
1

LAB MANUAL

SRM VALLIAMMAI ENGINEERING

COLLEGE
(An Autonomous Institution)

SRM Nagar, Kattankulathur-603203

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

ACADEMIC YEAR: 2024-2025

EVEN SEMESTER

(REGULATION - 2019)

SIXTH SEMSTER

B.Tech – Artificial Intelligence and Data Science

Prepared By

Ms. R. LAKSHMI , A.P (Sel.G) / AI&DS

 1922609– BIG DATA ANALYTICS

LABORATORY

2

INDEX

E.NO EXPERIMENT NAME Pg. No.

A PEO,PO,PSO 3-5

B Syllabus 6

C Introduction/ Description of major Software & Hardware involved in lab 7

D CO, CO-PO Matrix, CO-PSO Matrix 8

E Mode of Assessment 8

 Hadoop

1 Install, configure and run Hadoop and HDFS

 9

2 Implement word count / frequency programs using MapReduce

 22

3 Implement an MR program that processes a weather dataset

 28

R

4 Implement Linear and logistic Regression

 32

5 Implement SVM / Decision tree classification techniques

37,40

6 Implement clustering techniques

 43

7 Visualize data using any plotting framework

 46

8 Implement an application that stores big data in Hbase / MongoDB / Pig using

Hadoop / R.

 53

9. Content Beyond Syllabus & Viva Questions 63,74

3

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

1. To afford the necessary background in the field of Information Technology to deal with engineering problems

to excel as engineering professionals in industries.

2. To improve the qualities like creativity, leadership, teamwork and skill thus contributing towards the growth

and development of society.

3. To develop ability among students towards innovation and entrepreneurship that caters to the needs of

Industry and society.

4. To inculcate and attitude for life-long learning process through the use of information technology sources.

5. To prepare then to be innovative and ethical leaders, both in their chosen profession and in other activities.

PROGRAMME OUTCOMES (POs)

After going through the four years of study, Information Technology Graduates will exhibit ability to:

PO# Graduate Attribute Programme Outcome

1

Engineering knowledge

Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization for the solution

of complex engineering problems.

2

Problem analysis

Identify, formulate, research literature, and analyze complex

engineering problems reaching substantiated conclusions using

first principles of mathematics, natural sciences, and

engineering sciences.

3

Design/development of

solutions

Design solutions for complex engineering problems and design

system components or processes that meet the specified needs

with appropriate consideration for public health and safety, and

cultural, societal, and environmental considerations.

4

Conduct investigations of

complex problems

Use research-based knowledge and research methods including

design of experiments, analysis and interpretation of data, and

synthesis of the information to provide valid conclusions

4

5

Modern tool usage

Create, select, and apply appropriate techniques, resources, and

modern engineering and IT tools, including prediction and

modeling to complex engineering activities, with an

understanding of the limitations.

6

The engineer and society

Apply reasoning informed by the contextual knowledge to assess

societal, health, safety, legal, and cultural issues and the

consequent responsibilities relevant to the professional

engineering practice

7

Environment and

sustainability

Understand the impact of the professional engineering solutions

in societal and environmental contexts, and demonstrate the

knowledge of, and need for sustainable development.

8 Ethics
Apply ethical principles and commit to professional ethics and

responsibilities and norms of the engineering practice

9 Individual and team work
Function effectively as an individual, and as a member or

leader in diverse teams, and in multidisciplinary settings

10

Communication

Communicate effectively on complex engineering activities with

the engineering community and with the society at large, such

as, being able to comprehend and write effective reports and

design documentation, make effective presentations, and

give and receive clear instructions

11

Project management and

finance

Demonstrate knowledge and understanding of the engineering

and management principles and apply these to one’s own work,

as a member and leader in a team, to manage projects and in

multidisciplinary environments

12

Life-long learning

Recognize the need for, and have the preparation and ability to

engage in independent and life-long learning in the broadest

context of technological change

5

PROGRAMME SPECIFIC OUTCOMES (PSOs)

After the completion of Bachelor of Technology in Artificial Intelligence and Data Science

programme the student will have following Program specific outcomes

1. Design and develop secured database applications with data analytical approaches of data preprocessing,

optimization, visualization techniques and maintenance using state of the art methodologies based on

ethical values.

2. Design and develop intelligent systems using computational principles, methods and systems for extracting

knowledge from data to solve real time problems using advanced technologies and tools.

3. Design, plan and setting up the network that is helpful for contemporary business environments using latest

software and hardware.

4. Planning and defining test activities by preparing test cases that can predict and correct errors ensuring a

socially transformed product catering all technological needs.

6

1922609 BIG DATA ANALYTICS LABORATORY L T P C

 0 0 4 2

OBJECTIVES:

• To optimize business decisions and create competitive advantage with Big Data

Analytics.

• To implement Map Reduce programs for processing big data

• To realize storage of big data using H base, Mongo DB

• To analyze big data using linear models

• To analyze big data using machine learning techniques such as SVM / Decision tree

classification and clustering

LIST OF EXPERIMENTS:

Hadoop

1. Install, configure and run Hadoop and HDFS

2. Implement word count / frequency programs using MapReduce

3. Implement an MR program that processes a weather dataset

R

4. Implement Linear and logistic Regression

5. Implement SVM / Decision tree classification techniques

6. Implement clustering techniques

7. Visualize data using any plotting framework

8. Implement an application that stores big data in Hbase / MongoDB / Pig using

Hadoop / R

Total: 60 Periods

7

LIST OF EQUIPMENTS FOR A BATCH OF 30 STUDENTS

SOFTWARE:

Hadoop, YARN, R Package, Hbase, MongoDB

HARDWARE:

Standalone desktops - 30 Nos. (or) Server supporting 30 terminals or more

 COURSE OUTCOMES

1922609.1 Understand and process big data using Hadoop Framework

1922609.2
Understand and apply regression models

1922609.3 Understand and perform data analysis with Machine Learning method.

1922609.4 Analyze and perform graphical data analysis

1922609.5 Implement and apply tools and techniques to analyses Big data.

CO- PO-PSO MATRIX

CO

PO PSO

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4

1 3 2 1 -

- - - 1 - - 3 - 2 - -

2 2 2 - - 2 - - - 1 - - 2 - 2 - -

3 2 2 - -

- - - 1 - - 2 - 2 - -

4 3 2 2 - 2 - - - 1 - - 2 - - - 2

5 3 2 1 - 2 - - - - - - 2 - - - 2

8

EVALUATION PROCEDURE FOR EACH EXPERIMENT

S.No Description Mark

1. Aim & Pre-Lab discussion 20

2. Observation 30

3. Conduction and Execution 30

4. Output & Result 10

5. Viva 10

Total 100

INTERNAL ASSESSMENT FOR LABORATORY

S.No Description Mark

1. Conduction & Execution of Experiment 50

2. Record 20

3. Model Test 30

Total 100

9

Ex.No.1 Install, configure and run Hadoop and HDFS

AIM

To Study how to install, configure and run Hadoop and HDFS on Ubuntu 20.04.

PROCEDURE

Step by Step Installing Hadoop on Ubuntu 20.04

Step 1 — Create user for Hadoop environment

sudo adduser Hadoop

Step 2— Installing Java

The following command to update your system before initiating a new installation:

sudo apt update

Install the latest version of Java.

sudo apt install openjdk-8-jdk -y

Once installed, verify the installed version of Java with the following command:

java -version

10

Step 3: Install OpenSSH on Ubuntu

Install the OpenSSH server and client using the following command:

sudo apt install openssh-server openssh-client -y

Switch to the created user.

sudo su - hadoop

Generate public and private key pairs.

$ ssh-keygen -t rsa

Add the generated public key from id_rsa.pub to authorized_keys.

$ sudo cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys

Change the permissions of the authorized_keys file.

$ sudo chmod 640 ~/.ssh/authorized_keys

Verify if the password-less SSH is functional.

$ ssh localhost

Step 4: Install Apache Hadoop

Download the latest stable version of Hadoop.

$ wget https://downloads.apache.org/hadoop/common/hadoop-3.3.2/hadoop-3.3.2.tar.gz

Extract the downloaded file.

https://downloads.apache.org/hadoop/common/hadoop-3.3.1/hadoop-3.3.1.tar.gz

11

$ tar -xvzf hadoop-3.3.2.tar.gz

Rename the extracted directory as we will do by executing the below-given command:

mv hadoop-3.3.0 hadoop

Now, configure Java environment variables for setting up Hadoop. For this, we will check out the location

of our “JAVA_HOME” variable:

dirname $(dirname $(readlink -f $(which java)))

Step 5: Configure Hadoop

A Hadoop environment is configured by editing a set of configuration files:

bashrc, hadoop-env.sh, core-site.xml, hdfs-site.xml, mapred-site-xml and yarn-site.xml

They can be found in the newly created hadoop folder

Step 5a: Configure Hadoop Environment Variables (bashrc)

Edit file ~/.bashrc to configure the Hadoop environment variables.

$ sudo nano ~/.bashrc

Add the following lines to the file. Save and close the file.

export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64

export HADOOP_HOME=/usr/local/hadoop

export HADOOP_INSTALL=$HADOOP_HOME

export HADOOP_MAPRED_HOME=$HADOOP_HOME

export HADOOP_COMMON_HOME=$HADOOP_HOME

export HADOOP_HDFS_HOME=$HADOOP_HOME

export YARN_HOME=$HADOOP_HOME

export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native

export PATH=$PATH:$HADOOP_HOME/sbin:$HADOOP_HOME/bin

12

export HADOOP_OPTS="-Djava.library.path=$HADOOP_HOME/lib/native"

Activate the environment variables.

$ source ~/.bashrc

Step 5b: Edit hadoop-env.sh File

The hadoop-env.sh file serves as a master file to configure YARN, HDFS, MapReduce, and Hadoop-related

project settings. When setting up a single node Hadoop cluster, you need to define which Java implementation

is to be utilized. Use the previously created $HADOOP_HOME variable to access the hadoop-env.sh file:

sudo nano $HADOOP_HOME/etc/hadoop/hadoop-env.sh

Uncomment the $JAVA_HOME variable (i.e., remove the # sign) and add the full path to the OpenJDK

installation on your system.

export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64

The path needs to match the location of the Java installation on your system.

https://phoenixnap.com/kb/what-is-hdfs
https://phoenixnap.com/kb/hadoop-mapreduce

13

To locate the correct Java path, run the following command in your terminal window:

which javac

The resulting output provides the path to the Java binary directory.

Use the provided path to find the OpenJDK directory with the following command:

readlink -f /usr/bin/javac

The section of the path just before the /bin/javac directory needs to be assigned to

the $JAVA_HOME variable.

Step 5c: Edit core-site.xml File

The core-site.xml file defines HDFS and Hadoop core properties.

14

To set up Hadoop in a pseudo-distributed mode, you need to specify the URL for your NameNode, and the

temporary directory Hadoop uses for the map and reduce process.

Open the core-site.xml file in a text editor:

sudo nano $HADOOP_HOME/etc/hadoop/core-site.xml

Add the following configuration to override the default values for the temporary directory and add your

HDFS URL to replace the default local file system setting:

<configuration>

 <property>

 <name>fs.defaultFS</name>

 <value>hdfs://localhost:9000</value>

 </property>

 </configuration>

This example uses values specific to the local system. The data needs to be consistent throughout the

configuration process.

Step 5d: Edit hdfs-site.xml File

The properties in the hdfs-site.xml file govern the location for storing node metadata, fsimage file, and edit

log file. Configure the file by defining the NameNode and DataNode storage directories. In this “hdfs-

site.xml” file, we will change the directory path of “datanode” and “namenode”: Additionally, the

default dfs.replication value of 3 needs to be changed to 1 to match the single node setup.

15

Use the following command to open the hdfs-site.xml file for editing:

sudo nano $HADOOP_HOME/etc/hadoop/hdfs-site.xml

Add the following configuration to the file and, if needed, adjust the NameNode and DataNode directories to

your custom locations:

<configuration>

<property>

 <name>dfs.replication</name>

 <value>1</value>

 </property>

<property>

 <name>dfs.name.dir</name>

 <value>file:///home/hadoop/hadoopdata/hdfs/namenode</value>

 </property>

<property>

 <name>dfs.data.dir</name>

 <value>file:///home/hadoop/hadoopdata/hdfs/datanode</value>

 </property>

</configuration>

If necessary, create the specific directories you defined for the dfs.data.dir value.

16

Step 5e: Edit mapred-site.xml File

Use the following command to access the mapred-site.xml file and define MapReduce values:

sudo nano $HADOOP_HOME/etc/hadoop/mapred-site.xml

Add the following configuration to change the default MapReduce framework name value to yarn:

<configuration>

<property>

 <name>mapreduce.framework.name</name>

 <value>yarn</value>

</property>

</configuration>

Step 5f: Edit yarn-site.xml File

The yarn-site.xml file is used to define settings relevant to YARN. It contains configurations for the Node

Manager, Resource Manager, Containers, and Application Master. Open the yarn-site.xml file in a text

editor:

17

sudo nano $HADOOP_HOME/etc/hadoop/yarn-site.xml

Append the following configuration to the file:

<configuration>

 <property>

 <name>yarn.nodemanager.aux-services</name>

 <value>mapreduce_shuffle</value>

 </property>

</configuration>

Step 5g. Format HDFS NameNode

It is important to format the NameNode before starting Hadoop services for the first time:

hdfs namenode -format

18

The shutdown notification signifies the end of the NameNode format process.

Step 6: Start Hadoop Cluster

19

Start the NameNode and DataNode.

$ start-dfs.sh

Start the YARN resource and node managers.

$ start-yarn.sh

Verify all the running components.

$ jps

The system takes a few moments to initiate the necessary nodes. If everything is working as intended, the

resulting list of running Java processes contains all the HDFS and YARN daemons.

Step 7: Access Hadoop UI from Browser

Use your preferred browser and navigate to your localhost URL or IP. The default port number 9870 gives

you access to the Hadoop NameNode UI:

http://localhost:9870

The NameNode user interface provides a comprehensive overview of the entire cluster

http://localhost:9870/

20

The default port 9864 is used to access individual DataNodes directly from your browser:

http://localhost:9864

The YARN Resource Manager is accessible on port 8088:

http://localhost:8088

The Resource Manager is an invaluable tool that allows you to monitor all running processes in your Hadoop

cluster.

http://localhost:9864/
http://localhost:8088/

21

Result

Thus, the step by step Installing Hadoop on Ubuntu 20.04 was successfully done.

22

Ex.No.2 Implement Word count / frequency program using Map reduce

Aim

To implement Word count / frequency program using Map reduce.

Pre-Lab discussion

MapReduce is a processing technique and a program model for distributed computing based on java.

The MapReduce algorithm contains two important tasks, namely Map and Reduce. Map takes a set of data

and converts it into another set of data, where individual elements are broken down into tuples (key/value

pairs). Secondly, reduce task, which takes the output from a map as an input and combines those data tuples

into a smaller set of tuples. As the sequence of the name MapReduce implies, the reduce task is always

performed after the map job.

The major advantage of MapReduce is that it is easy to scale data processing over multiple

computing nodes. Under the MapReduce model, the data processing primitives are called mappers and

reducers. Decomposing a data processing application into mappers and reducers is sometimes nontrivial.

But, once we write an application in the MapReduce form, scaling the application to run over hundreds,

thousands, or even tens of thousands of machines in a cluster is merely a configuration change. This simple

scalability is what has attracted many programmers to use the MapReduce model.

The Algorithm

• Generally MapReduce paradigm is based on sending the computer to where the data resides!

• MapReduce program executes in three stages, namely map stage, shuffle stage, and reduce stage.

o Map stage − The map or mapper’s job is to process the input data. Generally the input data is

in the form of file or directory and is stored in the Hadoop file system (HDFS). The input file

is passed to the mapper function line by line. The mapper processes the data and creates

several small chunks of data.

o Reduce stage − This stage is the combination of the Shuffle stage and the Reduce stage. The

Reducer’s job is to process the data that comes from the mapper. After processing, it produces

a new set of output, which will be stored in the HDFS.

• During a MapReduce job, Hadoop sends the Map and Reduce tasks to the appropriate servers in the

cluster.

• The framework manages all the details of data-passing such as issuing tasks, verifying task

completion, and copying data around the cluster between the nodes.

• Most of the computing takes place on nodes with data on local disks that reduces the network traffic.

• After completion of the given tasks, the cluster collects and reduces the data to form an appropriate

result, and sends it back to the Hadoop server.

23

Steps on Hadoop Operations

Step 1: Start

$ start-all.sh

24

Step 2 : Start output

Step 3 :Create an input directory

$ hdfs dfs –mkdir /input

Step 4 : Create a sample word

25

Step 5: Put file

$ hdfs dfs –put Downloads/word /input

Step 6 : Put file output

26

Step 7 : Downloading jar

Step 8: Loading jar

$ Hadoop jar Downloads/Hadoop-wordcount-master/dist/wordcount.jar

com.petehouston.hadoop.WordCount /input/word/output

27

Step 9: Viewing output files

$ hdfs dfs –ls/output/wordcount

Step 10: Final output

$ hdfs dfs –cat /output/wordcount/part-r-00000

Result

Thus, the implementation of word count/ frequency programs using MapReduce was executed.

28

Ex.No.3 Implement a MR program that process a weather dataset

Aim

To implement a MR program that process a weather dataset.

Pre-lab Discussion

Inputs and Outputs (Java Perspective)

The MapReduce framework operates on <key, value> pairs, that is, the framework views the input

to the job as a set of <key, value> pairs and produces a set of <key, value> pairs as the output of the job,

conceivably of different types.

The key and the value classes should be in serialized manner by the framework and hence, need to

implement the Writable interface. Additionally, the key classes have to implement the Writable-Comparable

interface to facilitate sorting by the framework. Input and Output types of a MapReduce job − (Input) <k1,

v1> → map → <k2, v2> → reduce → <k3, v3>(Output).

Input Output

Map <k1, v1> list (<k2, v2>)

Reduce <k2, list(v2)> list (<k3, v3>)

Terminology

• PayLoad − Applications implement the Map and the Reduce functions, and form the core of the job.

• Mapper − Mapper maps the input key/value pairs to a set of intermediate key/value pair.

• NamedNode − Node that manages the Hadoop Distributed File System (HDFS).

• DataNode − Node where data is presented in advance before any processing takes place.

• MasterNode − Node where JobTracker runs and which accepts job requests from clients.

• SlaveNode − Node where Map and Reduce program runs.

• JobTracker − Schedules jobs and tracks the assign jobs to Task tracker.

• Task Tracker − Tracks the task and reports status to JobTracker.

• Job − A program is an execution of a Mapper and Reducer across a dataset.

• Task − An execution of a Mapper or a Reducer on a slice of data.

• Task Attempt − A particular instance of an attempt to execute a task on a SlaveNode.

29

Program

AverageMapper.java

import org.apache.hadoop.io.*;

import org.apache.hadoop.mapreduce.*; import java.io.IOException;

public class AverageMapper extends Mapper <LongWritable, Text, Text, IntWritable>

{

public static final int MISSING = 9999;

public void map(LongWritable key, Text value, Context context) throwsIOException, InterruptedException

{

String line = value.toString();

String year = line.substring(15,19);

int temperature;

if (line.charAt(87)=='+')

temperature = Integer.parseInt(line.substring(88, 92));

else

temperature = Integer.parseInt(line.substring(87, 92));

String quality = line.substring(92, 93);

if(temperature != MISSING && quality.matches("[01459]")) context.write(new Text(year),new

IntWritable(temperature));

}

}

30

AverageReducer.java

import org.apache.hadoop.mapreduce.*;

import java.io.IOException;

public class AverageReducer extends Reducer <Text, IntWritable,Text, IntWritable >

{

public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException,

InterruptedException

{

int max_temp = 0;

int count = 0;

for (IntWritable value : values)

{

max_temp += value.get();

count+=1;

}

context.write(key, new IntWritable(max_temp/count));

} }

AverageDriver.java

import.org.apache.hadoop.io.*;

import org.apache.hadoop.fs.*;

import org.apache.hadoop.mapreduce.*;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class AverageDriver

{

public static void main (String[] args) throws Exception

{

if (args.length != 2)

31

{

System.err.println("Please Enter the input and output parameters");

System.exit(-1);

}

Job job = new Job(); job.setJarByClass(AverageDriver.class); job.setJobName("Max temperature");

FileInputFormat.addInputPath(job,newPath(args[0])); FileOutputFormat.setOutputPath(job,new Path

(args[1]));

job.setMapperClass(AverageMapper.class); job.setReducerClass(AverageReducer.class);

job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class)

System.exit(job.waitForCompletion(true)?0:1);

}

}

Result

Thus, the implementation of an MR program that process a weather dataset was executed successfully.

32

Ex.No.4 Implement Linear and Logistic Regression

Aim

To implement linear and logistic regression for Sales dataset.

Pre-lab Discussion

Theory

Linear Regression:

Linear regression algorithm shows a linear relationship between a dependent (y) and one or more

independent (y) variables, hence called as linear regression. Since linear regression shows the linear

relationship, which means it finds how the value of the dependent variable is changing according to the

value of the independent variable. It consists of 3 stages –

(1) analyzing the correlation and directionality of the data

 (2) estimating the model, i.e., fitting the line

 (3) evaluating the validity and usefulness of the model.

The linear regression model provides a sloped straight line representing the relationship between the

variables. It is a statistical method that is used for predictive analysis. Linear regression makes predictions

for continuous/real or numeric variables such as sales, salary, age, product price, etc.

Types of Linear Regression

Linear regression can be further divided into two types of the algorithm:

SimpleLinearRegression

If a single independent variable is used to predict the value of a numerical dependent variable, then such a

Linear Regression algorithm is called Simple Linear Regression.

Multiple Linear regression

If more than one independent variable is used to predict the value of a numerical dependent variable, then

such a Linear Regression algorithm is called Multiple Linear Regression.

The main function to calculate values of coefficients

Initialize the parameters.

33

Predict the value of a dependent variable by given an independent variable.

Calculate the error in prediction for all data points.

Calculate partial derivative w.r.t a0 and a1.

Calculate the cost for each number and add them.

Update the values of a0 and a1.

Logistic Regression:

Logistic regression is one of the most popular Machine Learning algorithms, which comes under the

Supervised Learning technique. It is used for predicting the categorical dependent variable using a given set

of independent variables.Logistic regression predicts the output of a categorical dependent variable.

Therefore the outcome must be a categorical or discrete value. It can be either Yes or No, 0 or 1, true or

False, etc. but instead of giving the exact value as 0 and 1, it gives the probabilistic values which lie between

0 and 1.

 In Logistic regression, instead of fitting a regression line, we fit an "S" shaped logistic function,

which predicts two maximum values (0 or 1).The curve from the logistic function indicates the likelihood

of something such as whether the cells are cancerous or not, a mouse is obese or not based on its weight,

etc.

Type of Logistic Regression:

On the basis of the categories, Logistic Regression can be classified into three types:

Binomial: In binomial Logistic regression, there can be only two possible types of the dependent variables,

such as 0 or 1, Pass or Fail, etc.

Multinomial: In multinomial Logistic regression, there can be 3 or more possible unordered types of the

dependent variable, such as "cat", "dogs", or "sheep"

Ordinal: In ordinal Logistic regression, there can be 3 or more possible ordered types of dependent

variables, such as "low", "Medium", or "High".

Applications of Logistic Regression

1. Predicting a probability of a person having a heart attack

2. Predicting a customer’s propensity to purchase a product or halt a subscription.

3. Predicting the probability of failure of a given process or product.

34

Steps in Logistic Regression:

• Data Pre-processing step

• Fitting Logistic Regression to the Training set

• Predicting the test result

• Test accuracy of the result(Creation of Confusion matrix)

• Visualizing the test set result.

PROGRAM:

****SIMPLE LINEAR REGRESSION****

dataset = read.csv("data-marketing-budget-12mo.csv", header=T,

colClasses = c("numeric", "numeric", "numeric"))

head(dataset,5)

//////Simple Regression/////

simple.fit = lm(Sales~Spend,data=dataset)

summary(simple.fit)

OUTPUT:

SIMPLE LINEAR REGRESSION:

35

PROGRAM:

****MULTIPLE LINEAR REGRESSION ****

multi.fit = lm(Sales~Spend+Month, data=dataset)

summary(multi.fit)

OUTPUT:

MULTIPLE LINEAR REGRESSION

36

PROGRAM:

****Logistic Regression ****

#selects some column from

mtcars input<- mtcars

[,c("am","cyl","hp","wt")]

print(head(input))

input<- mtcars [,c("am","cyl","hp","wt")]

am.data =glm(formula = am ~ cyl+hp+wt,data =

input,family = binomial) print(summary(am.data))

OUTPUT:

LOGISTIC REGRESSION:

Result

Thus, the implementation of linear and logistic regression for sales data set was

implemented successfully.

37

Ex.No.5a Implement SVM Classification Techniques

Aim

To implement support vector machine (SVM) to find optimum hyper plane

Line in 2D, 3D hyper plane) which maximize the margin between two classes.

Pre-Lab Discussion

Theory

Support Vector Machine(SVM):

 Support Vector Machine(SVM) is a supervised machine learning algorithm used for

both classification and regression. Though we say regression problems as well it’s best suited

for classification. The objective of the SVM algorithm is to find a hyperplane in an N-

dimensional space that distinctly classifies the data points. The dimension of the hyperplane

depends upon the number of features. If the number of input features is two, then the

hyperplane is just a line. If the number of input features is three, then the hyperplane becomes

a 2-D plane. It becomes difficult to imagine when the number of features exceeds three. Let’s

consider two independent variables x1, x2, and one dependent variable which is either a blue

circle or a red circle.

From the figure above it’s very clear that there are multiple lines (our hyperplane here

is a line because we are considering only two input features x1, x2) that segregate our data

points or do a classification between red and blue circles.

Types of SVM

SVM can be of two types:

● Linear SVM:

 Linear SVM is used for linearly separable data, which means if a dataset can be

classified into two classes by using a single straight line, then such data is termed as linearly

separable data, and classifier is used called as Linear SVM classifier.

38

● Non-linear SVM:

 Non-Linear SVM is used for non-linearly separated data, which means if a dataset

cannot be classified by using a straight line, then such data is termed as non-linear data and

classifier used is called as Non-linear SVM classifier.

Hyperplane and Support Vectors in the SVM algorithm:

Hyperplane: There can be multiple lines/decision boundaries to segregate the classes in n-

dimensional space, but we need to find out the best decision boundary that helps to classify

the data points. This best boundary is known as the hyperplane of SVM.

 The dimensions of the hyperplane depend on the features present in the dataset,

which means if there are 2 features (as shown in image), then hyperplane will be a straight

line. And if there are 3 features, then hyperplane will be a 2-dimension plane.

Support Vectors:

 The data points or vectors that are the closest to the hyperplane and which affect the

position of the hyperplane are termed as Support Vector. Since these vectors support the

hyperplane, hence called a Support vector.

PROGRAM:

plot(iris)

iris

install.packages("e1071")

plot(iris$Sepal.Length, iris$Sepal.width, col=iris$Species)

plot(iris$Petal.Length, iris$Petal.width, col=iris$Species)

s<-sample(150,100)

col<- c("Petal.Length", "Petal.Width", "Species")

iris_train<- iris[s,col]

iris_test<- iris[-s,col]

svmfit<- svm(Species ~., data = iris_train, kernel = "linear", cost = .1, scale = FALSE)

print(svmfit)

plot(svmfit, iris_train[,col])

tuned <- tune(svm, Species~., data = iris_train, kernel = "linear", ranges=

39

list(cost=c(0.001,0.01,.1,.1,10,100)))

summary(tuned)

p<-predict(svmfit, iris_test[,col], type="class")

plot(p)

table(p,iris_test[,3])

mean(p== iris_test[,3])

OUTPUT:

Result

Thus , the implementation of support vector machine (SVM) to find optimum hyper

plane (Line in 2D, 3D hyper plane) which maximize the margin between two classes was

executed.

40

Ex.No.5b Implement Decision Tree Classification Techniques

AIM

To implement a decision tree used to representing a decision situation in visually and

show all those factors within the analysis that are considered relevant to the decision.

Pre-Lab Discussion

Theory

Decision Tree is a Supervised learning technique that can be used for both

classification and Regression problems, but mostly it is preferred for solving Classification

problems. It is a tree-structured classifier, where internal nodes represent the features of a

dataset, branches represent the decision rules and each leaf node represents the outcome.

 In a Decision tree, there are two nodes, which are the Decision Node and Leaf Node.

Decision nodes are used to make any decision and have multiple branches, whereas Leaf nodes

are the output of those decisions and do not contain any further branches. It is a graphical

representation for getting all the possible solutions to a problem/decision based on given

conditions.

 It is called a decision tree because, similar to a tree, it starts with the root node, which

expands on further branches and constructs a tree-like structure. In order to build a tree, we

use the CART algorithm, which stands for Classification and Regression Tree algorithm.

Steps:

Begin the tree with the root node, says S, which contains the complete dataset.

1. Find the best attribute in the dataset using Attribute Selection Measure (ASM).

2. Divide the S into subsets that contains possible values for the best attributes.

3. Generate the decision tree node, which contains the best attribute.

4. Recursively make new decision trees using the subsets of the dataset created in step -

3. Continue this process until a stage is reached where you cannot further classify the

nodes and called the final node as a leaf node.

41

Attribute Selection Measures

While implementing a Decision tree, the main issue arises that how to select the best

attribute for the root node and for sub-nodes. So, to solve such problems there is a technique

which is called as Attribute selection measure or ASM. By this measurement, we can easily

select the best attribute for the nodes of the tree. There are two popular techniques for ASM,

which are:

● Information Gain

● Gini Index

 Information Gain:

● Information gain is the measurement of changes in entropy after the segmentation of

a dataset based on an attribute.

● It calculates how much information a feature provides us about a class.

● According to the value of information gain, we split the node and build the decision

tree.

● A decision tree algorithm always tries to maximize the value of information gain, and

a node/attribute having the highest information gain is split first.

Gini Index:

● Gini index is a measure of impurity or purity used while creating a decision tree in the

CART(Classification and Regression Tree) algorithm.

● An attribute with the low Gini index should be preferred as compared to the high Gini

index.

PROGRAM:

library(MASS)

library(rpart)

head(birthwt)

hist(birthwt$bwt)

table(birthwt$low)

cols <- c('low', 'race', 'smoke', 'ht', 'ui')

birthwt[cols] <- lapply(birthwt[cols], as.factor)

set.seed(1)

train<- sample(1:nrow(birthwt), 0.75 * nrow(birthwt))

birthwtTree<- rpart(low ~ . - bwt, data = birthwt[train,], method = 'class')

42

plot(birthwtTree)

text(birthwtTree, pretty = 0)

summary(birthwtTree)

birthwtPred<- predict(birthwtTree, birthwt[-train,], type = 'class')

table(birthwtPred, birthwt[-train,]$low)

OUTPUT:
 low age lwt race smoke ptl ht ui ftv bwt

85 0 19 182 2 0 0 0 1 0 2523

86 0 33 155 3 0 0 0 0 3 2551

87 0 20 105 1 1 0 0 0 1 2557

88 0 21 108 1 1 0 0 1 2 2594

89 0 18 107 1 1 0 0 1 0 2600

91 0 21 124 3 0 0 0 0 0 2622

Result

Thus , the implementation of a decision tree used to representing a decision

situation in visually and show all those factors within the analysis that are considered

relevant to the decision was executed.

43

Ex.No.6 Implementation of Clustering Techniques

Aim

To implement clustering techniques for iris data set.

Pre-lab Discussion

Theory

K-Means Clustering

K-Means Clustering is an unsupervised learning algorithm that is used to solve the

clustering problems in machine learning or data science. It allows us to cluster the data into

different groups and a convenient way to discover the categories of groups in the unlabeled

dataset on its own without the need for any training. It is a centroid-based algorithm, where

each cluster is associated with a centroid. The main aim of this algorithm is to minimize the

sum of distances between the data point and their corresponding clusters.

 The algorithm takes the unlabeled dataset as input, divides the dataset into k-number

of clusters, and repeats the process until it does not find the best clusters. The value of k should

be predetermined in this algorithm. The k-means clustering algorithm mainly performs two

tasks:

1. Determines the best value for K center points or centroids by an iterative

process.

2. Assigns each data point to its closest k-center. Those data points which are near

to the particular k-center, create a cluster.

Working of K-Means Algorithm:

The working of the K-Means algorithm is explained in the below steps:

1. Select the number K to decide the number of clusters.

2. Select random K points or centroids. (It can be other from the input dataset).

44

3. Assign each data point to their closest centroid, which will form the predefined K

clusters.

4. Calculate the variance and place a new centroid of each cluster.

5. Repeat the third steps, which means reassign each datapoint to the new closest centroid

of each cluster.

6. If any reassignment occurs, then go to step-4 else go to FINISH.

PROGRAM:

library(datasets)

head(iris)

library(ggplot2)

ggplot(iris, aes(Petal.Length, Petal.Width, color = Species)) + geom_point()

set.seed(20)

irisCluster <- kmeans(iris[, 3:4], 3, nstart = 20)

irisCluster

table(irisCluster$cluster, iris$Species)

OUTPUT:
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa

2 4.9 3.0 1.4 0.2 setosa

3 4.7 3.2 1.3 0.2 setosa

4 4.6 3.1 1.5 0.2 setosa

5 5.0 3.6 1.4 0.2 setosa

6 5.4 3.9 1.7 0.4 setosa

45

Result

Thus, K-means clustering using iris dataset was executed.

46

Ex.No.7 Implementation of Visualize Data using Any

 Plotting Framework

AIM

 To implement Data visualization is to provide an efficient graphical display

for summarizing and reasoning about quantitative information.

Pre-Lab Discussion

Theory

1. Histogram

 Histogram is basically a plot that breaks the data into bins (or breaks) and shows

frequency distribution of these bins. We can change the breaks also and see the effect it has data

visualization in terms of understandability.

2.1 Line Chart

 The line chart showing the increase in air passengers over given time period. Line

Charts are commonly preferred when we are to analyses a trend spread over a time period.

Furthermore, line plot is also suitable to plots where we need to compare relative changes in

quantities across some variable (like time).

2.2 Bar Chart

 Bar Plots are suitable for showing comparison between cumulative totals across

several groups. Stacked Plots are used for bar plots for various categories.

3. Box Plot

 Box Plot shows 5 statistically significant numbers the minimum, the 25th percentile,

the median, the 75th percentile and the maximum. It is thus useful for visualizing the spread

of the data is and deriving inferences accordingly.

4. Scatter Plot (including 3D and other features)

Scatter plots help in visualizing data easily and for simple data inspection.

5.Heat Map

One of the most innovative data visualizations in R, the heat map emphasizes color

intensity to visualize relationships between multiple variables. The result is an attractive 2D

image that is easy to interpret. As a basic example, a heat map highlights the popularity of

47

competing items by ranking them according to their original market launch date. It breaks it

down further by providing sales statistics and figures over the course of time.

6.Correlogram

Correlated data is best visualized through corrplot. The 2D format is similar to a heat

map, but it highlights statistics that are directly related. Most correlograms highlight the

amount of correlation between datasets at various points in time. Comparing sales data between

different months or years is a basic example.

7.Area Chart

Area charts express continuity between different variables or data sets. It's akin to the

traditional line chart you know from grade school and is used in a similar fashion. Most area

charts highlight trends and their evolution over the course of time, making them highly

effective when trying to expose underlying trends whether they're positive or negative.

PROGRAM:

print('-----------------1.HISTOGRAM-------------------')

install.packages('RColorBrewer')

library(RColorBrewer)

data(VADeaths)

par(mfrow=c(2,3))

hist(VADeaths,breaks=10, col=brewer.pal(3,"Set3"),main="Set3 3 colors")

hist(VADeaths,breaks=3 ,col=brewer.pal(3,"Set2"),main="Set2 3 colors")

hist(VADeaths,breaks=7, col=brewer.pal(3,"Set1"),main="Set1 3 colors")

hist(VADeaths,,breaks= 2, col=brewer.pal(8,"Set3"),main="Set3 8 colors")

hist(VADeaths,col=brewer.pal(8,"Greys"),main="Greys 8 colors")

hist(VADeaths,col=brewer.pal(8,"Greens"),main="Greens 8 colors")

print('--------------- -2.1. Line Chart-------------------')

data(AirPassengers)

plot(AirPassengers,type="l") #Simple Line Plot

print('-----------------2.2. Bar Chart-------------------')

data("iris")

barplot(iris$Petal.Length) #Creating simple Bar Graph

barplot(iris$Sepal.Length,col = brewer.pal(3,"Set1"))

48

barplot(table(iris$Species,iris$Sepal.Length),col = brewer.pal(3,"Set1")) #Stacked Plot

print('-----------------3. Box Plot-------------------')

data(iris)

par(mfrow=c(2,2))

boxplot(iris$Sepal.Length,col="red")

boxplot(iris$Sepal.Length~iris$Species,col="red")

boxplot(iris$Sepal.Length~iris$Species,col=heat.colors(3))

boxplot(iris$Sepal.Length~iris$Species,col=topo.colors(3))

boxplot(iris$Petal.Length~iris$Species)

print('-----------------4.Scatter Plot -------------------')

plot(x=iris$Petal.Length) #Simple Scatter Plot

plot(x=iris$Petal.Length,y=iris$Species) #Multivariate Scatter Plot

print('-----------------5. Heat Map-------------------')

X<-rnorm(10,mean=rep(1:5,each=2),sd=0.7)

y<-rnorm(10,mean=rep(c(1,9),each=5),sd=0.1)

dataFrame<-data.frame(x=X,y=y)

set.seed(143)

dataMatrix<-as.matrix(dataFrame)[sample(1:10),] # convert to class 'matrix', then shuffle the

rows of the matrix

heatmap(dataMatrix) # visualize hierarchical clustering via a heatmap

print('-----------------6. Correlogram-------------------')

install.packages("corrplot")

#data("mtcars")

corr_matrix <- cor(mtcars)

with circles

corrplot(corr_matrix)

with numbers and lower

corrplot(corr_matrix,method = 'number',type = "lower")

print('----------------- Area Chart-------------------')

install.packages("magrittr")

install.packages("dplyr") \

install.packages('tidyverse')

library(dplyr)

library(magrittr)

49

library(tidyverse)

data("airquality")

airquality %>% group_by(Day) %>%

summarise(mean_wind = mean(Wind)) %>%

ggplot() + geom_area(aes(x = Day, y = mean_wind)) + labs(title = "Area Chart of Average

Wind per Day",subtitle = "using airquality data", y = "Mean Wind")

OUTPUT:
-----------------1.HISTOGRAM-------------------

---------------2.1.Line Chart-------------------

-----------------2.2.Bar Chart-------------------

50

-----------------3.Box Plot-------------------

-----------------4.Scatter Plot -------------------

51

-----------------5.Heat Map-------------------

-----------------6.Correlogram-------------------

52

----------------- Area Chart-------------------

Result
Thus, the implementation of data visualization was successfully executed.

53

Ex.No.8 Implement an application that stores big data in Hbase /

 MangoDB/ Pig using Hadoop / R

Aim

To implement an application that stores big data in MongoDB using R.

Pre-Lab Discussion

Theory

MongoDB with R

Mongodb is a NoSql database platform that works on the concept of collection and

documents. Collection: Collections are just like tables in relational databases. They are a group

of Mongodb documents. These collections contain a set of documents. Document: Documents

are like tuples/ rows in a relational database. R provides several libraries for creating a

connection between mongodb and R such as: mongolite, Rmongo, rmongodb .

Step 1 - Install 'RMango package'

install.packages("RMongo")

library(RMongo)

Step 2 - Create a connection

r_mongo_con <- mongoDbConnect('db')

Step 3 - Check the connection

print(dbShowCollections(r_mongo_con)) # this verifies the established connection ,

returns errors if any

Step 4 - Run Queries

var_Query <- dbGetQuery(mongo, 'collection_name', "{'type': 'required_data'}")

Step 5 - Install mongolite package

install.packages('mongolite') library(mongolite)

Step 6 - Create a connection

mongolite_conn <- mongo(dataset, url)

The most popular packages to connect MongoDB and R are:

mongolite: A more recent R MongoDB driver, mongolite can perform various operations like

indexing, aggregation pipelines, TLS encryption, and SASL authentication, among others. It’s

https://www.projectpro.io/article/mongodb-projects-ideas/640
https://cran.r-project.org/web/packages/mongolite/
https://docs.mongodb.com/spark-connector/current/r/aggregation/

54

based on the jsonlite package for R and mongo-c-driver. We can install mongolite

from CRAN or from RStudio (explained in a later section).

RMongo: RMongo was the first R MongoDB driver with a simple R MongoDB interface. It

has syntax like the MongoDB shell. RMongo has been deprecated as of now.

rmongodb: rmongodb has functions to create pipelines, handle BSON objects, etc. Its

syntax is very complex compared to mongolite. Just like RMongo, rmongodb has been

deprecated and is not available or maintained on CRAN.

Inserting data

Let’s insert the crimes data from data.gov to MongoDB. The dataset reflects reported

incidents of crime (with the exception of murders where data exists for each victim) that

occurred in the City of Chicago since 2001.

PROGRAM:

install.packages('gridExtra')

library (ggplot2)

library (dplyr)

library (maps)

library (ggmap)

library (mongolite)

library (lubridate)

library (gridExtra)

crimes=data.table::fread("crime.csv")

names (crimes)

names(crimes) = gsub(" ","",names(crimes))

names(crimes)

my_collection = mongo(collection = "crimes", db = "Chicago") # create connection,

database and collection

my_collection$insert(crimes)

my_collection$count()

my_collection$iterate()$one()

length(my_collection$distinct("PrimaryType"))

my_collection$count('{"PrimaryType":"ASSAULT" }')

query1= my_collection$find('{"PrimaryType" : "THEFT", "Domestic" : false }')

https://cran.r-project.org/web/packages/jsonlite/vignettes/json-aaquickstart.html
http://mongoc.org/
https://cran.r-project.org/web/packages/mongolite/
https://www.mongodb.com/languages/mongodb-and-r-example#how-to-connect-to-a-mongodb-database-in-r
https://catalog.data.gov/dataset/crimes-2001-to-present-398a4

55

query2= my_collection$find('{"PrimaryType" : "THEFT", "Domestic" : true }',fields =

'{"_id":0, "PrimaryType":1, "Domestic":1}')

ncol(query1) # with all the columns

ncol(query2) # only the selected columns

domestic=my_collection$find('{"Domestic":true}',

fields = '{"_id":0}')

domestic$Date= mdy_hms(domestic$Date)

domestic$Weekday = weekdays(domestic$Date)

domestic$Hour = hour(domestic$Date)

domestic$month = month(domestic$Date,label=TRUE)

plot(domestic$Date,domestic$Hour, col=domestic$month)

pie(domestic)

barplot(domestic$Hour,domestic$month)

plot(domestic$District,domestic$Hour)

plot(domestic$District[1:1000], type="l", col="blue")

DayHourCounts = as.data.frame(table(domestic$Weekday, domestic$Hour))

DayHourCounts$Hour = as.numeric(as.character(DayHourCounts$Var2))

ggplot(DayHourCounts, aes(x=Hour, y=Freq)) + geom_line(aes(group=Var1, color=Var1),

size=1.4)+ylab("Count")+ ylab("Total Domestic Crimes")+ggtitle("Domestic Crimes in the

City of Chicago Since 2001")+theme(axis.title.x=element_text(size=14),axis.text.y =

element_text(color="blue",size=11,angle=0,hjust=1,vjust=0),axis.text.x

=element_text(color="blue",size=11,angle=0,hjust=.5,vjust=.5), axis.title.y =

element_text(size=14),legend.title=element_blank(),plot.title=element_text(size=16,color="

purple",hjust=0.5))

DayHourCounts$Type = ifelse((DayHourCounts$Var1 == "Sunday") |

(DayHourCounts$Var1 == "Saturday"), "Weekend", "Weekday")

ggplot(DayHourCounts, aes(x=Hour, y=Freq)) + geom_line(aes(group=Var1, color=Type),

size=2, alpha=0.5) +ylab("Total Domestic Crimes")+ggtitle("Domestic Crimes in the City of

Chicago Since 2001")+theme(axis.title.x=element_text(size=14),axis.text.y =

element_text(color="blue",size=11,angle=0,hjust=1,vjust=0),axis.text.x =

element_text(color="blue",size=11,angle=0,hjust=.5,vjust=.5), axis.title.y =

element_text(size=14),legend.title=element_blank(),plot.title=element_text(size=16,color="

purple",hjust=0.5))

DayHourCounts$Var1 = factor(DayHourCounts$Var1, ordered=TRUE,levels=c("Monday",

56

"Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday"))

ggplot(DayHourCounts, aes(x = Hour, y = Var1)) + geom_tile(aes(fill = Freq)) +

scale_fill_gradient(name="Total MV Thefts", low="white", high="red") +ggtitle("Domestic

Crimes in the City of Chicago Since 2001")+theme(axis.title.y =

element_blank())+ylab("")+theme(axis.title.x=element_text(size=14),axis.text.y =

element_text(size=13),axis.text.x = element_text(size=13), axis.title.y =

element_text(size=14),legend.title=element_blank(),plot.title=element_text(size=16,color="

purple"))

domestic=my_collection$find('{"Domestic":true}', fields ='{"_id":0,

"Domestic":1,"Date":1}')

domestic$Date= mdy_hms(domestic$Date)

domestic$Weekday = weekdays(domestic$Date)

domestic$Hour = hour(domestic$Date)

domestic$month = month(domestic$Date,label=TRUE)

WeekdayCounts = as.data.frame(table(domestic$Weekday))

WeekdayCounts$Var1 = factor(WeekdayCounts$Var1, ordered=TRUE, levels=c("Sunday",

"Monday", "Tuesday", "Wednesday", "Thursday", "Friday","Saturday"))

ggplot(WeekdayCounts,aes(x=Var1, y=Freq))+geom_line(aes(group=1),size=2,color="red")

+ xlab("Day of the Week") + ylab("Total Domestic Crimes")+ ggtitle("Domestic Crimes in

the City of Chicago Since 2001")+ theme(axis.title.x=element_blank(),axis.text.y =

element_text(color="blue",size=11,angle=0,hjust=1,vjust=0),axis.text.x =

element_text(color="blue",size=11,angle=0,hjust=.5,vjust=.5), axis.title.y =

element_text(size=14), plot.title=element_text(size=16,color="purple",hjust=0.5))

ASSAULT=my_collection$count('{"PrimaryType":"ASSAULT", "Domestic" : true }')

my_collection$aggregate('[{"$group":{"_id":"$LocationDescription","Count":{"$sum":1}}}

')%>%na.omit()%>%arrange(desc(count))%>%head(10)%>%

ggplot(aes(x=reorder(`_id`,count),y=count))+geom_bar(stat="identity",color='skyblue',fill='

#b35900')+geom_text(aes(label count), color = "blue") +coord_flip()+xlab("Location

Description")

57

OUTPUT:

> names (crimes)

 [1] "ID" "Case Number" "Date"

 [4] "Block" "IUCR" "Primary Type"

 [7] "Description" "Location Description" "Arrest"

[10] "Domestic" "Beat" "District"

[13] "Ward" "Community Area" "FBI Code"

[16] "X Coordinate" "Y Coordinate" "Year"

[19] "Updated On" "Latitude" "Longitude"

[22] "Location"

> names(crimes) = gsub(" ","",names(crimes))

> names(crimes)

 [1] "ID" "CaseNumber" "Date" "Block"

 [5] "IUCR" "PrimaryType" "Description" "LocationDescription"

 [9] "Arrest" "Domestic" "Beat" "District"

[13] "Ward" "CommunityArea" "FBICode" "XCoordinate"

[17] "YCoordinate" "Year" "UpdatedOn" "Latitude"

[21] "Longitude" "Location"

> my_collection = mongo(collection = "crimes", db = "Chicago") # create connection,

database and collection

> my_collection$insert(crimes)

List of 5

 $ nInserted : num 7750924

 $ nMatched : num 0

 $ nRemoved : num 0

 $ nUpserted : num 0

 $ writeErrors: list()

> my_collection$count()

[1] 7750924

> my_collection$iterate()$one()

$ID

[1] 10224738

$CaseNumber

[1] "HY411648"

$Date

[1] "09/05/2015 01:30:00 PM"

$Block

[1] "043XX S WOOD ST"

$IUCR

[1] "0486"

$PrimaryType

[1] "BATTERY"

$Description

[1] "DOMESTIC BATTERY SIMPLE"

58

$LocationDescription

[1] "RESIDENCE"

$Arrest

[1] FALSE

$Domestic

[1] TRUE

$Beat

[1] 924

$District

[1] 9

$Ward

[1] 12

$CommunityArea

[1] 61

$FBICode

[1] "08B"

$XCoordinate

[1] 1165074

$YCoordinate

[1] 1875917

$Year

[1] 2015

$UpdatedOn

[1] "02/10/2018 03:50:01 PM"

$Latitude

[1] 41.81512

$Longitude

[1] -87.67

$Location

[1] "(41.815117282, -87.669999562)"

> length(my_collection$distinct("PrimaryType"))

[1] 36

> my_collection$count('{"PrimaryType":"ASSAULT" }')

[1] 504447

59

> query1= my_collection$find('{"PrimaryType" : "THEFT", "Domestic" : false }')

> query2= my_collection$find('{"PrimaryType" : "THEFT", "Domestic" : true }',

+ fields = '{"_id":0, "PrimaryType":1, "Domestic":1}')

> ncol(query1) # with all the columns

[1] 22

> ncol(query2) # only the selected columns

[1] 2

> domestic=my_collection$find('{"Domestic":true}',

+ fields = '{"_id":0}')

> domestic$Date= mdy_hms(domestic$Date)

> domestic$Weekday = weekdays(domestic$Date)

> domestic$Hour = hour(domestic$Date)

> domestic$month = month(domestic$Date,label=TRUE)

> domestic$month = month(domestic$Date)

> plot(domestic$Date[1:400],domestic$Hour[1:400], col=domestic$month)

pie(domestic$Year[1:20])

60

61

62

Result

Thus, the application of Crime data set that stores big data in MongoDB using R was

executed successfully.

63

Exp.No.9 CONTENT BEYOND SYLLABUS

RANDOM FOREST APPROACH FOR CLASSIFICATION

Aim

To implement Radom Forest approach for classification for iris data set.

Theory

Random forest approach is supervised nonlinear classification and regression

algorithm. Classification is a process of classifying a group of datasets in categories or

classes. As random forest approach can use classification or regression techniques

depending upon the user and target or categories needed. A random forest is a collection of

decision trees that specifies the categories with much higher probability. Random forest

approach is used over decision trees approach as decision trees lack accuracy and decision

trees also show low accuracy during the testing phase due to the process called over-fitting.

In R programming, randomForest() function of randomForest package is used to create

and analyze the random forest.

Program:

Loading data

data(iris)

Structure

str(iris)

#Installing package

install.packages("caTools") # For sampling the dataset

install.packages("randomForest") # For implementing random forest algorithm

Loading package

library(caTools)

library(randomForest)

Splitting data in train and test data

split <- sample.split(iris, SplitRatio = 0.7)

train <- subset(iris, split == "TRUE")

test <- subset(iris, split == "FALSE")

Fitting Random Forest to the train dataset

set.seed(120) # Setting seed

classifier_RF = randomForest(x = train[-5],

 y = train$Species, ntree = 500)

classifier_RF

Predicting the Test set results

y_pred = predict(classifier_RF, newdata = test[-5])

Confusion Matrix

https://www.geeksforgeeks.org/random-forest-approach-in-r-programming/
https://www.geeksforgeeks.org/classification-in-r-programming/
https://www.geeksforgeeks.org/introduction-to-r-programming-language/

64

confusion_mtx = table(test[, 5], y_pred)

confusion_mtx

Plotting model

plot(classifier_RF)

Importance plot

importance(classifier_RF)

Variable importance plot

varImpPlot(classifier_RF)

OUTPUT:

'data.frame': 150 obs. of 5 variables:

 $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...

 $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...

 $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...

 $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...

 $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...

[1] TRUE TRUE FALSE TRUE FALSE

Call:

 randomForest(x = train[-5], y = train$Species, ntree = 500)

 Type of random forest: classification

 Number of trees: 500

No. of variables tried at each split: 2

 OOB estimate of error rate: 5.56%

Confusion matrix:

 Setosa versicolor virginica class.error

setosa 30 0 0 0.00000000

versicolor 0 28 2 0.06666667

virginica 0 3 27 0.10000000

 y_pred

 setosa versicolor virginica

 setosa 20 0 0

 versicolor 0 19 1

 virginica 0 2 18

 MeanDecreaseGini

Sepal.Length 6.201739

Sepal.Width 1.527756

Petal.Length 23.936397

Petal.Width 27.591441

65

Result

Thus, the implementation of random forest approach for classification was executed.

66

K-Nearest Neighbor Classifier

Aim

To implement K-Nearest Neighbor Classifier for iris data set.

Theory

K-Nearest Neighbor or K-NN is a Supervised Non-linear classification algorithm.

K-NN is a Non-parametric algorithm i.e it doesn’t make any assumption about underlying

data or its distribution. It is one of the simplest and widely used algorithm which depends

on it’s k value(Neighbors) and finds it’s applications in many industries like finance

industry, healthcare industry etc.

In the KNN algorithm, K specifies the number of neighbors and its algorithm is as

follows:

• Choose the number K of neighbor.

• Take the K Nearest Neighbor of unknown data point according to distance.

• Among the K-neighbors, Count the number of data points in each category.

• Assign the new data point to a category, where you counted the most neighbors.

For the Nearest Neighbor classifier, the distance between two points is expressed in the form

of Euclidean Distance.

Program

Loading data

data(iris)

Structure

str(iris)

Installing Packages

install.packages("e1071")

install.packages("caTools")

install.packages("class")

Loading package

library(e1071)

library(caTools)

library(class)

Loading data

data(iris)

head(iris)

Splitting data into train and test data

split <- sample.split(iris, SplitRatio = 0.7)

67

train_cl <- subset(iris, split == "TRUE")

test_cl <- subset(iris, split == "FALSE")

Feature Scaling

train_scale <- scale(train_cl[, 1:4])

test_scale <- scale(test_cl[, 1:4])

Fitting KNN Model to training dataset

classifier_knn <- knn(train = train_scale,

 test = test_scale,

 cl = train_cl$Species,

 k = 1)

classifier_knn

Confusiin Matrix

cm <- table(test_cl$Species, classifier_knn)

cm

Model Evaluation - Choosing K

Calculate out of Sample error

misClassError <- mean(classifier_knn != test_cl$Species)

print(paste('Accuracy =', 1-misClassError))

K = 3

classifier_knn <- knn(train = train_scale,

 test = test_scale,

 cl = train_cl$Species,

 k = 3)

misClassError <- mean(classifier_knn != test_cl$Species)

print(paste('Accuracy =', 1-misClassError))

K = 5

classifier_knn <- knn(train = train_scale,

 test = test_scale,

 cl = train_cl$Species,

 k = 5)

misClassError <- mean(classifier_knn != test_cl$Species)

print(paste('Accuracy =', 1-misClassError))

K = 7

classifier_knn <- knn(train = train_scale,

 test = test_scale,

 cl = train_cl$Species,

 k = 7)

misClassError <- mean(classifier_knn != test_cl$Species)

print(paste('Accuracy =', 1-misClassError))

K = 15

classifier_knn <- knn(train = train_scale,

 test = test_scale,

 cl = train_cl$Species,

 k = 15)

misClassError <- mean(classifier_knn != test_cl$Species)

print(paste('Accuracy =', 1-misClassError))

K = 19

classifier_knn <- knn(train = train_scale,

 test = test_scale,

68

 cl = train_cl$Species,

 k = 19)

misClassError <- mean(classifier_knn != test_cl$Species)

print(paste('Accuracy =', 1-misClassError))

OUTPUT:

'data.frame': 150 obs. of 5 variables:

 $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...

 $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...

 $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...

 $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...

 $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...

 Sepal.Length Sepal.Width Petal.Length Petal.Width

1 5.1 3.5 1.4 0.2

2 4.9 3.0 1.4 0.2

3 4.7 3.2 1.3 0.2

4 4.6 3.1 1.5 0.2

5 5.0 3.6 1.4 0.2

6 5.4 3.9 1.7 0.4

 Species

1 setosa

2 setosa

3 setosa

4 setosa

5 setosa

6 setosa

[1] setosa setosa setosa setosa

 [5] setosa setosa setosa setosa

 [9] setosa setosa setosa setosa

[13] setosa setosa setosa setosa

[17] setosa setosa setosa setosa

[21] versicolor versicolor versicolor versicolor

[25] versicolor versicolor versicolor versicolor

[29] virginica versicolor versicolor versicolor

[33] versicolor virginica versicolor versicolor

[37] versicolor versicolor versicolor versicolor

[41] virginica virginica virginica virginica

[45] virginica virginica virginica virginica

[49] virginica virginica virginica virginica

[53] virginica versicolor virginica virginica

[57] virginica virginica virginica virginica

Levels: setosa versicolor virginica

 classifier_knn

 setosa versicolor virginica

 setosa 20 0 0

 versicolor 0 18 2

 virginica 0 1 19

69

[1] "Accuracy = 0.95"

[1] "Accuracy = 0.95"

[1] "Accuracy = 0.966666666666667"

[1] "Accuracy = 0.983333333333333"

[1] "Accuracy = 0.966666666666667"

Result

Thus, the K-NN classifier using iris data set was executed.

70

Naive Bayes Classifier

Aim

To implement Navie Bayes Classifier for iris dataset.

Theory

Naive Bayes is a Supervised Non-linear classification algorithm in R Programming.

Naive Bayes classifiers are a family of simple probabilistic classifiers based on applying

Baye’s theorem with strong(Naive) independence assumptions between the features or

variables. The Naive Bayes algorithm is called “Naive” because it makes the assumption

that the occurrence of a certain feature is independent of the occurrence of other features.

Naive Bayes algorithm is based on Bayes theorem. Bayes theorem gives the

conditional probability of an event A given another event B has occurred.

where,

P(A|B) = Conditional probability of A given B.

P(B|A) = Conditional probability of B given A.

P(A) = Probability of event A.

P(B) = Probability of event B.

Program

Loading data

data(iris)

Structure

str(iris)

Installing Packages

install.packages("e1071")

install.packages("caTools")

install.packages("caret")

Loading package

library(e1071)

library(caTools)

https://www.geeksforgeeks.org/introduction-to-r-programming-language/

71

library(caret)

Splitting data into train and test data

split <- sample.split(iris, SplitRatio = 0.7)

train_cl <- subset(iris, split == "TRUE")

test_cl <- subset(iris, split == "FALSE")

Feature Scaling

train_scale <- scale(train_cl[, 1:4])

test_scale <- scale(test_cl[, 1:4])

Fitting Naive Bayes Model to training dataset

set.seed(120) # Setting Seed

classifier_cl <- naiveBayes(Species ~ ., data = train_cl)

classifier_cl

Predicting on test data'

y_pred <- predict(classifier_cl, newdata = test_cl)

Confusion Matrix

cm <- table(test_cl$Species, y_pred)

cm

Model Evaluation

confusionMatrix(cm)

OUTPUT:

'data.frame': 150 obs. of 5 variables:

 $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...

 $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...

 $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...

 $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...

 $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...

Naive Bayes Classifier for Discrete Predictors

Call:

naiveBayes.default(x = X, y = Y, laplace = laplace)

A-priori probabilities:

Y

 setosa versicolor virginica

 0.3333333 0.3333333 0.3333333

Conditional probabilities:

 Sepal.Length

Y [,1] [,2]

 setosa 4.943333 0.3766306

 versicolor 6.000000 0.5051459

 virginica 6.500000 0.6817827

 Sepal.Width

 Y [,1] [,2]

 setosa 3.400000 0.3859605

 versicolor 2.746667 0.3104317

72

 virginica 2.926667 0.3362402

 Petal.Length

 Y [,1] [,2]

 setosa 1.426667 0.1552158

 versicolor 4.306667 0.5172429

 virginica 5.486667 0.6179685

 Petal.Width

 Y [,1] [,2]

 setosa 0.250000 0.1196259

 versicolor 1.330000 0.2019730

 virginica 1.976667 0.2160513

 y_pred

 setosa versicolor virginica

 setosa 20 0 0

 versicolor 0 19 1

 virginica 0 2 18

Confusion Matrix and Statistics

 y_pred

 setosa versicolor virginica

 setosa 20 0 0

 versicolor 0 19 1

 virginica 0 2 18

Overall Statistic:

 Accuracy : 0.95

 95% CI : (0.8608, 0.9896)

 No Information Rate : 0.35

 P-Value [Acc > NIR] : < 2.2e-16

 Kappa : 0.925

 Mcnemar's Test P-Value : NA

Statistics by Class:

 Class: setosa Class: versicolor

Sensitivity 1.0000 0.9048

Specificity 1.0000 0.9744

Pos Pred Value 1.0000 0.9500

Neg Pred Value 1.0000 0.9500

Prevalence 0.3333 0.3500

Detection Rate 0.3333 0.3167

Detection Prevalence 0.3333 0.3333

Balanced Accuracy 1.0000 0.9396

 Class: virginica

Sensitivity 0.9474

Specificity 0.9512

Pos Pred Value 0.9000

Neg Pred Value 0.9750

Prevalence 0.3167

Detection Rate 0.3000

Detection Prevalence 0.3333

73

Balanced Accuracy 0

Result

Thus, the implementation of Navie Bayes theorem for iris data set was executed.

74

VIVA Questions

1. What is Hadoop?

2. What platform and java version are required to run Hadoop?

3. What kind of hardware is best for Hadoop?

4. What are the most common input formats defined in Hadoop?

5. Explain the use of .mecia class?

6. Give the use of the bootstrap panel.

7. What is job tracker in Hadoop?

8. What are the difference between regular file system and HDFS?

9. Define name node.

10. Define data node.

11. Define mapreduce.

12. How does rack awareness work in HDFS?

13. How can you restart name node and the deamons in Hadoop?

14. Which command will help you to find the status of blocks and file system health?

15. How do you copy data from the local system onto HDFS?

16. Is logistic regression a generative or a descriptive classifier?

17. Can you use logistic regression for classification between more than two classes?

18. How do you implement multinomial logistic regression?

19. Why can't we use the mean square error cost function used in linear regression for

logistic regression?

20. What alternative could you suggest using a for loop (which is time-consuming) when

using Gradient Descent to find the optimum parameters for logistic regression?

21. Are there alternatives to find optimum parameters for logistic regression besides

using Gradient Descent?

22. How many binary classifiers would you need to implement one-vs-one for four

classes? How does it work?

23. What is the importance of regularisation?

24. When Logistic Regression can be used?

25. Why is Logistic Regression called Regression and not Classification?

26. What is linear regression?

27. Explain L1 and L2 regularisations.

75

28. Your linear regression doesn’t run and communicates that there is an infinite number

of best estimates for the regression coefficients. What could be wrong?

29. How do you know that linear regression is suitable for any given data?

30. How is hypothesis testing used in linear regression?

31. Explain gradient descent with respect to linear regression.

32. What is the generalized linear model?

33. Which graphs are suggested to be observed before model fitting?

34. What is heteroscedasticity?

35. What are the possible ways of improving the accuracy of a linear regression model?

36. What are Decision Trees?

37. Explain the structure of a Decision Tree.

38. What are some advantages of using Decision Trees?

39. What is Gini Index and how is it used in Decision Trees?

40. What is Greedy Splitting?

41. What is Tree Boosting?

42. Why do you need to Prune the decision tree?

43. List down some popular algorithms used for deriving Decision Trees along with their

attribute selection measures.

44. How are the different nodes of decision trees represented?

45. What is Support Vector Machine?

46. Name some advantages of SVM

47. What are Support Vectors in SVMs?

48. Compare SVM and Logistic Regression in handling outliers

49. What are Polynomial Kernels?

50. When SVM is not a good approach?

51. While designing an SVM classifier, what values should the designer select?

52. Why do we need to use Support Vector Machines?

53. What are Hard Margin SVMs and Soft Margin SVMs?

54. What is the relationship between Slack and Margin?

