SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution) SRM Nagar, Kattankulathur– 603203

DEPARTMENTOF MECHANICAL ENGINEERING

QUESTION BANK

VI SEMESTER

1909603 Finite Element Analysis

Academic Year 2024 – 25

Prepared by

RAMU.P, Assistant Professor / Mechanical Engineering

SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution) SRM Nagar, Kattankulathur – 603 203.

DEPARTMENT OF MECHANICAL ENGINEERING

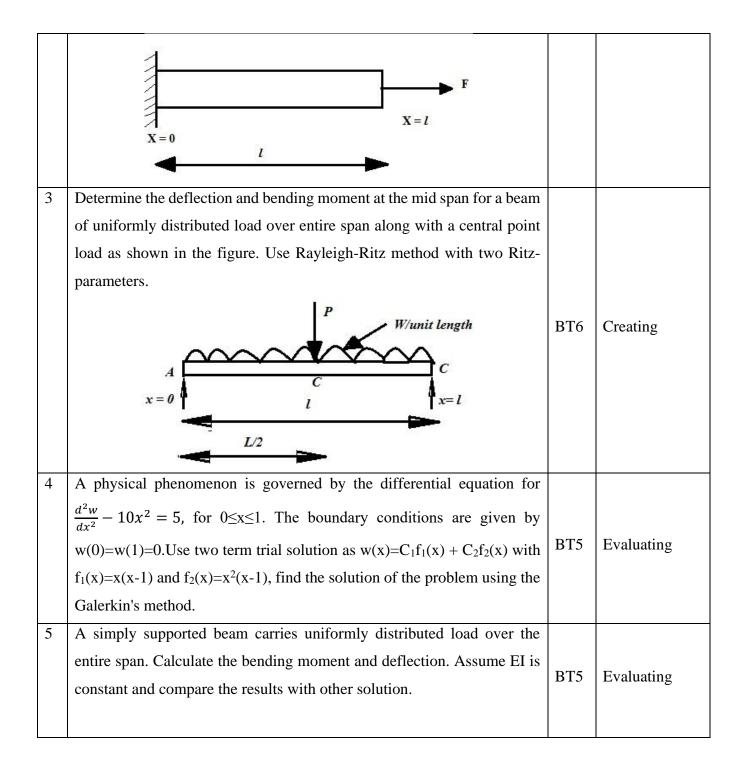
QUESTION BANK

UNIT I : INTRODUCTION

Historical Background – Mathematical Modeling of field problems in Engineering – Governing Equations – Discrete and continuous models – Boundary, Initial and Eigen Value problems– Weighted Residual Methods – Variational Formulation of Boundary Value Problems – Ritz Technique – Basic concepts of the Finite Element Method.

PART A (2 Marks)

1	Distinguish one dimensional bar element and beam element.	BT1	Remembering
2.	What do you mean by boundary value problem?	BT1	Remembering
3	What do you mean by weak formulation? State its advantages.	BT2	Understanding
4	Why are polynomial types of interpolation functions preferred over trianonometric functions?	BT2	Understanding
5	What do you mean by elements and nodes?	BT1	Remembering
6	What is Ritz method?	BT4	Analyzing
7	Distinguish Natural and Essential boundary condition.	BT6	Creating
8	Compare Ritz method with nodal approximation method.	BT2	Understanding
9	State the discretization error. How it can be reduced?	BT1	Remembering
10	What are the various considerations to be taken in discretization process?	BT1	Remembering
11	State the principle of minimum potential energy.	BT2	Understanding
12	Distinguish between classical methods and FEM.	BT1	Remembering
13	Distinguish between FDM and FEM.	BT4	Analyzing
14	What is meant by node or joint?	BT2	Understanding
15	What are the two types of nodes?	BT1	Remembering
16	State the methods of engineering analysis.	BT4	Analyzing
17	Name the variation methods.	BT2	Understanding
18	Name the weighted residual method.	BT4	Analyzing
19	State the principle of minimum potential or Principle of total stationary potential.	BT1	Remembering


20	Name any four FEA software.	BT2	Understanding
21	Differentiate boundary value problem and initial value problem.	BT2	Understanding
22	Define strain energy.	BT4	Analyzing
23	Define potential energy.	BT2	Understanding
24	What do you mean by Numerical methods?	BT2	Understanding
25	Define FEA.	BT4	Analyzing

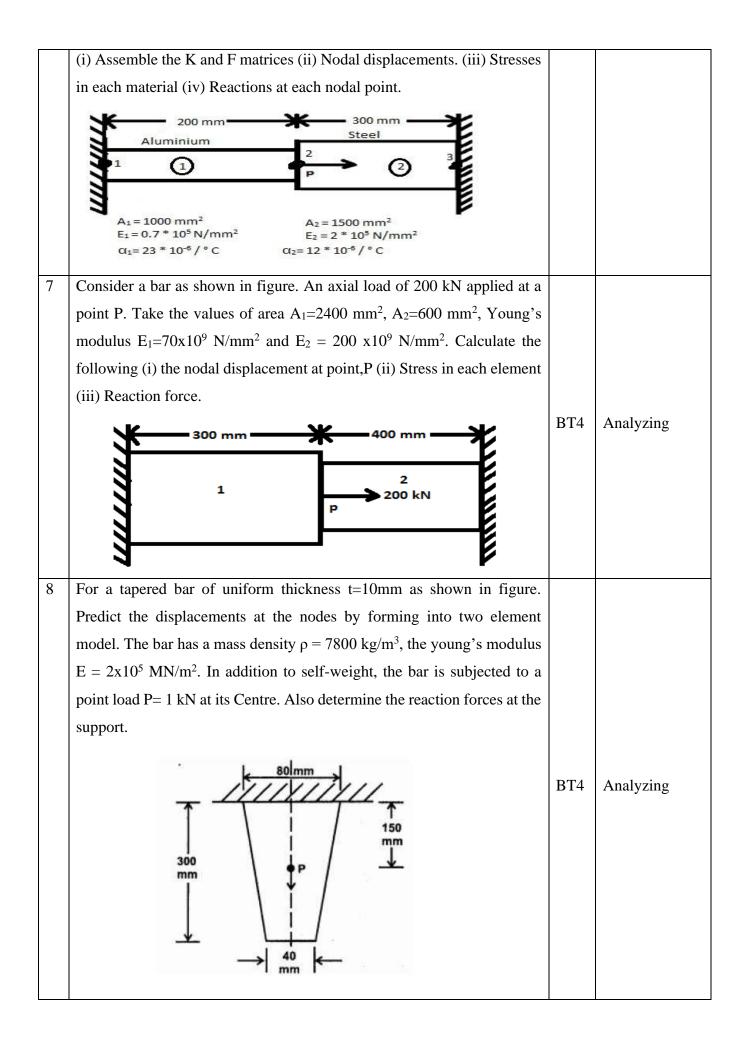
	PART B (13 MARKS)		
1	i. Explain the various methods of engineering analysis with suitable illustrations.(8)	BT1	Remembering
	ii. Describe the principle of stationary total potential energy. (5)	BT1	Remembering
2	Using collocation method, find the solution of given governing equation $\frac{d^2\Phi}{dX^2} + \Phi + X = 0, 0 \le X \le 1$ subject to the boundary conditions $\Phi(0) = \Phi(1) = 0$. Use $X = \frac{1}{4}$ and $\frac{1}{2}$ as the collocation points.	BT5	Evaluating
3	Explain the step by step procedure of FEA.	BT1	Remembering
4	Find the Eigen value and Eigen function of $y'' - 4\lambda y' + 4\lambda^2 y = 0$; with the boundary conditions are $y(0) = 0$, $y(1) + y'(1) = 0$.	BT5	Evaluating
5	The following differential equation is available for a physical phenomenon $AE \frac{d^2y}{dx^2} + q_o = 0$ with boundary conditions $\frac{dy}{dx} \Big _{x(l)=0}^{y(0)=0} $. Find the value of f(x) using the weighted residual method.	BT5	Evaluating
6	Explain the discretization process.	BT1	Remembering
7	The differential equation of a physical phenomenon is given by $\frac{d^2y}{dx^2} + 500x^2 = 0, 0 \le x \le 1$. By using the trial function $y = a_1(x - x^3) + a_2(x - x^5)$. Calculate the value of the parameters a_1 and a_2 by the following methods: (i) point collocation method (ii) Sub domain method (iii) Least square method (iv) Galerkin's method. The boundary conditions are $y(0) = 0$ and $y(1) = 0$.	BT5	Evaluating

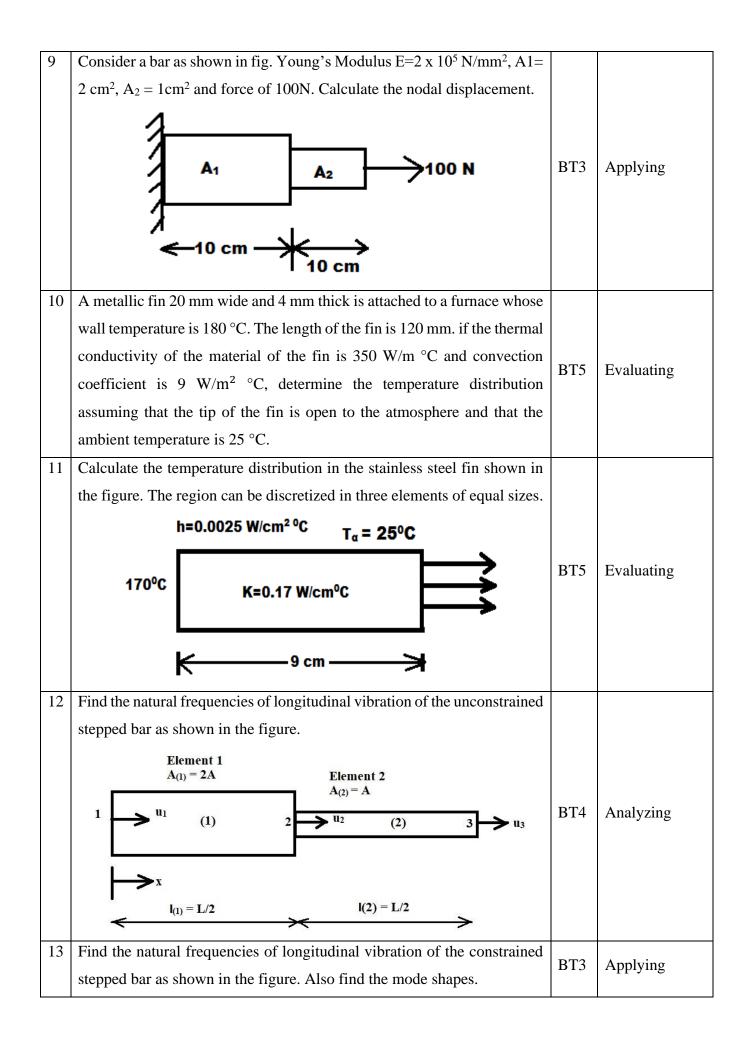
0	Columna following constitution and the second secon		1
8	Solve the following equation using a two parameter trial solution by:		
	(i)Point collocation method		
	(ii)Galerkin's method		
	$\frac{dy}{dx} + y = 0, \qquad 0 \le x \le 1, y(0) = 1$		
9	A simply supported beam (span L and flexural rigidity EI) carries two		
	equal concentrated loads at each of the quarter span points. Using	BT3	Applying
	Rayleigh-Ritz method determine the deflections under the two loads and	D 15	Applying
	the two end slopes.		
10	The Governing Equation for one dimensional heat transfer through a fin		
	of length <i>l</i> attached to a hot source as shown in fig is given by		
	$\frac{d}{dx}\left[-kA\frac{dT}{dx}\right] + hp(T-T\infty) = 0$ $T_{to} = 20^{\circ}C$		
	$\frac{dx}{dx} \begin{bmatrix} -kT \\ dx \end{bmatrix} = T$ $T_{co} = 20^{\circ}C$ $\frac{k}{dx} = 3W/cm^{\circ}C h = 0.11W/cm^{\circ}C$		
	$k = 3W/cm^{\circ}C h = 0.1W/cm^{\circ}C$	D T 2	
		BT3	Applying
	If the free end of the fin is insulated, give the boundary conditions and		
	determine using the Collocation technique the temperature distribution in		
	the fin. Report the temperature at the free end.		
11	For the tapered bar shown in figure subjected to its own self weight,		
	determine the deflection at the free end using Ritz technique. Assume		
	E=200 GPa and ρ =77 kN/m ³ .		
12	100 mm 1000 mm 40 * 40 sq 100 * 100 sq	BT3	Applying
12	For the differential equation $-\frac{d}{dx}\left[(1+x)\frac{dy}{dx}\right] = 0$ for 0 <x<1 td="" the<="" with=""><td></td><td></td></x<1>		
	boundary conditions y (0)=0 and y (1) = 1, obtain an approximation	BT5	Evaluating
	solution using Rayleigh-Ritz method.		
			l

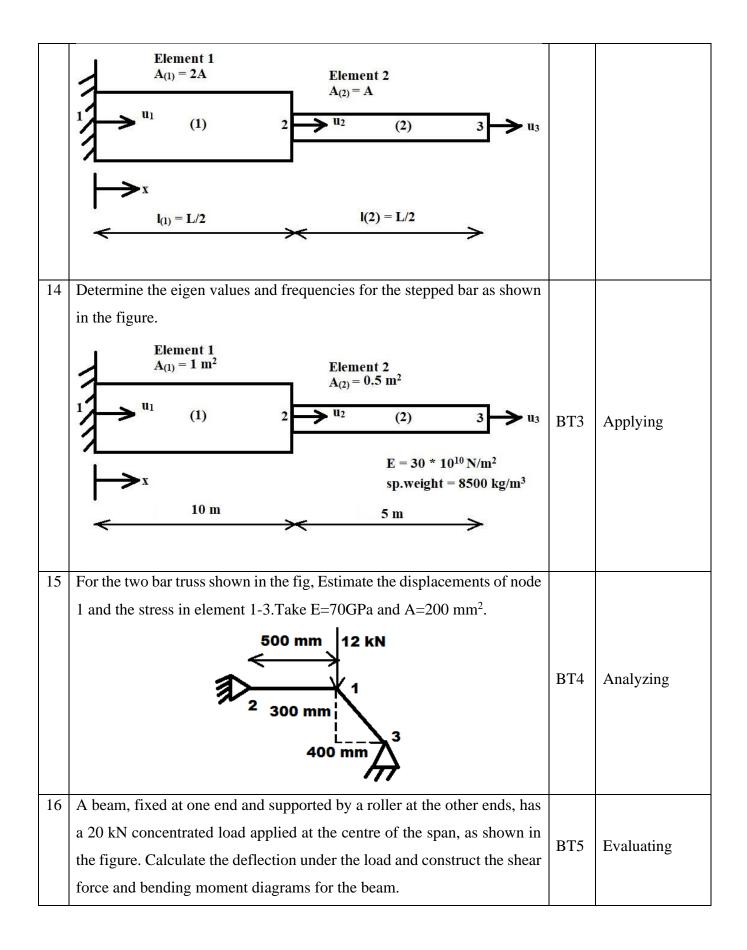
13	(i) Find the solution of the initial value problem.		
	y' + y = 0; y(3) = 2. (5)	BT4	Analyzing
	(ii) Find a solution of the initial value problem $\frac{d^2y}{dx^2} + \frac{dy}{dx} - 2y = 0$, boundary conditions y(0) = 2, y'(0) =5. (8)	BT4	Analyzing
1.4			
14	The governing differential equation for the long cylinder of radius R with heat generation q_0 is given by $\frac{d^2T}{dr^2} + \frac{1}{r}\frac{dT}{dr} + \frac{q_0}{k} = 0$. The boundary conditions are T(R) = T _w , $q_0\pi R^2 L = (-k) (2 \pi R L)\frac{dT}{dr} r = R$. Find the temperature distribution T as a function of radial location r.	BT5	Evaluating
15	Solve the ordinary differential equation $d^2y/dx^2 + 10 x^2 = 0$, $0 \le x \le 1$ with		
	boundary conditions as $y(0) = 0$ and $y(1) = 0$ using the Galerkin's method	BT3	Applying
	with the trial function $No(x) = 0$; $N1(x) = x (1-x^2)$.		
16	Solve the differential equation for a physical problem which is expressed		
	as $d^2y/dx^2 + 50 = 0$, $0 \le x \le 10$ with the boundary conditions as $y(0) = 0$ and $y(10) = 0$ using the trial function $y = a_1x(10-x)$ find the value of the parameters a_1 by the following methods listed below (i) Point collocation	BT3	Applying
	method (ii) Sub domain collocation method (iii) Least squares method and (iv) Galerkin method.		
17	Find the solution of the boundary value problem $y'' + 4y = 0$ with $y\left(\frac{\pi}{8}\right) = 0, y\left(\frac{\pi}{6}\right) = 1.$	BT4	Analyzing
18	Find the approximate deflection of a simply supported beam under a uniformly distributed load 'P' throughout its span. By applying Galerking and Least Square Residual Method	BT4	Analyzing

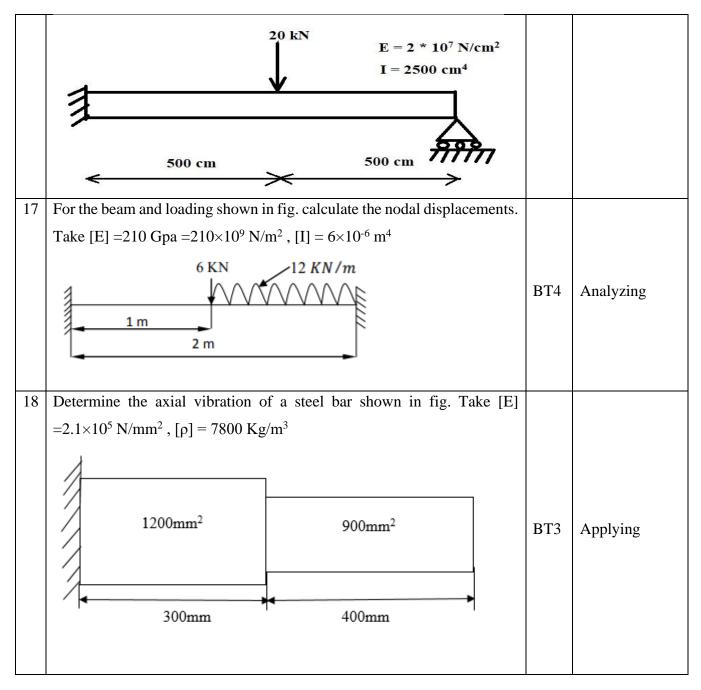
	PART C (15 Marks)		
1	Find the Eigen value and Eigen function of $y'' - 4\lambda y' + 4\lambda^2 y = 0$; with the boundary conditions are $y'(1) = 0$, $y(2) + 2y'(2) = 0$.	BT5	Evaluating
2	A bar of uniform cross-section is fixed at one end and left free at the other end and it is subjected to a uniform axial load F as shown in the figure. Calculate the displacement and stress using Rayleigh-Ritz procedure with two term polynomial function. Also compare the solution with the exact values.	BT4	Analyzing

UNIT II : ONE-DIMENSIONAL PROBLEMS

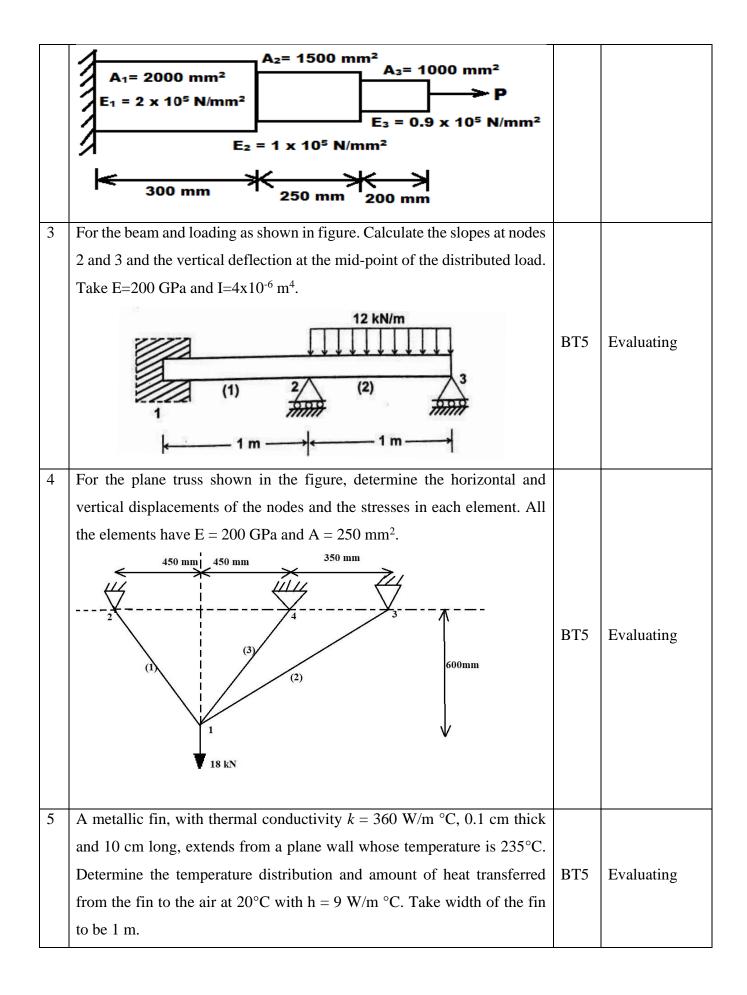

One Dimensional Second Order Equations – Discretization – Element types- Linear and Higher order Elements – Derivation of Shape functions and Stiffness matrices and force vectors- Assembly of Matrices - Solution of problems from solid mechanics and heat transfer. Longitudinal vibration frequencies and mode shapes. Fourth Order Beam Equation –Transverse deflections and Natural frequencies of beams


PART A (2 Marks)

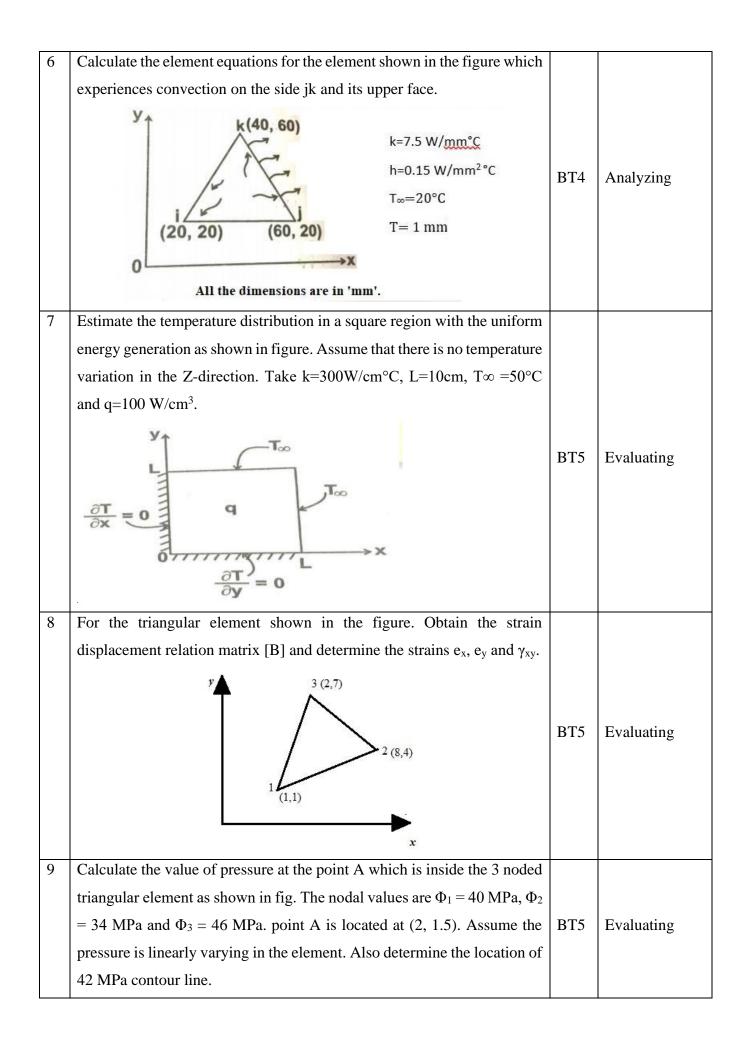

1	Deduce the stiffness matrix for a 1D two noded linear element.	BT1	Remembering
2	Define shape function.	BT1	Remembering
3	List out the stiffness matrix properties.	BT2	Understanding
4	Write the expression for shape function of a two node line element.	BT1	Remembering
5	Mention the characteristics of shape functions.	BT2	Understanding
6	Reframe a bar of varying cross section into a stepped bar for idealization in finite element method.	BT5	Evaluating
7	Distinguish between global and local coordinate.	BT4	Analyzing
8	Define natural coordinate system.	BT1	Remembering
9	Compare primary nodes and secondary nodes.	BT4	Analyzing
10	Define Lumped mass matrix.	BT1	Remembering
11	What are the types of problems consider as one dimensional problem?	BT4	Analyzing
12	Express the element stiffness matrix of a truss element.	BT2	Understanding
13	How do you calculate the size of the global stiffness matrix?	BT3	Applying
14	Interpret the types of loads acting on a body.	BT2	Understanding
15	Give the shape function equation for a 1D quadratic bar element.	BT1	Remembering
16	Summarize the types of dynamic analysis problems.	BT2	Understanding
17	Define mode superposition technique.	BT1	Remembering
18	Calculate the mass matrix for a 1D linear bar element whose density is 7800 kg/m^3 , cross sectional area of 1 m ² and element length of 10 m.	BT5	Evaluating
19	Write the expression of governing equation for free axial vibration of rod and transverse vibration of beam.	BT1	Remembering
20	Write the expression of governing equation for transverse vibration of beam.	BT1	Remembering
21	State the assumptions used in the solving the truss problems.	BT2	Understanding
22	Define the transverse vibration.	BT1	Remembering

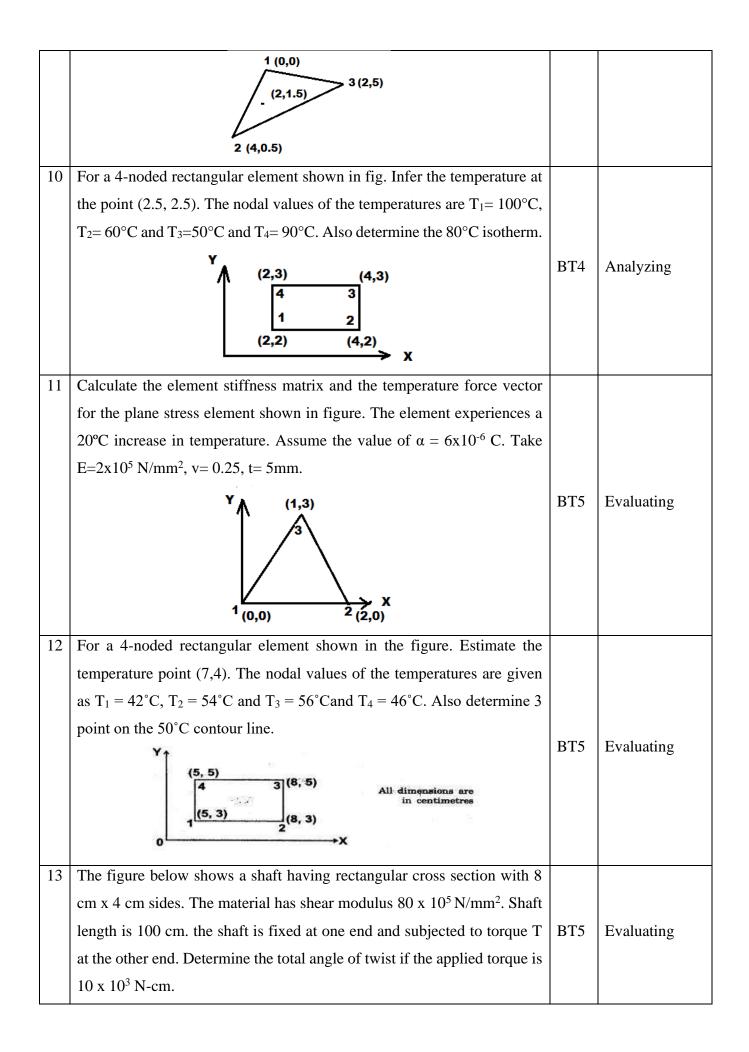

23	List two applications of transverse vibration.	BT3	Applying
24	Define the longitudinal vibration.	BT1	Remembering
25	Interpret the methods for solving transient vibration problems.	BT2	Understanding

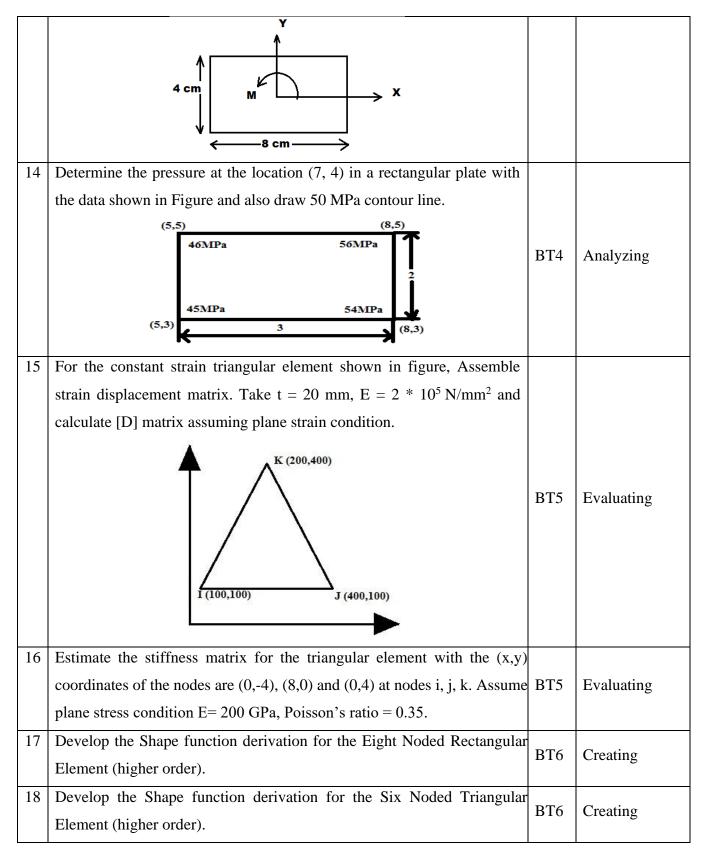
	PART B (13 MARKS)		
1	Formulate the shape function for One-Dimensional Quadratic bar element.	BT6	Creating
2	A steel bar of length 800 mm is subjected to an axial load of 3 kN as shown in fig. Estimate the nodal displacement of the bar and load vectors. Take A=400 mm ² and E= 2 x 10 ⁵ N/mm ² .Discretize into 2 elements.	BT4	Analyzing
3	Formulate the stiffness matrix for One-Dimensional Quadratic bar element.	BT6	Creating
4	Axial load of 500N is applied to a stepped shaft, at the interface of two bars. The ends are fixed. Calculate the nodal displacement and stress when the element is subjected to all in temperature of 100°C. Take $E_1 =$ 30 x10 ³ N/mm ² &E ₂ = 200 x 10 ³ N/mm ² , A ₁ =900 mm ² & A ₂ = 1200mm ² , $\alpha_1 = 23x10-6$ /°C & $\alpha_2 = 11.7x10-6$ /°C, L ₁ =200mm & L ₂ =300mm.	BT4	Analyzing
5	For the bar element as shown in the figure. Calculate the nodal displacements and elemental stresses. Take $E= 2.1 \times 10^5 \text{N/mm}^2$ and load @ node $2 = 400 \text{ kN}$. 300 mm² 600 mm² 300 	BT3	Applying
6	An axial load of $4 \ge 10^5$ N is applied at 30° C to the rod as shown in the figure. The temperature is then raised to 60° C, Calculate the following:	BT5	Evaluating



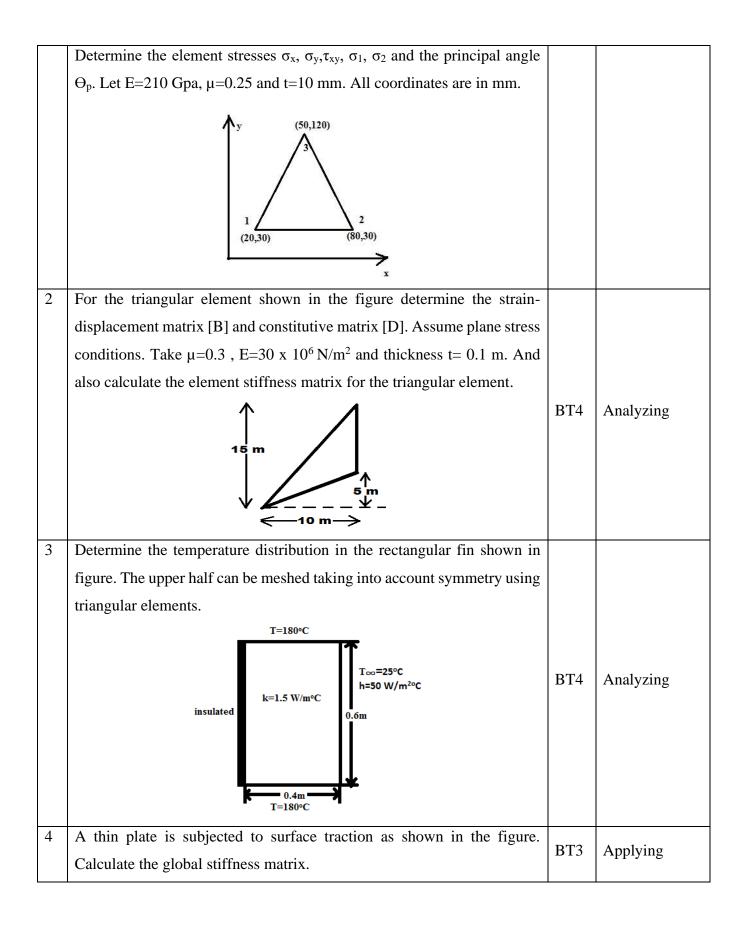
	PART C (15 MARKS)		
1	Develop the Shape function, Stiffness matrix and force vector for one dimensional linear element.	BT6	Creating
2	Consider the bar shown in figure axial force $P = 30$ kN is applied as shown. Determine the nodal displacement, stresses in each element and reaction forces.	BT5	Evaluating

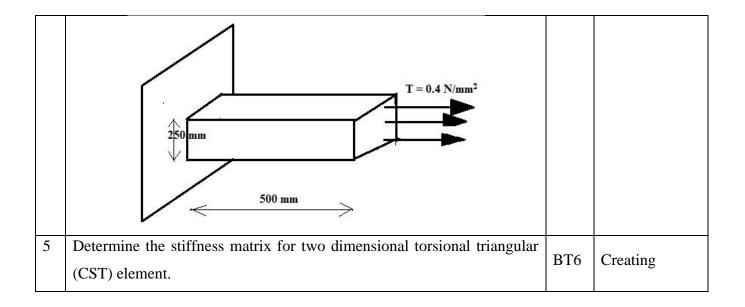

UNIT III : TWO DIMENSIONAL SCALAR VARIABLE PROBLEMS


Second Order 2D Equations involving Scalar Variable Functions – Variational formulation – Finite Element formulation – Triangular elements – Shape functions and element matrices and vectors. Application to Field Problems - Thermal problems – Torsion of Non circular shafts –Quadrilateral elements – Higher Order Element.

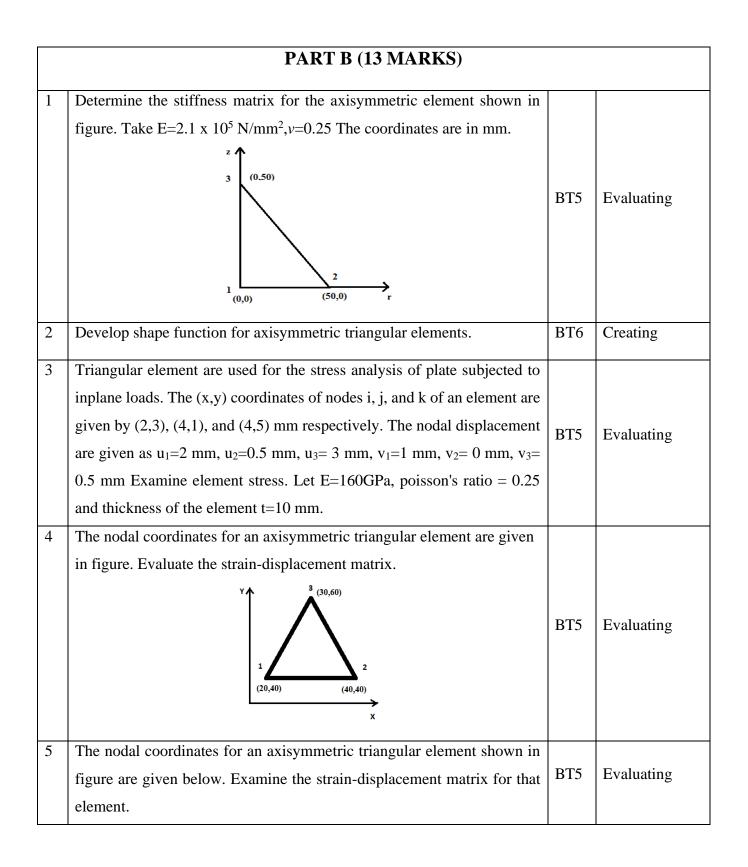

	PART A (2 Marks)				
1	Write the displacement function equation for CST element.	BT1	Remembering		
2	How will you modify a three-dimensional problem to a Two-dimensional problem?	BT2	Understanding		
3	List any two properties of shape functions for 2 D triangular element.	BT2	Understanding		
4	Define steady state heat transfer.	BT1	Remembering		
5	Define two-dimensional scalar variable problem.	BT1	Remembering		
6	State the assumptions in the theory of pure torsion.	BT2	Understanding		
7	Define torsion.	BT1	Remembering		
8	Distinguish between stream line and path line.	BT4	Analyzing		
9	Formulate the (B) matrix for CST element.	BT1	Remembering		
10	Express the interpolation function of a field variable for three-node triangular element.	BT1	Remembering		
11	Define path line.	BT1	Remembering		
12	Illustrate the shape function of a CST element.	BT1	Remembering		
13	Distinguish between scalar and vector variable problems in 2D.	BT4	Analyzing		
14	List two examples of plane stress analysis probelms.	BT2	Understanding		
15	Write down the shape functions for a 4 noded quadrilateral element.	BT1	Remembering		
16	Estimate the area of a CST element whose coordinates are $A(0,0)$, $B(50,0)$ and $C(25,50)$.	BT5	Evaluating		
17	Mention two examples of plane stress analysis problems.	BT2	Understanding		
18	Write the expression for element force vector equation for four noded quadrilateral element.	BT1	Remembering		
19	Define geometric Isotropy.	BT1	Remembering		
20	Mention two examples of plane strain analysis problems.	BT2	Understanding		
21	Define Isoperimetric elements with suitable examples.	BT1	Remembering		
22	Write the strain displacement relation for CST element.	BT1	Remembering		

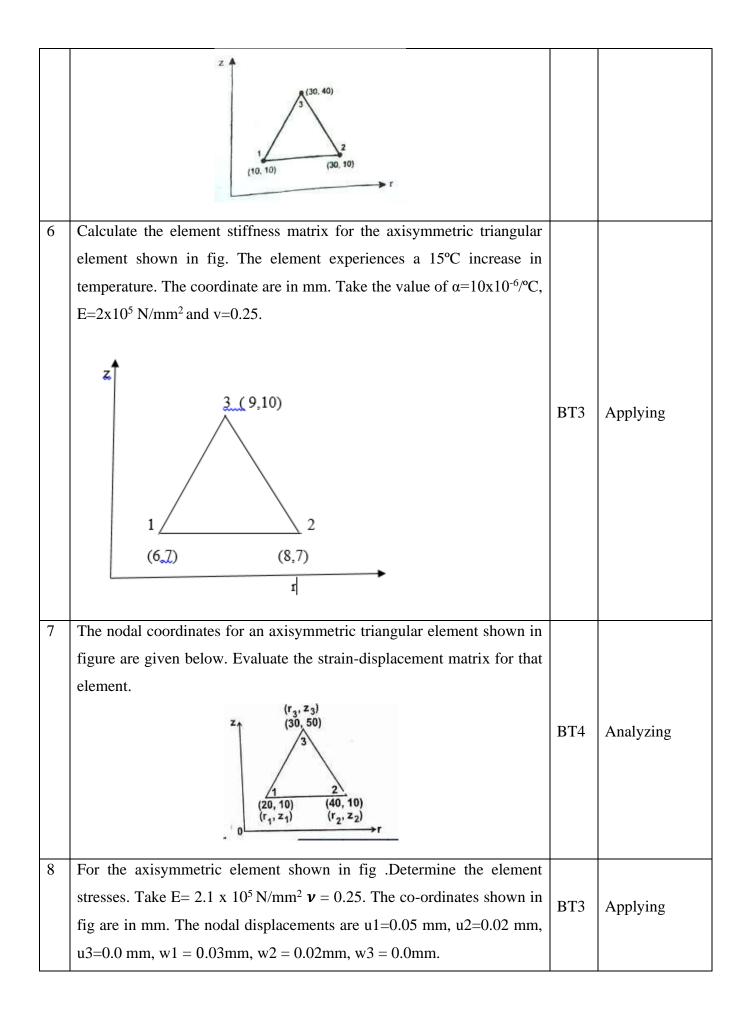
23	Why higher order elements are preferred?	BT4	Analyzing
24	List out the two theories for calculating the shear stress in a solid non circular shaft subjected to torsion.	BT2	Understanding
25	Write down the shape functions associated with three noded linear triangular element and plot the variation of the same.	BT1	Remembering

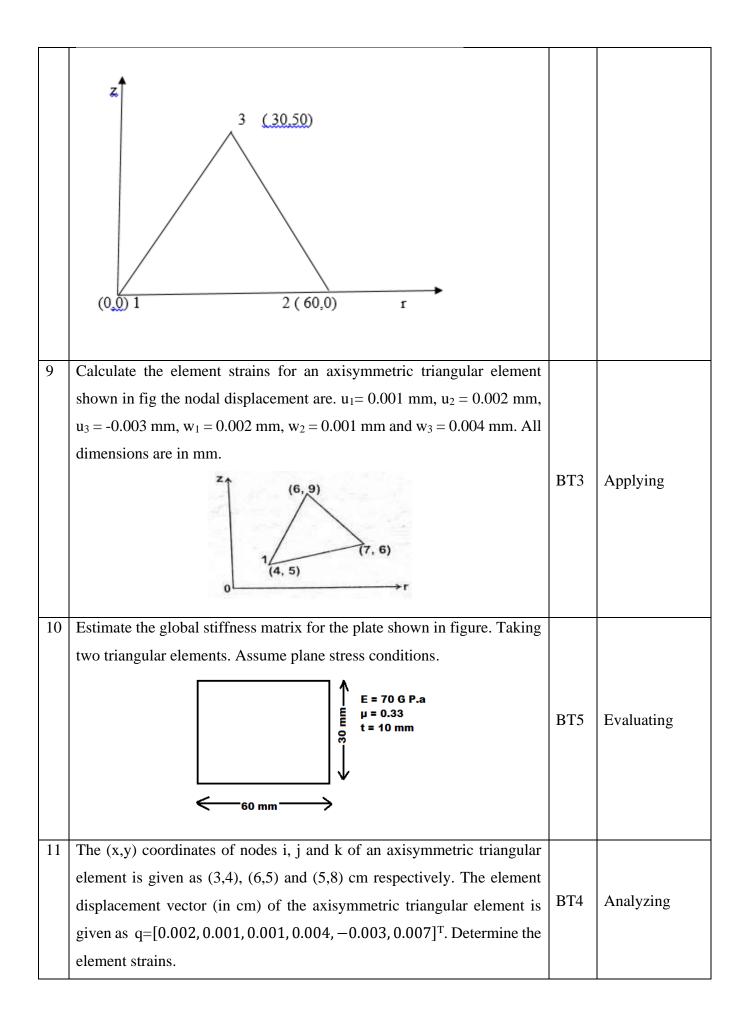

	PART B (13 MARKS)		
1	The nodal coordinates of the triangular element are shown in the figure. At the interior point P, the x coordinate is 3.5 and N ₁ = 0.4, calculate N ₂ , N ₃ and the y coordinate at the point P. Also Estimate [B] matrix. $\begin{array}{c} y \\ 1(1,2) \\ 2(4,3) \\ x \end{array}$	BT5	Evaluating
2	Determine the shape functions for a constant strain triangular (CST) element.	BT6	Creating
3	Determine the strain – displacement matrix [B] for a constant strain triangular (CST) element.	BT6	Creating
4	Determine the stiffness matrix for a constant strain triangular (CST) element.	BT6	Creating
5	Compute the element matrices and vectors for the element shown in the Figure when the edges 2-3 and 1-3 experience convection heat loss. $ \begin{array}{c} $	BT5	Evaluating



	PART C (15 MARKS)			
F	1	For the plane stress element shown in the figure, the nodal displacements	DT5	Evaluating
		are $u_1=2$ mm, $v_1=1$ mm, $u_2=0.5$ mm, $v_2=0$ mm, $u_3=3$ mm and $v_3=1$ mm.	BT5	Evaluating

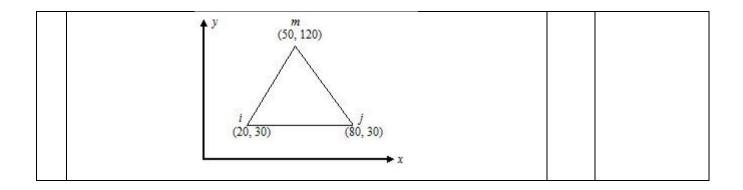





UNIT IV : TWO DIMENSIONAL VECTOR VARIABLE PROBLEMS

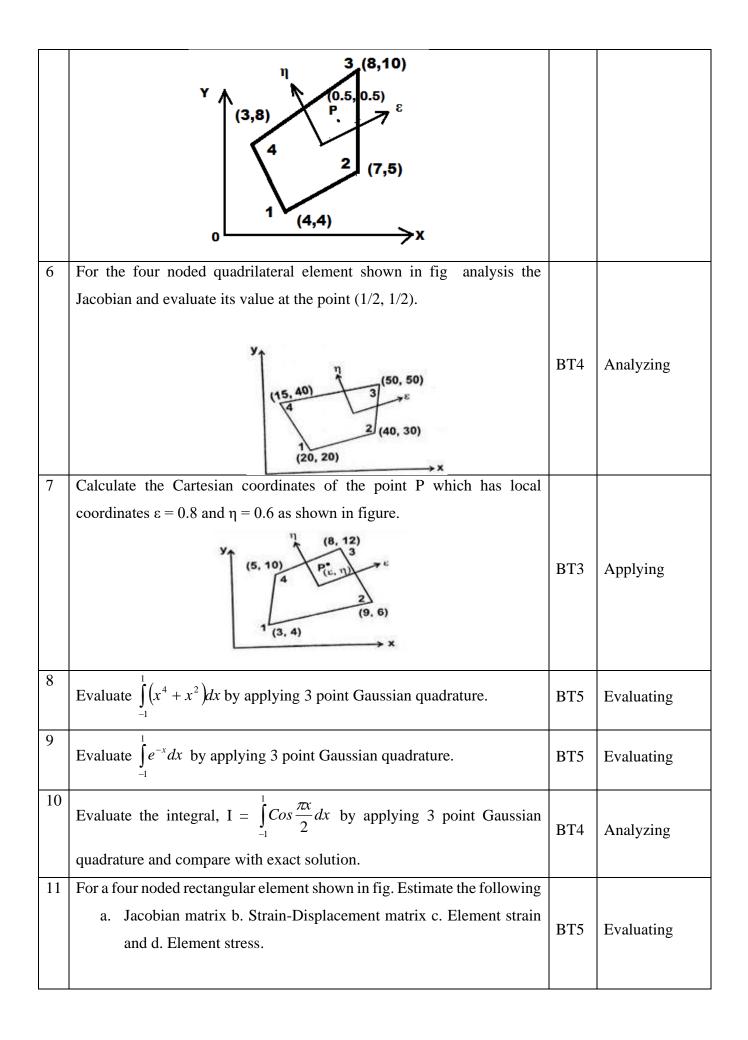
Equations of elasticity – Plane stress, plane strain and axisymmetric problems – Body forces and temperature effects – Stress calculations - Plate and shell elements

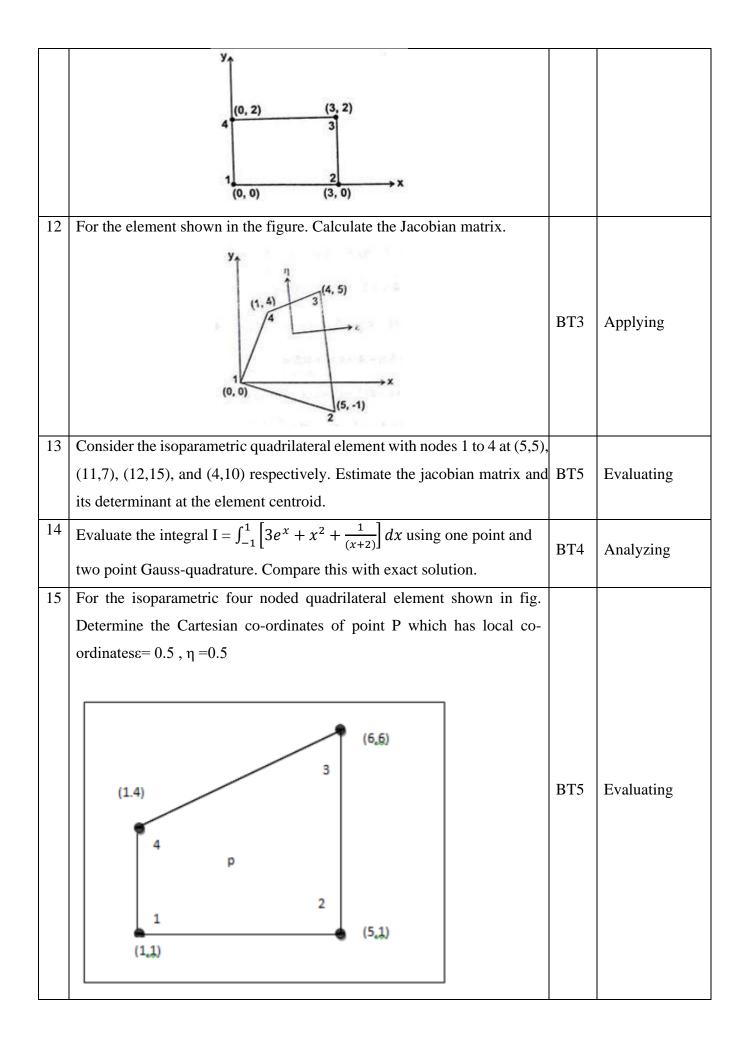
	PART A (2 Marks)		
1	Write the stress-strain relationship matrix for an axisymmetric triangular element.	BT1	Remembering
2	Classify the types of shell element.	BT2	Understanding
3	Define 2D vector variable problems.	BT1	Remembering
4	List any two elasticity equations.	BT2	Understanding
5	Define shell element.	BT1	Remembering
6	Define axisymmetric formulation.	BT1	Remembering
7	Mention the difference between the use of linear triangular elements and bilinear rectangular elements for a 2D domain.	BT2	Understanding
8	Write the strain displacement matrix for a 3 noded triangular element.	BT1	Remembering
9	State the assumptions used in thick plate element.	BT2	Understanding
10	Distinguish between plate and shell elements.	BT4	Analyzing
11	Define plate element.	BT1	Remembering
12	Write the expression for shape functions for axisymmetric triangular elements.	BT1	Remembering
13	Specify the machine components related with axisymmetric elements.	BT2	Understanding
14	Write the expression for strain-displacement matrix for axisymmetric element.	BT1	Remembering
15	Write the Stress-Strain displacement matrix for axisymmetric solid.	BT1	Remembering
16	Deduce the Stiffness matrix for axisymmetric solid.	BT1	Remembering
17	State the conditions to be satisfied in order to use axisymmetric elements.	BT2	Understanding
18	State the assumptions used in thin plate element.	BT2	Understanding
19	Define a plane strain.	BT1	Remembering
20	Define a plane stress problem.	BT1	Remembering
21	Define super parametric element	BT1	Remembering
22	Define sub parametric element	BT1	Remembering
23	What are the forces acting on shell elements? Give its applications	BT4	Analyzing
24	Write the governing equation for 2D bending of plates.	BT1	Remembering
25	Differentiate material non linearity and geometric non linearity.	BT4	Analyzing



12	A tin plate of thickness 5mm is subjected to an axial loading as shown in the figure. It is divided into two triangular elements by dividing diagonally. Determine the Strain displacement matrix [B], load vector and the constitutive matrix. How will you derive the stiffness matrix? (Need not be determined). What will be the size of the assembled stiffness matrix? What are the boundary conditions? $E=2x10^7 \text{ N/cm}^2 \mu=0.3$.	BT4	Analyzing
13	Compute the strain displacement matrix for the axisymmetric triangular element shown in the figure. Also determine the element strains. The nodal dsiplacements are found out as $u_1=0.002$, $w_1=0.001$, $u_2=0.001$, $w_2=-0.004$, $u_3=-0.003$ and $w_3=0.007$. All dimensions are in millimeters.	BT5	Evaluating
14	Develop Strain-Displacement matrix for axisymmetric triangular element.	BT6	Creating
15	Derive the Finite element equation for triangular plate bending element with 9 degrees of freedom.	BT6	Creating
16	Develop Stress-Strain relationship matrix for axisymmetric triangular element	BT6	Creating
17	The nodel co-ordinates for an axisymmetric triangular element are given below: $r_1=15$ mm, $z_1=15$ mm, $r_2=25$ mm, $z_2=15$ mm, $r_3=35$ mm, $z_3=50$ mm. Determine [B] matrix for that element.	BT5	Evaluating
18	Define shell element and explain the types of shell element.	BT2	Understanding

	PART C (15 MARKS)				
1	Develop the four basic sets of elasticity equation.	BT6	Creating		
2	A long hollow cylinder of inside diameter 100 mm and outside diameter 120 mm is firmly fitted in a hole of another rigid cylinder over its full length as shown in the figure. The cylinder is then subjected to an internal pressure of 2 MPa. By using two element on the 10 mm length shown in the figure. Calculate the displacements at the inner radius. Take $E = 210$ GPa, $\mu = 0.3$.	BT5	Evaluating		
3	Triangular element are used for the stress analysis of plate subjected to in plane loads. The (x,y) coordinates of nodes 1, 2, and 3 of an element are given by (5,5), (25,5), and (15,15) mm respectively. The nodal displacement are given as : $u1=0.005$ mm, $u2=0.002$ mm, $u3=0.0$ mm, $u4=0.0$ mm, $u5=0.005$ mm, $u6=0.0$ mm. Evaluate element stress. Let E= 200 GPa, poisson's ratio = 0.3 and use unit thickness of the element.	BT5	Evaluating		
4	For an axisymmetric triangular elements as shown in fig. Evaluate the stiffness matrix. Take modulus of elasticity $E = 210$ GPa, Poisson's ratio $= 0.25$. the coordinates are given in millimeters.	BT5	Evaluating		
5	Evaluate the temperature force vector for the axisymmetric triangular element shown in fig. The element experiences a 1515°C increase in temperature. The coordinate are in mm. Take the value of α =10x10 ⁻⁶ /°C, E=2x10 ⁵ N/mm ² and v=0.25.	BT5	Evaluating		


UNIT V : ISOPARAMETRIC FORMULATION


Natural co-ordinate systems – Isoparametric elements – Shape functions for isoparametric elements– One and two dimensions – Serendipity elements – Numerical integration and application to plane stress problems - Matrix solution techniques – Solutions Techniques to Dynamic problems – Introduction to Analysis Software.

	PART A (2 Marks)				
1	Illustrate the purpose of isoparameteric element.	BT2	Understanding		
2	List the types of non-linearity.	BT2	Understanding		
3	Define isoparametric formulation.	BT1	Remembering		
4	Give examples of non-essential boundary conditions.	BT2	Understanding		
5	Give the shape functions for a four-noded linear quadrilateral element in natural coordinates.	BT2	Understanding		
6	Determine the value of $\int_0^1 L_1^3 dx$.	BT5	Evaluating		
7	Determine the value of $\int_0^1 L_1 L_2 dx$.	BT5	Evaluating		
8	Give examples of essential boundary conditions.	BT2	Understanding		
9	Name any 4 FEA software.	BT1	Remembering		
10	Define Gauss-quadrature method.	BT1	Remembering		
11	Differentiate between implicitly and explicitly methods of numerical integration.	BT4	Analyzing		
12	Differentiate between geometric and material non-linearity.	BT4	Analyzing		
13	Interpret the methods used for solving transient vibration problems.	BT2	Understanding		
14	Define isoparametric element with suitable examples.	BT1	Remembering		
15	Write the expression for Stress- displacement matrix for Four noded quadrilateral element using natural coordinates.	BT2	Understanding		
16	Mention the difference between natural coordinate and simple natural coordinate.	BT4	Analyzing		
17	Point out the significance of jacobian matrix.	BT2	Understanding		
18	Define jacobian transformation.	BT1	Remembering		
19	List the advantages of Gauss quadrature method.	BT2	Understanding		
20	State any two differences between direct and iterative methods for solving system of equations.	BT4	Analyzing		
21	Write down the element force vector equation for four noded quadrilateral element.	BT2	Understanding		

22	Write down the Jacobian matrix for four noded quadrilateral element.	BT2	Understanding
23	Define resonance.	BT1	Remembering
24	Define Dynamic Analysis.	BT1	Remembering
25	State the principle of superposition.	BT4	Analyzing

	PART B (13 MARKS)				
1	For the four noded element shown in the figure. Determine the Jacobian matrix and evaluate its value at the point (0,0). $ \begin{array}{c} Y \\ $	BT5	Evaluating		
2	Evaluate the Jacobian matrix for the isoparametric quadrilateral element shown in the figure. $ \begin{array}{c} $	BT3	Applying		
3	Develop the shape function for 4 noded isoparametric quadrilateral element.	BT6	Creating		
4	Develop the strain displacement matrix, stress-strain matrix and stiffness matrix for an isoparametric quadrilateral element.	BT6	Creating		
5	Evaluate the Jacobian matrix at the local coordinates $\varepsilon = \eta = 0.5$ for the linear quadrilateral element with its global coordinates as shown in figure. Also evaluate the strain-displacement matrix.	BT5	Evaluating		

16	Evaluate the integral I = $\int_{-1}^{1} \left[e^x + x^2 + \frac{1}{(x+7)} \right] dx$ using Gaussian		
	integration with one, ,two , three integration points and compare with	BT5	Evaluating
	exact solution		
17	Explain the isoperimetric, super parametric and sub parametric elements.	BT2	Understanding
18	Explain the FEA software packages.	BT2	Understanding

1	PART C (15 MARKS)				
1	Evaluate the integral by two point Gaussian Quadrature, $I = \int_{-1}^{1} \int_{-1}^{1} (2x^{2} + 3xy + 4y^{2}) dx dy$ Gauss points are +0.57735 and -0.57735 each of weight 1.0000.	BT5	Evaluating		
2	i) Derive the shape function for all the corner nodes of a nine noded quadrilateral element. ii) Using Gauss quadrature, evaluate the following integral using 1,2 and 3 point integration. $\int_{-1}^{1} \frac{SinS}{S(1-S^2)} ds$	BT5	Evaluating		
3	For the four noded element shown in Figure, (i) Determine the Jacobian and evaluate its value at the point $(1/3, 1/3)$ (ii) Using energy approach derive the stiffness matrix for a 1D linear isoparametric element.	BT5	Evaluating		

4	For the isoparametric quadrilateral element shown in figure, the Cartesian coordinates of point 'P', are (6,4). The loads 10 kN and 12 kN are acting in x and y direction on that point P. Evaluate the nodal forces. $ \begin{array}{c} $	BT5	Evaluating
5	Evaluate the integral I = $\int_{-1}^{1} \left[e^x + x^3 + \frac{1}{(x+9)} \right] dx$ using Gaussian integration with one, two, three integration points and compare with exact solution	BT5	Evaluating