

SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution) SRM Nagar, Kattankulathur – 603 203

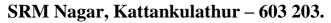
DEPARTMENT OF MEDICAL ELECTRONICS

QUESTION BANK

III Year- VI SEMESTER - MDE 1910602 – MEDICAL IMAGING TECHNIQUES

Regulation – 2019

Academic Year 2024 – 2025 (EVEN Semester)


Prepared by

Dr D Ravikumar, Asso . Professor – Dept. of Medical Electronics

SRM VALLIAMMAI ENGNIEERING COLLEGE

(An Autonomous Institution)

UNIT I – RADIOGRAPHY AND FLUOROSCOPY

Nature of X-rays- X-Ray absorption – Tissue contrast. X- Ray Equipment – X-Ray Tube, the collimator, Bucky Grid, Digital Radiography- discrete digital detectors, storage phosphor and film scanning, – Fluoroscopy – X- ray Image Intensifier -Digital Fluoroscopy. Angiography, cine Angiography. Digital subtraction Angiography, Mammography.

Q.No	Questions	CO	BT	Domain
			Level	
1	Define the phenomenon of projection in radiography.	CO1	BTL1	Remembering
2	Identify the most common imaging examination and mention its limitations	CO1	BTL1	Remembering
3	List the advantages of projection radiographic systems	CO1	BTL1	Remembering
4	State bremsstrahlung radiation with a neat diagram	CO1	BTL1	Remembering
5	What is characteristic radiation?	CO1	BTL1	Remembering
6	Mention the significance of Compton scattering	CO1	BTL1	Remembering
7	Tabulate the frequency range, wavelength, photon energies for soft, diagnostic x-rays and visible light	CO1	BTL1	Remembering
8	Define mathematically the EM radiation with energy equations	CO1	BTL1	Remembering
9	Enumerate the properties of x-rays	CO1	BTL1	Remembering
10	Point out the significance of units of X-rays	CO1	BTL2	Understanding
11	What is the importance of collimators?	CO1	BTL1	Remembering
12	Assess the importance of Bucky grids	CO1	BTL2	Understanding
13	Mention the various features of Compensation filters	CO1	BTL2	Understanding
14	Draw the schematic diagram of x-ray tube	CO1	BTL2	Understanding
15	Sketch the schematic diagram for different beam restrictors	CO1	BTL2	Understanding
16	Classify graphically the two different contrast agents	CO1	BTL2	Understanding
17	Outline the constructional details of intensifying screens	CO1	BTL2	Understanding
18	Point out the constructional details of x-ray image intensifiers (XRII)	CO1	BTL2	Understanding
19	Compare Radiography and Fluoroscopy	CO1	BTL2	Understanding

20	Write about the formation of latent image and the technique	used	CO1	BTL2	Understanding
21	to convert this image into digital form What are the specific structural characteristics of intensifying		CO 1	BTL 2	Understanding
22	screens?		CO 1	DET A	TT 1 4 1*
22	State the projection phenomena in radiography.		CO 1	BTL 2 BTL 2	Understanding
23	What is Angiography?		CO 1	BTL 2	Understanding
24	What is Digital subtraction Angiography (DSA)? PART B		CO 1	BILZ	Understanding
	PARI D				
1	(i) Explain the production of x-rays with detail	(9)	CO 1	BTL3	Applying
	description of construction of x-ray tubes				
	(ii) Contrast the x-ray spectra leaving the tube filter and body with a neat graph.	(4)			
2	Explain the following with diagram (i) Digital Subtraction Angiography (ii) Mammography	(7) (6)	CO 1	BTL4	Analyzing
3	Describes the various aspects of compensation filters and its types with a neat diagram.	(13)	CO1	BTL3	Applying
4	Examine the significance of the contrasting agents and plot the attenuation coefficients for different contrasting agents	(13)	CO1	BTL4	Analyzing
5	Classify different types of Grids with a neat labelled diagrams for a typical x-ray system	(13)	CO 1	BTL4	Analyzing
6	Illustrate the following with a neat diagram (i) Intensifying screens (ii) Radiographic cassettes	(5) (4)	CO 1	BTL3	Applying
	(iii) Radiographic cassettes (iii) Radiographic films	(4)			
7	Draw and explain the working of x-ray image intensifiers with a schematic diagram	(13)	CO 1	BTL3	Applying
8	Generalize the working of mammography system by formulating the importance of spatial resolution numerically to determine the breast cancer	(13)	CO 1	BTL3	Applying
9	(i) Analyse the working of Digital fluoroscopy system by pointing out theimportance of image formation.	(6)	CO 1	BTL4	Analyzing
	(ii) Also tabulate the general procedure in fluoroscopy and its application.	(7)			
10	Explain in detail the interaction of radiation with matter and derive the relation between absorbance and concentration with a neat diagram	(13)	CO1	BTL3	Applying
11	Describe in detail the construction and working of stationary anode x-ray tube	(13)	CO 1	BTL3	Applying
12	Describe in detail the significance of Airgaps, and Scanning Slits	(13)	CO 1	BTL3	Applying

13	Describe various steps involved to develop digital image from the latent form with a neat diagram of computed radiography cassette	(13)	CO 1	BTL3	Applying
14	Analyse the various filtration methods used in x-rays	(13)	CO 1	BTL4	Analyzing
15	Examine the several aspects of compensation filters and their classifications, accompanied with a clear illustration.	(13)	CO 1	BTL4	Analyzing
16	Draw the block diagram of X-Ray machine and explain the components.	(13)	CO 1	BTL3	Applying
17	Categorise several classifications of grids using clear and labelled graphics for a standard x-ray system.	(13)	CO 1	BTL 4	Analyzing
	PART C	I			
1	Evaluate the working of digital subtraction angiography system with a neat block diagram.	(15)	CO 1	BTL 4	Analyzing
2	Evaluate the automatic dose control system used in the x-ray image intensifiers with a neat block diagram	(15)	CO 1	BTL 4	Analyzing
3	Draw the schematic representation for developing a system for automatic exposure control	(15)	CO 1	BTL3	Applying
4	Assess various beam restrictors used in X-rays with neat diagrams	(15)	CO 1	BTL 3	Applying
5	Analyse the functionality of a digital subtraction angiography system using a clear and organised block diagram.	(15)	CO 1	BTL 4	Analyzing

UNIT II – COMPUTED TOMOGRAPHY

Principles of sectional imaging, Principles of computed Tomographic Imaging - Scan motions, X-ray sources.Influences of Images quality: Unsharpness- contrast - Image Noise-2-D image reconstruction techniques-Back projection and iterative.

Q.No	Questions	CO	BT	Domain
			Level	
1	Define 2-D Transform.	CO 2	BTL1	Remembering
2	What is spiral CT?	CO 2	BTL1	Remembering
3	What is a tomogram?	CO 2	BTL1	Remembering
4	Draw the geometry of the second generation CT machine.	CO 2	BTL2	Understanding
5	Sketch the geometry of the third generation CT machine.	CO 2	BTL2	Understanding
6	Illustrate the geometry of the fourth generation CT machine	CO 2	BTL2	Understanding
7	Define the axial cross section of an image	CO 2	BTL1	Remembering
8	Mention the significance of CT number	CO 2	BTL1	Remembering
9	Enumerate the advantages of first generation CT.	CO 2	BTL1	Remembering
10	Point out the design importance of the 5 G CT machine	CO 2	BTL1	Remembering

_			Т	1	
11	How the CT number is calculated in CT imaging?		CO 2	BTL2	Understanding
12	Assess the iterative reconstruction technique		CO 2	BTL1	Remembering
13	Summarize the problems of image quality in CT		CO 2	BTL2	Understanding
14	Draw the gantry geometry in CT		CO 2	BTL2	Understanding
15	Tabulate the schematic of three detectors used in CT		CO 2	BTL2	Understanding
16	Classify the types of reconstruction techniques used in CT		CO 2	BTL2	Understanding
17	Mention the significance of slip rings		CO 2	BTL1	Remembering
18	Sketch the constructional details of X-Ray Image Intens (XRII)?	ifiers	CO 2	BTL2	Understanding
19	List different artefacts affecting the image quality in CT		CO 2	BTL1	Remembering
20	What is the importance of patient dose in CT machines?		CO 2	BTL1	Remembering
21	What are the characteristics needed for CT detectors?.		CO 2	BTL1	Remembering
22	Why slip rings are required?		CO 2	BTL1	Remembering
23	What does an image's axial cross section mean?		CO 2	BTL1	Remembering
24	List the several artefacts that impact the image quality in CT s	cans.	CO 2	BTL2	Understanding
	PART B				
			~ ·		
1	(i) Explain the construction and working principle	(7)	CO 2	BTL3	Applying
	of X-Ray source in CT machines				
	(ii) Explain the construction and working principle of collimators in CT machines	(6)			
2	Assess different features of Dual Energy Computed	(13)	CO 2	BTL4	Analyzing
	Tomography.				
3	Describes the various aspects CT processing systems	(13)	CO 2	BTL3	Applying
4	Examine the significance of a viewing system for CT with a neat block diagram	(13)	CO 2	BTL4	Analyzing
5	Classify and tabulate various features of CT	(13)	CO 2	BTL4	Analyzing
	systems across different generations				
6	Illustrate the following with a neat diagram		CO 2	BTL3	Applying
	(i) Gantry	(5)			
	(ii) Slip rings	(4)			
	(iii) Patient table	(4)			
		(4.5)	go :	DET -	
7	Draw and explain the working principle of CT machine	(13)	CO 2	BTL3	Applying
	with a schematic diagram				
8	Generalize the various procedures involved iterative	(13)	CO 2	BTL4	Analyzing
	reconstruction techniques used in CT				
9	Analyse the various steps involved back projection	(13)	CO 2	BTL4	Analyzing
	algorithm used in CT	(13)			1 mary zmg
10	Explain in detail the various types of noises in a CT Image	(13)	CO 2	BTL4	Analyzing
11	Explain in detail the various types of artefacts prone to occur in a CT machine	(13)	CO 2	BTL4	Analyzing
12	Describe in detail the significance of Contrast scale and window width	(13)	CO 2	BTL3	Applying
	1	ı	1	1	

13	Describe various types of CT detectors used in a CT machine with a neat schematic representation	(13)	CO 2	BTL3	Applying
14	Analyse the various components of a ultrafast electron beam CT scanner withneat schematic diagram	(13)	CO 2	BTL4	Analyzing
15	Illustrate and Describes the operational mechanism of a CT machine using a schematic diagram.	(13)	CO 2	BTL3	Applying
16	Examine several characteristics of Dual Energy Computed Tomography.	(13)	CO 2	BTL3	Applying
17	Describes the different types of CT detectors utilized in a CT scanner using a clear schematic illustration.	(13)	CO 2	BTL3	Applying
	PART C				
1	Evaluate the CT instrumentation for the first, second, third and fourth generation CT machines	(15)	CO 2	BTL4	Analyzing
2	Formulate and prepare various reconstruction methods used in CT machines	(15)	CO 2	BTL4	Analyzing
3	Explain the techniques, advantages and disadvantages of different types of CT Scanner.	(15)	CO 2	BTL4	Analyzing
4	Describe the following components in a CT machine (i) Slip rings (ii) X-ray source (iii) CT detectors	(5) (5) (5)	CO 2	BTL3	Applying
5	Explain the various reconstruction techniques employed in CT equipment.		CO 2	BTL3	Applying

UNIT III - MAGNETIC RESONANCE IMAGING AND SPECTROSCOPY

Fundamentals of magnetic resonance- overview - Relaxation processes T1 and T2. Block Diagram approach of MRI system- system Magnet (Permanent, Electromagnet and Super conductors), generations of gradient magnetic fields, Radio Frequency coils (sending and receiving), shim coils, contrast agents- tissue contrast in MRI- MR angiography, MR spectroscopy, Fmri

Q.No	Questions	CO	BT	Domain
			Level	
1	Define the principle of MRI	CO 3	BTL1	Remembering
2	Define the principle of FMRI.	CO 3	BTL1	Remembering
3	What are the clinical relevance of MRI?	CO 3	BTL1	Remembering
4	Mention how stroke can be viewed using MRI system	CO 3	BTL1	Remembering
5	Illustrate the capability of MR image	CO 3	BTL2	Understanding
6	Illustrate the significance of Bloch equation.	CO 3	BTL2	Understanding
7	Define the phenomenon of nuclear magnetism	CO 3	BTL1	Remembering
8	Mention the significance of gyro magnetism.	CO 3	BTL1	Remembering
9	Define the concept of precession used in MRI	CO 3	BTL1	Remembering

10	Tabulate the various gyro metric ratios		CO 3	BTL2	Understanding
11	Illustrate the importance of Larmor frequency		CO 3	BTL2	Understanding
12	Assess the importance of magnetic susceptibility		CO 3	BTL2	Understanding
13	What is the principle of reciprocity?		CO 3	BTL1	Remembering
14	Formulate the transverse component of magnetization		CO 3	BTL1	Remembering
15	Formulate the longitudinal component of magnetization		CO 3	BTL1	Remembering
16	What are the factors that has direct implication on Bloch equa	ations?	CO 3	BTL1	Remembering
17	Point out the significance of magnetic susceptibility		CO 3	BTL1	Remembering
18	What is the importance of chemical shift?		CO 3	BTL1	Remembering
19	Mention the importance of faraday law of induction		CO 3	BTL2	Understanding
20	Define the phenomenon of free induction decay.		CO 3	BTL1	Remembering
21	What is FMRI?		CO 3	BTL1	Remembering
22	List the significance of Larmor frequency		CO 3	BTL2	Understanding
23	Examine the importance of gyro magnetism.		CO 3	BTL2	Understanding
24	What role does chemical shift play?		CO 3	BTL1	Remembering
	PART B				g
1	Explain the concept of microscopic magnetism in MRI	(13)	CO 3	BTL4	Analyzing
2	Explain the function of different gradient coils Gx, Gy and G z used in MRI	(13)	CO 3	BTL4	Analyzing
3	Describes the various aspects precession and Larmor frequency	(13)	CO 3	BTL3	Applying
4	Implement the significance of NMR signals	(13)	CO 3	BTL3	Applying
5	Contrast between transverse and longitudinal magnetization in MRI system.	(13)	CO 3	BTL4	Analyzing
6	Illustrate the concept of rotating frames in NMR	(13)	CO 3	BTL3	Applying
7	Draw and explain the importance of RF excitation	(13)	CO 3	BTL3	Applying
8	Generalize and draw the phenomenon of spin echoes	(13)	CO 3	BTL4	Analyzing
9	Analyse the various steps involved in p weighted contrast mechanism.	(13)	CO 3	BTL4	Analyzing
10	Explain in detail the Bloch equations used in NMR	(13)	CO 3	BTL3	Applying
11	Enumerate the various biological effects and advantages of NMR	(13)	CO 3	BTL3	Applying
12	Explain in detail about fMRI and its applications	(13)	CO 3	BTL3	Applying
13	Describe various steps in a t1 weighted contrast method	(13)	CO 3	BTL 3	Applying
14	Analyse the various sequence involved in t2 weighted contrast technique	(13)	CO 3	BTL4	Analyzing
15	Explain the T1 and T2 relaxation processes in detail	(13)	CO 3	BTL 3	Applying
]		1	l	

16	Interpret the several biological impacts of NMR.	(13)	CO 3	BTL3	Applying
17	Explain the idea of rotating frames in nuclear magnetic resonance (NMR)	(13)	CO 3	BTL4	Analyzing
	PART C				
1	Describes about the various components used in NMR to build a MRI system	(15)	CO 3	BTL3	Applying
2	Explain the principle of NMR system with an FID Fourier transformation	(15)	CO 3	BTL3	Applying
3	Summarize the following and give its significance in image formation (i) Spin Lattice relaxation (ii) Spin-Spin relaxation	(8) (7)	CO 3	BTL3	Applying
4	Formulate and describe about the various image reconstruction techniques used in NMR	(15)	CO 3	BTL4	Analyzing
5	Elaborate on the diverse components utilized in NMR to construct an MRI system.	(15)	CO 3	BTL4	Analyzing

UNIT IV - RADIO ISOTOPIC IMAGING AND INFRARED IMAGING

Radio nuclides for imaging -Rectilinear scanners – linear scanners – Gamma camera – Emission computed tomography- SPECT, PET- Physics of thermography – imaging systems – pyroelectric vidicon camera clinical,thermography – liquid crystal thermography.

Q.No	Questions	CO	BT	Domain
			Level	
1	Mention the significance of radio tracers	CO 4	BTL1	Remembering
2	What is radiation therapy?	CO 4	BTL2	Understanding
3	Define isobars, isotones	CO 4	BTL1	Remembering
4	Mention the importance of mass defect with example.	CO 4	BTL2	Understanding
5	Illustrate graphically average binding energy as a function of nuclide	CO 4	BTL2	Understanding
6	Illustrate the significance of nuclide and radio nuclide	CO 4	BTL2	Understanding
7	Define the phenomenon of binding energy	CO 4	BTL1	Remembering
8	Mention the significance of line of stability	CO 4	BTL1	Remembering
9	Define the concept of radioactivity with example.	CO 4	BTL1	Remembering
10	State the various modes of decay	CO 4	BTL2	Understanding
11	Illustrate the importance of positron decay.	CO 4	BTL2	Understanding
12	Give a short note on gamma emission	CO 4	BTL1	Remembering
13	Define isometric transition	CO 4	BTL1	Remembering
14	Give a note on beta emission	CO 4	BTL2	Understanding
15	List the characteristics of Alpha radiation	CO 4	BTL2	Understanding
16	Sketch the importance of main particulate radiation.	CO 4	BTL2	Understanding
17	What are the classes of ionization radiation?	CO 4	BTL2	Understanding
18	Examine the reason for terming nuclear medicine imaging as emission imaging	CO 4	BTL2	Understanding
19	Point out the importance of Infrared radiation	CO 4	BTL2	Understanding
20	What are the physical factors of IR radiation?	CO 4	BTL2	Understanding

21	Mention the importance of radioisotopes used as tracers in scientific research and medical imaging.		CO 4	BTL1	Remembering
22	Point out the significance of Infrared radiation.			BTL2	Understanding
23	What does the term "binding energy" mean?		CO 4	BTL2	Understanding
24	What are the uses of Infrared radiation?		CO 4	BTL2	Understanding
	PART B				
1	Explain the construction and working principle of Anger Scintillation camera	(13)	CO 4	BTL4	Analyzing
2	Interpret the various different features of Collimators used in nuclear medicineimaging systems	(13)	CO 4	BTL3	Applying
3	Describes the various aspects of attenuation and scatter in PET and SPECT	(13)	CO 4	BTL3	Applying
4	Examine the significance of a gating system used in nuclear medicine imaging system	(13)	CO 4	BTL4	Analyzing
5	Analyse the image capture mechanism used in nuclear medicine imaging system	(13)	CO 4	BTL4	Analyzing
6	Illustrate the following with a neat diagram (i) Photo multiplier tube (ii) Scintillation crystal (iii) Positioning logic	(5) (4) (4)	CO 4	BTL3	Applying
7	Sketch and explain the working principle of solid state and other new cameras	(13)	CO 4	BTL3	Applying
8	Implement the estimation principle of the following image reconstruction techniques (i) Algebraic Reconstruction Technique (ART) (ii) Maximum Likelihood by Expectation Maximization	(7) (6)	CO 4	BTL3	Applying
9	Analyse the working principle of combined PET/CT system	(13)	CO 4	BTL4	Analyzing
10	Explain in detail the image quality in PET and SPECT	(13)	CO 4	BTL 3	Applying
11	Explain in detail the sensitivity in a nuclear medicine imaging system	(13)	CO 4	BTL4	Analyzing
12	Describe in detail the significance of quantitative medial thermography.	(13)	CO 4	BTL3	Applying
13	Describe various blocks available in a Pyro electric Vidicon camera with a neat block diagram.	(13)	CO 4	BTL4	Analyzing
14	Analyse the working principle of combined PET/MRI system	(13)	CO 4	BTL4	Analyzing
15	Interpret the importance of a gating mechanism employed in nuclear medicine imaging systems	(13)	CO 4	BTL3	Applying
16	Explain the Gamma Camera	(13)	CO 4	BTL4	Analyzing

17	Elaborate on the image resolution and clarity in PET and SPECT	(13)	CO 4	BTL4	Analyzing
	PART C				
1	Examine the various components used to build a SPECT system	(15)	CO 4	BTL4	Analyzing
2	Demonstrate the principle of IR thermography system with a neat block diagram	(15)	CO 4	BTL 3	Apply
3	Summarize the image formation techniques in the following (i) SPECT (ii) PET	(8) (7)	CO 4	BTL4	Analyzing
4	Explain about the various components used to build a PET system	(15)	CO 4	BTL 3	Apply
5	Demonstrate the fundamental concept of an infrared thermography system using a clear and organised block diagram.	(15)	CO 4	BTL 3	Apply

UNIT V – ULTRASOUND, NEUROMAGNETIC IMAGING

Ultrasound: Wave propagation and interaction in Biological tissues -Transducers and imaging systems-Imaging modes- Time required to obtain Images- System components, signal processing -dynamic Range-Ultrasound Image Artifacts- Quality control, Origin of Doppler shift- Limitations of Doppler systems.

Neuromagnetic Imaging: Background

Q.No	Questions	CO	BT	Domain
			Level	
1	List the significance of echocardiogram	CO 5	BTL 1	Remembering
2	Mention the significance of fetal ultrasound	CO 5	BTL 1	Remembering
3	Point out the important property of ultrasound	CO 5	BTL1	Remembering
4	Write the principle of production of ultrasound	CO 5	BTL2	Understanding
5	Classify the various biological tissues based on its ultrasound	CO 5	BTL2	Understanding
	properties			
6	Illustrate the significance of 3D acoustic waves	CO 5	BTL2	Understanding
7	Define the phenomenon of spherical waves	CO 5	BTL 1	Remembering
8	Mention the significance of acoustic energy	CO 5	BTL1	Remembering
9	Define the concept of acoustic intensity.	CO 5	BTL 1	Remembering
10	What are wave transmissions at plane interfaces?	CO 5	BTL2	Understanding
11	Illustrate the importance of beam width in ultrasound.	CO 5	BTL2	Understanding
12	Give the frequency dependence of various biological tissues	CO 5	BTL2	Understanding
13	Summarize the importance of axial and lateral resolution with	CO 5	BTL2	Understanding
	diagram			
14	State the phenomenon of Doppler effects for various cases.	CO 5	BTL2	Understanding
15	Write the phenomenon of Doppler effect	CO 5	BTL 1	Remembering
16	List the importance of characteristic impedance	CO 5	BTL2	Understanding

17	What is the wavelength and frequency of ultrasound?		CO 5	BTL2	Understanding
18	Examine the property of velocity of propagation		CO 5	BTL2	Understanding
19	Tabulate the speed of ultrasound in various biological tissues.		CO 5	BTL2	Understanding
20	Write a note on the detection of ultrasound.		CO 5	BTL2	Understanding
21	Identify the importance of echocardiography.		CO 5	BTL2	Understanding
22	Outline the ultrasonic production principle.		CO 5	BTL2	Understanding
23	Identify the importance of acoustic energy.		CO 5	BTL2	Understanding
24	Mention the ultrasonic frequency and wavelength.		CO 5	BTL2	Understanding
PART B					
1	Explain the significance of damping and matching in ultrasound systems	(13)	CO 5	BTL3	Applying
2	Distinguish the various types of transducers used in ultrasound systems	(13)	CO 5	BTL4	Analyzing
3	Interpret the piezoelectric behaviour of ultrasound crystal with a neat diagram	(13)	CO 5	BTL3	Applying
4	Explain the significance of A-scan mode used in ultrasound imaging system.	(13)	CO 5	BTL3	Applying
5	Analyse the various ultrasound probes used in ultrasound imaging system	(13)	CO 5	BTL4	Analyzing
6	Illustrate the following with a neat diagram		CO 5	BTL3	Applying
	(i)M-scan	(3)			
	(ii)B-scan mode	(10)			
7	Draw and explain the working principle of 3 D ultrasound imaging technique	(13)	CO 5	BTL3	Applying
8	Generalize the occurrence of noise and speckle in the		CO 5	BTL3	Applying
	following	(7)			
	(i)Electronics noise	(7) (6)			
	(ii)Compound Scanning for Speckle Reduction	` ′	GO. 5	DET 4	
9	Analyse the working principle of combined PET/CT system.	(13)	CO 5	BTL4	Analyzing
10	Explain in detail the image quality in ultrasound imaging	(13)	CO 5	BTL3	Applying
11	Explain in detail the following in an ultrasound imaging system		CO 5	BTL3	Applying
	(i)Frequency				
	(ii)AED	(5)			
	(iii)Focussing	(4) (4)			
12	Describe in detail the significance of medical ultrasound	(13)	CO 5	BTL3	Applying
13	Describes on the working principle of echo-ophthalmoscope	(13)	CO 5	BTL3	Applying
14	Analyse the working principle of echo cardiograph circuit with block diagram	(13)	CO 5	BTL 4	Analyzing
15	Implement the importance of the A-scan mode utilised in ultrasonic imaging systems.	(13)	CO 5	BTL3	Applying
16	Examine the piezoelectric properties of an ultrasonic crystal, accompanied by a clear illustration.	(13)	CO 5	BTL3	Applying

17	Explain the different types of transducers employed in the ultrasound systems? Write briefly about the types.	(13)	CO 5	BTL3	Applying	
PART C						
1	Demonstrate on the various components used in a real time ultrasonic imaging system	(15)	CO 5	BTL3	Applying	
2	Explain the principle of linear scanners with phased array systems.	(15)	CO 5	BTL3	Applying	
3	Assess the principle of Duplex scanners with area array systems	(15)	CO 5	BTL 4	Analyzing	
4	Describe the different components used to build a digital scan converter system and explain the biological effects of ultrasound	(15)	CO 5	BTL3	Applying	
5	Elaborate on the concept of linear scanners in conjunction with phased array systems.	(15)	CO 5	BTL3	Applying	