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PROGRAMME EDUCATIONAL OBJECTIVES (PEOs) 

 

1. To afford the necessary background in the field of Information Technology to deal with engineering problems 

to excel as engineering professionals in industries. 

2. To improve the qualities like creativity, leadership, teamwork and skill thus contributing towards the growth 

and development of society. 

3. To develop ability among students towards innovation and entrepreneurship that caters to the needs of 

Industry and society. 

4. To inculcate and attitude for life-long learning process through the use of information technology sources. 

5. To prepare then to be innovative and ethical leaders, both in their chosen profession and in other activities. 

 

 

 

PROGRAMME OUTCOMES (POs) 

After going through the four years of study, Information Technology Graduates will exhibit ability to: 
 

 

PO# Graduate Attribute Programme Outcome 

 

1 

 
Engineering knowledge 

Apply the knowledge of mathematics, science, engineering 

fundamentals, and an engineering specialization for the solution 

of complex engineering problems. 

 

 
2 

 

 
Problem analysis 

Identify, formulate, research literature, and analyze complex 

engineering problems reaching substantiated conclusions using 

first principles of mathematics, natural sciences, and 

engineering sciences. 

 

 
3 

 
Design/development of 

solutions 

Design solutions for complex engineering problems and design 

system components or processes that meet the specified needs 

with appropriate consideration for public health and safety, and 

cultural, societal, and environmental considerations. 

 

4 

Conduct investigations of 

complex problems 

Use research-based knowledge and research methods including 

design of experiments, analysis and interpretation of data, and 

synthesis of the information to provide valid conclusions 
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5 

 

 
Modern tool usage 

Create, select, and apply appropriate techniques, resources, and 

modern engineering and IT tools, including prediction and 

modeling to complex engineering activities, with an 

understanding of the limitations. 

 

 
6 

 

 
The engineer and society 

Apply reasoning informed by the contextual knowledge to assess 

societal, health, safety, legal, and cultural issues and the 

consequent responsibilities relevant to the professional 

engineering practice 

 

7 

Environment and 

sustainability 

Understand the impact of the professional engineering solutions 

in societal and environmental contexts, and demonstrate the 

knowledge of, and need for sustainable development. 

 

8 Ethics 
Apply ethical principles and commit to professional ethics and 

responsibilities and norms of the engineering practice 

 

9 Individual and team work 
Function effectively as an individual, and as a member or 

leader in diverse teams, and in multidisciplinary settings 

 

 
 
10 

 

 

Communication 

Communicate effectively on complex engineering activities with 

the engineering community and with the society at large, such 

as, being able to comprehend and write effective reports and 

design documentation, make effective presentations, and 

give and receive clear instructions 

 

 
11 

 
Project management and 

finance 

Demonstrate knowledge and understanding of the engineering 

and management principles and apply these to one’s own work, 

as a member and leader in a team, to manage projects and in 

multidisciplinary environments 

 

12 

 
Life-long learning 

Recognize the need for, and have the preparation and ability to 

engage in independent and life-long learning in the broadest 

context of technological change 
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PROGRAMME SPECIFIC OUTCOMES (PSOs) 

After the completion of Bachelor of Technology in Artificial Intelligence and Data Science 

programme the student will have following Program specific outcomes 

1. Design and develop secured database applications with data analytical approaches of data preprocessing, 

optimization, visualization techniques and maintenance using state of the art methodologies based on 

ethical values. 

2. Design and develop intelligent systems using computational principles, methods and systems for extracting 

knowledge from data to solve real time problems using advanced technologies and tools. 

3. Design, plan and setting up the network that is helpful for contemporary business environments using latest 

software and hardware. 

4. Planning and defining test activities by preparing test cases that can predict and correct errors ensuring a 

socially transformed product catering all technological needs. 
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1922609 BIG DATA ANALYTICS LABORATORY L T P C 

  0 0 4 2 

OBJECTIVES:   

• To optimize business decisions and create competitive advantage with Big Data 

Analytics. 

• To implement Map Reduce programs for processing big data 

• To realize storage of big data using H base, Mongo DB 

• To analyze big data using linear models 

• To analyze big data using machine learning techniques such as SVM / Decision tree 

classification and clustering 

 

 

LIST OF EXPERIMENTS: 

 

Hadoop 

1. Install, configure and run Hadoop and HDFS 

2. Implement word count / frequency programs using MapReduce 

3. Implement an MR program that processes a weather dataset 

R 

4. Implement Linear and logistic Regression 

5. Implement SVM / Decision tree classification techniques 

6. Implement clustering techniques 

7. Visualize data using any plotting framework 

8. Implement an application that stores big data in Hbase / MongoDB / Pig using 

Hadoop / R 

 

 

Total: 60 Periods 
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LIST OF EQUIPMENTS FOR A BATCH OF 30 STUDENTS 

 

 
SOFTWARE: 

Hadoop, YARN, R Package, Hbase, MongoDB 

 

HARDWARE: 

Standalone desktops - 30 Nos. (or) Server supporting 30 terminals or more 

 COURSE OUTCOMES 
 
 

1922609.1 Understand and process big data using Hadoop Framework 

1922609.2 
Understand and apply regression models 

1922609.3   Understand and perform data analysis with Machine Learning method. 

1922609.4 Analyze and perform graphical data analysis  

1922609.5 Implement and apply tools and techniques to analyses Big data.  

 

 

CO- PO-PSO MATRIX 

 

 
CO 

PO PSO 

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 

1 3 2 1 - 
 

- - - 1 - - 3 - 2 - - 

2 2 2 - - 2 - - - 1 - - 2 - 2 - - 

3 2 2 - - 
 

- - - 1 - - 2 - 2 - - 

4 3 2 2 - 2 - - - 1 - - 2 - - - 2 

5 3 2 1 - 2 - - - - - - 2 - - - 2 
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EVALUATION PROCEDURE FOR EACH EXPERIMENT 
 
 

S.No Description Mark 

1. Aim & Pre-Lab discussion 20 

2. Observation 30 

3. Conduction and Execution 30 

4. Output & Result 10 

5. Viva 10 

Total 100 

 

 

 

INTERNAL ASSESSMENT FOR LABORATORY 
 
 

S.No Description Mark 

1. Conduction & Execution of Experiment 50 

2. Record 20 

3. Model Test 30 

Total 100 
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Ex.No.1                                 Install, configure and run Hadoop and HDFS 

 

AIM 

To Study how to install, configure and run Hadoop and HDFS on Ubuntu 20.04. 

 

PROCEDURE 

Step by Step Installing Hadoop on Ubuntu 20.04 

 

Step 1 — Create user for Hadoop environment 

sudo adduser Hadoop 

 

 

Step 2— Installing Java 

The following command to update your system before initiating a new installation: 

sudo apt update 

Install the latest version of Java. 

sudo apt install openjdk-8-jdk -y 

Once installed, verify the installed version of Java with the following command: 

java -version 
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Step 3: Install OpenSSH on Ubuntu 

Install the OpenSSH server and client using the following command: 

sudo apt install openssh-server openssh-client -y 

Switch to the created user. 

sudo su - hadoop 

Generate public and private key pairs. 

$ ssh-keygen -t rsa 

Add the generated public key from id_rsa.pub to authorized_keys. 

$ sudo cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys 

Change the permissions of the authorized_keys file. 

$ sudo chmod 640 ~/.ssh/authorized_keys 

Verify if the password-less SSH is functional. 

$ ssh localhost 

 

Step 4: Install Apache Hadoop 

Download the latest stable version of Hadoop.  

$ wget https://downloads.apache.org/hadoop/common/hadoop-3.3.2/hadoop-3.3.2.tar.gz 

Extract the downloaded file. 

https://downloads.apache.org/hadoop/common/hadoop-3.3.1/hadoop-3.3.1.tar.gz
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$ tar -xvzf hadoop-3.3.2.tar.gz 

Rename the extracted directory as we will do by executing the below-given command: 

mv hadoop-3.3.0 hadoop 

Now, configure Java environment variables for setting up Hadoop. For this, we will check out the location 

of our “JAVA_HOME” variable: 

dirname $(dirname $(readlink -f $(which java))) 

 

Step 5: Configure Hadoop 

A Hadoop environment is configured by editing a set of  configuration files: 

bashrc, hadoop-env.sh, core-site.xml, hdfs-site.xml, mapred-site-xml and yarn-site.xml 

They can be found in the newly created hadoop folder 

 

 

Step 5a: Configure Hadoop Environment Variables (bashrc) 

Edit file ~/.bashrc to configure the Hadoop environment variables. 

$ sudo nano ~/.bashrc 

Add the following lines to the file. Save and close the file. 

export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64 

export HADOOP_HOME=/usr/local/hadoop 

export HADOOP_INSTALL=$HADOOP_HOME 

export HADOOP_MAPRED_HOME=$HADOOP_HOME 

export HADOOP_COMMON_HOME=$HADOOP_HOME 

export HADOOP_HDFS_HOME=$HADOOP_HOME 

export YARN_HOME=$HADOOP_HOME 

export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native 

export PATH=$PATH:$HADOOP_HOME/sbin:$HADOOP_HOME/bin 
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export HADOOP_OPTS="-Djava.library.path=$HADOOP_HOME/lib/native" 

 

Activate the environment variables. 

$ source ~/.bashrc 

Step 5b: Edit hadoop-env.sh File 

The hadoop-env.sh file serves as a master file to configure YARN, HDFS, MapReduce, and Hadoop-related 

project settings. When setting up a single node Hadoop cluster, you need to define which Java implementation 

is to be utilized. Use the previously created $HADOOP_HOME variable to access the hadoop-env.sh file: 

sudo nano $HADOOP_HOME/etc/hadoop/hadoop-env.sh 

Uncomment the $JAVA_HOME variable (i.e., remove the # sign) and add the full path to the OpenJDK 

installation on your system.  

export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64 

The path needs to match the location of the Java installation on your system. 

https://phoenixnap.com/kb/what-is-hdfs
https://phoenixnap.com/kb/hadoop-mapreduce
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To locate the correct Java path, run the following command in your terminal window: 

which javac 

The resulting output provides the path to the Java binary directory. 

 

 

Use the provided path to find the OpenJDK directory with the following command: 

readlink -f /usr/bin/javac 

The section of the path just before the /bin/javac directory needs to be assigned to 

the $JAVA_HOME variable. 

Step 5c: Edit core-site.xml File 

The core-site.xml file defines HDFS and Hadoop core properties. 



14 

 

To set up Hadoop in a pseudo-distributed mode, you need to specify the URL for your NameNode, and the 

temporary directory Hadoop uses for the map and reduce process. 

Open the core-site.xml file in a text editor: 

sudo nano $HADOOP_HOME/etc/hadoop/core-site.xml 

Add the following configuration to override the default values for the temporary directory and add your 

HDFS URL to replace the default local file system setting: 

<configuration> 

 <property> 

                 <name>fs.defaultFS</name> 

                 <value>hdfs://localhost:9000</value> 

         </property> 

 </configuration> 

This example uses values specific to the local system.  The data needs to be consistent throughout the 

configuration process. 

 

 

Step 5d: Edit hdfs-site.xml File 

The properties in the hdfs-site.xml file govern the location for storing node metadata, fsimage file, and edit 

log file. Configure the file by defining the NameNode and DataNode storage directories. In this “hdfs-

site.xml” file, we will change the directory path of “datanode” and “namenode”: Additionally, the 

default dfs.replication value of 3 needs to be changed to 1 to match the single node setup. 
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Use the following command to open the hdfs-site.xml file for editing: 

sudo nano $HADOOP_HOME/etc/hadoop/hdfs-site.xml 

Add the following configuration to the file and, if needed, adjust the NameNode and DataNode directories to 

your custom locations: 

<configuration>         

<property> 

                <name>dfs.replication</name> 

                <value>1</value> 

        </property>         

<property> 

                <name>dfs.name.dir</name> 

                <value>file:///home/hadoop/hadoopdata/hdfs/namenode</value> 

        </property>         

<property> 

                <name>dfs.data.dir</name> 

                <value>file:///home/hadoop/hadoopdata/hdfs/datanode</value> 

        </property> 

</configuration> 

If necessary, create the specific directories you defined for the dfs.data.dir value. 
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Step 5e: Edit mapred-site.xml File 

Use the following command to access the mapred-site.xml file and define MapReduce values: 

sudo nano $HADOOP_HOME/etc/hadoop/mapred-site.xml 

Add the following configuration to change the default MapReduce framework name value to yarn: 

<configuration>  

<property>  

  <name>mapreduce.framework.name</name>  

  <value>yarn</value>  

</property>  

</configuration> 

 

Step 5f: Edit yarn-site.xml File 

The yarn-site.xml file is used to define settings relevant to YARN. It contains configurations for the Node 

Manager, Resource Manager, Containers, and Application Master. Open the yarn-site.xml file in a text 

editor: 
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sudo nano $HADOOP_HOME/etc/hadoop/yarn-site.xml 

Append the following configuration to the file: 

<configuration> 

        <property> 

                <name>yarn.nodemanager.aux-services</name> 

                <value>mapreduce_shuffle</value> 

        </property> 

</configuration> 

 

Step 5g. Format HDFS NameNode 

It is important to format the NameNode before starting Hadoop services for the first time: 

hdfs namenode -format 
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The shutdown notification signifies the end of the NameNode format process. 

 

Step 6: Start Hadoop Cluster 
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Start the NameNode and DataNode. 

$ start-dfs.sh 

 

Start the YARN resource and node managers. 

$ start-yarn.sh 

 

Verify all the running components. 

$ jps 

The system takes a few moments to initiate the necessary nodes. If everything is working as intended, the 

resulting list of running Java processes contains all the HDFS and YARN daemons. 

 

Step 7: Access Hadoop UI from Browser 

Use your preferred browser and navigate to your localhost URL or IP. The default port number 9870 gives 

you access to the Hadoop NameNode UI: 

http://localhost:9870 

The NameNode user interface provides a comprehensive overview of the entire cluster 

http://localhost:9870/
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The default port 9864 is used to access individual DataNodes directly from your browser: 

http://localhost:9864 

 

The YARN Resource Manager is accessible on port 8088: 

http://localhost:8088 

The Resource Manager is an invaluable tool that allows you to monitor all running processes in your Hadoop 

cluster. 

http://localhost:9864/
http://localhost:8088/
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Result 

Thus, the step by step Installing Hadoop on Ubuntu 20.04 was successfully done. 
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Ex.No.2              Implement Word count / frequency program using Map reduce     

 

Aim 

To implement Word count / frequency program using Map reduce.    

 

Pre-Lab discussion 

MapReduce is a processing technique and a program model for distributed computing based on java. 

The MapReduce algorithm contains two important tasks, namely Map and Reduce. Map takes a set of data 

and converts it into another set of data, where individual elements are broken down into tuples (key/value 

pairs). Secondly, reduce task, which takes the output from a map as an input and combines those data tuples 

into a smaller set of tuples. As the sequence of the name MapReduce implies, the reduce task is always 

performed after the map job. 

The major advantage of MapReduce is that it is easy to scale data processing over multiple 

computing nodes. Under the MapReduce model, the data processing primitives are called mappers and 

reducers. Decomposing a data processing application into mappers and reducers is sometimes nontrivial. 

But, once we write an application in the MapReduce form, scaling the application to run over hundreds, 

thousands, or even tens of thousands of machines in a cluster is merely a configuration change. This simple 

scalability is what has attracted many programmers to use the MapReduce model. 

The Algorithm 

 

• Generally MapReduce paradigm is based on sending the computer to where the data resides! 

• MapReduce program executes in three stages, namely map stage, shuffle stage, and reduce stage. 

o Map stage − The map or mapper’s job is to process the input data. Generally the input data is 

in the form of file or directory and is stored in the Hadoop file system (HDFS). The input file 

is passed to the mapper function line by line. The mapper processes the data and creates 

several small chunks of data. 

o Reduce stage − This stage is the combination of the Shuffle stage and the Reduce stage. The 

Reducer’s job is to process the data that comes from the mapper. After processing, it produces 

a new set of output, which will be stored in the HDFS. 

• During a MapReduce job, Hadoop sends the Map and Reduce tasks to the appropriate servers in the 

cluster. 

• The framework manages all the details of data-passing such as issuing tasks, verifying task 

completion, and copying data around the cluster between the nodes. 

• Most of the computing takes place on nodes with data on local disks that reduces the network traffic. 

• After completion of the given tasks, the cluster collects and reduces the data to form an appropriate 

result, and sends it back to the Hadoop server. 
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Steps on Hadoop Operations 

Step 1: Start  

 

$ start-all.sh 
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Step 2 : Start output 

 

Step 3 :Create an input directory 

 

$ hdfs dfs –mkdir /input  

 

Step 4 : Create a sample word 
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Step 5: Put file 

 

$ hdfs dfs –put Downloads/word /input 

 

Step 6 : Put file output 
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Step 7 : Downloading jar 

 

Step 8: Loading jar 

 

$ Hadoop jar Downloads/Hadoop-wordcount-master/dist/wordcount.jar 

com.petehouston.hadoop.WordCount /input/word/output 
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Step 9: Viewing output files 

$  hdfs  dfs –ls/output/wordcount 

 

 

Step 10: Final output 

$ hdfs dfs –cat /output/wordcount/part-r-00000 

 

Result 

Thus, the implementation of word count/ frequency programs using MapReduce was executed.   
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Ex.No.3                          Implement a MR program that process a weather dataset 

 

 

Aim 

To implement a MR program that process a weather dataset. 

 

Pre-lab Discussion 

Inputs and Outputs (Java Perspective) 

The MapReduce framework operates on <key, value> pairs, that is, the framework views the input 

to the job as a set of <key, value> pairs and produces a set of <key, value> pairs as the output of the job, 

conceivably of different types. 

The key and the value classes should be in serialized manner by the framework and hence, need to 

implement the Writable interface. Additionally, the key classes have to implement the Writable-Comparable 

interface to facilitate sorting by the framework. Input and Output types of a MapReduce job − (Input) <k1, 

v1> → map → <k2, v2> → reduce → <k3, v3>(Output). 

 
Input Output 

Map <k1, v1> list (<k2, v2>) 

Reduce <k2, list(v2)> list (<k3, v3>) 

 

Terminology 

 

• PayLoad − Applications implement the Map and the Reduce functions, and form the core of the job. 

• Mapper − Mapper maps the input key/value pairs to a set of intermediate key/value pair. 

• NamedNode − Node that manages the Hadoop Distributed File System (HDFS). 

• DataNode − Node where data is presented in advance before any processing takes place. 

• MasterNode − Node where JobTracker runs and which accepts job requests from clients. 

• SlaveNode − Node where Map and Reduce program runs. 

• JobTracker − Schedules jobs and tracks the assign jobs to Task tracker. 

• Task Tracker − Tracks the task and reports status to JobTracker. 

• Job − A program is an execution of a Mapper and Reducer across a dataset. 

• Task − An execution of a Mapper or a Reducer on a slice of data. 

• Task Attempt − A particular instance of an attempt to execute a task on a SlaveNode. 
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Program 

 

AverageMapper.java 

 

import org.apache.hadoop.io.*;  

import org.apache.hadoop.mapreduce.*; import java.io.IOException; 

 

public class AverageMapper extends Mapper <LongWritable, Text, Text, IntWritable> 

{ 

public static final int MISSING = 9999; 

public void map(LongWritable key, Text value, Context context) throwsIOException, InterruptedException 

{ 

String line = value.toString();  

String year = line.substring(15,19); 

int temperature; 

if (line.charAt(87)=='+') 

temperature = Integer.parseInt(line.substring(88, 92)); 

else 

temperature = Integer.parseInt(line.substring(87, 92)); 

String quality = line.substring(92, 93); 

if(temperature != MISSING && quality.matches("[01459]")) context.write(new Text(year),new 

IntWritable(temperature)); 

} 

} 
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AverageReducer.java 

 

import org.apache.hadoop.mapreduce.*; 

import java.io.IOException; 

public class AverageReducer extends Reducer <Text, IntWritable,Text, IntWritable > 

{ 

public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, 

InterruptedException 

{ 

int max_temp = 0; 

int count = 0; 

for (IntWritable value : values) 

{ 

max_temp += value.get(); 

count+=1; 

} 

context.write(key, new IntWritable(max_temp/count)); 

} } 

 

AverageDriver.java 

import.org.apache.hadoop.io.*; 

import org.apache.hadoop.fs.*;  

import org.apache.hadoop.mapreduce.*;          

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;       

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; 

 

public class AverageDriver 

{ 

public static void main (String[] args) throws Exception 

{ 

if (args.length != 2) 
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{ 

System.err.println("Please Enter the input and output parameters"); 

System.exit(-1); 

} 

Job job = new Job(); job.setJarByClass(AverageDriver.class); job.setJobName("Max temperature"); 

 

FileInputFormat.addInputPath(job,newPath(args[0])); FileOutputFormat.setOutputPath(job,new Path 

(args[1])); 

 

job.setMapperClass(AverageMapper.class); job.setReducerClass(AverageReducer.class); 

job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class) 

System.exit(job.waitForCompletion(true)?0:1); 

} 

} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Result 

Thus, the implementation of an MR program that process a weather dataset was executed successfully. 
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Ex.No.4                                  Implement Linear and Logistic Regression 

 

Aim 

 
To implement linear and logistic regression for Sales dataset. 

 

Pre-lab Discussion 

 
Theory 

 
Linear Regression: 

 

Linear regression algorithm shows a linear relationship between a dependent (y) and one or more 

independent (y) variables, hence called as linear regression. Since linear regression shows the linear 

relationship, which means it finds how the value of the dependent variable is changing according to the 

value of the independent variable. It consists of 3 stages – 

(1) analyzing the correlation and directionality of the data 

 (2) estimating the model, i.e., fitting the line 

 (3) evaluating the validity and usefulness of the model. 

The linear regression model provides a sloped straight line representing the relationship between the 

variables. It is a statistical method that is used for predictive analysis. Linear regression makes predictions 

for continuous/real or numeric variables such as sales, salary, age, product price, etc. 

 

Types of Linear Regression 

Linear regression can be further divided into two types of the algorithm: 

SimpleLinearRegression 

If a single independent variable is used to predict the value of a numerical dependent variable, then such a 

Linear Regression algorithm is called Simple Linear Regression. 

 

Multiple Linear regression 

If more than one independent variable is used to predict the value of a numerical dependent variable, then 

such a Linear Regression algorithm is called Multiple Linear Regression. 

The main function to calculate values of coefficients 

Initialize the parameters. 
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Predict the value of a dependent variable by given an independent variable. 

Calculate the error in prediction for all data points. 

Calculate partial derivative w.r.t a0 and a1. 

Calculate the cost for each number and add them. 

Update the values of a0 and a1. 

 

Logistic Regression: 

Logistic regression is one of the most popular Machine Learning algorithms, which comes under the 

Supervised Learning technique. It is used for predicting the categorical dependent variable using a given set 

of independent variables.Logistic regression predicts the output of a categorical dependent variable. 

Therefore the outcome must be a categorical or discrete value. It can be either Yes or No, 0 or 1, true or 

False, etc. but instead of giving the exact value as 0 and 1, it gives the probabilistic values which lie between 

0 and 1. 

 In Logistic regression, instead of fitting a regression line, we fit an "S" shaped logistic function, 

which predicts two maximum values (0 or 1).The curve from the logistic function indicates the likelihood 

of something such as whether the cells are cancerous or not, a mouse is obese or not based on its weight, 

etc. 

Type of Logistic Regression: 

On the basis of the categories, Logistic Regression can be classified into three types: 

Binomial: In binomial Logistic regression, there can be only two possible types of the dependent variables, 

such as 0 or 1, Pass or Fail, etc. 

Multinomial: In multinomial Logistic regression, there can be 3 or more possible unordered types of the 

dependent variable, such as "cat", "dogs", or "sheep" 

Ordinal: In ordinal Logistic regression, there can be 3 or more possible ordered types of dependent 

variables, such as "low", "Medium", or "High". 

 

Applications of Logistic Regression 

1. Predicting a probability of a person having a heart attack 

2. Predicting a customer’s propensity to purchase a product or halt a subscription. 

3. Predicting the probability of failure of a given process or product. 
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Steps in Logistic Regression: 

• Data Pre-processing step 

• Fitting Logistic Regression to the Training set 

• Predicting the test result 

• Test accuracy of the result(Creation of Confusion matrix) 

• Visualizing the test set result. 

 

PROGRAM: 

 
 

****SIMPLE LINEAR REGRESSION**** 

 
dataset = read.csv("data-marketing-budget-12mo.csv", header=T, 

colClasses = c("numeric", "numeric", "numeric")) 

head(dataset,5) 

 
//////Simple Regression///// 

 
simple.fit = lm(Sales~Spend,data=dataset) 

summary(simple.fit) 

 
OUTPUT: 

SIMPLE LINEAR REGRESSION: 
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PROGRAM: 

 

****MULTIPLE LINEAR REGRESSION **** 

 

multi.fit = lm(Sales~Spend+Month, data=dataset) 

summary(multi.fit) 

 

 
OUTPUT: 

MULTIPLE LINEAR REGRESSION 
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PROGRAM: 

 
 

****Logistic Regression **** 

 

#selects some column from 

mtcars input<- mtcars 

[,c("am","cyl","hp","wt")] 

print(head(input)) 

input<- mtcars [,c("am","cyl","hp","wt")] 

am.data =glm(formula = am ~ cyl+hp+wt,data = 

input,family = binomial) print(summary(am.data)) 

 

OUTPUT: 

 

LOGISTIC REGRESSION: 

 

 

 

 

Result 
  

Thus, the implementation of linear and logistic regression for sales data set was 

implemented successfully. 
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Ex.No.5a                              Implement SVM Classification Techniques 

 

Aim 

To implement support vector machine (SVM) to find optimum hyper plane 

Line in 2D, 3D hyper plane) which maximize the margin between two classes. 

 

Pre-Lab Discussion 

 

Theory 

Support Vector Machine(SVM): 

  Support Vector Machine(SVM) is a supervised machine learning algorithm used for 

both classification and regression. Though we say regression problems as well it’s best suited 

for classification. The objective of the SVM algorithm is to find a hyperplane in an N-

dimensional space that distinctly classifies the data points. The dimension of the hyperplane 

depends upon the number of features. If the number of input features is two, then the 

hyperplane is just a line. If the number of input features is three, then the hyperplane becomes 

a 2-D plane. It becomes difficult to imagine when the number of features exceeds three. Let’s 

consider two independent variables x1, x2, and one dependent variable which is either a blue 

circle or a red circle. 

  

 

From the figure above it’s very clear that there are multiple lines (our hyperplane here 

is a line because we are considering only two input features x1, x2) that segregate our data 

points or do a classification between red and blue circles.  

 

Types of SVM 

SVM can be of two types:  

● Linear SVM: 

                Linear SVM is used for linearly separable data, which means if a dataset can be 

classified into two classes by using a single straight line, then such data is termed as linearly 

separable data, and classifier is used called as Linear SVM classifier. 
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● Non-linear SVM: 

                 Non-Linear SVM is used for non-linearly separated data, which means if a dataset 

cannot be classified by using a straight line, then such data is termed as non-linear data and 

classifier used is called as Non-linear SVM classifier. 

  

Hyperplane and Support Vectors in the SVM algorithm: 

Hyperplane: There can be multiple lines/decision boundaries to segregate the classes in n-

dimensional space, but we need to find out the best decision boundary that helps to classify 

the data points. This best boundary is known as the hyperplane of SVM.  

               The dimensions of the hyperplane depend on the features present in the dataset, 

which means if there are 2 features (as shown in image), then hyperplane will be a straight 

line. And if there are 3 features, then hyperplane will be a 2-dimension plane.  

Support Vectors: 

           The data points or vectors that are the closest to the hyperplane and which affect the 

position of the hyperplane are termed as Support Vector. Since these vectors support the 

hyperplane, hence called a Support vector.  

 

PROGRAM: 

 
plot(iris) 

iris 

install.packages("e1071") 

plot(iris$Sepal.Length, iris$Sepal.width, col=iris$Species)  

plot(iris$Petal.Length, iris$Petal.width, col=iris$Species)  

s<-sample(150,100) 

col<- c("Petal.Length", "Petal.Width", "Species") 

iris_train<- iris[s,col] 

iris_test<- iris[-s,col] 

svmfit<- svm(Species ~., data = iris_train, kernel = "linear", cost = .1, scale = FALSE) 

print(svmfit) 

plot(svmfit, iris_train[,col]) 

tuned <- tune(svm, Species~., data = iris_train, kernel = "linear", ranges= 
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list(cost=c(0.001,0.01,.1,.1,10,100))) 

summary(tuned) 

p<-predict(svmfit, iris_test[,col], type="class")  

plot(p) 

table(p,iris_test[,3] )  

mean(p== iris_test[,3]) 

 

OUTPUT: 

 
 

 

 

 

 

 

Result 
 

Thus , the implementation of support vector machine (SVM) to find optimum hyper 

plane (Line in 2D, 3D hyper plane) which maximize the margin between two classes was 

executed. 
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Ex.No.5b          Implement Decision Tree Classification Techniques 

 

 

AIM 

 

To implement a decision tree used to representing a decision situation in visually and 

show all  those factors within the analysis that are considered relevant to the decision. 

 

Pre-Lab Discussion 

 

Theory 

 

Decision Tree is a Supervised learning technique that can be used for both 

classification and Regression problems, but mostly it is preferred for solving Classification 

problems. It is a tree-structured classifier, where internal nodes represent the features of a 

dataset, branches represent the decision rules and each leaf node represents the outcome. 

          In a Decision tree, there are two nodes, which are the Decision Node and Leaf Node. 

Decision nodes are used to make any decision and have multiple branches, whereas Leaf nodes 

are the output of those decisions and do not contain any further branches. It is a graphical 

representation for getting all the possible solutions to a problem/decision based on given 

conditions. 

          It is called a decision tree because, similar to a tree, it starts with the root node, which 

expands on further branches and constructs a tree-like structure. In order to build a tree, we 

use the CART algorithm, which stands for Classification and Regression Tree algorithm. 

Steps: 

Begin the tree with the root node, says S, which contains the complete dataset. 

1. Find the best attribute in the dataset using Attribute Selection Measure (ASM). 

2. Divide the S into subsets that contains possible values for the best attributes. 

3. Generate the decision tree node, which contains the best attribute. 

4. Recursively make new decision trees using the subsets of the dataset created in step -

3. Continue this process until a stage is reached where you cannot further classify the 

nodes and called the final node as a leaf node. 
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Attribute Selection Measures 

While implementing a Decision tree, the main issue arises that how to select the best 

attribute for the root node and for sub-nodes. So, to solve such problems there is a technique 

which is called as Attribute selection measure or ASM. By this measurement, we can easily 

select the best attribute for the nodes of the tree. There are two popular techniques for ASM, 

which are: 

● Information Gain 

● Gini Index 

 Information Gain: 

● Information gain is the measurement of changes in entropy after the segmentation of 

a dataset based on an attribute. 

● It calculates how much information a feature provides us about a class. 

● According to the value of information gain, we split the node and build the decision 

tree. 

● A decision tree algorithm always tries to maximize the value of information gain, and 

a node/attribute having the highest information gain is split first. 

Gini Index: 

● Gini index is a measure of impurity or purity used while creating a decision tree in the 

CART(Classification and Regression Tree) algorithm. 

● An attribute with the low Gini index should be preferred as compared to the high Gini 

index. 

PROGRAM: 

 
library(MASS)  

library(rpart)  

head(birthwt)  

hist(birthwt$bwt)  

table(birthwt$low) 

cols <- c('low', 'race', 'smoke', 'ht', 'ui') 

birthwt[cols] <- lapply(birthwt[cols], as.factor) 

set.seed(1) 

train<- sample(1:nrow(birthwt), 0.75 * nrow(birthwt)) 

birthwtTree<- rpart(low ~ . - bwt, data = birthwt[train, ], method = 'class')  
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plot(birthwtTree) 

text(birthwtTree, pretty = 0) 

summary(birthwtTree) 

birthwtPred<- predict(birthwtTree, birthwt[-train, ], type = 'class')  

table(birthwtPred, birthwt[-train, ]$low) 

 

OUTPUT: 
      low    age   lwt   race  smoke ptl   ht  ui   ftv    bwt 

85    0      19    182    2        0        0     0   1    0     2523 

86    0      33    155    3        0        0     0   0    3     2551 

87    0      20    105    1        1        0     0   0    1     2557 

88    0      21    108    1        1        0     0   1    2     2594 

89    0      18    107    1        1        0     0   1    0     2600 

91     0     21    124    3        0        0     0   0    0     2622 

 

 
 

 

Result 
 

Thus , the implementation of a decision tree used to representing a decision 

situation in visually and show all those factors within the analysis that are considered 

relevant to the decision was executed. 
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Ex.No.6                           Implementation of Clustering Techniques 

 

Aim 

To implement clustering techniques for iris data set. 

 

Pre-lab Discussion 

Theory 

K-Means Clustering 

K-Means Clustering is an unsupervised learning algorithm that is used to solve the 

clustering problems in machine learning or data science.  It allows us to cluster the data into 

different groups and a convenient way to discover the categories of groups in the unlabeled 

dataset on its own without the need for any training. It is a centroid-based algorithm, where 

each cluster is associated with a centroid. The main aim of this algorithm is to minimize the 

sum of distances between the data point and their corresponding clusters. 

               The algorithm takes the unlabeled dataset as input, divides the dataset into k-number 

of clusters, and repeats the process until it does not find the best clusters. The value of k should 

be predetermined in this algorithm. The k-means clustering algorithm mainly performs two 

tasks: 

  

1. Determines the best value for K center points or centroids by an iterative 

process. 

2. Assigns each data point to its closest k-center. Those data points which are near 

to the particular k-center, create a cluster.      

          

Working of K-Means Algorithm:  

The working of the K-Means algorithm is explained in the below steps: 

  

1. Select the number K to decide the number of clusters. 

  

2. Select random K points or centroids. (It can be other from the input dataset). 
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3. Assign each data point to their closest centroid, which will form the predefined K 

clusters. 

  

4. Calculate the variance and place a new centroid of each cluster. 

  

5. Repeat the third steps, which means reassign each datapoint to the new closest centroid 

of each cluster. 

  

6. If any reassignment occurs, then go to step-4 else go to FINISH. 

  

 

PROGRAM: 
 

library(datasets) 

head(iris) 

library(ggplot2) 

ggplot(iris, aes(Petal.Length, Petal.Width, color = Species)) + geom_point()  

set.seed(20) 

irisCluster <- kmeans(iris[, 3:4], 3, nstart = 20) 

irisCluster 

table(irisCluster$cluster, iris$Species) 

 

OUTPUT: 
      Sepal.Length     Sepal.Width    Petal.Length    Petal.Width   Species 

1            5.1                    3.5                   1.4                  0.2             setosa 

2            4.9                    3.0                   1.4                  0.2             setosa 

3            4.7                    3.2                   1.3                  0.2             setosa 

4            4.6                    3.1                   1.5                  0.2             setosa 

5            5.0                    3.6                   1.4                  0.2             setosa 

6            5.4                    3.9                   1.7                 0.4              setosa 
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Result  
 

Thus, K-means clustering using iris dataset was executed. 
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Ex.No.7                         Implementation of Visualize Data using Any              

                                                          Plotting Framework 
 

AIM 

 
                To implement Data visualization is to provide an efficient graphical display 

for summarizing and reasoning about quantitative information. 

 

Pre-Lab Discussion 

Theory 

1. Histogram 

      Histogram is basically a plot that breaks the data into bins (or breaks) and shows 

frequency distribution of these bins. We can change the breaks also and see the effect it has data 

visualization in terms of understandability. 

2.1 Line Chart 

  The line chart showing the increase in air passengers over given time period. Line 

Charts are commonly preferred when we are to analyses a trend spread over a time period. 

Furthermore, line plot is also suitable to plots where we need to compare relative changes in 

quantities across some variable (like time). 

2.2 Bar Chart 

  Bar Plots are suitable for showing comparison between cumulative totals across 

several groups. Stacked Plots are used for bar plots for various categories. 

3. Box Plot 

  Box Plot shows 5 statistically significant numbers the minimum, the 25th percentile, 

the median, the 75th percentile and the maximum. It is thus useful for visualizing the spread 

of the data is and deriving inferences accordingly. 

4. Scatter Plot (including 3D and other features) 

Scatter plots help in visualizing data easily and for simple data inspection.  

5.Heat Map 

One of the most innovative data visualizations in R, the heat map emphasizes color 

intensity to visualize relationships between multiple variables. The result is an attractive 2D 

image that is easy to interpret. As a basic example, a heat map highlights the popularity of 
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competing items by ranking them according to their original market launch date. It breaks it 

down further by providing sales statistics and figures over the course of time. 

6.Correlogram 

Correlated data is best visualized through corrplot. The 2D format is similar to a heat 

map, but it highlights statistics that are directly related. Most correlograms highlight the 

amount of correlation between datasets at various points in time. Comparing sales data between 

different months or years is a basic example. 

7.Area Chart 

Area charts express continuity between different variables or data sets. It's akin to the 

traditional line chart you know from grade school and is used in a similar fashion. Most area 

charts highlight trends and their evolution over the course of time, making them highly 

effective when trying to expose underlying trends whether they're positive or negative. 

 

PROGRAM: 

 
print('-----------------1.HISTOGRAM-------------------') 

install.packages('RColorBrewer') 

library(RColorBrewer) 

data(VADeaths)  

par(mfrow=c(2,3)) 

hist(VADeaths,breaks=10, col=brewer.pal(3,"Set3"),main="Set3 3 colors") 

hist(VADeaths,breaks=3 ,col=brewer.pal(3,"Set2"),main="Set2 3 colors") 

hist(VADeaths,breaks=7, col=brewer.pal(3,"Set1"),main="Set1 3 colors") 

hist(VADeaths,,breaks= 2, col=brewer.pal(8,"Set3"),main="Set3 8 colors") 

hist(VADeaths,col=brewer.pal(8,"Greys"),main="Greys 8 colors") 

hist(VADeaths,col=brewer.pal(8,"Greens"),main="Greens 8 colors") 

print('--------------- -2.1. Line Chart-------------------') 

data(AirPassengers) 

plot(AirPassengers,type="l") #Simple Line Plot 

print('-----------------2.2. Bar Chart-------------------') 

data("iris") 

barplot(iris$Petal.Length) #Creating simple Bar Graph  

barplot(iris$Sepal.Length,col = brewer.pal(3,"Set1")) 
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barplot(table(iris$Species,iris$Sepal.Length),col = brewer.pal(3,"Set1")) #Stacked Plot 

print('-----------------3. Box Plot-------------------') 

data(iris)  

par(mfrow=c(2,2)) 

boxplot(iris$Sepal.Length,col="red") 

boxplot(iris$Sepal.Length~iris$Species,col="red")  

boxplot(iris$Sepal.Length~iris$Species,col=heat.colors(3)) 

boxplot(iris$Sepal.Length~iris$Species,col=topo.colors(3))  

boxplot(iris$Petal.Length~iris$Species)  

print('-----------------4.Scatter Plot -------------------') 

plot(x=iris$Petal.Length) #Simple Scatter Plot 

plot(x=iris$Petal.Length,y=iris$Species) #Multivariate Scatter Plot  

print('-----------------5. Heat Map-------------------') 

X<-rnorm(10,mean=rep(1:5,each=2),sd=0.7)  

y<-rnorm(10,mean=rep(c(1,9),each=5),sd=0.1) 

dataFrame<-data.frame(x=X,y=y)  

set.seed(143) 

dataMatrix<-as.matrix(dataFrame)[sample(1:10),] # convert to class 'matrix', then shuffle the 

rows of the matrix 

heatmap(dataMatrix) # visualize hierarchical clustering via a heatmap 

print('-----------------6. Correlogram-------------------') 

install.packages("corrplot") 

#data("mtcars")  

corr_matrix <- cor(mtcars) 

# with circles  

corrplot(corr_matrix) 

# with numbers and lower 

corrplot(corr_matrix,method = 'number',type = "lower") 

print('----------------- Area Chart-------------------') 

install.packages("magrittr") 

install.packages("dplyr") \ 

install.packages('tidyverse') 

library(dplyr)     

library(magrittr) 
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library(tidyverse) 

data("airquality") 

airquality %>% group_by(Day) %>% 

summarise(mean_wind = mean(Wind)) %>%  

ggplot() + geom_area(aes(x = Day, y = mean_wind)) + labs(title = "Area Chart of Average 

Wind per Day",subtitle = "using airquality data", y = "Mean Wind") 

 

OUTPUT: 
-----------------1.HISTOGRAM------------------- 

 
---------------2.1.Line Chart------------------- 

 
-----------------2.2.Bar Chart------------------- 
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-----------------3.Box Plot------------------- 

 

 
 

-----------------4.Scatter Plot ------------------- 
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-----------------5.Heat Map------------------- 

 
-----------------6.Correlogram------------------- 

 



52  

 
----------------- Area Chart------------------- 

 
 

Result 
Thus, the implementation of data visualization was successfully executed. 
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Ex.No.8           Implement an application that stores big data in Hbase /  

                                              MangoDB/ Pig using Hadoop / R  
 

Aim 

To implement an application that stores big data in MongoDB using R. 

 

Pre-Lab Discussion 

 

Theory 

MongoDB with R 

Mongodb is a NoSql database platform that works on the concept of collection and 

documents. Collection: Collections are just like tables in relational databases. They are a group 

of Mongodb documents. These collections contain a set of documents. Document: Documents 

are like tuples/ rows in a relational database. R provides several libraries for creating a 

connection between mongodb and R such as: mongolite, Rmongo, rmongodb . 

 

Step 1 - Install 'RMango package' 

install.packages("RMongo")  

library(RMongo)  

Step 2 - Create a connection 

r_mongo_con <- mongoDbConnect('db')  

Step 3 - Check the connection 

print(dbShowCollections(r_mongo_con)) # this verifies the established connection , 

returns errors if any  

Step 4 - Run Queries 

var_Query <- dbGetQuery(mongo, 'collection_name', "{'type': 'required_data'}")  

Step 5 - Install mongolite package 

install.packages('mongolite') library(mongolite)  

Step 6 - Create a connection 

mongolite_conn <- mongo(dataset, url) 

The most popular packages to connect MongoDB and R are: 

 

mongolite: A more recent R MongoDB driver, mongolite can perform various operations like 

indexing, aggregation pipelines, TLS encryption, and SASL authentication, among others. It’s 

https://www.projectpro.io/article/mongodb-projects-ideas/640
https://cran.r-project.org/web/packages/mongolite/
https://docs.mongodb.com/spark-connector/current/r/aggregation/
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based on the jsonlite package for R and mongo-c-driver. We can install mongolite 

from CRAN or from RStudio (explained in a later section). 

RMongo: RMongo was the first R MongoDB driver with a simple R MongoDB interface. It 

has syntax like the MongoDB shell. RMongo has been deprecated as of now. 

rmongodb: rmongodb has functions to create pipelines, handle BSON objects, etc. Its 

syntax is very complex compared to mongolite. Just like RMongo, rmongodb has been 

deprecated and is not available or maintained on CRAN. 

Inserting data 

Let’s insert the crimes data from data.gov to MongoDB. The dataset reflects reported 

incidents of crime (with the exception of murders where data exists for each victim) that 

occurred in the City of Chicago since 2001. 

 

PROGRAM: 

 
install.packages('gridExtra') 

library (ggplot2)  

library (dplyr)  

library (maps)  

library (ggmap)  

library (mongolite) 

library (lubridate)  

library (gridExtra) 

crimes=data.table::fread("crime.csv") 

names (crimes) 

names(crimes) = gsub(" ","",names(crimes)) 

names(crimes) 

my_collection = mongo(collection = "crimes", db = "Chicago") # create connection, 

database and collection 

my_collection$insert(crimes) 

my_collection$count() 

my_collection$iterate()$one() 

length(my_collection$distinct("PrimaryType")) 

my_collection$count('{"PrimaryType":"ASSAULT" }') 

query1= my_collection$find('{"PrimaryType" : "THEFT", "Domestic" : false }') 

https://cran.r-project.org/web/packages/jsonlite/vignettes/json-aaquickstart.html
http://mongoc.org/
https://cran.r-project.org/web/packages/mongolite/
https://www.mongodb.com/languages/mongodb-and-r-example#how-to-connect-to-a-mongodb-database-in-r
https://catalog.data.gov/dataset/crimes-2001-to-present-398a4
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query2= my_collection$find('{"PrimaryType" : "THEFT", "Domestic" : true }',fields = 

'{"_id":0, "PrimaryType":1, "Domestic":1}')  

ncol(query1) # with all the columns 

ncol(query2) # only the selected columns 

domestic=my_collection$find('{"Domestic":true}', 

fields = '{"_id":0}') 

domestic$Date= mdy_hms(domestic$Date)  

domestic$Weekday = weekdays(domestic$Date) 

domestic$Hour = hour(domestic$Date) 

domestic$month = month(domestic$Date,label=TRUE) 

plot(domestic$Date,domestic$Hour, col=domestic$month)  

pie(domestic) 

barplot(domestic$Hour,domestic$month) 

plot(domestic$District,domestic$Hour) 

plot(domestic$District[1:1000], type="l", col="blue") 

DayHourCounts = as.data.frame(table(domestic$Weekday, domestic$Hour)) 

DayHourCounts$Hour = as.numeric(as.character(DayHourCounts$Var2)) 

ggplot(DayHourCounts, aes(x=Hour, y=Freq)) + geom_line(aes(group=Var1, color=Var1), 

size=1.4)+ylab("Count")+ ylab("Total Domestic Crimes")+ggtitle("Domestic Crimes in the 

City of Chicago Since 2001")+theme(axis.title.x=element_text(size=14),axis.text.y = 

element_text(color="blue",size=11,angle=0,hjust=1,vjust=0),axis.text.x 

=element_text(color="blue",size=11,angle=0,hjust=.5,vjust=.5), axis.title.y = 

element_text(size=14),legend.title=element_blank(),plot.title=element_text(size=16,color="

purple",hjust=0.5)) 

DayHourCounts$Type = ifelse((DayHourCounts$Var1 == "Sunday") | 

(DayHourCounts$Var1 == "Saturday"), "Weekend", "Weekday") 

ggplot(DayHourCounts, aes(x=Hour, y=Freq)) + geom_line(aes(group=Var1, color=Type), 

size=2, alpha=0.5) +ylab("Total Domestic Crimes")+ggtitle("Domestic Crimes in the City of 

Chicago Since 2001")+theme(axis.title.x=element_text(size=14),axis.text.y = 

element_text(color="blue",size=11,angle=0,hjust=1,vjust=0),axis.text.x = 

element_text(color="blue",size=11,angle=0,hjust=.5,vjust=.5), axis.title.y = 

element_text(size=14),legend.title=element_blank(),plot.title=element_text(size=16,color="

purple",hjust=0.5)) 

DayHourCounts$Var1 = factor(DayHourCounts$Var1, ordered=TRUE,levels=c("Monday", 
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"Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday")) 

ggplot(DayHourCounts, aes(x = Hour, y = Var1)) + geom_tile(aes(fill = Freq)) + 

scale_fill_gradient(name="Total MV Thefts", low="white", high="red") +ggtitle("Domestic 

Crimes in the City of Chicago Since 2001")+theme(axis.title.y = 

element_blank())+ylab("")+theme(axis.title.x=element_text(size=14),axis.text.y = 

element_text(size=13),axis.text.x = element_text(size=13), axis.title.y = 

element_text(size=14),legend.title=element_blank(),plot.title=element_text(size=16,color="

purple")) 

domestic=my_collection$find('{"Domestic":true}', fields ='{"_id":0, 

"Domestic":1,"Date":1}') 

domestic$Date= mdy_hms(domestic$Date)  

domestic$Weekday = weekdays(domestic$Date) 

domestic$Hour = hour(domestic$Date)  

domestic$month = month(domestic$Date,label=TRUE) 

WeekdayCounts = as.data.frame(table(domestic$Weekday)) 

WeekdayCounts$Var1 = factor(WeekdayCounts$Var1, ordered=TRUE, levels=c("Sunday", 

"Monday", "Tuesday", "Wednesday", "Thursday", "Friday","Saturday")) 

ggplot(WeekdayCounts,aes(x=Var1, y=Freq))+geom_line(aes(group=1),size=2,color="red") 

+ xlab("Day of the Week") + ylab("Total Domestic Crimes")+ ggtitle("Domestic Crimes in 

the City of Chicago Since 2001")+ theme(axis.title.x=element_blank(),axis.text.y = 

element_text(color="blue",size=11,angle=0,hjust=1,vjust=0),axis.text.x = 

element_text(color="blue",size=11,angle=0,hjust=.5,vjust=.5), axis.title.y = 

element_text(size=14), plot.title=element_text(size=16,color="purple",hjust=0.5)) 

ASSAULT=my_collection$count('{"PrimaryType":"ASSAULT", "Domestic" : true }') 

my_collection$aggregate('[{"$group":{"_id":"$LocationDescription","Count":{"$sum":1}}}

')%>%na.omit()%>%arrange(desc(count))%>%head(10)%>% 

ggplot(aes(x=reorder(`_id`,count),y=count))+geom_bar(stat="identity",color='skyblue',fill='

#b35900')+geom_text(aes(label count), color = "blue") +coord_flip()+xlab("Location 

Description") 
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OUTPUT: 

> names (crimes) 

 [1] "ID"                   "Case Number"          "Date"                 

 [4] "Block"                "IUCR"                 "Primary Type"         

 [7] "Description"          "Location Description" "Arrest"               

[10] "Domestic"             "Beat"                 "District"             

[13] "Ward"                 "Community Area"       "FBI Code"             

[16] "X Coordinate"         "Y Coordinate"         "Year"                 

[19] "Updated On"           "Latitude"             "Longitude"            

[22] "Location"             

> names(crimes) = gsub(" ","",names(crimes)) 

> names(crimes) 

 [1] "ID"                  "CaseNumber"          "Date"                "Block"               

 [5] "IUCR"                "PrimaryType"         "Description"         "LocationDescription" 

 [9] "Arrest"              "Domestic"            "Beat"                "District"            

[13] "Ward"                "CommunityArea"       "FBICode"             "XCoordinate"         

[17] "YCoordinate"         "Year"                "UpdatedOn"           "Latitude"            

[21] "Longitude"           "Location"            

> my_collection = mongo(collection = "crimes", db = "Chicago") # create connection, 

database and collection 

> my_collection$insert(crimes) 

List of 5 

 $ nInserted  : num 7750924 

 $ nMatched   : num 0 

 $ nRemoved   : num 0 

 $ nUpserted  : num 0 

 $ writeErrors: list() 

> my_collection$count() 

[1] 7750924 

> my_collection$iterate()$one() 

$ID 

[1] 10224738 

 

$CaseNumber 

[1] "HY411648" 

 

$Date 

[1] "09/05/2015 01:30:00 PM" 

 

$Block 

[1] "043XX S WOOD ST" 

 

$IUCR 

[1] "0486" 

 

$PrimaryType 

[1] "BATTERY" 

 

$Description 

[1] "DOMESTIC BATTERY SIMPLE" 
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$LocationDescription 

[1] "RESIDENCE" 

 

$Arrest 

[1] FALSE 

 

$Domestic 

[1] TRUE 

 

$Beat 

[1] 924 

 

$District 

[1] 9 

 

$Ward 

[1] 12 

 

$CommunityArea 

[1] 61 

 

$FBICode 

[1] "08B" 

 

$XCoordinate 

[1] 1165074 

 

$YCoordinate 

[1] 1875917 

 

$Year 

[1] 2015 

 

$UpdatedOn 

[1] "02/10/2018 03:50:01 PM" 

 

$Latitude 

[1] 41.81512 

 

$Longitude 

[1] -87.67 

 

$Location 

[1] "(41.815117282, -87.669999562)" 

 

> length(my_collection$distinct("PrimaryType")) 

[1] 36 

> my_collection$count('{"PrimaryType":"ASSAULT" }') 

[1] 504447 
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> query1= my_collection$find('{"PrimaryType" : "THEFT", "Domestic" : false }') 

> query2= my_collection$find('{"PrimaryType" : "THEFT", "Domestic" : true }', 

+                            fields = '{"_id":0, "PrimaryType":1, "Domestic":1}')  

> ncol(query1) # with all the columns 

[1] 22 

> ncol(query2) # only the selected columns 

[1] 2 

> domestic=my_collection$find('{"Domestic":true}', 

+ fields = '{"_id":0}') 

> domestic$Date= mdy_hms(domestic$Date)  

> domestic$Weekday = weekdays(domestic$Date) 

> domestic$Hour = hour(domestic$Date) 

> domestic$month = month(domestic$Date,label=TRUE) 

 

> domestic$month = month(domestic$Date) 

> plot(domestic$Date[1:400],domestic$Hour[1:400], col=domestic$month) 

 

 
 

pie(domestic$Year[1:20]) 
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Result 

 

Thus, the application of Crime data set that stores big data in MongoDB using R was 

executed successfully. 
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Exp.No.9                                 CONTENT BEYOND SYLLABUS 

 

RANDOM FOREST APPROACH FOR CLASSIFICATION 

 

Aim 

To implement Radom Forest approach for classification for iris data set. 

Theory 

Random forest approach is supervised nonlinear classification and regression 

algorithm. Classification is a process of classifying a group of datasets in categories or 

classes. As random forest approach can use classification or regression techniques 

depending upon the user and target or categories needed. A random forest is a collection of 

decision trees that specifies the categories with much higher probability. Random forest 

approach is used over decision trees approach as decision trees lack accuracy and decision 

trees also show low accuracy during the testing phase due to the process called over-fitting. 

In R programming, randomForest() function of randomForest package is used to create 

and analyze the random forest.  

 

Program: 

 

# Loading data 

data(iris) 

# Structure  

str(iris) 

#Installing package 

install.packages("caTools")       # For sampling the dataset 

install.packages("randomForest")  # For implementing random forest algorithm 

# Loading package 

library(caTools) 

library(randomForest) 

# Splitting data in train and test data 

split <- sample.split(iris, SplitRatio = 0.7) 

train <- subset(iris, split == "TRUE") 

test <- subset(iris, split == "FALSE") 

# Fitting Random Forest to the train dataset 

set.seed(120)  # Setting seed 

classifier_RF = randomForest(x = train[-5], 

                             y = train$Species, ntree = 500) 

classifier_RF 

# Predicting the Test set results 

y_pred = predict(classifier_RF, newdata = test[-5]) 

# Confusion Matrix 

https://www.geeksforgeeks.org/random-forest-approach-in-r-programming/
https://www.geeksforgeeks.org/classification-in-r-programming/
https://www.geeksforgeeks.org/introduction-to-r-programming-language/
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confusion_mtx = table(test[, 5], y_pred) 

confusion_mtx 

# Plotting model 

plot(classifier_RF) 

# Importance plot 

importance(classifier_RF) 

# Variable importance plot 

varImpPlot(classifier_RF) 

OUTPUT: 

'data.frame': 150 obs. of  5 variables: 

 $ Sepal.Length: num  5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ... 

 $ Sepal.Width : num  3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ... 

 $ Petal.Length: num  1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ... 

 $ Petal.Width : num  0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ... 

 $ Species     : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ... 

[1]  TRUE  TRUE FALSE  TRUE FALSE 

Call: 

 randomForest(x = train[-5], y = train$Species, ntree = 500)  

               Type of random forest: classification 

                     Number of trees: 500 

No. of variables tried at each split: 2 

  OOB estimate of  error rate: 5.56% 

Confusion matrix: 

                  Setosa      versicolor    virginica     class.error 

setosa          30            0                  0                    0.00000000 

versicolor      0          28                   2                  0.06666667 

virginica        0            3                  27                    0.10000000 

        y_pred 

                    setosa      versicolor     virginica 

  setosa            20              0              0 

  versicolor       0              19             1 

  virginica          0               2            18 

                            MeanDecreaseGini 

Sepal.Length         6.201739 

Sepal.Width          1.527756 

Petal.Length        23.936397 

Petal.Width         27.591441 
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Result 
 

Thus, the implementation of random forest approach for classification was executed. 
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K-Nearest Neighbor Classifier 

 

 

Aim 

To implement K-Nearest Neighbor Classifier for iris data set. 

 

Theory 

 

K-Nearest Neighbor or K-NN is a Supervised Non-linear classification algorithm. 

K-NN is a Non-parametric algorithm i.e it doesn’t make any assumption about underlying 

data or its distribution. It is one of the simplest and widely used algorithm which depends 

on it’s k value(Neighbors) and finds it’s applications in many industries like finance 

industry, healthcare industry etc. 

In the KNN algorithm, K specifies the number of neighbors and its algorithm is as 

follows: 

• Choose the number K of neighbor. 

• Take the K Nearest Neighbor of unknown data point according to distance. 

• Among the K-neighbors, Count the number of data points in each category. 

• Assign the new data point to a category, where you counted the most neighbors. 

For the Nearest Neighbor classifier, the distance between two points is expressed in the form 

of Euclidean Distance. 

 

Program 

 

# Loading data 

data(iris) 

# Structure  

str(iris) 

# Installing Packages 

install.packages("e1071") 

install.packages("caTools") 

install.packages("class") 

# Loading package 

library(e1071) 

library(caTools) 

library(class)   

# Loading data 

data(iris) 

head(iris)   

# Splitting data into train and test data 

split <- sample.split(iris, SplitRatio = 0.7) 
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train_cl <- subset(iris, split == "TRUE") 

test_cl <- subset(iris, split == "FALSE")  

# Feature Scaling 

train_scale <- scale(train_cl[, 1:4]) 

test_scale <- scale(test_cl[, 1:4])   

# Fitting KNN Model  to training dataset 

classifier_knn <- knn(train = train_scale, 

                      test = test_scale, 

                      cl = train_cl$Species, 

                      k = 1) 

classifier_knn  

 

# Confusiin Matrix 

cm <- table(test_cl$Species, classifier_knn) 

cm 

# Model Evaluation - Choosing K 

# Calculate out of Sample error 

misClassError <- mean(classifier_knn != test_cl$Species) 

print(paste('Accuracy =', 1-misClassError))   

# K = 3 

classifier_knn <- knn(train = train_scale, 

                      test = test_scale, 

                      cl = train_cl$Species, 

                      k = 3) 

misClassError <- mean(classifier_knn != test_cl$Species) 

print(paste('Accuracy =', 1-misClassError))   

# K = 5 

classifier_knn <- knn(train = train_scale, 

                      test = test_scale, 

                      cl = train_cl$Species, 

                      k = 5) 

misClassError <- mean(classifier_knn != test_cl$Species) 

print(paste('Accuracy =', 1-misClassError)) 

# K = 7 

classifier_knn <- knn(train = train_scale, 

                      test = test_scale, 

                      cl = train_cl$Species, 

                      k = 7) 

misClassError <- mean(classifier_knn != test_cl$Species) 

print(paste('Accuracy =', 1-misClassError))   

# K = 15 

classifier_knn <- knn(train = train_scale, 

                      test = test_scale, 

                      cl = train_cl$Species, 

                      k = 15) 

misClassError <- mean(classifier_knn != test_cl$Species) 

print(paste('Accuracy =', 1-misClassError))   

# K = 19 

classifier_knn <- knn(train = train_scale, 

                      test = test_scale, 
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                      cl = train_cl$Species, 

                      k = 19) 

misClassError <- mean(classifier_knn != test_cl$Species) 

print(paste('Accuracy =', 1-misClassError)) 

 

OUTPUT: 

'data.frame': 150 obs. of  5 variables: 

 $ Sepal.Length: num  5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ... 

 $ Sepal.Width : num  3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ... 

 $ Petal.Length: num  1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ... 

 $ Petal.Width : num  0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ... 

 $ Species     : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ... 

 

        Sepal.Length    Sepal.Width     Petal.Length    Petal.Width 

1          5.1                     3.5                        1.4                 0.2 

2          4.9                     3.0                        1.4                 0.2 

3          4.7                     3.2                        1.3                 0.2 

4          4.6                     3.1                        1.5                 0.2 

5          5.0                     3.6                        1.4                 0.2 

6          5.4                     3.9                        1.7                 0.4 

         Species 

1       setosa 

2       setosa 

3      setosa 

4      setosa 

5      setosa 

6      setosa 

 

[1] setosa     setosa     setosa     setosa     

 [5] setosa     setosa     setosa     setosa     

 [9] setosa     setosa     setosa     setosa     

[13] setosa     setosa     setosa     setosa     

[17] setosa     setosa     setosa     setosa     

[21] versicolor versicolor versicolor versicolor 

[25] versicolor versicolor versicolor versicolor 

[29] virginica  versicolor versicolor versicolor 

[33] versicolor virginica  versicolor versicolor 

[37] versicolor versicolor versicolor versicolor 

[41] virginica  virginica  virginica  virginica  

[45] virginica  virginica  virginica  virginica  

[49] virginica  virginica  virginica  virginica  

[53] virginica  versicolor virginica  virginica  

[57] virginica  virginica  virginica  virginica  

Levels: setosa versicolor virginica 

 

      classifier_knn 

                  setosa      versicolor     virginica 

  setosa          20              0                  0 

  versicolor      0           18                   2 

  virginica       0              1                 19 
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[1] "Accuracy = 0.95" 

[1] "Accuracy = 0.95" 

[1] "Accuracy = 0.966666666666667" 

[1] "Accuracy = 0.983333333333333" 

[1] "Accuracy = 0.966666666666667" 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Result 

Thus, the K-NN classifier using iris data set was executed. 
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Naive Bayes Classifier 

 

Aim 

 

To implement Navie Bayes Classifier for iris dataset. 

 

 

Theory 

 

Naive Bayes is a Supervised Non-linear classification algorithm in R Programming. 

Naive Bayes classifiers are a family of simple probabilistic classifiers based on applying 

Baye’s theorem with strong(Naive) independence assumptions between the features or 

variables. The Naive Bayes algorithm is called “Naive” because it makes the assumption 

that the occurrence of a certain feature is independent of the occurrence of other features.  

Naive Bayes algorithm is based on Bayes theorem. Bayes theorem gives the 

conditional probability of an event A given another event B has occurred.  

  

 

where,  

P(A|B) = Conditional probability of A given B.  

P(B|A) = Conditional probability of B given A.  

P(A) = Probability of event A.  

P(B) = Probability of event B. 

 

Program 

 

# Loading data 

data(iris) 

# Structure  

str(iris) 

# Installing Packages 

install.packages("e1071") 

install.packages("caTools") 

install.packages("caret") 

# Loading package 

library(e1071) 

library(caTools) 

https://www.geeksforgeeks.org/introduction-to-r-programming-language/
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library(caret) 

# Splitting data into train and test data 

split <- sample.split(iris, SplitRatio = 0.7) 

train_cl <- subset(iris, split == "TRUE") 

test_cl <- subset(iris, split == "FALSE") 

# Feature Scaling 

train_scale <- scale(train_cl[, 1:4]) 

test_scale <- scale(test_cl[, 1:4]) 

# Fitting Naive Bayes Model  to training dataset 

set.seed(120)  # Setting Seed 

classifier_cl <- naiveBayes(Species ~ ., data = train_cl) 

classifier_cl 

# Predicting on test data' 

y_pred <- predict(classifier_cl, newdata = test_cl) 

# Confusion Matrix 

cm <- table(test_cl$Species, y_pred) 

cm 

# Model Evaluation 

confusionMatrix(cm) 

OUTPUT: 

'data.frame': 150 obs. of  5 variables: 

 $ Sepal.Length: num  5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ... 

 $ Sepal.Width : num  3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ... 

 $ Petal.Length: num  1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ... 

 $ Petal.Width : num  0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ... 

 $ Species     : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ... 

 

Naive Bayes Classifier for Discrete Predictors 

Call: 

naiveBayes.default(x = X, y = Y, laplace = laplace) 

A-priori probabilities: 

Y 

    setosa         versicolor    virginica  

 0.3333333  0.3333333    0.3333333  

Conditional probabilities: 

            Sepal.Length 

Y                     [,1]                [,2] 

  setosa       4.943333    0.3766306 

  versicolor 6.000000   0.5051459 

  virginica   6.500000    0.6817827 

            Sepal.Width 

     Y                        [,1]                [,2] 

  setosa        3.400000   0.3859605 

  versicolor  2.746667   0.3104317 
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  virginica     2.926667   0.3362402 

        Petal.Length 

     Y                [,1]           [,2] 

  setosa     1.426667    0.1552158 

  versicolor   4.306667   0.5172429 

  virginica     5.486667   0.6179685 

 

            Petal.Width 

      Y                [,1]          [,2] 

  setosa     0.250000    0.1196259 

  versicolor 1.330000   0.2019730 

  virginica  1.976667   0.2160513 

  y_pred 

                   setosa    versicolor    virginica 

  setosa            20          0                 0 

  versicolor        0         19                1 

  virginica          0          2                18 

Confusion Matrix and Statistics 

  y_pred 

                 setosa   versicolor   virginica 

  setosa          20           0                0 

  versicolor      0         19              1 

  virginica         0           2               18 

 

Overall Statistic:                           

               Accuracy : 0.95             

                 95% CI : (0.8608, 0.9896) 

    No Information Rate : 0.35             

    P-Value [Acc > NIR] : < 2.2e-16                                

                  Kappa : 0.925                                 

 Mcnemar's Test P-Value : NA               

 

Statistics by Class: 

                     Class: setosa          Class: versicolor 

Sensitivity                 1.0000            0.9048 

Specificity                 1.0000            0.9744 

Pos Pred Value         1.0000            0.9500 

Neg Pred Value        1.0000            0.9500 

Prevalence                0.3333            0.3500 

Detection Rate         0.3333            0.3167 

Detection Prevalence        0.3333            0.3333 

Balanced Accuracy           1.0000            0.9396 

                                      Class: virginica 

Sensitivity                             0.9474 

Specificity                             0.9512 

Pos Pred Value                    0.9000 

Neg Pred Value                    0.9750 

Prevalence                            0.3167 

Detection Rate                     0.3000 

Detection Prevalence          0.3333 
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Balanced Accuracy               0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Result 

Thus, the implementation of Navie Bayes theorem for iris data set was executed.  
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VIVA Questions 

 

 
1. What is Hadoop? 

2. What platform and java version are required to run Hadoop? 

3. What kind of hardware is best for Hadoop? 

4. What are the most common input formats defined in Hadoop? 

5. Explain the use of .mecia class? 

6. Give the use of the bootstrap panel. 

7. What is job tracker in Hadoop? 

8. What are the difference between regular file system and HDFS? 

9. Define name node. 

10. Define data node. 

11. Define mapreduce. 

12. How does rack awareness work in HDFS? 

13. How can you restart name node and the deamons in Hadoop? 

14. Which command will help you to find the status of blocks and file system health? 

15. How do you copy data from the local system onto HDFS? 

16. Is logistic regression a generative or a descriptive classifier? 

17. Can you use logistic regression for classification between more than two classes? 

18. How do you implement multinomial logistic regression? 

19. Why can't we use the mean square error cost function used in linear regression for 

logistic regression? 

20. What alternative could you suggest using a for loop (which is time-consuming) when 

using Gradient Descent to find the optimum parameters for logistic regression? 

21. Are there alternatives to find optimum parameters for logistic regression besides 

using Gradient Descent? 

22. How many binary classifiers would you need to implement one-vs-one for four 

classes? How does it work? 

23. What is the importance of regularisation?  

24. When Logistic Regression can be used? 

25. Why is Logistic Regression called Regression and not Classification? 

26. What is linear regression? 

27. Explain L1 and L2 regularisations. 
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28. Your linear regression doesn’t run and communicates that there is an infinite number 

of best estimates for the regression coefficients. What could be wrong? 

29. How do you know that linear regression is suitable for any given data? 

30. How is hypothesis testing used in linear regression? 

31. Explain gradient descent with respect to linear regression. 

32. What is the generalized linear model? 

33. Which graphs are suggested to be observed before model fitting? 

34. What is heteroscedasticity? 

35. What are the possible ways of improving the accuracy of a linear regression model? 

36. What are Decision Trees? 

37. Explain the structure of a Decision Tree. 

38. What are some advantages of using Decision Trees? 

39. What is Gini Index and how is it used in Decision Trees? 

40. What is Greedy Splitting? 

41. What is Tree Boosting? 

42. Why do you need to Prune the decision tree? 

43. List down some popular algorithms used for deriving Decision Trees along with their 

attribute selection measures. 

44. How are the different nodes of decision trees represented? 

45. What is Support Vector Machine? 

46. Name some advantages of SVM 

47. What are Support Vectors in SVMs? 

48. Compare SVM and Logistic Regression in handling outliers 

49. What are Polynomial Kernels? 

50. When SVM is not a good approach? 

51. While designing an SVM classifier, what values should the designer select? 

52. Why do we need to use Support Vector Machines? 

53. What are Hard Margin SVMs and Soft Margin SVMs? 

54. What is the relationship between Slack and Margin? 


