscopy with a block diagram			
3.	Illustrate the construction and working principle of ((13)		
	Magnetic sector analyzer spectrometer with neat	COS	5 BTL 3	Apply
	sketch.			
4.	With neat diagram, brief about the principle, ((13) CO5	BTL 1	Remember
	operation of ion transducer.	000		
5.	i. Propose the method to sort the ions based on	(3)		
	their mass to charge ratio.	CO5	BTL 3	Apply
	II. Elaborate its function with its instrumentation ((10)		11.7
(set up with a neat sketch.	(10)		
6.	Demonstrate the construction and working (¹³⁾ CO5	BTL 3	Apply
7	Describe how various complex are analyzed using ((12)		
7.	NMP spectrometer with peat diagram	¹⁵⁾ CO5	5 BTL 2	Understand
8	i Give a detailed explanation about proton	(7)		
ð.	NMR with its principle instrumentation and			
	applications	П		
	ii. With the help of a neat diagram, discuss the	$\overline{(6)}$ CO5	BTL 2	Understand
	principle, working and applications of a	(0)		
	double-focussing mass spectrometer.			
9.	Explain the principle of operation of continuous ((13)		A
	wave NMR spectrometer.		BTL 4	Analyze
10.	Draw the block diagram of a pulsed Fourier ((13)		
	Transform NMR spectrometer and explain its	COS	BTL 1	Remember
	working principle.			
11.	Explain the working of quadrupole mass ((13)	BTL 4	Analyze
	spectrometers.		DILY	7 mary 20
12.	Explain the working principle of Electron spin ((13)		
	resonance spectroscopy with block diagram and	COS	BTL 3	Apply
10	mention the application.	(10)		
13.	Explain the working of time of flight mass (¹³⁾ CO5	BTL 4	Analyze
14	spectrometers.	(12)		
14.	propertional counter in detail	¹⁵⁾ CO5	5 BTL 2	Understand
15	Draw the block diagram of SEM and explain it	(13) CO5	RTI 2	Understand
16	i Differentiate the ontical microscope and	(7)		
10.	electron microscope			
	ii. Difference between a continuous wave and	$\frac{1}{(6)}$ CO5	BTL 4	Analyze
	Fourier transform NMR.			
17.	i. What are mass spectrometers? Discuss its	(4)		
±/•	i inter are muss spectrometers. Discuss its	~ 1005	BTL 2	Understand

	ii. Explain a simple mass spectroscopy system	(9)					
	with neat diagram.						
	PART-C						
1.	Draw the block diagram of an NMR spectrometer. Explain the function of each part and explain how	(15)		O5 BTL 4	Analyze		
	it is used to obtain NMR spectra. How are these spectra useful?		CO5				
2.	Explain the instrumentation and applications of magnetic sector analyzer and double focussing spectrometer.	(15)	CO5	BTL 3	Apply		
3.	What are the basic components of a Mass spectrometer? Explain the functions of each component.	(15)	CO5	BTL 3	Apply		
4.	Explain the different types of mass spectrometers with the neat diagrams	(15)	CO5	BTL 4	Analyze		
5.	What are the basic components of ESR? Explain the functions of each component.	(15)	CO5	BTL 4	Analyze		

