SRM VALLIAMMAI ENGINEERING COLLEGE

SRM Nagar, Kattankulathur – 603 203

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

QUESTION BANK

IV SEMESTER CS3464 – DESIGN AND ANALYSIS OF ALGORITHMS

Regulation – 2023

Academic Year 2024 – 2025 EVEN

Prepared by

Dr. V. Dhanakoti – Professor / CSE Mrs. A. Vidhya – Asst Professor(Sr.G) / CSE Dr. S. Venkatesh – Asst Professor(Sr.G) / CSE

SRM VALLIAMMAI ENGNIEERING COLLEGE SRM Nagar, Kattankulathur – 603203.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING OUESTION BANK

SUBJECT : CS3464 – DESIGN AND ANALYSIS OF ALGORITHMS

SEM / YEAR : IV / II

UNIT I - INTRODUCTION

Algorithm analysis: Time and space complexity – Asymptotic Notations and its properties Best case, Worst case and average case analysis – Recurrence relation: substitution method – Lower bounds – searching: linear search, binary search and Interpolation Search, Pattern search: The naïve string–matching algorithm – Rabin– Karp algorithm – Knuth–Morris–Pratt algorithm. Sorting: Insertion sort – heap sort

PART-A (2 - MARKS)								
Q. No	QUESTIONS	Competence	BT Level					
1.	What do you mean by algorithm?	Remember	BTL-1					
2.	What is performance measurement?	Remember	BTL-1					
3.	Give the diagram representation of Notion of algorithm.	Understand	BTL-2					
4.	Write Knuth-Morris-Pratt algorithm.	Analyze	BTL-4					
5.	Describe space complexity?	Understand	BTL-2					
6.	Calculate Complexity Analysis of Heap Sort.	Apply	BTL-3					
7.	Describe algorithm design technique.	Understand	BTL-2					
8.	Define Rabin-Karp algorithm.	Analyze	BTL-4					
9.	What are the types of algorithm efficiencies?	Remember	BTL-1					
10.	Describe "worst-case efficiency" of and algorithm.	Understand	BTL-2					
11.	Show best-case efficiency.	Apply	BTL-3					
12.	What is average case efficiency?	Remember	BTL-1					
13.	Define asymptotic notations.	Remember	BTL-1					
14.	Solve the asymptotic notation "Big oh" (0)	Apply	BTL-3					
15.	Define the asymptotic notation "Omega" (Ω).	Remember	BTL-1					
16.	Define the asymptotic notation "theta" (θ)	Remember	BTL-1					
17.	Explain recursive algorithm?	Evaluate	BTL-5					
18.	Evaluate How to measure an algorithm running time?	Evaluate	BTL-5					
19.	Design and Define Linear Search.	Create	BTL-6					
20.	Show What are the Best, Worst and Average Case complexity of Linear Search?	Apply	BTL-3					
21.	Difference between Best Case and Worst Case Complexities.	Analyze	BTL-4					
22.	Explain binary search?	Analyze	BTL-4					

23.	Give computing time for Binary search?		Understand	BTL-2
24.	Design an algorithm for Iterative binary search?		Create	BTL-6
	DADT B (16 MADKS)			
1	Define the asymptotic notations used for best case average case and worst case analysis?	(16)	Remember	BTL-1
2	Write and assess in detail about naïve string–matching algorithm.	(16)	Evaluate	BTL-5
3	Explain Rabin– Karp algorithm in detail.	(16)	Analyze	BTL-4
4	What is meant by recurrence? Give one example to solve recurrence equations.	(16)	Remember	BTL-1
5	(i) Distinguish between Big Oh, Theta and Omega natation.	(8)	Analyze	BTL-4
	(ii) Analyze the best, worst and average case analysis for linear search.	(8)	Analyze	BTL-4
6	Find complexity of algorithm C (n) of the algorithm for the best, worst, average	(16)	Understand	BTL-2
7	 (i) Define Asymptotic notations. Distinguish between Asymptotic notation and Conditional asymptotic notation. 	(8)	Understand	BTL-2
	ii) Explain how the removing condition is done from the conditional asymptotic notation with an example.	(8)	Understand	BTL-2
8	(i) Explain how analysis of linear search is done with a suitable illustration.	(8)	Analyze	BTL-4
	(ii) Define recurrence equation and explain how solving recurrence equations are done.	(8)	Analyze	BTL-4
9	Write algorithm for insertion sort and analyze about its Time Complexity.	(16)	Analyze	BTL-4
10	Discuss all the asymptotic notations in detail.	(16)	Understand	BTL-2
11	Write an algorithm for finding maximum element of an array, perform best, worst and average case complexity with appropriate order notations.	(16)	Remember	BTL-1
12	Write an algorithm heap sort and examine its complexity analysis.	(16)	Remember	BTL-1
13	(i)Write and explain the algorithm for Binary search and analyze its time complexity.	(8)	Remember	BTL-1
	(ii) Write the linear search algorithm and analyze its time complexity.	(8)	Remember	BTL-1
14	Find the time complexity and space complexity of the following problems. (i)Factorial using recursion	(8)	Apply	BTL-3
	(ii)Compute nth Fibonacci number using Iterative statements.	(8)	Apply	BTL-3
15	Exaplain Knuth-Morris-Pratt algorithm in detail.	(16)	Understand	BTL-2
16	Give the recursive algorithm which finds the number of binary digits in the binary representation of a positive decimal integer. Find the recurrence relation and complexity.	(16)	Create	BTL-6
17	Compare linear search, binary search and Interpolation Search based on complexity analysis	(16)	Apply	BTL-3

UNIT II GRAPH ALGORITHMS

Graph algorithms: Representations of graphs – Graph traversal: DFS – BFS –applications– Connectivity, strong connectivity, bi–connectivity – Minimum spanning tree: Kruskal's and Prim's algorithm– Shortest path: Bellman–Ford algorithm – Dijkstra's algorithm – Floyd– Warshall algorithm ,Network flow: Flow networks – Ford–Fulkerson method – Matching: Maximum bipartite matching

$\mathbf{PART} - \mathbf{A}$								
Q. No	QUESTIONS	0	Competence	BT Level				
1								
1.	What is the degree of a graph?	Under	standing	BTL-2				
2.	Define a graph.	Reme	mbering	BTL-1				
3.	Differentiate depth-first traversal and breadth-first traversal.	Analy	zing	BTL-4				
4.	What is Acyclic graph	Under	standing	BTL-2				
5.	Show the different types of Graph.	Reme	mbering	BTL-3				
6.	List the applications of graphs.	Reme	mbering	BTL-1				
7.	Compare prims and Kruskal algorithm.	Evalua	ating	BTL-5				
8.	Write Kruskal algorithm.	Under	standing	BTL-2				
9.	What is a single source shortest path problem?	Reme	mbering	BTL-1				
10.	Prove that the number of odd degree vertices in a connected graph should be even.	Apply	ring	BTL-3				
11.	Assess about perfect matching in bipartite graph.	Apply	ving	BTL-5				
12.	Compare indegree, outdegree in a graph.	Analy	zing	BTL-4				
13.	Show What is a Spanning Tree.	Remembering		BTL-3				
14.	Point out the advantage of Prims Algorithm.	BTL-4						
15.	Discover the difference between Kruskal's Algorithm and Dijkstra's algorithm.	Apply	ring	BTL-3				
16.	Define flow cut.	Under	standing	BTL-2				
17.	Analyze and Write down the optimization technique used for Warshalls algorithm. State the rules and assumptions which are implied behind that.	Analy	zing	BTL-4				
18.	Assess about Maximum-Flow problem	Evalua	ating	BTL-5				
19.	Write Time complexity of Floyd-Warshall algorithm.	Evalua	ating	BTL-5				
20.	List the constraint in the context of maximum flow problem.	Reme	mbering	BTL-1				
21.	How to calculate the efficiency of dijkstra's algorithm.	Under	standing	BTL-2				
22.	Compare strongly connected graph and weakly connected graph.	Apply	ring	BTL-3				
23.	Generalize on Bipartite Graphs	Creati	ng	BTL-6				
24.	State the time complexity of prims and Kruskal algorithm.	Under	standing	BTL-2				
	PART-B (16- MARKS)			ı				
1.	Write and analyze the algorithm for all pairs shortest path problem and describe the time and space complexity of the algorithm.	16	Analyzing	BTL-4				

2.	Assess on how do you solve all pairs shortest path problem using Floyd's algorithm and write its time complexity $ \begin{array}{c} 2 \\ 3 \\ 6 \\ 7 \\ 1 \end{array} $	16	Evaluating	BTL-5
3.	Analyze about the max-flow in the following network.	16	Analyzing	BTL-4
4.	Compare and contrast the depth-first traversal and breadth-first traversal with example	16	Analying	BTL-4
5.	Write Floyd algorithm and Examine about the algorithm to solve all pairs shortest paths problem	16	Applying	BTL-3
6.	Explain in detail about different representation of graph.	16	Remembering	BTL-3
7.	Develop a minimum spanning tree using Kruskals algorithm and Explain it.	16	Creating	BTL-6

8.	Analyze and Discuss about the algorithm and pseudocode to find the Minimum Spanning Tree using Prim's Algorithm. Find the Minimum Spanning Tree for the graph. Discuss about the efficiency of the algorithm.		Analyzing	BTL-4
9.	Generalize on the concept of Bellman–Ford algorithm and solve.		Creating	BTL-6
10.	Explain Graph traversal with example and list out its applications.		Evaluating	BTL-5
11.	How do you compute maximum flow for the following graph using Ford- Fulkerson method?		Creating	BTL-6
12.	Assess on how do you solve all pairs shortest path problem using Warshall algorithm and write its time complexity	16	Evaluating	BTL-5
L				

13.	Exaplain Dijkstra's shortest path algorithm and its efficiency. $\begin{array}{c} & & & \\ & & & $	16	Understanding	BTL-2				
14.	Apply Kruskal's algorithm to find a minimum spanning tree of the following graph.	16	Applying	BTL-3				
15.	Write and Explain the algorithm for Maximum Bipartite Matching.	16	E 1					
16.	Apply the shortest Augmenting Path algorithm to the network shown below. 5 4 1 2 2 5 3 4 4 1 2 6 3 4 4 1 2 6 3 4 4 1 2 6 3 4 4 1 2 6 1 1 4 1 2 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1	16	Applying	BTL-3				
17.	State and Prove Maximum Flow Min cut Theorem	16	BTL-5	Evaluating				
	UNIT III ALGORITHM DESIGN TECHNI	QUES						
Div pro Op	Divide and Conquer methodology: Finding maximum and minimum – Merge sort –Quick sort Dynamic programming: Elements of dynamic programming – Matrix–chain multiplication – Multi stage graph – Optimal Binary Search Trees. Greedy Technique: Elements of the greedy strategy – Activity–selection problem – Optimal Merge pattern –Huffman Trees.							
	PART A		Commot	DT I 1				
Q. 110	NS		competence	DI Level				

1.	Give the general plan for divide-and-conquer algorithms.	Unde	rstanding	BTL-2
2.	List the advantages of Divide and Conquer Algorithm.	Reme	embering	BTL-1
3.	Show the recurrence relation of divide-and-conquer?	Appl	ying	BTL-3
4.	Point out the Disadvantages in Quick Sort	Analy	zing	BTL-4
5.	State Master's theorem.	Analy	zing	BTL-4
6.	Differentiate quicksort and mergesort.	Unde	rstanding	BTL-4
7.	Define dynamic programming.	Reme	embering	BTL-1
8.	Write the general procedure of dynamic programming.	Reme	embering	BTL-1
9.	What is the time and space complexity of Merge sort?	Unde	rstanding	BTL-2
10.	Show the time complexity for Quick Sort.	Appl	ying	BTL-3
11.	Asses the recurrence relation of merge sort.	Evalu	ating	BTL-5
12.	Give the Disadvantages of Divide and Conquer Algorithm.	Unde	rstanding	BTL-2
13.	Writet he Time complexity of Optimal Binary Search Tree.	Unde	rstanding	BTL-2
14.	compare dynamic programming and divide and conquer approaches.	Analy	zing	BTL-4
15.	Write the difference between the Greedy method and Dynamic programming.	Reme	embering	BTL-1
16.	Define Optimal Binary Search Trees.	Reme	embering	BTL-1
17.	List out the memory functions used under Dynamic programming.	Applying		BTL-3
18.	Time complexity of Merge sort	Analyzing		BTL-4
19.	Define Huffman Tree.	Reme	embering	BTL-1
20.	State the general principle of greedy algorithm.	Evalu	ating	BTL-5
21.	List out the memory functions used under Dynamic programming.	Reme	embering	BTL-1
22.	Write the Pseudo-code for Greedy Algorithm	Evalu	ating	BTL-5
23.	Define multistage graphs. Give an example.	Unde	rstanding	BTL-2
24.	formulate the principle of optimality.	Creating		BTL-6
	PART-B (16- MARKS)			
1.	Analyze in detail about divide and conquer strategy with ascenario.	16	Analyzing	BTL-4
2.	Illustrate about Quicksort algorithm and write its timecomplexity for the list 5,3,1,9,8,2,4,7.	16	Applying	BTL-3
3.	Summarize in detail about the operation of binary search algorithm for the input -15, -6, 0, 7, 9, 23, 54, 82, 101,112, 125,131,142,151 if you are searching for the element 9.	16	Applying	BTL-3
4.	Write and explain the algorithm for quicksort. Provide a complete analysis of quick sort for the given set of numbers 12,33,23,43,44,55,64,77 and 76.	16	Analyzing	BTL-4
5.	Write and explain pseudo code using divide and conquer technique for finding the position of the largest element in an array of N numbers.	16	Analyzing	BTL-4
6.	(i)Find the number of comparisons required to search for '6' in the given Sequence of numbers: 10, 19, 7, 9, 6, 15.	8	Analyzing	BTL-4

	(ii) Analyze the time efficiency and drawbacks of merge sort algorithm.	8		
7.	Develop and explain multistage graph for finding the single-source shortestpaths for the given graph.	16	Creating	BTL-6
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
8.	What is divide and conquer strategy and generalize the concept of the binary search with suitable example problem.	16	Creating	BTL-6
9.	Trace the steps of Mergesort algorithm for the elements 122, 25,70,175,89,90,95,102,123 and also compute its time complexity.	16	Evaluating	BTL-5
10.	Write an algorithm to perform binary search on a sorted list of elements. Analyze the algorithm for the best case, average case and worst case.Summarize	16	Analyzing	BTL-4
11.	Analyze the algorithm by applying the following keys and probabilities to obtain the optimal binary tree.	16	Analyzing	BTL-4
	Key A B C D Probability 0.1 0.2 0.4 0.3			
12.	Examine how multistage graph for finding the single-source shortestpaths for the given graph.	16	Remembering	BTL-1
13.	Generalize on matrix chain multiplication in detail	16	Creating	BTL-6
14.	(i)Write an algorithm to construct the optimal binary search tree with time complexity.	8		
			Understanding	BIL-2

	(ii)Discuss the search trees.(8)	algoı)	8								
15.	Explain the st alphabets give Let _(Space)= $1.S = 2 \cdot X = 1$	eps i en be = 4 A	16	Remembering	BTL-1						
16.	Illustrate how using dynami	w the	probl gram	lem o ming	of opt	imal roach	merge pattern car	be solved	16	Evaluating	BTL-5
17.	(i)Define Huf	fman	tree.	List th	ne typ	bes of	Encoding in Huffn	nan tree.	8	Dividualing	
	(ii)Write the l following data	Huffn a and	nan's a obtair	algori 1 its F	thm. Iuffn	Cons nan co	truct the Huffman's	s tree for the	8	Understanding	BTL-2
	Character	A	В	C	D	E	_(Underscore)				
	Probability	0.5	0.35	0.5	0.1	0.4	0.2				
proble Trave	em Branch and lling Salesman	l Bo Prob	und: olem	Solvi	ing 1	15–Pi	uzzle problem –	Assignment p	orobler	n – Knapsack	Problem –
						P	PART-A				
1	Define Deelite		(Juest	tions				Con	npetence	BT Level
1. 	Define Backti	гаскі	$\frac{ng}{1}$	gorith	$\frac{1}{1}$				Rer	nembering	BTL-1
2.	Backtracking	ing s Algo	orithm	ian pi i?	roble	m ca	innot be solved by	/	Und	erstanding	BTL-2
3.	Assess the use	e of a	a state	spac	ce tre	e.			A	Applying	BTL-3
4.	Differentiate Algorithm.	betw	een B	acktr	acki	ng an	id Branch and Bo	und	A	nalyzing	BTL-4
5.	State the rease algorithm.	ons t	hat af	fects	the e	effici	ency of backtrack	ing	A	pplying	BTL-3
6.	List the probl Algorithms.	ems	that c	an be	e solv	red by	y using backtrack	ing	Und	erstanding	BTL-2
7.	Define N-que	en's	Probl	em.					Rer	nembering	BTL-1
8.	How many po	ossib	le soli	ution	s exi	st for	an 8 queen's pro	blem?			
9.	Define a subs	et-Sı	ım Pr	obler	n.				Rer	nembering	BTL-1
10.	Pointout the a	lgori	ithms	used	in H	amil	tonian path proble	em.			
11.	Assess the wo	orkin	g proc	cedur	e of	Brute	e Force Search Al	gorithm.	А	nalyzing	BTL-4
12.	Differentiate	betw	een Ir	nplic	it an	d exp	olicit constraint.			Analyzing	BTL-4

13.	How many Hamiltonian paths does the following graph have?		Analyzing	BTL-4
14.	Define the chromatic number used in graph coloring applijcation.	P	emembering	BTI_1
15.	Differentiate between Implcit and explicit constraints.	N	Analyzing	BTL-1
16.	What is meant by state and non state problems?	R	emembering	BTL-1
17.	Define Graph coloring algorithm and its applications.	R	emembering	BTL-1
18.	Does backtracking always leads to optimal solutions? Justify.		Creating	BTL-6
19.	Examine the Knapsack Problem.		Evaluating	BTL-5
20.	State the real life applications of Knapsack Problem.	Un	derstanding	BTL-2
21.	Differentiate between backtracking and branch and bound technique.	А	nalyzing	BTL-4
22.	State Travelling salesman Problem.	Un	derstanding	BTL-2
23.	What do you mean by 15-puzzle problem?	R	emembering	BTL-1
24.	State the steps used to solve a problem in Travelling Salesman Problem	Understanding		BTL-2
	PART-B (16- MARKS)			
1.	Explain in detail about the Backtracking approach with an example.	16	Applying	BTL-3
2.	State the subset-sum problem and Complete state-space tree	16		
	of the backtracking algorithm applied to the instance A= $\{3, 5, 6, 7\}$ and d=15 of the subset-sum problem [M-16]		Understanding	BTL-2
	o, / j and d=15 of the subset-sum problem.[W-10]			
3.	Explain in detail about N-Queens Problem with diagrams and algorithm	16	Creating	BTL-6
4.	Using Back-Tracking enumerate how can you solve the following		Evaluating	
	(i) 4-queens problem.	8		BTL-5
5	(ii) Hamiltonian circuit problem.	8		
5.	sum =15.Derive all the subsets. $\{3, 5, 6, 7, 2\}$ and the	ð	Evaluating	BTI -5
	(ii) Evaluate the following instance of the knapsack problem using the branch and bound algorithm. Knapsack capacity $W=10$	8		DIL-5
	Item Weight Value			
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
6.	43\$12Explain briefly about Assignment Problem using Branch and Bound	16	Evaluate	BTL-5
7.	Technique. Explain in detail about the graph coloring problem with proper	16		
0	algorithm and diagram.		Analyzing	BTL-4
8.	Let $w = \{5, 7, 10, 12, 15, 18, 20\}$ and $m = 35$. Find all possible subset	16	Creating	BTL-6

	of w whose sum is equ	uivalent to m. Draw the	portion of state space	e		
9.	Explain briefly about algorithm	16	Evaluate	BTL-5		
10.	Find an optimal soluti assignment problem:	<u>,</u> 16	Understanding	BTL-2		
11.	Explain in detail abou Evaluate Hamiltonian	n. 16	Evaluate	BTL-5		
12.	Solve the following in bound algorithm $W=$	stance of knapsack pro	blem by branch and	16	Evaluate	BTL-5
12.	Solve the following in bound algorithm W=	stance of knapsack prol	blem by branch and	16	Evaluate	BTL-5
12.	Solve the following in bound algorithm W= 1	stance of knapsack prol 15.	blem by branch and PROFIT 40	16	Evaluate	BTL-5
12.	Solve the following in bound algorithm W= 1	stance of knapsack pro 15. WEIGHT 5 7	blem by branch and PROFIT 40 35	16	Evaluate	BTL-5
12.	Solve the following in bound algorithm W= 1 1 1 2 3	stance of knapsack prol 15. WEIGHT 5 7	blem by branch and PROFIT 40 35 18	16	Evaluate	BTL-5
12.	Solve the following in bound algorithm W= 1 1 2 3	stance of knapsack prol 15. WEIGHT 5 7 2	PROFIT 40 35 18 4	16	Evaluate	BTL-5
12.	Solve the following in bound algorithm W= 1 1 2 3 4	stance of knapsack pro 15. WEIGHT 5 7 2 4 5	blem by branch and PROFIT 40 35 18 4 10	16	Evaluate	BTL-5
12.	Solve the following in bound algorithm W= 1 ITEMIS 1 2 3 4 5 6	stance of knapsack pro 15. WEIGHT 5 7 2 4 5 1	PROFIT 40 35 18 4 10 2	16	Evaluate	BTL-5

13.	Consider the t following cos	16	Evaluate	BTL-5					
	∞	20	30	10	11				
	15	00	16	4	2				
	з	5	00	2	4				
	19	6	18	00	3				
	16	4	7	16	8				
	Draw the state to each of the	e space and sh node.	low the reduce	ed matrices c	orresponding				
14.	Let w={5,7,10 of w whose su tree for this p	0,12,15,18,20 im is equivale roblem.	} and m=35.C ent to m. Draw	ompute all p the portion	ossible subset of state space	16	Creating	BTL-6	
15.	Explain the 4- algorithms. G Queen's probl	Queen's prob ive the estima em. Specify t	lem using bac ted cost for al he implicit and	ktracking. W l possible so d explicit cor	Trite the lutions of 4-	16	Analyzing	BTL-4	
16.	Apply Branch problem for th	and Bound a are graph below	lgorithm to so w:	lve the trave	lling salesman	16	Analyzing	BTL-4	
		5	8 7	3					
17.	Explain in det bound technic	tail how 15 pu jue.	zzle problem	is solved usi	ng branch and	16	Creating	BTL-6	
	UI	NIT V NP-C	OMPLETE A	AND APPRO	DXIMATION .	ALGO	DRITHM		
Tract algor CNF prima	Tractable and intractable problems: Polynomial time algorithms – Venn diagram representation – NP– algorithms – NP–hardness and NP–completeness – Bin Packing problem – Problem reduction: TSP – 3– CNF problem. Approximation Algorithms: TSP –Randomized Algorithms: concept and application – primality testing – randomized quick sort – Finding kth smallest number								
			PART-A						
1	Define ND ha	rd and ND Ca	Questions	me		Con	npetence	BTL	
2	List out the -1	nu anu INF-CC	f tractable	d intro atal-1-	nnohlama	R	emembering	BTL-1	
<u> </u>	List out the cr		DI TRACTADIE AN	u intractable	problems.	U	Inderstanding	BTL-2	
). 	Compare class	s P and class	NP.				Analyzing	BTL-4	
4.	Give the exan	nples of NP co	omplete proble	ems.		R	Remembering	BTL-1	
5.	Demonstrate a	approximation	n for NP-Hard	Problem.		Uı	nderstanding	BTL-2	
6.	What is satisf	iability proble	em?			R	emembering	BTL-1	
7.	State optimiza	U	Inderstanding	BTL-2					

8.	Differentiate between deterministic and non deterministic algorithms.	Analyzing		BTL-4			
9.	What do you mean by Vertex Cover Problem?	Remembering		BTL-1			
10.	List out the examples of NP-Hard Problems.	Understanding		BTL-2			
11.	How would you assess optimization problems?	Remembering		BTL-1			
12.	State Bin Packing Problem and its mathematical formulation.	Understanding		BTL-2			
13.	How will you specify CNF Problem?	Creating		BTL-6			
14.	Define Approximation Algorithms.	Remembering		BTL-1			
15.	Assess Performance ratio in approximation algorithm.	Applying		BTL-3			
16.	What is meant by Primality Testing?	Remembering		BTL-1			
17.	How would you recognize the kth smallest number?	Evaluate		BTL-5			
18.	State Randomized Quick Sort.	Understanding		BTL-2			
19.	Assess how the reduction of the CNF-Satisfiability problem to clique	Applying		BTL-3			
20.	State which class does CNF satisfiability problem belongs to: NP	Analyzing		BTL-4			
21.	Hard /NP-Complete'?						
22.	What is meant by the "Halting Problem"?	Ren	Remembering				
23.	I jet two problems that have polynomial time algorithms. Justify	Und	erstanding	BTL-2			
	your statement.	Und	erstanding	BTL-2			
24.	Give the role of Venn Diagrams in problem solving.	Evaluate		BTL-5			
PART-B							
1.	Explain in detail about the approximation algorithm for NP-hard problem.	16	Analyzing	BTL-4			
2.	Discuss about class P,NP problems with diagrams and algorithms.	16	Understanding	BTL-2			
3.	Describe with suitable diagrams and examples of how venn diagrams are useful in problem solving.	16	Understanding	BTL-2			
4.	Analyze in detail about the Randomized quick Sort with suitable example.	16	Analyzing	BTL-4			
5.	Write short notes on :	8	Analyzing	BTL-4			
	(a) Problem Reduction (b) Primality Testing	4					
	(c) Randomized Sorting	4					
6.	Explain in detail about Bin Packing Algorithm.	16	Analyzing	BTL-4			
7.	Briefly explain how the approximation algorithms is applied in Travelling salesman problem	16	Evaluate	BTL-5			
8.	Explain in detail TSP with Triangle inequality.	16	Applying	BTL-3			
9.	Discuss briefly about complexity classes and their types and their relationship	16	Analyzing	BTL-4			
10.	Examine 3-CNF Problem with example. Does it belongs to NP	16	Evaluate	BTL-5			
11.	Write short notes on:	Q	Understanding	BTI _2			
	(a) Monte Carlo Algorithms. (b) Miller-Rabin Algorithms	8	Chierstanunig	DIL-2			
	(o) Minor Ruom Augoriumis.	0					

12.	Elaborate on the nearest-neighbor algorithm and multifragment- heuristic algorithm for TSP problem.	16	Evaluate	BTL-5
13.	How will you prove that max-clique problem is NP-Complete? If not, why? Discuss with suitable points.	16	Evaluate	BTL-5
14.	Explain with suitable points that Travelling Salesman problem is NP-Hard. If not, Why?	16	Evaluate	BTL-5
15.	Describe with suitable steps on finding kth smallest integer.	16	Creating	BTL-6
16.	A kite is a graph on an even number of vertices, say 2n, in which n of the vertices form a clique and the remaining n vertices are connected in a "tail" that consists of a path joined to one of the vertices of the clique. Given a graph and a goal g, the KITE problem asks for a subgraph which is a kite and which contains 2g nodes. Prove that KITE is NP-complete.	16	Creating	BTL-6
17.	In the EXACT 4SAT problem, the input is a set of clauses, each of which is a disjunction of exactly four literals, and such that each variable occurs at most once in each clause. The goal is to find a satisfying assignment, if one exists. Prove that EXACT 4SAT is NP- complete.	16	Creating	BTL-6