SRM VALLIAMMAI ENGINEERING COLLEGE

SRM Nagar, Kattankulathur $-\,603\,\,203$

DEPARTMENT OF INFORMATION TECHNOLOGY

QUESTION BANK

VI SEMESTER 1908607-MACHINE LEARNING TECHNIQUES-I Regulation – 2019

Academic Year 2024-2025 (Even Semester)

Prepared by

Dr.S.Narayanan, Professor&Head,IT Mrs.G.Santhiya, Assistant Professor (Sr.G),IT

SRM VALLIAMMAI ENGINEERING COLLEGE

SRM Nagar, Kattankulathur – 603 203. DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK

SUBJECT :1908607-MACHINE LEARNING TECHNIQUES-I SEM / YEAR: VI / III

UNIT I –INTRODUCTION

Learning – Machine Learning Foundations –Overview – Design of a Learning system - Types of Machine Learning – Supervised Learning – The Brain and the Neuron – Design a Learning System – Perspectives and Issues in Machine Learning – Concept Learning Task – Concept Learning as Search – Finding a Maximally Specific Hypothesis – Version Spaces and the Candidate Elimination Algorithm – Linear Discriminants –Linear Separability – Linear Regression

	PART-A						
Q.No	Questions	BT Level	Competence				
1	Write the different types of machine learning algorithm.	BTL1	Remembering				
2	What are the different types of Learning/ Training models in ML?	BTL1	Remembering				
3	What is the difference between deep learning and machine learning?	BTL1	Remembering				
4	Define the issues in machine learning	BTL1	Remembering				
5	Write short notes on concept learning as a search.	BTL1	Remembering				
6	Point out few examples of machine learning applications	BTL2	Understanding				
7	Discuss about the concept behind ensemble learning.	BTL2	Understanding				
8	List the algorithms of concept learning.	BTL1	Remembering				
9	Explain the useful perspective on machine learning.	BTL2	Understanding				
10	Distinguish between supervised and unsupervised learning	BTL2	Understanding				
11	Define Supervised Learning	BTL2	Understanding				
12	Explain about Function Approximation Algorithm	BTL2	Understanding				
13	Define a Learning System	BTL1	Remembering				
14	Analyze how design a learning system help to identify the SPAM mails	BTL2	Understanding				
15	Write some applications of Supervised Learning	BTL2	Understanding				
16	Generalize the concept of Biased Hypothesis Space	BTL2	Understanding				
17	Examine how are these three Hypotheses h1, h2,h3 from Enjoy Sport example related by the >=g relation?	BTL2	Understanding				
18	Describe the steps involved in machine learning process.	BTL2	Understanding				
19	Discover the Candidate – Elimination algorithm	BTL2	Understanding				
20	Define Artificial Neuron model.	BTL1	Remembering				
21	List out the applications of ML problems.	BTL1	Remembering				
22	When Underfitting and Overfitting will occur.	BTL1	Remembering				

23	How Regression differ from classification?	BTL1	Remembering
24	Define Linear Regression.	BTL1	Remembering

	PART-B			
1	Distinguish between Supervised Learning and Unsupervised Learning. Also mention some of the application areas of both.	(13)	BTL3	Applying
2	Discuss in detail how to design a program to learn to play checkers.	(13)	BTL3	Applying
3	Can linear regression be used for classification? Justify.	(13)	BTL5	Evaluating
4	Discuss the importance of linear regression with example.	(13)	BTL5	Evaluating
5	Point out the useful perspective on machine learning.	(13)	BTL3	Applying
6	Discuss about the steps in Designing a Learning System with example.	(13)	BTL3	Applying
7	(i) Describe in detail the rule for estimating training values(ii) State the final design of checkers learning system	(7) (6)	BTL3	Applying
8	(i) Explain in detail the FIND-S: Finding A Maximally Specific Hypothesis(ii) Conclude the key properties of FIND-S algorithm.	(7) (6)	BTL5	Evaluating
9	(i) Demonstrate the concept learning as search?(ii) Describe the General-to-Specific Ordering of Hypotheses.	(6) (7)	BTL3	Applying
10	Explain in detail the Candidate–Elimination Algorithm with an example.	(13)	BTL4	Analyzing
11	Compose about types of Linear Regression and assumptions of Linear Regression.	(13)	BTL6	Creating
12	Describe the Version Spaces and Candidate–Elimination Algorithm with an example.	(13)	BTL3	Applying
13	Recall the following :(i)Compact Representation for Version Spaces.(ii)The LIST-THEN-ELIMINATE Algorithm.	(7) (6)	BTL3	Applying
14	Examine the Separating Hyper plane Theorem.	(13)	BTL3	Applying
15	Briefly describe about linear Regression with suitable example.	(13)	BTL3	Applying
16	Explain the importance of Linear Seperability.	(13)	BTL3	Applying
17	Explain how Linear Discriminant Analysis can be performed.	(13)	BTL3	Applying
	PART-C		•	
1	Describe the perspective issues in machine learning.	(15)	BTL5	Evaluating
2	Explain mistake bound model for learning and apply it to FIND-S algorithm.	(15)	BTL6	Creating

3	Follow	ing are the set	of train	ing exan	nples for	the Ta	rget Con	cept of	(15)	BTL5	Evaluating
	'Japane	se Economy Ca	r'.								
	Feature	s: (Country of C	rigin, M	anufactur	er, Color,	Decade	e, Type).	_			
	Origin	Manufacturer	Color	Decade	Туре	Exam	ple Type				
	Japan	Honda	Blue	1980	Economy	/ Po	sitive				
	Japan	Toyota	Green	1970	Sports	Ne	gative				
	Japan	Toyota	Blue	1990	Economy	/ Po	sitive				
	USA	Chrysler	Red	1980	Economy	/ Ne	gative				
			-					-			
	Descrit	e in brief the 'H	ypothesi	s Space S	earch' by	Find-S	algorithn	n for the			
	training	g examples of th	e Target	Concept	: "Enjoy S	Sport". I	nitialize	h to the			
	Most S	pecific Hypothe	sis.								
4	Explain	in detail the In	luctive F	$\frac{1}{1}$	ndidate F	liminati	on algorit	hm	(15)	BTI 6	Creating
-	LAPIAN					mman	on argorn		(15)	DILO	Creating
5.	i)What i	s Linear Regress	sion and	list out th	e properti	es of Li	near Regi	ression.	(7)	BTL5	Evaluating
	ii)Descr	be in detail ab	out Line	ar Regres	ssion and	find a	linear re	gression			C
	equatior	by evaluating f	ollowing	two sets	of data:			0	(8)		
	-										
		x	2	4	6	8					
				-	-	-					
		У	3	7	5	10					

	UNIT II- LINEAR MODELS					
	Linear model for classification - Multi-layer Perceptron – Going Forwards – Going Backwards: Back Propagation Error – Multi-layer Perceptron in Practice – Examples of using the MLP – Overview – Deriving Back-Propagation – Radial Basis Functions and Splines – Concepts – RBF Network – Curse of Dimensionality – Interpolations and Basis Functions – Support Vector Machines. PART-A					
Q.No	Questions	BT	Competen			
		Level	ce			
1	What is Multi-layer Perceptron.	BTL1	Remembering			
2	Explain how Back propagation Works?	BTL2	Understanding			
3	Discuss what type of unit shall we use as the basis for constructing multilayer network?	BTL2	Understanding			
4	What are Support Vectors?	BTL1	Remembering			
5	What is the difference between MLP network and radial basis function network?	BTL2	Understanding			
6	Are radial basis function networks supervised or unsupervised?	BTL1	Remembering			
7	Discuss about the applications of radial basis function network.	BTL2	Understanding			
8	What is propogation in neural network?	BTL1	Remembering			
9	State the support vector in SVM?	BTL2	Understanding			
10	What is RBF Network?	BTL1	Remembering			

11	Explain the use of Radial Basis Functions		BTL2	Understandin
10			DTI 1	g D 1 ·
12	what is a spline?		BILI	Rememberin
13	Examine the function of interpolation?		BTL2	5 Understandin
	F			g
14	Analyze the applications of RBF networks?		BTL2	Understandin
				g
15	Explain what is RBF in machine learning?		BTL2	Understandin
16	State shout the surge of dimensionality		DTI 1	g Domorrhorin
10	State about the curse of dimensionality.		BILI	Rememberin
17	What problem does curse of dimensionality cause?		BTL1	8 Rememberin
17	what problem does curse of annensionality cause.		DILI	g
18	Identify the How to check curse of dimensionality?		BTL2	Understandin
				g
19	What is the role of hyperplanes in SVM?		BTL1	Rememberin
				g
20	What is the geometric intuition behind SVM.		BTL1	Rememberin
21	Analyza Dadial basis functions natural		DTI 2	g Understandin
21	Anaryze Radiai basis functions network.		DIL2	onuerstanum
22	What is meant by MLP?		BTL1	8 Rememberin
				g
23	Which algorithms suffer from curse of dimensionality?		BTL1	Rememberin
				g
24	What are the Linear models used in classification?		BTL1	Rememberin
				g
	PART-B		1	I
1	Recall Multi-layer Perceptron and its uses.	(13)	BTL3	Applying
2	Analyze multi-layer perceptron model with neat diagram.	(13)	BTL4	Analyzing
3	Write Gradient Descent algorithm for training a linear unit.	(13)	BTL3	Applying
4	Consider two perception's defined by the threshold expression $\omega 0 + \omega 1x1 + \omega 1x^2$	(13)	BTL3	Applying
	$\omega 2x2 > 0$, perceptron A has weight values			
	$\omega 0=1, \omega 1=2, \omega 2=1$ and perceptron B has weight values. $\omega 0=0, \omega 1=2, \omega 2=1$			
	True or False? Perceptron A is more-general-than perceptron B			
-		(4.5)		
5	Differentiate between Gradient Descent and Stochastic Gradient Descent.	(13)	BTL2	Understandin
				g

				Б
6	Write an algorithm for back propagation algorithm which uses stochastic gradient descent method. Comment on the effect of adding momentum to the network	(13)	BTL6	Creating
7	Evaluate Support Vector Machines in detail. What are advantages and disadvantages of SVM.	(13)	BTL5	Evaluating
8	Explain the Back propagation rule considering the training rule for Output Unit weights and Training Rule for Hidden Unit weights	(13)	BTL3	Applying
9	(i). Elucidate the radial basis functions.(ii). Describe the two stage process of the RBF networks	(7) (6)	BTL4	Analyzing
10	How Face Recognition can be implemented using back propagation neural network? Explain in detail.	(13)	BTL5	Evaluating

11	(i). Explain the radial basis functions.	(6)	BTL4	Analyzing
	(ii). Describe the two stage process of the RBF networks	(7)		

10		()		
12	(i). Explain the needs of back propagation	(6)	BTL3	Applying
	(ii). Describe about best practice of back propagation and disadvantage	(7)		
12	White a material	(0)	DTI 1	Demonstration
13	write a note on	(8)	BILI	Rememberin
	(i) Perceptron Training Rule	(5)		g
	(ii) Gradient Descent and Delta Rule			
14	Examine with example the Back Propagation Rule.	(13)	BTL3	Applying
15	Explain in detail about Linear SVM	(13)	BTL3	Applying
	-			
16	Explain in detail about non Linear SVM	(13)	BTL3	Applying
17				A 1 '
1/	Explain Curse of Dimensionality and analyze how to overcome the	(1.0)	BILA	Analyzing
	problems caused by it.	(13)		
	PART-C			
1	Desien werkt besen neuerstren werdelerithe meet die ener	(15)		Creating
1	Design multi-layer perceptron model with a neat diagram.	(15)	BILO	Creating
2	Explain the followings w.r.t Back Propagation algorithm	(15)	BTL5	Evaluating
	• Convergence and Local Minima			
	• Representational Power of Feedforward Networks			
	 Hypothesis Space Search and Inductive Bias 			
	Hidden Layer Representations			
	 Generalization, Overfitting, and Stopping Criterion 			
3	Write Stochastic Gradient Descent version of the Back Propagation	(15)	BTL5	Evaluating
	algorithm for feed forward networks containing two layers of sigmoid units			
4	Discuss the working behavior of support vector machine with diagrams.	(15)	BTL6	Creating
5	Draw the model and explain the algorithm for Back propogation. Derive	(15)	BTL5	Evaluating
	necessary equations to determine back propogation error.			

UNIT III- TREE AND PROBABILISTIC MODELS					
Decision trees – learning decision trees – Constructing Decision Trees -ranking and probability estimation trees – Regression trees – clustering trees – learning ordered rule lists – learning unordered rule lists – descriptive rule learning – association rule mining – first -order rule learning- Gaussian Mixture Models- Nearest Neighbor Methods –K mean Algorithms- Vector Quantization – Self Organizing Feature Man					
PART-A					
Questions	BT Level	Competence			
	UNIT III- TREE AND PROBABILISTIC MODELS Decision trees – learning decision trees – Constructing Decision Trees -rate estimation trees – Regression trees – clustering trees – learning ordered rule lists rule lists – descriptive rule learning – association rule mining – first -order rue Mixture Models- Nearest Neighbor Methods –K mean Algorithms- Vector Quantization – Self Org PART-A Questions	UNIT III- TREE AND PROBABILISTIC MODELS Decision trees – learning decision trees – Constructing Decision Trees -ranking a estimation trees – Regression trees – clustering trees – learning ordered rule lists – lear rule lists – descriptive rule learning – association rule mining – first -order rule learning Mixture Models- Nearest Neighbor Methods –K mean Algorithms- Vector Quantization – Self Organizing PART-A Questions BT Level			

1	Why use Decision Trees?	BTL1	Remembering
2	How does the Decision Tree algorithm Work?	BTL1	Remembering
3	Define Decision Tree algorithm in a training set.	BTL2	Understanding
4	Define Regression Trees.	BTL1	Remembering
5	Categorize the main element of CART.	BTL2	Understanding

6	Examine the approaches of avoiding overfitting data.	BTL2	Understanding
7	What is the entropy of a Data set.	BTL1	Remembering

8	Define Gini index.		BTL2	Understanding
9	Recall about information Gain.		BTL1	Remembering
10	Define FOIL algorithm.		BTL2	Understanding
11	Explain Hierarchical clustering		BTL2	Understanding
12	List the type of Clustering Methods		BTL2	Understanding
13	What is Apriori Algorithm?		BTL1	Remembering
14	How does Association Rule Learning work?		BTL1	Remembering
15	Explain the Applications of Association Rule Learning.		BTL2	Understanding
16	Discuss about the aim of Vector Quantization?		BTL2	Understanding
17	Construct the steps of SOM.	BTL2	Understanding	
18	Discuss about Data compression types	BTL2	Understanding	
19	Explain about Vector Quantization		BTL2	Understanding
20	Where are self-Organizing maps used?		BTL2	Understanding
21	What are the stages in self organizing map?	BTL1	Remembering	
22	What is the principle of vector quantization?		BTL1	Remembering
23	List out the advantages of Gaussian mixture model.		BTL2	Understanding
24	What is the use of KNN algorithm?		BTL1	Remembering
	PART-B			
1	Experiment with Classification tree and solution.	(13)	BTL3	Applying
2	Analyze about CART.	(13)	BTL4	Analyzing
3	Recall the issues in Decision tree learning? How are they overcome?	(13)	BTL3	Applying
4	Define an algorithm to construct decision tree.	(13)	BTL3	Applying
5	Distinguish between the FOIL and other algorithms.	(13)	BTL3	Applying
6	Construct a decision tree for the following data.	(13)	BTL6	Creating

	Class label (risk) Collateral Income Debt Credit history			
	high none low high bad			
	high none middle high unknown			
	moderate none middle low unknown			
	high none low low unknown			
	low none upper low unknown			
	low adequate upper low unknown			
	high none low bad			
	moderate adequate upper low bad			
	low none upper low good			
	low adequate upper high good			
	high none low high good			
	moderate none middle high good			
	low none upper high good			
	high none middle high bad			
	Applying the K-Means algorithm, find two clusters in the following data			
7		(13)	BTL3	Applying
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	l í		
8	Explain EM algorithm for Causaian mixtures	(12)	DTI 2	Applying
0		(15)	DILS	Applying
9	Outline an algorithm for agglomerative hierarchical clustering.	(13)	BTL3	Applying
10	How DBSCAN algorithm use for clustering.	(13)	BTL3	Applying
11	Describe an algorithm for divisive hierarchical clustering.	(13)	BTL3	Applying
12	(i). Explain the EM algorithm.	(5)		
	(ii) Explain the detail Estimating Means of k Gaussians.	(8)	BTL5	Evaluating
	Make use of K- Means algorithm to find 2 cluster in following data.			
13	No. 1 2 3 4 5 6 7	(13)	BTL4	Analyzing
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	x_2 1.0 2.0 4.0 7.0 5.0 5.0 4.5			
14	Use decision tree to classify the students in a class based on their academic			
	performance	(13)	BTL6	Creating
15	Examine K-nearest neighbour algorithm. Why is it known as instance-	(13)	BTL3	Applving
	based Learning?	()		rr-,8
16	Formulate the working procedure of Self organizing Feature Man with an	(13)	BTI 6	Creating
10	example.			Creating
17	Analyze association rule mining with ayample	(12)	BTI 1	Analyzing
1/	Anaryze association full mining with example.	(13)	DIL4	Anaryzing
	PART-C	1	11	
1	Recommend the EM algorithm and explain the general form of FM	(15)	BTL5	Evaluating
	algorithm	(10)		

2	What is decision tree. Construct the decision trees to represent the	(15)	BTL6	Creating
	following Boolean functions:			
	a) A∩B			
	b) A∪[B∩C]			
	c) A x or B			
	d) $[A \cap B] \cup [C \cap D]$			

3	Give decis i. $A \land \neg B$ ii. $A V [B]$ Consider 1 1 2 3 4 4 6	AC] the fol	lowing s al T T T F F F	et of train a2 T F F T T T	ing	llowing boo examples: assification + + - + - - -	lean funct	tions:	(15)	BTL5	Evaluating
	i. What i respect ii. What	s the e to the is the i	ntropy o target fi informat	f this colle unction cla ion gain o	ectic assit f a2	on of training fication. relative to t	g example hese train	es with ning example.			
4	Give Deci Day D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14	Sunn Sunn Sunn Over Rain Rain Over Sunn Sunn Rain Sunn Over Over Rain	rees for t bok ly ly reast reast ly ly ly reast reast	he followi Temperat Hot Hot Mild Cool Cool Cool Mild Mild Mild Mild Mild Mild Mild		set of trainin Humidity High High High Normal Normal Normal Normal Normal Normal High Normal High Normal High	g exampl Wind Weak Strong Weak Weak Strong Strong Strong Strong Strong Strong Strong Strong	es Play Tennis No No Yes Yes Yes Yes Yes Yes Yes Yes	(15)	BTL6	Creating

5.	Use the k-means algorithm and Euclidean distance to cluster the following 8 examples into 3 clusters: A1= $(2,10)$,A2= $(2,5)$,A3= $(8,4)$,A4= $(5,8)$,A5= $(7,5)$,A6= $(6,4)$,A7= $(1,2)$,A8= $(4,9)$			
	Suppose that the initial seeds (centers of each cluster) are A1, A4 and A7. Run the k-means algorithm for 1 epoch only. At the end of this epoch show: a) The new clusters (i.e. the examples belonging to each cluster) and the	(6)		
	centers of the new clustersb) Draw a 10 by 10 space with all the 8 points and show the clusters after the first epoch and the new centroids.	(5)	BTL6	Creating
	c) How many more iterations are needed to converge? Draw the result for each epoch.	(4)		

	UNIT IV- EVOLUTIONARY AND GRAPHICAL MOD	ELS				
	Evolutionary Learning – Genetic algorithms – Genetic Offspring: - Genetic Operators –Using Genetic					
	Algorithms – Markov Chain Monte Carlo Methods – Sampling – Proposal Distr	ibution -	- Markov Chain			
	Monte Carlo – Graphical Models – Directed graphical models Undirect	cted gra	phical models-			
	Bayesian					
	Networks – Markov Random Fields – Hidden Markov Models – Tracking Meth	ods.				
	PART-A					
Q.No	Questions	BT	Competence			
		Level				
1	What is an evolutionary algorithm?	BTL1	Remembering			
2	What are the business benefits of evolutionary algorithms?	BTL1	Remembering			

3	Define Markov Chain Monte Carlo Methods	BTL1	Remembering
4	Explain about Genetic Operators	BTL2	Understanding
5	Points out how the learn rule sets differ from genetic algorithm.	BTL2	Understanding
6	Discuss about evolutionary computation.	BTL2	Understanding
7	What is sampling?	BTL2	Understanding
8	What is the markov property of a discrete Markov process?	BTL2	Understanding
9	Examine how MCMC used in machine learning?	BTL2	Understanding
10	Explain directed graphical model?	BTL2	Understanding
11	Show what is an undirected graphical model?	BTL1	Remembering
12	Analyze the main types of graphical Modelling?	BTL2	Understanding
13	Draw the state transition diagram for Markov system.	BTL2	Understanding
14	Assess Bayesian networks with an example	BTL2	Understanding

15	Define Bayes Theorem.	BTL1	Remembering

16	Name the Bayes optimal classification		BTL2	Understanding
17	Explain the Markov random fields usage.		BTL2	Understanding
18	Experiment with maximum number of edges in a Bayesian network(BN) windes? Prove that a valid BN containing this number of edges can be constructed (remember that the structure of a BN has to be a Directed Acyclic Graph).	th n	BTL2	Understanding
19	Construct a bayesian network simulating a teacher entering and leaving the class.	•	BTL2	Understanding
20	Show what is hidden Markov model with example?		BTL2	Understanding
21	Why do we need sampling?		BTL2	Understanding
22	What is a graphical model?		BTL1	Remembering
23	Define Bayesian networks.		BTL1	Remembering
24	What is meant by tracking methods in machine learning?		BTL1	Remembering
	PART-B			
1	Construct the Bayseian network and define the necessary CPTs for the given scenario we have a bag of three biased coins a, b and with probabilities of coming up heads of 20%, 60% and 80% respectively. One coin is drawn randomly from the bag (with equal likelihood of drawing each of the three coins) and then the coin is flipped three times to generate the outcomes X1, X2 andX3	(13)	BTL6	Creating
2	Identify the working principle of genetic algorithm and explain the main feature of genetic algorithm	(13)	BTL3	Applying
3	(i). Explain the foundation of genetic algorithm(ii).Explain the operators of genetic algorithms and give brief about applications	(13)	BTL2	Understanding
4	Describe Hidden Markov Model and its applications in AI.	(13)	BTL1	Remembering
5	Explain how Hidden Markov Models are used in speech recognition.	(13)	BTL2	Understanding
6	What is the basic problem associated with a Hidden Markov model?	(13)	BTL1	Remembering
7	Analyze the Coin tossing with Hidden Markov models	(13)	BTL4	Analyzing

8	Write the FOIL algorithm for learning rule sets and explain the purpose of	(13)	BTL5	Evaluating
	outer loop and the function of the inner loop.			
9	(i) Point out about the common operators for Genetic algorithm.	(7)	BTL3	Applying
	(ii) State about the various crossover with diagram.	(6)		
10	(i). What are the uses of hidden Markov model in machine learning?	(7)	BTL3	Applying
	Explain the hidden markov model advantages and	(6)		
	disadvantages. (ii). Explain the applications of hidden markov			
	model.			
11	Recall discrete Markov processes and General case	(13)	BTL3	Applying

12	State the principle of hidden Markov models and explain different types of HMM with neat sketch in detail.	(13)	BTL3	Applying
13	Analyze the Markov Chain Monte Carlo Methods in detail.	(13)	BTL4	Analyzing
14	Explain Gradient Ascent Training of Bayesian Networks.	(13)	BTL5	Evaluating
15	Discuss Genetic Algorithm with an example Explain	(13)	BTL5	Evaluating
10	mutatations, crossover,	(10)	DILO	Difututing
16	Chromosomes, generations. What is sampling? Explain in detail about different sampling techniques	(13)	BTI 3	Applying
10	what is sampling. Explain in detail about different sampling teeninques.	(13)	DILS	rippiying
17	What is Graphical model? Outline the different types of graphical model.	(13)	BTL3	Applying
	PART-C		1	
1	Assess the parallelizing Genetic Algorithms with an example.	(15)	BTL5	Evaluating
2	Formulate the models of evolution and learning in Genetic algorithm.	(15)	BTL6	Creating
3	Choose two destinations with different routes connecting them. Apply genetic algorithm to find the optional path based on distance.	(15)	BTL4	Applying
4	Solve discrete Markov process with three statesS1,S2 and S3. Suppose	(15)	BTL6	Creating
	we have the following10 observation sequences each of length 5:			
	$O_1: S_1 \; S_2 \; S_1 \; S_1 \; S_1$			
	$O_2: S_2 \; S_1 \; S_1 \; S_3 \; S_1$			
	$O_3: S_3 \; S_1 \; S_3 \; S_2 \; S_2$			
	$O_4: S_1 \; S_3 \; S_3 \; S_1 \; S_1$			
	$O_5: S_3 \ S_2 \ S_1 \ S_1 \ S_3$			
	$O_6: S_3 \; S_1 \; S_1 \; S_2 \; S_1$			
	$O_7: S_1 S_1 S_2 S_3 S_2$			
	$O_8: S_2 \; S_3 \; S_1 \; S_2 \; S_2$			
	$O_9: S_3 \; S_2 \; S_1 \; S_1 \; S_2$			
	$O_{10}: S_1 \ S_2 \ S_2 \ S_1 \ S_1$			
5.	Write down the mechanism of Bayesian Networks and their advantages with the help of a simple example.	(15)	BTL6	Creating

	UNIT V- ADVANCED LEARNING						
	Sampling –Basic sampling methods- Monte Carlo- Reinforcement Learning- Model-Based Learning- Temporal Difference Learning Exploration Strategies- Deterministic and Non deterministic Rewards Actions Computational Learning Theory - Mistake bound analysis, sample complexity analysis, VC dimension.Occam learning, applications in game playing –applications in robot control.						
	PART-A						
Q.No	Questions	BT Level	Competence				
1	A teacher puts students' names in a hat and chooses without looking to get a sample of students. What type of sample is this?	BTL1	Remembering				

2	Infer what is Reward Function in Reinforcement learning?	BTL2	Understanding
3	A large company surveys 100 employees by taking random samples of 10 managers and 90 non-managerial employees. What type of sample is this?	BTL2	Understanding
4	How can we reduce sample complexity?	BTL2	Understanding
5	Organize the key features of reinforcement learning.	BTL2	Understanding
		DITLA	
6	Explain sample complexity.	BTL2	Understanding
7	Analyze the importance of Temporal learning.	BTL2	Understanding
8	What is VC dimension of circle?	BTL2	Understanding
9	List some examples of Occam's razor?	BTL1	Remembering
10	How is AI useful in game playing techniques?	BTL2	Understanding
11	Explain the importance of Occam razor.	BTL2	Understanding
12	Identify various Types of Reinforcement Learning Techniques	BTL2	Understanding
13	What are the limitations on the use of Monte Carlo methods for reinforcement learning?	BTL1	Remembering
14	Can you run a nondeterministic algorithm on a deterministic machine instead of nondeterministic one?	a BTL2	Understanding
15	Analyze how is VC dimension calculated?	BTL2	Understanding
16	Which algorithms are used in the mistake bound model of learning?	BTL1	Remembering
17	What is meant by optimal mistake bound?	BTL1	Remembering
18	Illustrate the mistake bound model of learning.	BTL2	Understanding
19	How will you classify a method as Monte Carlo solution method?	BTL2	Understanding
20	Explain about the Reinforcement learning model.	BTL2	Understanding
21	What is mistake bound analysis in machine learning?	BTL1	Remembering
22	What Occam's Razor means in machine learning?	BTL1	Remembering
23	Compare instance based and model based learning.	BTL2	Understanding
24	What are deterministic rewards?	BTL1	Remembering
	PART-B		1
1	What are sampling methods? Give short notes on various sampling (13 methods.) BTL3	Applying
2	Apply Occam's learning in robot control.(13)) BTL3	Applying
3	(i) Recall what is Reinforcement learning? (13 (ii) Define temporal difference learning) BTL3	Applying
4	Apply Occam's learning in Playing Chess. (13)) BTL3	Applying
5	What is sample complexity and examine about the finite hypothesis? (13)) BTL4	Analyzing
L			

6	Give examples of Occam's razor?	(13)	BTL3	Applying
7	Write Reinforcement learning problem characteristics.	(13)	BTL3	Applying
8	Point out Reinforcement learning technique in detail. Also Mention its applications in the field of Artificial intelligence.	(13)	BTL4	Analyzing
9	What is Reinforcement Learning? Explain Reinforcement learning problem with neat diagram.	(13)	BTL3	Applying

10	How Occam's Razor principle works in Machine learning.	(13)	BTL4	Analyzing		
11	What are sampling methods and how do you choose the best one?	(13)	BTL5	Evaluating		
12	What is shattering? Explain in detail about shattering using VC dimension.	(13)	BTL3	Applying		
13	Differentiate between Deterministic and Non-deterministic Algorithms	(13)	BTL3	Applying		
14	Explain Monte Carlo Policy Evaluation.	(13)	BTL5	Evaluating		
15	Explain mistake bound analysis with example.	(13)	BTL5	Evaluating		
16	Discuss Non Deterministic rewards and actions.	(13)	BTL6	Creating		
17	Explain any one of the computational learning model.	(13)	BTL4	Analyzing		
	PART-C					
1	Explain VC (Vapnik-Chervonenkis) dimension in detail.	(15)	BTL5	Evaluating		
2	Consider a two player game in which the minimax searchprocedure is used to compute the best moves for the first player. Assume a static evaluation function that returns values rangingfrom -10 to 10, with 10 indicating a win for the first player and -10a win for the second player. Assume the following game tree inwhich the static scores are from the first player 's point of view.Suppose the first player is the maximizing player and needs tomake the next move. What move should be chosen at this point?Can the search be optimized?	(15)	BTL6	Creating		
3	Assess Temporal Difference Learning model with an example.	(15)	BTL5	Evaluating		
4	Discuss Markov Chain Monte Carlo Methods in detail.	(15)	BTL6	Creating		
5	Determine model-based machine learning with a case study.	(15)	BTL5	Evaluating		