SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution) SRM Nagar, Kattankulathur – 603 203

DEPARTMENT OF INFORMATION TECHNOLOGY

QUESTION BANK

VI SEMESTER

1908602-COMPUTATIONAL INTELLIGENCE

Regulation – 2019

Academic Year 2024 – 2025 (Even Semester)

Prepared by

Ms.D.Nisha, Assistant Professor (Sr.G)/ IT Ms.I.Kavitha, Assistant Professor (O.G)/ IT

SRM VALLIAMMAI ENGINEERING COLLEGE

(**An Autonomous Institution**) SRM Nagar, Kattankulathur – 603 203.

DEPARTMENT OF INFORMATION TECHNOLOGY OUESTION BANK

SUBJECT : 1908602 - Computational Intelligence SEM / YEAR: VI Sem / III Year

UNIT I INTRODUCTION

Introduction to Artificial Intelligence- Problem formulation, Problem Definition -Production systems, Control strategies, Search strategies. Problem characteristics, Production system characteristics -Specialized production system- Problem solving methods -Problem graphs, Matching, Indexing and Heuristic functions Search-A* algorithm-Game Playing- Alpha-Beta Pruning-Expert systems-Inference-Rules-Forward Chaining and Backward Chaining- Genetic Algorithms.

	PART – A				
Q.No	Questions	BT Level	Competence		
1	Define Artificial Intelligence.	BTL1	Remembering		
2	List the various types of searching available.	BTL1	Remembering		
3	List the four categories under which AI is classified.	BTL1	Remembering		
4	What are Expert Systems?	BTL1	Remembering		
5	Outline the characteristic features of expert system.	BTL1	Remembering		
6	Define Inference.	BTL1	Remembering		
7	Name the components of a learning agent.	BTL2	Understanding		
8	Define the effect of heuristic accuracy on performance.	BTL2	Understanding		
9	Infer some of the uninformed search techniques.	BTL2	Understanding		
10	Give the various classes of production system.	BTL2	Understanding		
11	Write the general form of the genetic algorithm	BTL1	Remembering		
12	What are the tasks of Artificial Intelligence?	BTL1	Remembering		
13	What things we should do to build a system?	BTL2	Understanding		
14	Define rational agent?	BTL1	Remembering		
15	List down the characteristics of intelligent agent.	BTL1	Remembering		
16	What are the factors that a rational agent should depend on at any given time?	BTL2	Understanding		
17	Show the meaning of heuristic function and advantage.	BTL2	Understanding		
18	Compare Informed & Uninformed search with examples.	BTL2	Understanding		
19	What is a heuristic function?	BTL1	Remembering		
20	State the Point of view of alpha-beta pruning.	BTL1	Remembering		
21	Appraise when hill climbing fails to find a solution?	BTL2	Understanding		
22	Assess the forward chaining rules with example.	BTL2	Understanding		
23	List out the Properties of Forward-Chaining	BTL2	Understanding		
24	What do you understand by a genetic algorithm.	BTL2	Understanding		
	PART – B		8		
1	How would you analyze informed search strategies and illustrate them with an example? (13)		Analyzing		
2	List the advantages and limitations of Genetic Algorithm. State the taxonomy of the crossover operator. (13)	BTL3	Applying		

3	Define A* search algorithm. Discuss about the admissibility of A* BTL3	Applying
	algorithm. (13)	

4	Explain the various problem solving methods. (13)	BTL4	Analyzing
5	Discuss about the following:	BTL4	Analyzing
	i) Greedy best-first search. (4M)		
	ii) A* search .(4M)		
	iii) Memory bounded heuristic search (5 M)		
6	Write short notes on	BTL3	Applying
	(i)Inference rules (7)		
	(ii) Expert systems (6)		
7	i. Give the characteristics of AI problems? Explain with example. (7)	BTL3	Applying
	ii.Express what is Control Strategy and Production System? How this is		
	helpful in AI. (6)		
8	(i) Illustrate the characteristics of production systems. (7)	BTL3	Applying
	(ii) Differentiate between Uninformed and Informed Search		
	Technique. (6)		
9	Why is Game Playing significant, and how can it be explained in detail?	BTL4	Analyzing
	(13)		
10	i. Illustrate the role of knowledge engineer, domain expert and an end	BTL3	Applying
	user in an expert system. (6)		
	ii. Explain the difficulties involved in developing an expert		
	system. (7)		
11	Point out the procedures of genetic algorithms and what are the	BTL4	Analyzing
	different genetic representations. (13)		
12	What are the problems encountered during hill climbing and what are the	BTL4	Analyzing
	ways available to deal with these problems? (13)		
13	Evaluate the efficiency of forward chaining in scenarios with large state	BTL4	Analyzing
	spaces. (13)		
14	Explain how the steepest accent hill climbing works and Heuristic	BTL3	Applying
	Functions? (13)		
15	(i) What is alpha-beta pruning, and how does it work? (3)	BTL4	Analyzing
	(ii) Explain alpha beta pruning search technique / algorithm with an		
	example.(10)		
16	How would you analyze and explain the functioning of a learning agent	BTL4	Analyzing
	in detail?		
17	Consider the block world problem with four blocks A,B,C,D with the	BTL4	Analyzing
	start and goal states given below,		
	Start . A Goal D		
	DC		
	СВ		
	BA		
		1	
	Blocks World		
	Blocks World		
	Assume the following two operations: Pick and a block and put it on		

	PART – C					
1	Explain the basic principles of genetic algorithms. How do genetic algorithms mimic natural selection and evolution to solve problems? (15)		Evaluating			
2	Solve the given problem. Describe the operators involved in it. Consider a Water jug Problem: You are given two jugs, a 4-gallon one and a 3-gallon one. Neither has any measuring markers on it. There is a pump that can be used to fill the jugs with water. How can you get exactly 2 gallons of water into the 4-gallon jug? Explicit Assumptions: A jug can be filled from the pump, water can be poured out of a jug onto the ground, water can be poured from one jug to another and that there are no other measuring devices available. (15)	BTL6	Creating			
3	Consider a two player game in which the minimax search procedure is used to compute the best moves for the first player. Assume a static evaluation function that returns values ranging from -10 to 10, with 10 indicating a win for the first player and -10 a win for the second player. Assume the following game tree in which the static scores are from the first player's point of view. Suppose the first player is the maximizing player and needs to make the next move. What move should be chosen at this point? Can the search be optimized? (15)	BTL6	Creating			
4	Assess the following types of hill climbing search techniquesi)Simple hill climbing(5)ii)Steepest- Ascent Hill climbing(5)iii)Simulated Annealing(5)	BTL4	Analyzing			
5	Evaluate the concept of alpha-beta pruning in game playing and justify how it enhances the efficiency of game-playing algorithms. (15)	BTL5	Evaluating			

UNIT II KNOWLEDGE REPRESENTATION AND REASONING

Proposition Logic - First Order Predicate Logic – Unification – Forward Chaining - Backward Chaining - Resolution – Knowledge Representation - Ontological Engineering - Categories and Objects – Events - Mental Events and Mental Objects - Reasoning Systems for Categories - Reasoning with Default Information - Prolog Programming

	PART – A		
Q.No.	Questions	BT Level	Competence
1	What are the standard quantifiers of First Order Logic?	BTL1	Remembering
2	Define unification.	BTL1	Remembering
3	Define Ontology.	BTL1	Remembering
4	List the predicates of time intervals.	BTL1	Remembering
5	What is independent axiom?	BTL1	Remembering
6	State the aspects of a knowledge representation language.	BTL2	Understanding
7	Give the expansion of LISP and PROLOG.	BTL2	Understanding
8	Infer FOL with an example.	BTL2	Understanding
9	State in your own words about uniqueness quantifier.	BTL2	Understanding
10	What is the significance in using the unification algorithm?	BTL2	Understanding
11	Differentiate prepositional logic and predicate logic.	BTL2	Understanding
12	Differentiate declarative and procedural knowledge.	BTL2	Understanding
13	Define Modus Ponen's rule in Propositional logic.	BTL1	Remembering
14	Analyze the definition of logic.	BTL2	Understanding
15	Define Forward Chaining	BTL1	Remembering
16	Define Backward Chaining.	BTL1	Remembering
17	Define Prolog programs.	BTL1	Remembering
18	Give the Applications of Prolog.	BTL2	Understanding
19	Analyze the time and event calculus.	BTL2	Understanding
20	Analyze the following in a predicate logic: For all x and y, if x is a parent of y then y is a child of x.	BTL2	Understanding
21	Identify the relationship between agents and mental objects.	BTL1	Remembering
22	Assess the chances for representing categories in first-order logic.	BTL2	Understanding
23	For the given sentence "All Pompeian"s were Romans" write a well formed formula in predicate logic.	BTL2	Understanding
24	Compare predicate and propositional logic.	BTL2	Understanding
	PART – B		
1	Describe briefly about Ontological Engineering. (13)	BTL3	Applying
2	Give the Syntax and Semantics of a first order logic in detail with an example. (13)	BTL3	Applying
3	Explain unification algorithm used for reasoning under predicate logic with an example. (13)	BTL4	Analyzing
4	Label how to convert English to prolog facts using facts and rules. (13)	BTL3	Applying
5	Classify the steps needed for Knowledge engineering Process in Predicate logic. (13)	BTL3	Applying
6	Illustrate how to create more general and flexible representations in Ontological engineering. (13)	BTL4	Analyzing
7	How would you examine and describe the ontology for situation calculus?(13)	BTL4	Analyzing

8	Differentiate propositional logic with FOL .List the inference rules along with suitable examples for first order logic. Write the	BTL4	Analyzing
	algorithm for deciding entailment in propositional logic. (13)		
9		BTL3	Applying
2	i) What is resolution Principle in propositional logic, explain? (7) ii) Let the following set of axioms is given to be true: P , $(P \land Q)$		Apprying
	\rightarrow R, (S \lor T) \rightarrow Q, T. Assumption is that all are true. To Prove		
	that R is true. (6) $(3 \times 1) \rightarrow 0$, 1. Assumption is that an are true. To Trove		
10		BTL3	Applying
10		DILJ	Applying
	representation. Also mention advantages and disadvantages of		
11	both the algorithms. (13)	DTI 4	A
11	Explain briefly about the characteristics of a prolog programming.	BTL4	Analyzing
10		DTI 4	
12	How is resolution in first order predicate logic different from that of	BTL4	Analyzing
	propositional performed? What is Unification Algorithm & why it		
	is required? (13)		
13	Trace the operations of the unification algorithm on each of the	BTL4	Analyzing
	following pairs of literals:		
	i) f(Marcus) and f(Caesar) (3)		
	ii) $f(x)$ and $f(g(y))$ (5)		
	iii) $f(Marcus, g(x,y))$ and $f(x, g(Caesar, Marcus))$ (5)		
14	Calculate the completeness proof of resolution. (13)	BTL3	Applying
15	Describe briefly about Prolog Programming. (13)	BTL3	Applying
16	Illustrate the use of first order logic to represent knowledge (13)	BTL4	Analyzing
17	Describe briefly about forward Chaining (13)	BTL3	Applying
	PART – C		
1	Consider the following sentences:		
	• John likes all kinds of food		
	• ADDIES ALE LOOO		
	 Apples are food Chicken is food 		
	Chicken is food	рті Л	Analyzing
	Chicken is foodAnything anyone eats and isn't killed by is food	BTL4	Analyzing
	 Chicken is food Anything anyone eats and isn't killed by is food Bill eats peanuts and is still alive 	BTL4	Analyzing
	 Chicken is food Anything anyone eats and isn't killed by is food Bill eats peanuts and is still alive Sue eats everything Bill eats 	BTL4	Analyzing
	 Chicken is food Anything anyone eats and isn't killed by is food Bill eats peanuts and is still alive Sue eats everything Bill eats i) Translate these sentences into formulas in predicate logic(7) 	BTL4	Analyzing
	 Chicken is food Anything anyone eats and isn't killed by is food Bill eats peanuts and is still alive Sue eats everything Bill eats i) Translate these sentences into formulas in predicate logic(7) ii) Convert the formulas of part a into clause form.(8) 		Analyzing
2	 Chicken is food Anything anyone eats and isn't killed by is food Bill eats peanuts and is still alive Sue eats everything Bill eats i) Translate these sentences into formulas in predicate logic(7) ii) Convert the formulas of part a into clause form.(8) Evaluate the unification algorithm used for reasoning under 		Analyzing
2	 Chicken is food Anything anyone eats and isn't killed by is food Bill eats peanuts and is still alive Sue eats everything Bill eats i) Translate these sentences into formulas in predicate logic(7) ii) Convert the formulas of part a into clause form.(8) Evaluate the unification algorithm used for reasoning under predicate logic with an example. Consider the following facts. (15) 		Analyzing
2	 Chicken is food Anything anyone eats and isn't killed by is food Bill eats peanuts and is still alive Sue eats everything Bill eats i) Translate these sentences into formulas in predicate logic(7) ii) Convert the formulas of part a into clause form.(8) Evaluate the unification algorithm used for reasoning under 		Analyzing
2	 Chicken is food Anything anyone eats and isn't killed by is food Bill eats peanuts and is still alive Sue eats everything Bill eats i) Translate these sentences into formulas in predicate logic(7) ii) Convert the formulas of part a into clause form.(8) Evaluate the unification algorithm used for reasoning under predicate logic with an example. Consider the following facts. (15) a. Team India b. Team Australia 		Analyzing
2	 Chicken is food Anything anyone eats and isn't killed by is food Bill eats peanuts and is still alive Sue eats everything Bill eats i) Translate these sentences into formulas in predicate logic(7) ii) Convert the formulas of part a into clause form.(8) Evaluate the unification algorithm used for reasoning under predicate logic with an example. Consider the following facts. (15) a. Team India 		Analyzing
2	 Chicken is food Anything anyone eats and isn't killed by is food Bill eats peanuts and is still alive Sue eats everything Bill eats i) Translate these sentences into formulas in predicate logic(7) ii) Convert the formulas of part a into clause form.(8) Evaluate the unification algorithm used for reasoning under predicate logic with an example. Consider the following facts. (15) a. Team India b. Team Australia 		
2	 Chicken is food Anything anyone eats and isn't killed by is food Bill eats peanuts and is still alive Sue eats everything Bill eats i) Translate these sentences into formulas in predicate logic(7) ii) Convert the formulas of part a into clause form.(8) Evaluate the unification algorithm used for reasoning under predicate logic with an example. Consider the following facts. (15) a. Team India b. Team Australia c. Final match between India and Australia 		Analyzing
2	 Chicken is food Anything anyone eats and isn't killed by is food Bill eats peanuts and is still alive Sue eats everything Bill eats i) Translate these sentences into formulas in predicate logic(7) ii) Convert the formulas of part a into clause form.(8) Evaluate the unification algorithm used for reasoning under predicate logic with an example. Consider the following facts. (15) a. Team India b. Team Australia c. Final match between India and Australia d. India scored 350 runs, Australia scored 350 runs, 		
2	 Chicken is food Anything anyone eats and isn't killed by is food Bill eats peanuts and is still alive Sue eats everything Bill eats i) Translate these sentences into formulas in predicate logic(7) ii) Convert the formulas of part a into clause form.(8) Evaluate the unification algorithm used for reasoning under predicate logic with an example. Consider the following facts. (15) a. Team India b. Team Australia c. Final match between India and Australia d. India scored 350 runs, Australia scored 350 runs, India lost 5 wickets, and Australia lost 7 wickets. 		
2	 Chicken is food Anything anyone eats and isn't killed by is food Bill eats peanuts and is still alive Sue eats everything Bill eats i) Translate these sentences into formulas in predicate logic(7) ii) Convert the formulas of part a into clause form.(8) Evaluate the unification algorithm used for reasoning under predicate logic with an example. Consider the following facts. (15) a. Team India b. Team Australia c. Final match between India and Australia d. India scored 350 runs, Australia scored 350 runs, India lost 5 wickets, and Australia lost 7 wickets. e. The team which scored the maximum runs wins. 		
2	 Chicken is food Anything anyone eats and isn't killed by is food Bill eats peanuts and is still alive Sue eats everything Bill eats i) Translate these sentences into formulas in predicate logic(7) ii) Convert the formulas of part a into clause form.(8) Evaluate the unification algorithm used for reasoning under predicate logic with an example. Consider the following facts. (15) a. Team India b. Team Australia c. Final match between India and Australia d. India scored 350 runs, Australia scored 350 runs, India lost 5 wickets, and Australia lost 7 wickets. e. The team which scored the maximum runs wins. f. If the scores are same the team which lost minimum wickets wins the match. 		
2	 Chicken is food Anything anyone eats and isn't killed by is food Bill eats peanuts and is still alive Sue eats everything Bill eats i) Translate these sentences into formulas in predicate logic(7) ii) Convert the formulas of part a into clause form.(8) Evaluate the unification algorithm used for reasoning under predicate logic with an example. Consider the following facts. (15) a. Team India b. Team Australia c. Final match between India and Australia d. India scored 350 runs, Australia scored 350 runs, India lost 5 wickets, and Australia lost 7 wickets. e. The team which scored the maximum runs wins. f. If the scores are same the team which lost minimum wickets wins the match. 		
2	 Chicken is food Anything anyone eats and isn't killed by is food Bill eats peanuts and is still alive Sue eats everything Bill eats i) Translate these sentences into formulas in predicate logic(7) ii) Convert the formulas of part a into clause form.(8) Evaluate the unification algorithm used for reasoning under predicate logic with an example. Consider the following facts. (15) a. Team India b. Team Australia c. Final match between India and Australia d. India scored 350 runs, Australia scored 350 runs, India lost 5 wickets, and Australia lost 7 wickets. e. The team which scored the maximum runs wins. f. If the scores are same the team which lost minimum wickets wins the match. 		

4	 Convert the following sentences to wff in first order predicate logic. (i) No coat is water proof unless it has been specially treated. (3) (ii) A drunker is enemy of himself. (3) (iii) Any teacher is better than a lawyer. (3) (iv) If x and y are both greater than zero, so is the product of x and y. (3) (v) Everyone in the purchasing department over 30 years is married. (3) 	BTL4	Analyzing
5	Develop the following well-formed clause form with sequence of steps. $\forall x:[Roman(x) \land know(x,Marcus)] \rightarrow [hate(x,Caesar)\lor(\forall y:\exists:hate(y,z)] \rightarrow thinkcrazy(x,y))]$ (15)	BTL4	Analyzing
	UNIT III FUZZY LOGIC		
Nonr	nonotonic reasoning-Fuzzy Logic-Fuzzy rules-fuzzy inference-Tempo	oralLogi	a Tomporal
	nonotonic reasoning-ruzzy Logic-ruzzy rules-ruzzy interence-remponing-Neural Networks-Neuro-fuzzy Inference	orar LOgi	c-remporar
Rease	PART – A		
		BT	
Q.No.	Questions	Level	Competence
1	Define Neural Networks	BTL1	Remembering
2	What is Fuzzy Logic? What is its use?	BTL1	Remembering
3	Define non monotonic reasoning.	BTL1	Remembering
4	List the Application of neural networks	BTL1	Remembering
5	What are the ways in which one can understand the semantics of a belief network?	BTL1	Remembering
6	What are the two functions in Neural network"s Activation functions?	BTL1	Remembering
7	What is the need for probability theory in uncertainty?	BTL1	Remembering
8	Give some example of non-monotonic reasoning.	BTL2	Understanding
9	What are the disadvantages of closed world Assumption? How will you overcome it?	BTL2	Understanding
10	Express fuzzy inference.	BTL2	Understanding
11	What are the structures of neural network?	BTL2	Understanding
12	Write the properties of fuzzy sets.	BTL2	Understanding
13	Define Fuzzification Module	BTL1	Remembering
14	What is Propositional fuzzy logics	BTL1	Remembering
15	Define Inference Engine	BTL1	Remembering
16	List out the Applications of Neural Networks	BTL1	Remembering
17	Produce the main difficulties involved with the gradient descent method.	BTL2	Understanding
18	Analyze the different types of FLC.	BTL2	Understanding
19	Point out the degree of membership.	BTL2	Understanding
20	Differentiate fuzzification and defuzzification.	BTL2	Understanding
21	What happens if the examples are not linearly separable?	BTL2	Understanding
22	Criticize the remarks on back propagation.	BTL2	Understanding
23	Tell how do you think about non-monotonic reasoning is in terms of arguments.	BTL2	Understanding

24	In a class of 10 students (the universal set), 3 students speaks		
	German to some degree, namely Alice to degree 0.7, Bob to degree 1.0. Cathring to degree 0.4. What is the size of the subset A of		
	1.0, Cathrine to degree 0.4. What is the size of the subset A of	BTL2	Understanding
	German speaking students in the class?		
	PART – B		
1	Define Fuzzy Set? Explain in brief about Fuzzy set operations?(13)	BTL3	Applying
2	Identify the different key issues with respect to non-monotonic reasoning system? (13)	BTL4	Analyzing
3	What is the entire temporal model? Explain filtering and prediction in temporal model. (13)	BTL3	Applying
4	Identify the list of basic structure of a generic temporal models. (13)	BTL3	Applying
5	Classify the fuzzy rules with examples. (13)	BTL4	Analyzing
6	Demonstrate fuzzy inferences from imprecise data. (13)	BTL3	Applying
7	Interrelate the factors influencing back propagation neural network. (13)	BTL4	Analyzing
8	Write a note on fuzzy logic. How do it uses for probabilistic Reasoning (13)	BTL3	Applying
9	Distinguish between single layer and multi-layer perception neural networks? (13)		Applying
10	How it is useful for decision making under uncertainty? Explain belief networks briefly. (13)		Applying
11	Explain in brief about fuzzy propositions? (13)	BTL4	Analyzing
12	Point out the type of problems that can be solved with neural network? What are the advantages? What are the inconvenient.(13)		Analyzing
13	Demonstrate the concept of non-monotonic reasoning with examples. (13)		Applying
14	Explain in brief about Temporal logic? (13)	BTL4	Analyzing
	Discuss the structure, function, and applications of Neural Networks in detail. (13)	BTL4	Analyzing
16	Assess the Temporal Logic with Reasoning. (13)	BTL3	Applying
17	Write the most popular algorithm for training a neural network? What is its principle? (13)	BTL3	Applying
	PART – C		
1	Analyze the certainty and uncertainty factors. (15)	BTL4	Analyzing
2	With the help of diagram, explain the training algorithm of Back Propagation networks and discuss how the various parameters are chosen for training the neural net? (15)	BTL4	Analyzing
3	Explain the neuro fuzzy architecture and give some applications. (15)	BTL4	Analyzing
4	Explain fuzzy logic control with the neat diagram. (15)	BTL3	Applying
5	Explain the neuro fuzzy architecture and outline the applications. (15)	BTL3	Applying

UNIT IV LEARNING

Probability basics - Bayes Rule and its Applications - Bayesian Networks – Exact and Approximate Inference in Bayesian Networks - Hidden Markov Models - Forms of Learning - Supervised Learning - Learning Decision Trees – Regression and Classification with Linear Models - Artificial Neural Networks – Nonparametric Models - Support Vector Machines - Statistical Learning -Learning with Complete Data - Learning with Hidden Variables- The EM Algorithm – Reinforcement Learning

PART – A

PARI – A				
Q.No.	Questions	BT Level	Competence	
1	Define Bayes theorem	BTL1	Remembering	
2	What is localization problem?	BTL1	Remembering	
3	Define Artificial Neuron model.	BTL1	Remembering	
4	Mention the statistical learning methods.	BTL1	Remembering	
5	What is HMM?	BTL1	Remembering	
6	Define EM algorithm.	BTL1	Remembering	
7	State in your own words about conditional probability.	BTL2	Understanding	
8	Infer what is Reward Function in Reinforcement learning?	BTL2	Understanding	
9	Give the different forms of learning.	BTL2	Understanding	
10	State the support vector in SVM?	BTL2	Understanding	
11	Generalize the categories of neural network structures?	BTL1	Remembering	
12	Distinguish between full joint probability distribution and joint probability distribution.	BTL2	Understanding	
13	Give the Bayes' rule equation.	BTL1	Remembering	
14	What is meant by learning?	BTL1	Remembering	
15	List some of the practical uses of decision tree learning	BTL1	Remembering	
16	Differentiate between Passive learner and Active learner	BTL2	Understanding	
17	Organize the key features of reinforcement learning.	BTL2	Understanding	
18	Organize the types of learning.	BTL2	Understanding	
19	Difference between Classification and Regression.	BTL2	Understanding	
20	Identify the issues that affect the design of a learning element.	BTL1	Remembering	
21	Assess Bayesian networks with an example.	BTL2	Understanding	
22	Write some applications of Supervised Learning.	BTL2	Understanding	
23	Given that $P(A) = 0.3$, $P(A B) = 0.4$ and $P(B) = 0.5$, compute $P(B A)$.	BTL2	Understanding	
24	Draw the state transition diagram for Markov system.	BTL2	Understanding	
	PART – B			
1	Illustrate the concept of Hidden Markov Model and its applications in AI. (13)		Applying	
2	Define EM algorithm and explain the general form of EM algorithm. (13)	BTL3	Applying	
3	Describe briefly about the Regression and Classification with Linear Models. (13)	BTL3	Applying	
4	Identify Various Types of Reinforcement Learning Techniques. (13)	BTL3	Applying	
5	Distinguish between Supervised Learning and Unsupervised Learning. Also mention some of the application areas of both. (13)	BTL4	Analyzing	
6	Express the statistical Learning with examples. (13)	BTL4	Analyzing	
7	Describe briefly about (i) Continuous model for Maximum likelihood Estimation (6)	BTL3	Applying	

(ii) Learning with Hidden Variables. (7)

8	Marie"s marria	0				BTL3	Applying
		years , each year		•	iys.		
		nerman has predi					
		actually rains the time.	he weatherm	an correc	ctly forecasts		
	• When it or rain 10%	doesn ^w t rain, the of time.	e weathermai	n incorre	ctly forecasts		
		robability that i	t will rain of	n the day	y of Marie"s		
9	Generalize Su	pport Vector disadvantages of			. What are	BTL3	Applying
10		out the Decision			it is useful in	BTL3	Applying
11	i. Explain	ANN and Artifi		. ,		BTL4	Analyzing
12		ning with con		()	n Maximum	BTL4	Analyzing
		ameter Learning	-	-			• •
13		ession be used for				BTL4	Analyzing
14	U	le elimination a					Analyzing
	Bayesian netwo	orks. (13)	-		0 1		
15	Describe the Le	earning with mad	cro operators.	(13)		BTL3	Applying
16	How to handle	uncertain knowl	edge with exa	ample .(1	3)	BTL4	Analyzing
17	Discuss the ste using an examp	ps of the EM alg	gorithm and a	analyze it	s functionality	y BTL4	Analyzing
	using an examp	ne. (13)	PAR	Γ – C			
1	Construct the E	Bayseian networl	c and define t	he neces	sary CPTs for		
		ario we have a b			•		
	with probabilit	ties of coming	up heads of	f 20%, e	50% and 80%		
		ne coin is drawn	•			K I I /I	Analyzing
		rawing each of t				DILA	Analyzing
		mes to generate	the outcome	es X1, X	2 and		
-	X3. (15)		<u> </u>				
2		table consists of					
		data have been					
		Construct Decisi		Count	Status		
	Department Sales	Age 3135	Salary 46k50k	30	Status		
	Sales	2630	26k30k	40	Junior		
	Sales	3135	31k35k	40	Junior		
	Systems	2125	46k50k	20	Junior	BTL4	Analyzing
	Systems	3135	40k50k 66k70k	5	Senior	 .	B
	Systems	2630	46k50k	3	Junior		
	Systems	4135	66k70k	3	Senior		
	Marketing	3640	46k50k	10	Senior		
	Marketing	3135	41k45k	4	Junior		
	Secretary	4650	36k40k	4	Senior		
	Secretary	2630	26k30k	6	Junior		

3	Consider the following data provided for Weather Forecasting Scenario. Two states (Hidden): 'Low' and 'High' atmospheric pressure. Two observations (Visible States): 'Rain' and 'Dry'. Calculate a probability of a sequence of observations.	BTL6	Creating
4	Explain Reinforcement learning technique in detail .Also Mention its applications in the field of Artificial intelligence. (15)	BTL4	Analyzing
5	What is the maximum number of edges in a Bayesian network (BN) with n nodes? Prove that a valid BN containing this number of edges can be constructed (remember that the structure of a BN has to be a Directed Acyclic Graph).(15)	BTL4	Analyzing

UNIT V INTELLIGENCE AND APPLICATIONS

Natural language processing-Morphological Analysis-Syntax analysis-Semantic Analysis-All applications – Language Models - Information Retrieval – Information Extraction – Machine Translation – Machine Learning - Symbol-Based – Machine Learning: Connectionist – Machine Learning

	PART – A				
Q.No.	Questions	BT Level	Competence		
1	Define CFG.	BTL1	Remembering		
2	Define NLP.	BTL1	Remembering		
3	State Morphology.	BTL1	Remembering		
4	Label the terminologies are available in NLP?	BTL1	Remembering		
5	What is nouns and give example for nouns.	BTL1	Remembering		
6	List out the advantages of NLP.	BTL1	Remembering		
7	Give the merits and demerits of context free grammars.	BTL2	Understanding		
8	Identify the components of Natural language processing.	BTL2	Understanding		
9	Infer parse tree and give example.	BTL2	Understanding		
10	Express adjectives with examples.	BTL2	Understanding		
11	Sketch the basic definition of top down parse.	BTL1	Remembering		
12	Show how would you differentiate Machine Translation and Learning?	BTL2	Understanding		
13	Prepare how mapping works in NLP?	BTL2	Understanding		
14	Analyze why is NLP difficult?	BTL2	Understanding		
15	Differentiate syntax and semantic analysis in NLP terminologies.	BTL2	Understanding		
16	Point out the advantages and disadvantages of top down parser.	BTL1	Remembering		

17	What is Morphological Analysis?	BTL1	Remembering	
18	List out the steps in NLP	BTL1	Remembering	
19	What is a language model?	BTL1	Remembering	
20	Define Expert Systems?	BTL1	Remembering	
21	Appraise the name of application in NLP?	BTL2	Understanding	
22	Assess information retrieval process in the applications of NLP.	BTL2	Understanding	
23	Tell about language models in the applications of NLP.	BTL1	Remembering	
24	Write about symbol based application in intelligence.	BTL2	Understanding	
PART – B				
1	List the Steps in Natural Language Processing and explain them with	BTL3	Applying	
1	some examples. (13)	DILS	There	
2	Describe the categories involved in Information Retrieval system. (13)	BTL3	Applying	
3	Describe the structure of NLU and its difficulties. (13)	BTL3	Applying	
4	Describe about NLP? Write in details about various application of NLP. (13)	BTL3	Applying	
5	Express the basic concept of Machine Translation System with a Schematic diagram. (13)	BTL4	Analyzing	
6	Discuss the concept of Computer Intelligence and its application. (13)	BTL3	Applying	
7	 (i) Illustrate probabilistic models for information extraction. (7) (ii) Express conditional random fields for information extraction. (6) 	BTL4	Analyzing	
8	Explain briefly on implementation aspects of syntactic analysis. (13)	BTL3	Applying	
9	Demonstrate the key components of Machine Learning and explain its processes. (13)	BTL3	Applying	
10	Write short notes on i) Phonology (2) ii) Morphology (2) iii) Discourse (2) iv) Semantics (3) v) Syntax (4)	BTL3	Applying	
11	Find the algorithm that is capable of learning to recognize the handwritten digits and squeezing every last drop of predictive performance out of them. (13)		Applying	
12	Compare the machine learning and machine translation application of NLP. (13)	BTL4	Analyzing	
13	Evaluate whether an IR system is performing well? (13)	BTL3	Applying	
14	Analyze any two machine learning algorithms with an example. (13)	BTL4	Analyzing	
15	Identify about the application of natural language processing. (13)	BTL4	Analyzing	
16	Illustrate the concepts of the PageRank algorithm and the HITS algorithm with their key differences. (13)	BTL3	Applying	
17	Organize how phrase structure ambiguity affects NLP? Illustrate possible phrase structures for the sentence: "John saw the man on the mountain with a telescope". (13)	BTL3	Applying	

1	Point out the importance of syntax and semantics in NLP. Construct a grammar and draw the parse tree for the sentence "Bill Printed the file". (15)		Analyzing
2	Case study: Find the algorithm that is capable of learning to recognize the handwritten digits and squeezing every last drop of predictive performance out of them. (15)		Creating
3	What is Natural language processing? Mention its application domain in AI. What are some of the problems which arise in natural language understanding for autonomous machines like robots, intelligent computers? (15)	BTL4	Analyzing
4	Explain the structure and research models involved in machine translation. (15)	BTL4	Analyzing
5	Design an expert system for Travel recommendation and discuss its roles. (15)	BTL4	Analyzing

Staff In-charge(s)

HOD