(An Autonomous Institution)

SRM NAGAR, KATTANKULATHUR - 603 203

#### **DEPARTMENT OF CHEMISTRY**

**QUESTION BANK** 



II SEMESTER CH3223-Chemistry of Electronic Materials (Common to ECE, EEE, EIE branches)

> Regulations 2023 Academic Year 2024-25



SRM Nagar, Kattankulathur – 603 203



#### **UNIT I - CHEMISTRY OF CARBON**

Catenation property of carbon-carbon based compounds - structure and bonding - hydrocarbons: fuels, carbon-based organic materials, activated carbon, and allotrope of carbon: properties - applications of diamond, graphite, graphene, fullerenes, and carbon nanotubes - types – preparation – properties - applications (electrical and electronic field) - future perspective in energy conversion and storage.

| S.No | PART-A (2 Marks)                                                                        | BTL | Competence    | СО  |  |
|------|-----------------------------------------------------------------------------------------|-----|---------------|-----|--|
| 1.   | What is meant by catenation? Name two elements that exhibit the property of catenation. | 1   | Remembering   | CO1 |  |
| 2.   | List out the types of catenation.                                                       | 1   | Remembering   | CO1 |  |
| 3.   | Mention the factors that affect catenation.                                             | 1   | Remembering   | CO1 |  |
| 4.   | Why does carbon form compounds mainly by covalent bonding?                              | 3   | Applying      | CO1 |  |
| 5.   | Categorize the carbon compounds.                                                        | 2   | Understanding | CO1 |  |
| 6.   | Elaborate the chemical properties of carbon compounds.                                  |     | Applying      | CO1 |  |
| 7.   | Mention the types of carbon compounds.                                                  | 1   | Remembering   | CO1 |  |
| 8.   | Correlate saturated and unsaturated hydrocarbons.                                       | 2   | Understanding | CO1 |  |
| 9.   | What are Hydrocarbons?                                                                  | 1   | Remembering   | CO1 |  |
| 10.  | List out the types of Hydrocarbons.                                                     | 2   | Understanding | CO1 |  |
| 11.  | List a few uses of hydrocarbons.                                                        | 1   | Remembering   | CO1 |  |
| 12.  | How do you synthesize activated carbon?                                                 | 2   | Understanding | CO1 |  |
| 13.  | Classify the different types of activated carbon.                                       | 2   | Understanding | CO1 |  |
| 14.  | Summarize the bonding in graphite.                                                      | 2   | Understanding | CO1 |  |
| 15.  | Name any two allotropes of carbon.                                                      | 1   | Remembering   | CO1 |  |
| 16.  | Give a reason why for diamond has a high melting point.                                 | 3   | Applying      | CO1 |  |
| 17.  | What is a diamond?                                                                      | 1   | Remembering   | CO1 |  |
| 18.  | Explain the term graphene.                                                              | 2   | Understanding | CO1 |  |
| 19.  | Differentiate graphene from graphite.                                                   | 2   | Understanding | CO1 |  |
| 20.  | Mention the types of carbon nanotubes.                                                  | 1   | Remembering   | CO1 |  |
| 21.  | What is fullerene?                                                                      | 1   | Remembering   | CO1 |  |
| 22.  | Write the function of carbon in energy conversion.                                      | 2   | Understanding | CO1 |  |

# SRM

# SRM VALLIAMMAI ENGINEERING COLLEGE



| S.No |           | PART-B (16 Marks)                                                                                      | BTL | Competence    | CO  |  |
|------|-----------|--------------------------------------------------------------------------------------------------------|-----|---------------|-----|--|
|      | $(\cdot)$ | · · · ·                                                                                                | 212 |               |     |  |
| 1.   | (i)       | Define catenation. Compare the catenation behavior of carbon with silicon and sulfur.                  | 3   | Applying      | CO1 |  |
|      | (ii)      | Correlate sp, sp <sup>2</sup> and sp <sup>3</sup> hybridizations in carbon.                            | 4   | Analyzing     | CO1 |  |
| 2.   |           | Give a detailed note on bonds in carbon.                                                               | 3   | Applying      | CO1 |  |
| 3.   |           | State the term catenation. Explain in detail on catenation behavior of carbon with silicon and sulfur. | 2   | Understanding | CO1 |  |
| 4.   |           | Explain in detail about electron dot structure of saturated and unsaturated carbon compounds.          |     | Remembering   | CO1 |  |
| 5.   |           | Describe the different types of hydrocarbons.                                                          | 2   | Understanding | CO1 |  |
| 6.   |           | Elucidate the properties and applications of 4 Analyzing hydrocarbons.                                 |     |               |     |  |
| 7.   | (i)       | Differentiate saturated and unsaturated carbon compounds with examples.                                | 1   | Remembering   | CO1 |  |
|      | (ii)      | Categorize the Lewis structure of saturated and unsaturated carbon compounds.                          | 4   | Analyzing     | CO1 |  |
| 8.   |           | Write notes on fullerenes.                                                                             | 2   | Understanding | CO1 |  |
| 9.   |           | How carbon-based compounds are employed in energy conversion and storage devices.                      | 3   | Applying      | CO1 |  |
| 10.  |           | Write a detailed account of the graphite and graphene.                                                 | 3   | Applying      | CO1 |  |
| 11.  |           | Enumerate the production, properties and uses of activated carbon.                                     | 4   | Analyzing     | CO1 |  |
| 12.  | (i)       | Compare graphene and fullerene.                                                                        | 4   | Analyzing     | CO1 |  |
|      | (ii)      | Write the various applications of carbon nanotubes in energy storage devices.                          | 3   | Applying      | CO1 |  |
| 13.  |           | Explain in detail on, (i) Diamond, (ii) Graphite and (iii) Graphene.                                   | 3   | Applying      | CO1 |  |
| 14.  |           | Clarify the synthesis and properties of CNTs.                                                          | 4   | Analyzing     | CO1 |  |
| 15.  | (i)       | Write a detailed account of the graphene and fullerene.                                                | 3   | Applying      | CO1 |  |
|      | (ii)      | Evaluate the applications of CNTs in the electrical and electronic fields.                             | 4   | Analyzing     | CO1 |  |



SRM Nagar, Kattankulathur – 603 203



#### **UNIT II - ENGINEERING POLYMERS**

Polymers: Classification - types of polymerization - plastic and its types – applications - Engineering polymers: ABS, PVC, Nylon-6, Nylon-6, Teflon, Kevlar and PEEK - preparation, properties and uses - fiber reinforced polymers - conducting polymers: types, and applications - applications of polymers in medicine and surgery.

| S.No | PART-A (2 Marks)                                                                | BTL | Competence    | СО  |
|------|---------------------------------------------------------------------------------|-----|---------------|-----|
| 1.   | Define Polymer. Give an example.                                                | 1   | Remembering   | CO2 |
| 2.   | Define Monomer. Give an example.                                                | 1   | Remembering   | CO2 |
| 3.   | What is meant by polymerization?                                                | 2   | Understanding | CO2 |
| 4.   | What is meant by the degree of polymerization?                                  | 1   | Remembering   | CO2 |
| 5.   | State functionality of polymers.                                                | 2   | Understanding | CO2 |
| 6.   | What are Plastics? List out its advantages.                                     | 2   | Understanding | CO2 |
| 7.   | In what way is copolymerization different from addition polymerization?         | 3   | Applying      | CO2 |
| 8.   | Thermosetting plastics cannot be remolded. Why?                                 | 3   | Applying      | CO2 |
| 9.   | Differentiate thermoplastics and thermosetting plastics                         | 1   | Remembering   | CO2 |
| 10.  | Teflon is an addition polymer but it behaves like a thermosetting polymer, why? | 3   | Applying      | CO2 |
| 11.  | Define tacticity. Mention its types.                                            | 1   | Remembering   | CO2 |
| 12.  | Differentiate addition and condensation polymerization.                         | 2   | Understanding | CO2 |
| 13.  | List a few properties of Nylon-6.                                               | 1   | Remembering   | CO2 |
| 14.  | Sketch the component's name in ABS polymer formation.                           | 1   | Remembering   | CO2 |
| 15.  | How do you manufacture ABS?                                                     | 1   | Remembering   | CO2 |
| 16.  | What is the repeating unit of Nylon 6,6?                                        | 2   | Understanding | CO2 |
| 17.  | Correlate the uses of Teflon and Kevlar.                                        | 2   | Understanding | CO2 |
| 18.  | How can we make fiber-reinforced polymers?                                      | 2   | Understanding | CO2 |
| 19.  | What is FRP?                                                                    | 1   | Remembering   | CO2 |
| 20.  | Write notes briefly on conducting polymers.                                     | 2   | Understanding | CO2 |
| 21.  | What are conducting polymers?                                                   | 1   | Remembering   | CO2 |
| 22.  | Mention a few applications of polymers in surgery.                              | 1   | Remembering   | CO2 |





| SKM  |      |                                                                                                                      |                                                          |               |     |  |  |
|------|------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------|-----|--|--|
| S.No |      | PART-B (16 Marks)                                                                                                    | BTL                                                      | Competence    | СО  |  |  |
| 1.   | (i)  | Define polymer. Classify the polymers with examples.                                                                 | 1                                                        | Remembering   | CO2 |  |  |
|      | (ii) | Summarize the difference between addition and condensation polymerization.                                           | 3                                                        | Applying      | CO2 |  |  |
| 2.   |      | What is a polymer? Explain the different types of<br>polymers with examples.1Remembering                             |                                                          |               |     |  |  |
| 3.   |      | Distinguish thermoplastics and thermosetting plastics with examples.                                                 | 2                                                        | Understanding | CO2 |  |  |
| 4.   |      | What are plastics? Discuss in detail about different types of plastics.                                              |                                                          |               |     |  |  |
| 5.   |      | Outline the different types of polymers with examples.                                                               | Outline the different types of polymers with 4 Analyzing |               |     |  |  |
| 6.   | (i)  | Discuss the following. (i) Addition polymerization,<br>(ii) Condensation polymerization.                             | 1                                                        | Remembering   | CO2 |  |  |
|      | (ii) | Enumerate the following. (i) Homo polymers, (ii)<br>Heteropolymer, (iii) Inorganic polymer, (iv) Organic<br>polymer. | 3                                                        | Applying      | CO2 |  |  |
| 7.   | (i)  | Details out the preparation, properties and uses of PVC.                                                             | 3                                                        | Applying      | CO2 |  |  |
|      | (ii) | Correlate the preparation, properties and uses of Teflon and Nylon 6.                                                | 3                                                        | Applying      | CO2 |  |  |
| 8.   |      | Describe the preparation, properties and uses of Nylon-6,6 and PVC.                                                  | 3                                                        | Applying      | CO2 |  |  |
| 9.   |      | Categorize the synthesis, properties and uses of (i) ABS, (ii) Nylon-6.6 and (iii) PEEK.                             | 4                                                        | Analyzing     | CO2 |  |  |
| 10.  |      | Write in detail about the preparation, properties and uses of Kevlar, Teflon and PEEK.                               | 3                                                        | Applying      | CO2 |  |  |
| 11.  |      | Evaluate any four engineering polymers in detail.                                                                    | 4                                                        | Analyzing     | CO2 |  |  |
| 12.  | (i)  | Analyze the formation, properties and uses of Teflon,<br>Kevlar and Nylon-6,6.                                       | 4                                                        | Analyzing     | CO2 |  |  |
|      | (ii) | Classify the formation, properties and uses of ABS, PVC and Nylon-6.                                                 | 4                                                        | Analyzing     | CO2 |  |  |
| 13.  |      | Explore various conducting polymers that act as engineering materials.                                               | 4                                                        | Analyzing     | CO2 |  |  |
| 14.  |      | Examine the properties and applications of fiber-<br>reinforced polymers.                                            | 4                                                        | Analyzing     | CO2 |  |  |
| 15.  | (i)  | Find the various applications of polymers in the field of medicine and surgery.                                      | 3                                                        | Applying      | CO2 |  |  |
|      | (ii) | Explain the properties and uses of conducting polymers.                                                              | 3                                                        | Applying      | CO2 |  |  |



SRM Nagar, Kattankulathur – 603 203



#### UNIT III - ELECTROCHEMISTRY AND CORROSION

Electrode - electrode reaction - redox reaction - origin of electrode potential, oxidation potential - reduction potential - measurement and applications, electrochemical series and its significance - electrochemical cell - Nernst equation (derivation). Corrosion - causes - factors - types - chemical, electrochemical corrosion (galvanic, differential aeration), corrosion control - material selection and design aspects - electroplating of Au - electroless plating of Ni - paints - constituents and function.

| S.No | PART-A (2 Marks)                                                      | BTL | Competence    | CO  |
|------|-----------------------------------------------------------------------|-----|---------------|-----|
| 1.   | Find out the factors affecting corrosion.                             | 1   | Remembering   | CO3 |
| 2.   | Define Electrochemical cell.                                          | 1   | Remembering   | CO3 |
| 3.   | Describe Standard Electrode Potential.                                | 2   | Understanding | CO3 |
| 4.   | What are the factors affecting the emf of the cell?                   | 1   | Remembering   | CO3 |
| 5.   | What is cell emf?                                                     | 2   | Understanding | CO3 |
| 6.   | List out a few significances of electrochemical series.               | 2   | Understanding | CO3 |
| 7.   | What is the Nernst equation?                                          | 2   | Understanding | CO3 |
| 8.   | Explain why Zn displaces H <sub>2</sub> from HCl but Copper does not. | 3   | Applying      | CO3 |
| 9.   | Write the Nernst equation for an oxidation reaction.                  | 3   | Applying      | CO3 |
| 10.  | Differentiate oxidation potential and reduction potential.            | 1   | Remembering   | CO3 |
| 11.  | Construct a method to predict electrode potential.                    | 3   | Applying      | CO3 |
| 12.  | Define corrosion                                                      | 1   | Remembering   | CO3 |
| 13.  | What are the types of corrosion?                                      | 1   | Remembering   | CO3 |
| 14.  | Differentiate chemical and electrochemical corrosion.                 | 1   | Remembering   | CO3 |
| 15.  | Why do metals undergo corrosion?                                      | 2   | Understanding | CO3 |
| 16.  | How does the purity of a metal influence corrosion?                   | 2   | Understanding | CO3 |
| 17.  | State Pilling bedworth ratio rule.                                    | 1   | Remembering   | CO3 |
| 18.  | Define paint. Mention their constituents.                             | 1   | Remembering   | CO3 |
| 19.  | List out a few constituents of paint.                                 | 2   | Understanding | CO3 |
| 20.  | Explain the role of hydrazine and sodium sulfite in corrosion         | 2   | Understanding | CO3 |
| 01   | control.                                                              |     |               |     |
| 21.  | What is the purpose of using Mg bars in ships?                        | 3   | Applying      | CO3 |
| 22.  | What is electroless plating?                                          | 2   | Understanding | CO3 |





| SR   | SRM  |                                                                                                                                                     |     |               |     |  |  |
|------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------|-----|--|--|
| S.No |      | PART-B (16 Marks)                                                                                                                                   | BTL | Competence    | CO  |  |  |
| 1.   | (i)  | Differentiate electrolytic cells from electrochemical cells.                                                                                        | 2   | Understanding | CO3 |  |  |
|      | (ii) | Discuss the measurement of single electrode potential.                                                                                              | 1   | Remembering   | CO3 |  |  |
| 2.   |      | Derive the Nernst equation and give its significance (applications).                                                                                | 4   | Analyzing     | CO3 |  |  |
| 3.   |      | Give notes on oxidation potential and reduction<br>potential. Mention the applications of electrode<br>potential.                                   | 3   | Applying      | CO3 |  |  |
| 4.   |      | Define EMF Series. List out the significance.                                                                                                       | 2   | Understanding | CO3 |  |  |
| 5.   |      | How electrode potential can be obtained from the Nernst Equation.                                                                                   | 3   | Applying      | CO3 |  |  |
| 6.   |      | What are the consequences of corrosion? Discuss in detail about electrochemical or wet corrosion with examples.                                     | 1   | Remembering   | CO3 |  |  |
| 7.   |      | Analyze dry (or) chemical corrosion with suitable examples and diagrams.                                                                            | 4   | Analyzing     | CO3 |  |  |
| 8.   |      | What are the factors which influence the rate of corrosion?                                                                                         | 2   | Understanding | CO3 |  |  |
| 9.   | (i)  | Correlate the differences between electrochemical corrosion and chemical corrosion.                                                                 | 3   | Applying      | CO3 |  |  |
| -    | (ii) | Describe cathodic protection by the sacrificial anode method.                                                                                       | 3   | Applying      | CO3 |  |  |
| 10.  |      | Explain the sacrificial anode and impressed current cathodic techniques for the prevention of corrosion.                                            | 3   | Applying      | CO3 |  |  |
| 11.  |      | Discuss the principle, working, and applications of sacrificial anode and impressed current cathodic protection techniques in corrosion prevention. | 3   | Applying      | CO3 |  |  |
| 12.  |      | Discuss the importance of design and material selection in controlling corrosion.                                                                   | 3   | Applying      | CO3 |  |  |
| 13.  |      | What are paints? Assess its constituents and functions with examples.                                                                               | 3   | Applying      | CO3 |  |  |
| 14.  |      | Define paint. Analyse their constituents and functions with examples.                                                                               | 3   | Applying      | CO3 |  |  |
| 15.  | (i)  | Construct an electroplating of Copper.                                                                                                              | 4   | Analyzing     | CO3 |  |  |
|      | (ii) | Illustrate electroless plating and explain the plating of Ni by this process.                                                                       | 4   | Analyzing     | CO3 |  |  |



SRM Nagar, Kattankulathur – 603 203



#### **UNIT IV - ENERGY SOURCES AND STORAGE DEVICES**

Introduction - nuclear energy - light water nuclear power plant - breeder reactor, solar energy conversion - solar cells: principle, working and applications, types of batteries - primary battery (alkaline battery), secondary battery (lead acid battery, NICAD battery, lithium-ion battery), fuel cells (H<sub>2</sub>-O<sub>2</sub> fuel cell). Supercapacitors: storage principle, applications. Electric vehicles-working principles.

| S.No | PART-A (2 Marks)                                                  | BTL | Competence    | CO  |
|------|-------------------------------------------------------------------|-----|---------------|-----|
| 1.   | What are non-conventional energy sources? Give an example.        | 1   | Remembering   | CO4 |
| 2.   | Define nuclear fission.                                           | 1   | Remembering   | CO4 |
| 3.   | Differentiate nuclear fission from nuclear fusion.                | 2   | Understanding | CO4 |
| 4.   | Outline nuclear chain reaction.                                   | 1   | Remembering   | CO4 |
| 5.   | Mention the components used in a nuclear reactor.                 | 2   | Understanding | CO4 |
| 6.   | What is nuclear energy? Explain using a suitable example.         | 1   | Remembering   | CO4 |
| 7.   | Examine coolants in nuclear reactors. Give an example.            | 3   | Applying      | CO4 |
| 8.   | Describe the breeder reactor.                                     | 2   | Understanding | CO4 |
| 9.   | What is solar energy. How it is obtained?                         | 1   | Remembering   | CO4 |
| 10.  | Narrate the merits of solar energy.                               | 1   | Remembering   | CO4 |
| 11.  | What is a Battery? How does it differ from a cell?                | 2   | Understanding | CO4 |
| 12.  | Relate primary and secondary batteries. Give example.             | 1   | Remembering   | CO4 |
| 13.  | Illustrate Lead acid battery.                                     | 2   | Understanding | CO4 |
| 14.  | Ni-Cd batteries are bad for the environment, why?                 | 3   | Applying      | CO4 |
| 15.  | Construct cell representation on an alkaline battery.             | 3   | Applying      | CO4 |
| 16.  | What are the electrodes used in the $H_2$ - $O_2$ fuel cells?     | 1   | Remembering   | CO4 |
| 17.  | Sketch the diagram for H <sub>2</sub> -O <sub>2</sub> fuel cells. | 3   | Applying      | CO4 |
| 18.  | Summarize supercapacitors.                                        | 1   | Remembering   | CO4 |
| 19.  | Sketch the cell representation of the lead acid battery.          | 3   | Applying      | CO4 |
| 20.  | Give brief notes on lithium-ion batteries.                        | 2   | Understanding | CO4 |
| 21.  | What are the different types of Electric Vehicles?                | 2   | Understanding | CO4 |
| 22.  | List out a few merits of electric vehicles.                       | 1   | Remembering   | CO4 |





| S.No |      | PART-B (16 Marks)                                                                                                                     | BTL | Competence    | CO  |
|------|------|---------------------------------------------------------------------------------------------------------------------------------------|-----|---------------|-----|
| 1.   | (i)  | Distinguish between nuclear fission and fusion reactions                                                                              | 1   | Remembering   | CO4 |
|      | (ii) | Define mass defect and binding energy. How are they related?                                                                          | 2   | Understanding | CO4 |
| 2.   |      | Explain the components and their work functioning<br>of a light-water nuclear power reactor (LWR) with<br>the help of a neat diagram. | 3   | Applying      | CO4 |
| 3.   |      | Describe the conversion and working of a Breeder reactor.                                                                             | 4   | Analyzing     | CO4 |
| 4.   |      | What is a nuclear reactor? Describe the components of a light-water nuclear power plant with a suitable diagram.                      | 4   | Analyzing     | CO4 |
| 5.   |      | What are solar cells? State the principle, harvesting and applications of solar energy.                                               | 3   | Applying      | CO4 |
| 6.   |      | Define solar energy. Elaborate on principle, working and applications of solar energy.                                                | 2   | Understanding | CO4 |
| 7.   | (i)  | Describe the methods of harvesting the solar energy.                                                                                  | 4   | Analyzing     | CO4 |
|      | (ii) | Write a note on the Alkaline Battery.                                                                                                 | 1   | Remembering   | CO4 |
| 8.   |      | What are lead accumulators? Explain the construction and functioning of a lead accumulator.                                           | 4   | Analyzing     | CO4 |
| 9.   |      | Explain the construction and working of the Nickel-<br>Cadmium battery with a neat sketch.                                            | 4   | Analyzing     | CO4 |
| 10.  |      | Explain in detail about Lithium-ion batteries and their uses.                                                                         | 4   | Analyzing     | CO4 |
| 11.  |      | What are fuel cells? Briefly describe about hydrogen-oxygen fuel cell.                                                                | 3   | Applying      | CO4 |
| 12.  | (i)  | Write notes on supercapacitors.                                                                                                       | 2   | Understanding | CO4 |
|      | (ii) | What are the different types of Electric Vehicles? Describe the applications.                                                         | 3   | Applying      | CO4 |
| 13.  |      | Discuss the construction and applications of Lead acid batteries.                                                                     | 4   | Analyzing     | CO4 |
| 14.  |      | With a neat sketch, explain the Nickel-Cadmium battery.                                                                               | 3   | Applying      | CO4 |
| 15.  | (i)  | How are supercapacitors constructed? Explain the working and applications of supercapacitors.                                         | 3   | Applying      | CO4 |
|      | (ii) | Compile the advantages and main components function of electric vehicles in detail.                                                   | 4   | Analyzing     | CO4 |



SRM Nagar, Kattankulathur – 603 203



#### UNIT V - INSTRUMENTAL METHODS AND ANALYSIS

Introduction, absorption of radiation, types of spectra, UV-Visible and IR Spectrophotometer: Instrumentation and applications, cyclic voltammetry for redox system. Thermal methods of analysis TGA, DTA, DSC. Sensors: oxygen, pulse oximeter, biometrics, and glucose sensor.

| S.No | PART-A (2 Marks)                                                    | BTL | Competence    | CO  |  |
|------|---------------------------------------------------------------------|-----|---------------|-----|--|
| 1.   | What is spectroscopy?                                               | 1   | Remembering   | CO5 |  |
| 2.   | Define transmittance and absorbance.                                | 1   | Remembering   | CO5 |  |
| 3.   | State Beer's law.                                                   | 1   | Remembering   | CO5 |  |
| 4.   | Define the term spectroscopy.                                       | 1   | Remembering   | CO5 |  |
| 5.   | Mention the different types of spectrophotometers.                  | 2   | Understanding | CO5 |  |
| 6.   | Name the types of detectors used for IR spectrometry.               | 2   | Understanding | CO5 |  |
| 7.   | Categorize different IR regions of the spectrum.                    | 3   | Applying      | CO5 |  |
| 8.   | Name a few IR radiation sources.                                    | 1   | Remembering   | CO5 |  |
| 9.   | What are the main components of a UV-visible spectrophotometer?     |     | Understanding | CO5 |  |
| 10.  | What is Beer Lambert's law?                                         |     | Remembering   | CO5 |  |
| 11.  | What are the applications of UV visible spectroscopy?               | 1   | Remembering   | CO5 |  |
| 12.  | Compare Beer and Lambert's law.                                     | 2   | Understanding | CO5 |  |
| 13.  | What is the use of cyclic voltammetry?                              | 1   | Remembering   | CO5 |  |
| 14.  | Mention the principle for cyclic voltammetry.                       | 2   | Understanding | CO5 |  |
| 15.  | What are the factors affecting the cyclic voltammetry measurements? | 2   | Understanding | CO5 |  |
| 16.  | List out the applications of TGA.                                   | 1   | Remembering   | CO5 |  |
| 17.  | Compare DSC and DTA.                                                | 2   | Understanding | CO5 |  |
| 18.  | What is thermogravimetric analysis?                                 | 2   | Understanding | CO5 |  |
| 19.  | Enumerate the uses of pulse oximeter.                               | 3   | Applying      | CO5 |  |
| 20.  | What are the sensors used in biometrics?                            | 2   | Understanding | CO5 |  |
| 21.  | Classify chemical sensors.                                          | 2   | Understanding | CO5 |  |
| 22.  | Examine the electrochemical sensor.                                 | 3   | Applying      | CO5 |  |

| S.No | PART-B (16 Marks) |                                                                       | BTL | Competence  | CO  |
|------|-------------------|-----------------------------------------------------------------------|-----|-------------|-----|
| 1.   | (i)               | Derive Beer-Lambert Law and what are its application and limitations? | 1   | Remembering | CO5 |





| SRIVI |      |                                                                                                                 |   |               | V   |
|-------|------|-----------------------------------------------------------------------------------------------------------------|---|---------------|-----|
|       | (ii) | Differentiate between UV-visible and IR spectroscopy.                                                           | 2 | Understanding | CO5 |
| 2.    |      | Discuss the principle, instrumentation and working of UV-visible spectrophotometer.                             | 1 | Remembering   | CO5 |
| 3.    |      | Discuss the instrumentation of a UV-visible spectrophotometer. Draw a labeled diagram.                          | 2 | Understanding | CO5 |
| 4.    |      | Write a detailed note on IR spectroscopy with its advantages and disadvantages.                                 | 3 | Applying      | CO5 |
| 5.    |      | Discuss the selection rule, principle and instrumentation of IR spectroscopy.                                   | 3 | Applying      | CO5 |
| 6.    | (i)  | Explain various detectors used in IR<br>Spectroscopy.                                                           | 3 | Applying      | CO5 |
|       | (ii) | Explain various applications of IR spectroscopy.                                                                | 4 | Analyzing     | CO5 |
| 7.    |      | Enumerate the principle, working and uses of cyclic voltammetry.                                                | 4 | Analyzing     | CO5 |
| 8.    |      | Explaintheprincipleandworkingmechanismofcyclicvoltammetry(CV).Mentiontheir uses.                                | 3 | Applying      | CO5 |
| 9.    |      | Explain how TGA is used in qualitative and quantitative measurements.                                           | 3 | Applying      | CO5 |
| 10.   |      | Explain the principle, instrumentation and<br>applications with a schematic diagram of (i)<br>TGA and (ii) DTA. | 3 | Applying      | CO5 |
| 11.   |      | Classify the instrumentation and applications of (i) TGA and (ii) DSC.                                          | 3 | Applying      | CO5 |
| 12.   | (i)  | Categorize oxygen sensor and glucose sensor.                                                                    | 4 | Analyzing     | CO5 |
|       | (ii) | Summerize on sensors and their types.                                                                           | 4 | Analyzing     | CO5 |
| 13.   |      | Illustrate the principle, working and uses of pulse oximeter sensor.                                            | 4 | Analyzing     | CO5 |
| 14.   |      | Describe the instrumentation and applications of glucose sensors.                                               | 4 | Analyzing     | CO5 |
| 15.   | (i)  | Derive the uses of biometrics and glucose sensors.                                                              | 3 | Applying      | CO5 |
|       | (ii) | Compare the oxygen sensor and glucose sensor.                                                                   | 4 | Analyzing     | CO5 |