i
Q SRM VALLIAMMAI ENGINEERING COLLEGE
SRM

(An Autonomous Institution)

SRM Nagar, Kattankulathur-603203.

CS3466 - DATABASE MANAGEMENT SYSTEMS LABORATORY
Lab Manual

Regulation 2023

Il Year (IV Semester)

2024-25 (Even Semester)

Prepared by

Mrs.G.Santhiya, Assistant Professor(Sr.G) / IT
Mrs.S.Priya, Assistant Professor(O.G) / IT

Ex. LIST OF EXPERIMENTS: PAGE
NO NO
INSTRUCTIONS FOR ORACLE 3
COMMANDS, SYNTAXES FOR VIVA VOCE
1 Creation of a database and writing SQL queries to 9
retrieve information from the database.
2 Performing Insertion, Deletion, Modifying, Altering, 11
Updating and Viewing records based on conditions.
3 Creating an Employee database to set various 19
constraints and Creation of Views Indexes, Save point.
4 Joins and Nested Queries. 23
5 Study of PL/SQL block. 29
6 Write a PL/SQL block to satisfy some conditions by 30
accepting input from the user.
7 Write a PL/SQL block that handles all types of 33
exceptions.
8 Creation of Procedures. 37
9 Creation of database triggers and functions 42
10 Creation of Database in MS Access. 44
11 Database connectivity using Front End Tools (Application 49

Development using Oracle/ MySql)

Mini Project

INSTRUCTIONS FOR ORACLE COMMANDS, SYNTAXES FOR
VIVAVOCE

SQL consists o f a small number of high-level commands that let you query a
database, and even build new databases.

» Tables are the basic building blocks of a database.

» Columns define the categories of information in the table

» Rows represent individual records in the table.

« SQL is provided in two modes.
Interactive SQL
This is mode is used to operate directly on a database that is the response to
any SQL command can be seen almost immediately on thesame terminal.
Embedded SQL
Embedded SQL consists of SQL commands used within programswritten in
some other language like COBAL, PASCAL or C
SQL features
1. Itisaunified language.
2. Itis common language for relational database
3. Itis anon-procedural language.
SQL Language commands
1. Data Definition Language [DDL] — Create, Alter, Drop
2. Data Manipulation Language [DML]- Insert, Update, Delete
3. Transaction Control Language [TCL] — Commit, RollBack, Savepoint

ORACLE DATATYPES
Char(n)
varchar2(n)
Number(p, S)
Date

5. Raw(n)
1) Char(n) — It is used for fixed length character data of length ‘n’ at maximum bytesof 255
-n is used for number of character(s)
2) Varchar2(n) - It is used for variable length character data . A max. n (column2000
bytes in length) must be specified.
3) Number(P,S) — It is used for variable numeric data with Precision P & Scales S.Eg.
Salary Number(10,3)
Here, the number values up to 10 digits wide, three of the digits following the decimalpoint.
4) Date - It is used for fixed length date & time data - 1-JAN-4712 BC to 31-DEC-4712
AD
6. Raw(n) — Binary data of max. n (max. 255 bytes)
7. Long - Itis used for variable length character data at a maximum of 23! -1 bytes

PopnE

Rules for naming a TABLE: All the rules for naming a variable in a high levellanguage
will apply to table’s name also.
1) Must begin with an alphabet (ie) A-Z or a-z

2) May contain letters, numerals and the special characters, _(underscore). It is
advisable to avoid the usage of $ and # symbols).

3) Not case sensitive. The length of the table name may extend up to 30
characters in length. Eg. 1) Dept 2)DEPT 3)dept

4) The table name should be unique

5) Should not be an ORACLE reserved word

6) Blank spaces, commas are not allowed.

7) No two columns in the same table have the same column name.

DATA DEFINITION LANGUAGE (DDL)
DDL consists of three SQL commands.

1. CREATE

2. ALTER

3. DROP

Data Manipulation Language (DML)
The DML consists of four SQL commands.
1) INSERT
2) SELECT
3) UPDATE
4) DELETE

TRANSANCTION CONTROL LANGUAGE(TCL)
« Atransaction is not made permanent in ORACLE database unless it is committed
or until it executes an ALTER, AUDIT, CREATE, DISCONNECT,DROP, NEXT,
GRANT, NO AUDIT, QUIT OR REVOKE.

TCL commands are
1. COMMIT
2. ROLLBACK
3. SAVEPOINT
COMMIT:
e Itis not necessary to have any privileges to commit current transaction.
e The COMMIT (save with recent changes) command forces SQL to
commit pending table changes to the database.
e Itis good practice to commit changes to the database as soon as youfinish a
work and at frequent intervals.

Syntax:

SQL>COMMIT WORK;(Press enter key)
SQL>COMMIT; (Press enter key)

ROLLBACK
« Toundo work done in the current transactions
» Rolling back means undoing any changes to data that have been performedby SQL
statements within an uncommitted transaction.
« Toroll back with savepoint_id
— Rollback the current transaction to the specified savepoint.
— If omitted, the ROLLBACK statement roll back the entire transaction.
— Savepoint_id is an valid character string.
Syntax:
SQL>ROLLBACK WORK; (Press enter key)
SQL> ROLLBACK; (Press enter key)
Work is optional

SAVEPOINT:

To identify a point in a transaction to which you can later rollback. Savepoints
are often used to divide a long transaction into smaller parts.Syntax:
SQL>SAVEPOINT <savepoint_id>; (Press enter key)

Example: SQL>SAVEPOINT R;(Press enter key) Output:

Savepoint created.

PRIVILEGE COMMANDS (Data Control Commands)
Privilege commands are

1) Grant

2) Revoke
Some of the privileges & objects are
Privilege Obiject
SELECT Data in a table in or view
INSERT Rows into a table or view
UPDATE Values in a table or view
DELETE Rows from a table or view
ALTER Column definitions in a table
INDEX A column in a table or view

Grant: If one user wants to share another user’s table the privilege should be givenfirst
Syntax:

SQL>GRANT <privileges> ON <table name> TO <user name> ; (Press enter key)
Granting Privileges: To grant a user the privilege to select from our table name.

Syntax:

SQL> GRANT SELECT ON DEPT TO GANESH;(Press enter key)

Output Result: Grant succeded

Note: Here, GANESH is another user. The above message grant succeeded tellsyou that
the privilege has been granted

Passing privileges

When you grant an access privilege, the user who receives the grant normally doesnot
receive authority to pass the privilege onto others.

To give user a authority to pass privileges use the clause with GRANT option. SQL>GRANT
SELECT ON DEPT TO GANESH WITH GRANT OPTION;(Press enter

key)
Output: Grant Succeeded.

REVOKE: To withdraw a privilege you have granted, use the revoke command.
Syntax:
SQL> REVOKE <privileges> ON <table or view> FROM <users>; (Press enter key)

« When you user revoke, the privileges you specify are revoked from the usersyou

name and from any other users to whom they have granted those privileges.

Example
SQL>REVOKE SELECT ON DEPT FROM GANESH; (Press enter key)
Output: Revoke Succeeded.

Cursors

A cursor is a variable that runs through the tuples of some relation. This relation canbe a
stored table, or it can be the answer to some query. By fetching into the cursoreach tuple of
the relation, we can write a program to read and process the value of each such tuple. If the
relation is stored, we can also update or delete the tuple at the current cursor position.

syntax
CURSOR cursor_name IS select_statement;
Procedure
A procedure is created with the CREATE OR REPLACE PROCEDURE statement. The
simplified syntax for the CREATE OR REPLACE PROCEDURE statement is asfollows:

CREATE [OR REPLACE] PROCEDURE procedure_name
[(parameter_name [IN | OUT | IN OUT] type [, ...])]

{IS | AS}

BEGIN

< procedure_body >

END procedure_name;

Where,

(1 procedure-name specifies the name of the procedure.

1 [OR REPLACE] option allows modifying an existing procedure.

(1 The optional parameter list contains name, mode and types of the parameters. IN
represents that value will be passed from outside and OUTrepresents that this
parameter will be used to return a value outside of the procedure.

[1 procedure-body contains the executable part.

7 The AS keyword is used instead of the IS keyword for creating a standalone
procedure.

Function

A PL/SQL function is same as a procedure except that it returns a value. Therefore,all the
discussions of the previous chapter are true for functions too.

Creating a Function

A standalone function is created using the CREATE FUNCTION statement. The
simplified syntax for the CREATE OR REPLACE PROCEDURE statement is asfollows:

CREATE [OR REPLACE] FUNCTION function_name
[(parameter_name [IN | OUT | IN OUT] type [, ...])]
RETURN return_datatype

{IS | AS}

BEGIN

< function_body > END

[function_name];Where,

function-name specifies the name of the function.
[OR REPLACE] option allows modifying an existing function.

The optional parameter list contains name, mode and types of the parameters. IN
represents that value will be passed from outside and OUTrepresents that this
parameter will be used to return a value outside of the procedure.

The function must contain a return statement.

RETURN clause specifies that data type you are going to return from the
function.

function-body contains the executable part.

The AS keyword is used instead of the IS keyword for creating a standalone
function.

Triggers

Triggers are stored programs, which are automatically executed or fired when some events occur. Triggers are,in fact,
written to be executed in response to any of the following events:

] A database manipulation (DML) statement (DELETE, INSERT, or UPDATE).

[A database definition (DDL) statement (CREATE, ALTER, or DROP).

] A database operation (SERVERERROR, LOGON, LOGOFF, STARTUP, or SHUTDOWN).

Triggers could be defined on the table, view, schema, or database with which the event is associated.

Benefits of Triggers

Triggers can be written for the following purposes:

Generating some derived column values automatically
Enforcing referential integrity

Event logging and storing information on table access
Auditing

Synchronous replication of tables

Imposing security authorizations

Preventing invalid transactions

Creating Triggers

The syntax for creating a trigger is:

CREATE [OR REPLACE | TRIGGER trigger_name
{BEFORE | AFTER | INSTEAD OF }
{INSERT [OR] | UPDATE [OR] | DELETE}
[OF col_name]

ON table_name

[REFERENCING OLD AS o NEW AS n]
[FOR EACH ROW|

WHEN (condition)

DECLARE

Declaration-statements

BEGIN

Executable-statements

EXCEPTION
Exception-handling-statements

END;

Where,

o CREATE [OR REPLACE] TRIGGER trigger_name: Creates or replaces an existingtrigger
with the trigger_name.

e {BEFORE | AFTER | INSTEAD OF}: This specifies when the trigger would be

executed. The INSTEAD OF clause is used for creating trigger on a view.

o {INSERT [OR] | UPDATE [OR] | DELETEY}: This specifies the DML operation.

o [OF col_name]: This specifies the column name that would be updated.

¢ [ON table_name]: This specifies the name of the table associated with the trigger.

e [REFERENCING OLD AS o NEW AS n]: This allows you to refer new and old valuesfor
various DML statements, like INSERT, UPDATE, and DELETE.

o [FOR EACH ROWI]: This specifies a row level trigger, i.e., the trigger would be executed for
each row being affected. Otherwise the trigger will execute just once whenthe SQL statement is
executed, which is called a table level trigger.

e WHEN (condition): This provides a condition for rows for which the trigger would fire.This
clause is valid only for row level triggers.

Ex No. 1 SQL — Structured Query Language
Date:

Aim: To create database tables and views using Oracle.

Procedure:

1) CREATE: This command helps to create a table

Syntax: SQL> CREATE TABLE <table-name> (Column-element1 datatype,
column-element2 datatype....)

Eg. SQL> CREATE TABLE DEPT(deptno number(2), deptname varchar2(5), locchar2(8));
(Press enter key)

If you want to see the structure of the table

SQL> DESCRIBE <table-name> (Press enter key)

SQL>DESC <table-name> (Press enter key)

2) ALTER — used to add a new column or modify the width of an existing column in atable
Syntax: 1) With MODIFY command (MODIFY —oracle reserved word)

SQL> ALTER <table-name> MODIFY (column-definitions) (Press Enter Key)
Example

SQL>ALTER TABLE DEPT MODIFY(DEPTNAME VARCHAR2(20)); (Press enter
key)

Syntax: 2) With ADD command (ADD — Oracle Reserved word) is used to add
column/s) in a table.

SQL>ALTER TABLE <table-name> ADD(column-definitions); (Press enter key)
Example;

SQL>ALTER TABLE EMP ADD(ADDRESS CHAR(30)); (Press enter key)
-Column to be modified must be empty to decrease precision or scale

3) DROP: To delete the table values with structure

Syntax: SQL> DROP TABLE <tablename>; (press enter key)

Example : SQL>DROP TABLE DEPT,;

OUTPUT

+ Orack S0LPlus FEX
Fle Edt Search Options Hep
SQL> create table emp{empno number{12) primary key, empname varchar2(38),dept varchar2{30), desq va A
lrchar2(38))
2/ 1

Table created.

SOL> desc emp;

Hane Hull? Type

EHPHD NOT MULL NUMBER(12)
EHPHAME UARCHARZ(38)
DEPT UARCHAR2(30)
DESE UARCHARZ(38)

SOL> alter table emp add{phoneno number{38));
Table altered.

SQL> desc emp;

Hame Null? Type

EHPHD NOT NULL NUMBER(12)
EHPNAME UARCHAR2(38)
DEPT UARCHARZ(38)
DESE UARCHAR2(38)
PHONEND NUMBER(38)

SQL> alter table emp modify(phoneno number(28));
Table altered.

SQL> desc emp;

Hame Null? Type

EHPND NOT NULL NUMBER(12)
EHPHAME UARCHAR2(38)
DEPT UARCHARZ(38)
DESE UARCHAR2(38)
PHONEND NUMBER(28)
SOL |

gSta #oudesores | MG DBHSLARD. F " % 4 120

10

Viva Questions:

What is a database?

What are the different types of databases?

What is the difference between a database and a database management system (DBMS)?
Define a relational database.

What is a schema?

What are tables, rows, and columns in a database?

oakrwdE

Result:
Thus the above experiment was successfully completed.

11

Ex No. 2 Data Manipulation Language (DML)
Date:

im: To perform insert, update, delete and query operations in database tables.
Procedure:

1) INSERT

SQL> INSERT INTO table-name VALUES (a list of data values); (Press enter key)
Example : Method-1

SQL>INSERT INTO EMP VALUES(396,’RAMA’,300,5000,200,’6-JUN-59); (press
enter key)

Note: Date and character data-type values should be enclosed in quotes

Example: Method-2

If we want to insert only empno and age the command would be SQL>INSERT

INTO EMP(ENAME, AGE) VALUES(396,38); (Press enter key)

Example : Method-3

We can insert into one table by copying rows another table, by using “select”
statement.

SQL> INSERT INTO EMP(ENAME,JOB,SAL,COMM) SELECT ENAE, JOB,SAL,
COMM FROM EMP WHERE DESIGN =“SALESMAN”; (Press enter key)
Method-4

SQL>INSERT INTO <table-name> values(‘&empno’,”’ &empname’, --------------); (press
enter key)

QUERY -A query is a request for information.

2)SELECT
Syntax
SQL>SELECT column-namel, column-name2 FROM table-namel, table-
name2 __ _ ;(Press enter key)
Example
SQL> SELECT EMPNAME, AGE FROM EMP; (Press enter key)
OUTPUT EMPNAME AGE
RAMESH 24
SURESH 20
SATISH 30

SQL>SELECT * FROM EMP; (Press enter key)
->displays all rows and columns in the table ‘emp”

OUTPUT
EMPNO EMPNAME AGE SALARY
1001 RAMESH 24 10000

1002 SURESH 20 8000

CHANGING COLUMN ORDER: The order of column name in a select command
determines the order in which the columns are displayed.
Example 1: SQL> SELECT EMPNO,AGE FROM EMP;
Example 2: SQL> SELECT AGE,EMPNO FROM EMP;
SQL> SELECT JOB FROM EMP; (Press Enter key)
Output

12

JOB
ASSISTANT
SUPDT
ASSISTANT
HELPER
MECHANIC
SUPDT
CLERK
To eliminate duplicate rows in the result, include the distinct clause in the‘select’
command
SQL>SELECT DISTINCT JOB FROM EMP;(Press enter key)
JOB
ASSISTANT
SUPDT
HELPER
MECHANIC
CLERK
SELECT command with WHERE clause
Syntax:
SELECT columns FROM table-name WHERE logical conditions to be met; (PressEnter
key)
Example:
SQL>SELECT ENAME FROM EMP WHERE DEPT=‘CSG’; (Press enter key)

UPDATE
« To change the value entered in the given table
» SET clause and optional WHERE clause.
« To update one or many rows in a table
Method -1 WHERE clause
Syntax:
SQL>UPDATE tablename SET field = value, field= value, WHERE logical
expressions; (Press enter key)
Example
SQL>UPDATE EMP SET AGE=45 WHERE ENAME=“RAJA”; (Press enter key)
Method-2 Arithmetic Operations
Example
SQL>UPDATE EMP SET SALARY = SALARY *0.25 + SALARY: (Press enter key)
Method-3 UPDATE with another table
Example
SQL>UPDATE EMP SET SALARY = SALARY* 1.15 WHERE ENAME IN (SELECT
ENAME FROM BONUS); (Press enter key)

DELETE
» Used to delete rows from a table
« Contains FROM clause followed by optional WHERE clause
» One or more rows can be deleted at a time. Deletion of single column elementis not
possible
Method-1: To delete a particular column with WHERE clause
Syntax:
SQL>DELETE FROM table-name WHERE <logical conditions>; (Press Enter Key)
Example:

13

SQL>DELETE FROM EMP WHERE CODE=5; (Press enter key)
Method-2: To delete all rows in a table.
Example: SQL> DELETE FROM EMP; (Press Enter Key)

OUTPUT:

£ Oracle SQL*Plus

Fe =@ Sexch Ogtirs hep
SOL> INSERT INTO EWP UALUES(5®87, DAVID", HAMIFACTURING','VELDER",92328939328); "

1 row created.

SQL> SELECT = FROH EWP;

EMPKD ENPHAME BEPT DESE PHOREND
5881 ARUN PRODUCTION SUPERVISOR 9238283820
5887 D&VID HAENUFACTUR VELDER 9.2329E+18

N6

SOL> INSERT INTO EWP(EKPND, EWPMNSME) URLUES{5818,'BAL&");
1 row created.

SQL> SELECT = FROH EWP;

EHPHD EWPHAHE DEPT DESE PHONEND
5881 ARUN PRODUCTION SUPERVISOR 9238283820
5887 DevID HANUFACTUR VELDER 9.2329E+18

IHE
5818 BalA

[SOL> INSERT INTD EWP UALUES{EEHPND,GENPMAHE ,EDEPT ,EDESE,EPHONEND);

Enter walue for empmo: SE28

Enter value for enpaane: "SAKSON®

Enter walue for dept: 'DESPATCH

Enter value for desg: 'PACHER’

Enter walue for pheseno: ¥337339373

1d 1: IKSERT INT® EWP UALUES(ZENPND,2EWPRAHE ,EDEPT,EDESE,PHONEND)

ew 1: INSERT INT® EWP UALUES(SB28,S&HSON', DESPATCH','PSCKER",9337339373)

1 rov created.

SOL> |

14

SQL> select = fron test;

REGKD HRHE HARK1 H&RK2
5881 ARUN 68 58
5658 SANKAR 65 Ll
5885 DRILI? 58 38

SQL> INSERT INTO EWP{EWPNO,EMPMAHE} SELECT REGND, MAME FROM TEST WHERE RECND-5848;
1 row created,

SQL> SELECT = FROH EWP;

EHPRD EHPRANE DEPT DESE PHONER
5881 ARUN PRODUCTION SUPERVISOR 0238283828
5887 DAVID HAKUFACTUR WELDER 9.2329E+18
M6

5810 BALA

5828 SAHSON DESPATCH PACKER 9337339373
5058 SAHKAR

S |

{

TonEs oo, | Aabnmahzin. | &0s

15

30L> SELECT = FROM EHP;

EMPHO EHWPHAME DEPT DESG PHOHEHO
5881 ARUH PRODUCTION SUPERVISOR 9238203820
5847 DAUID MAHUFACTUR WELDER Q.2329E+18

ING
818 BALA
5828 SAMSO0H DESPATCH PACKER 9337339373

5848 SAHKAR

SOL> SELECT EWPHAME ,PHOHEHO FROM EHMP;

EMP HAME PHOHEHD
ARUH 0238203824
DRVID 9.2329E+148
BALA

SAMSON 0337339373
SAHKAR

S0L> SELECT DEPT,EHMPHAME ,PHOHEHO FROM EHP;

DEPT EHPHAME PHOHEHO
PRODUCTION ARUH 02382083828
MAHUFACTUR DAUID 9.2329E+18
IHG
BALA
DESPATCH SANSOH 0337330372
SAHKAR

30L> UPDATE EWP SET DEPT='DESPATCH' WHERE EWPHAME='SAHKAR';

1 row updated.

16

SQL> UPDATE EMP SET DEPT="DESPATCH' WHERE EMPHAME='3AHKAR' ;

1 row updated.

S5QL> SELECT = FROW EMWP;

EMPHO EHMPHAME DEPT DESG PHOHEHNO
5881 ARUHN PRODUCTION SUPERUISOR 023820838208
5aa7 DAVID HAMUFACTUR WELDER Q.2329E+18

IHG
5818 BALA
5828 SAMSON DESPATCH PACKER 0337330373
5848 SAHKAR DESPATCH

S0L> SELECT DISTIMCT DEPT FROM EHP;

DESPATCH
MAMUFACTUR
IHG

PRODUCTION

sQL>
4

Page:1ofl | Words: 0 @jﬁ

17

SQL> SELECT = FROM EHP;

EMPHO EMPHAME DEPT DESG PHOHEHO
50881 ARUH PRODUCTIDN SUPERVISOR 9238203820
5887 DAVID MAHUFACTUR WELDER 9.2329E+18

IHG
5618 BALA
5028 SAMSON DESPATCH PACKER 9337339373
5048 SAHKAR DESPATCH

S0L> SELECT = FROM TEST;

REGHO HAME MARKA1 MARKZ2
5881 ARUH 60 La
5048 SAHKAR 65 La
5885 DHILIP 408 La

SQL> UPDATE EMP SET DESG='SUPERUISOR® WHERE EWMPHAME IH (SELECT HAME FROWM TEST WHERE HARK1=65);
1 row updated.

S0L> SELECT = FROM EHP

2 7
EHPHD EMPHAME DEPT DESG PHONEND
5881 ARUN PRODUCTION SUPERUISOR 9238203828
5887 DAVID HANUFAGCTUR WELDER 9_2329E+18

ING

5818 BALA
5828 SAMSON DESPATCH PACKER 0337339373
5848 SANKAR DESPATCH SUPERUISOR

soL> |

18

S0QL> SELECT = FROM TEST;

REGHO HAME MARKA1 MARK2
861 ARUH 68 LA
LB4d SAMKAR 65 LA
LAas DHILIP La LA

SQL> DELETE FROM TEST WHERE HAME= ‘DHILIP';

1 row deleted.

SQL> CREATE TABLE TEST1 AS SELECT = FROHM TEST;
Table created.

S0QL> SELECT = FROM TEST;

REGHO HAME MARKA1 MARK2
861 ARUH 68 LA
LB4d SAMKAR 65 LA

S0QL> SELECT = FROM TEST1;

REGHO HAME MARKA1 MARKZ2
5881 ARUH 68 Lo
LB4d SAMKAR 65 LA

SOL> DELETE FROM TEST1:
2 rous deleted.
SOL> SELECT = FROM TESTH1;

no rows selected

LTI |

Viva Questions:

What is DML in SQL, and why is it important?

What are the key DML commands in SQL?

How is DML different from DDL (Data Definition Language)?
Can DML operations be rolled back? Why?

What is the purpose of the INSERT command?

asrwONE

Result:
Thus the above experiment was successfully completed.

19

Ex No. 3 Data Control Language (DCL) and Transaction Control

Date:

Language (TCL)

Aim: To demonstrate DCL and TCL commands

Procedure:

TCL commands

1)
2)
3)
4)
5)

6)

7)
8)

9)

Create a table

Insert records into the table

Using SELECT command check the inserted records

Type the command rollback and press enter key

Again check the records in the table using SELECT command. Insertedrecords
will not be there in the table.

Now one record into the table and then place a savepoint using SAVEPOINT
command.

Now insert two records and then execute a rollback.

Check the records in the table using SELECT command. You will have onerecord
in the table. Last two records inserted will not be there.

Now one record into the table and then execute COMMIT command. 10)Now if

you execute roll back no records will be deleted. Because COMMIT

command will save all the previous transactions.

DCL commands

1)
2)
3)
4)

5)

6)
7)

Let A be a super user and B be a ordinary user.

‘A’ Log in as super user

Using Grand command grant SELECT privilege to user B

‘B’ Log in as ordinary user and can use Select command to display the
records of super user A

If B tries to use update command (or any command other than SELECT
command) then error message indicating insufficient privileges will be
displayed.

Superuser A can execute any command on the table of ordinary user.
Superuser can revoke the privileges granted to Ordinary user using REVOKE
command.

OUTPUT

20

SOL> SELECT = FROM EHMF;
EHMPHO EHMPHAME
5881 ARUH
5887 DAUID
5818 BaLA

5828 SAHMSOH
5848 SAHKAR

1 row created.
SOQL> SELECT = FROH EHWFP;

EMPHO EMPHAME

5828 SAHMSOH
Sa4d SANMKAR
5858 JOKER

6 rows selected.

SOL> ROLLBACK;

Rollback complete.

S0L> SELECT = FROM EMP;

EHMPHO EHMPHAME

PRODUCTION
MAHUFACTURIHNG

DESPATCH
DESPATCH

PRODUCTION
MAHUFACTURIHNG

DESPATCH
DESPATCH
BILLING

SUPERVISOR
LELDER

PACKER
SUPERVISOR

SUPERVISOR
WELDER

PACKER
SUPERVISOR
CLERK

PHOHEHD

0238203824
0.2329E+14

0337330373

SOL> INSERT INHTO EMP UALUES(5858,'JOKER','BILLING®, CLERK",9234234838);

PHOHEHD

02382083820
9.2329E+18

03373390373

0234234838

PHOHEHD

5881 ARUH
5887 DAUID
5818 BAaLA
5828 SAHMSON
5848 SANKAR

sOLZ

PRODUCTION
MAHUFACTURIHNG

DESPATCH
DESPATCH

SUPERUISOR
WELDER

PACKER
SUPERVISOR

0238203828
0.2329E+18

03373390373

21

[ro11back complete.
SOL> SELECT = FROM EHP;
EMPHO EMPHAME
5861 ARUH
5887 DAVID
58108 BALA

5828 SAMSON
5048 SAHKAR

1 row created.

SOL> SAUEPOINT 51,
Savepoint created.

SOL> SELECT = FROM EMP;

EWMPHO EMPHAME

5818 BALA
5828 SAMSON
5048 SAHKAR
5868 RAM

|6 rows selected.

1 row deleted.

SQL> SAVEPOINT 523

Savepoint created.

1 row deleted.
S0L> ROLLBACK TO 52;
|Rollback complete.
S0L> SELECT = FROM EHMF;
EMPHD EMPHAME
5a81 ARUN
a7 DAvID
@18 BALA
5828 SAMSOH
5848 SAHKAR
5868 RAM

6 rows selected.

sQL>

FRODUCTION

MAMUFACTURIHG

DESPATCH
DESPATCH

FRODUCTION
MAMUFACTURIHG

DESPATCH
DESPATCH

QUALITY CONTROL

SQL> DELETE FROM EWP WHERE EMWPHO=5868;

SQL> DELETE FROHM EWP WHERE EMPHO=5868;

PRODUCTIOH

HAHUFACTURING

DESPATCH
DESPATCH

SUPERUISOR
WELDER

FACKER
SUPERUISOR

S0QL> INSERT INTO EWP VALUES(5860,'RAHM', 'QUALITY CONTROL®

SUPERUISOR
WELDER

FACKER
SUPERUISOR
ENGIHEER

SUPERVISOR
WELDER

PACKER
SUPERVUISOR

QUALITY CONTROL EHGIHEER

FHOHEHD

9238203828
9.2329E+18

9337339373

FHOHEHD

9238203828
9.2329E+18

9337339373

9483837483

PHOHEHD

02382083820
0.2320E+18

9337339373

483837483

» EMGIMEER' ,9483837483);

22

SQL> SHOW USER
USER is "PRIMCE"
SQL> GCOHHECT LEOSLEDEDBSERUER
Connected.
SOL> SELECT * FROM PRIHNCE .STUDEHT ;
SELECT = FROM PRIHCE.STUDEHT
*
ERROR at line 1:
ORA-88942: table or view does not exist

S0L> COHMHMECT PRINCE/JAMESEDBSERVER;
IConnected.
SOL> GRANT SELECT OH STUDEHT TO LED;

IGrant succeeded.
S0L> COWMMECT LEO/LEOE@DBSERVER;

IConnected.
SOL> SELECT * FROM PRIMCE.STUDEHNT;

12 rows selected.

SQL> UPDATE PRIMCE .STUDEMT SET MAME='Divya S';
UPDATE PRIHCE.STUDENT SET HAME='Diwvya S°

*

ERROR at line 1:
ORA-810831: insufficient privileges

soL> |

Fii]

23

ir

i2

REGHOD HAME DEPT M1
M3 M4 M5 TOTAL AVERAGE REsU G RAHK
4.22089E+18 Annie MCA 65
88 68 67 356 71.2 2
4.2289E+18 Prince MCA
4. 2209E+18 Divya S MCA 61
66 70 68 351 7a.2 3
REGHD HAME DEPT M1
M3 M4 g TOTAL AVERAGE RESU G RAHK
4.2209E+18 Elayaraja T MCA c1
68 i1 53 208 LO.6 7
4_.2209E+18 Ezhilarasan D MCA 61
65 L 5o 31 66 .2 5
4_.22089E+18 Shanmuga Priya IT

Viva Questions:

1. What is Data Control Language (DCL) in SQL?

2. Explain the GRANT command. How is it used to assign permissions?

3. What types of permissions can be granted using the GRANT command (e.g., SELECT, INSERT)?
4. What is the REVOKE command, and how does it differ from GRANT?

5. If a user has multiple roles with conflicting permissions, which permissions take precedence?

Result:
Thus the above experiment was successfully completed.

24

Ex. No. 4

Date:

JOINS AND NESTED QUERIES

Aim: To demonstrate Joins and Nested Queries

Procedure
In nested queries, a query is written inside a query. The result of inner query is usedin
execution of outer query. We will use STUDENT, COURSE, STUDENT_COURSEtables for
understanding nested queries.

STUDENT
S ID S_NAME
S1 RAM

S2 RAMESH
S3 SUJIT
S4 SURESH
COURSE

C_ID C_NAME
Cl DSA

C2

C3

Programming

DBMS

S_ADDRESS

DELHI
GURGAON
ROHTAK
DELHI

STUDENT_COURSE

S ID
s1
s1
S2
S3
s4
s4

C_ID
Ccl
C3
c1
C2
C2
C3

S_PHONE

9455123451
9652431543
9156253131
9156768971

There are mainly two types of nested queries:

Independent Nested Queries: In independent nested queries, query execution starts from
innermost query to outermost queries. The execution of inner query is independent of outer

S_AGE
18
18
20
18

query, but the result of inner query is used in execution of outer query. Various operators like

IN, NOT IN, ANY, ALL etc are used in writing independent nested queries.

IN: If we want to find out S_ID who are enrolled in C NAME ‘DSA’ or ‘DBMS’, we can

write it with the help of independent nested query and IN operator. From COURSE table, we

can find out C_ID for C NAME ‘DSA’ or DBMS’ and we can use these C_IDs for finding
S_IDs from STUDENT_COURSE TABLE.

25

STEP 1: Finding C_ID for C_NAME =’DSA’ or ‘DBMS’

Select C_ID from COURSE where C_NAME = ‘DSA’ or C_NAME = ‘DBMS’

STEP 2: Using C_ID of step 1 for finding S_ID
Select S_ID from STUDENT_COURSE where C_ID IN

(SELECT C_ID from COURSE where C_NAME = ‘DSA’ or C NAME="DBMS");

The inner query will return a set with members C1 and C3 and outer query will return those
S_IDs for which C_ID is equal to any member of set (C1 and C3 in this case). So, it will
return S1, S2 and S4.

Note: If we want to find out names of STUDENTSs who have either enrolled in ‘DSA’ or
‘DBMS’, it can be done as:

Select S NAME from STUDENT where S_ID IN
(Select S_ID from STUDENT_COURSE where C_ID IN

(SELECT C_ID from COURSE where C NAME="DSA’ or C NAME="DBMS"));

NOT IN: If we want to find out S_IDs of STUDENTS who have neither enrolled in ‘DSA’
nor in ‘DBMS’, it can be done as:

Select S_ID from STUDENT where S_ID NOT IN
(Select S_ID from STUDENT_COURSE where C_ID IN

(SELECT C_ID from COURSE where C NAME="DSA’ or C NAME="DBMS”));

The innermost query will return a set with members C1 and C3. Second inner query will
return those S_IDs for which C_ID is equal to any member of set (C1 and C3 in this case)
which are S1, S2 and S4. The outermost query will return those S_IDs where S_ID is not a
member of set (S1, S2 and S4). So it will return S3.

26

Co-related Nested Queries: In co-related nested queries, the output of inner query depends on
the row which is being currently executed in outer query. e.g.; If we want to find out

S NAME of STUDENTSs who are enrolled in C_ID ‘C1’, it can be done with the help of co-
related nested query as:

Select S NAME from STUDENT S where EXISTS

(select * from STUDENT_COURSE SC where S.S_ID=SC.S_ID and SC.C_ID="C1’);

For each row of STUDENT S, it will find the rows from STUDENT_COURSE where

S.S ID=SC.S ID and SC.C ID="C1’. If fora S_ID from STUDENT 8, atleast a row exists
in STUDENT COURSE SC with C_ID="C1’, then inner query will return true and
corresponding S_ID will be returned as output.

JOIN OPERATIONS
A SQL Join statement is used to combine data or rows from two or more tables based on a
common field between them. Different types of Joins are:

INNER JOIN

LEFT JOIN

RIGHT JOIN

FULL JOIN

Consider the two tables below:

Student
ROLL_NO NAME ADDRESS PHONE Age
1 HARSH DELHI RN 18
2 PRATIK BIHAR RN 19
3 RIYANKA SILIGURI NN 20
4 DEEP RAMMNAGAR OO 13
5 SAFPTARHI KOLKATA EEEEEE L L LS 19
6 DHANRAJ BARABAJAR LS L8 20
7 ROHIT BALURGHAT RS E LS 18
8 NIRAJ ALIPUR RS 19
StudentCourse

27

COURSE_ID ROLL_NO
1 1
2 2
2 3
3 4
1 2
4 9
5 10
4 11

The simplest Join is INNER JOIN.

INNER JOIN: The INNER JOIN keyword selects all rows from both the tables as long as the
condition satisfies. This keyword will create the result-set by combining all rows from both
the tables where the condition satisfies i.e value of the common field will be same.

Syntax:

SELECT tablel.columnl,tablel.column2,table2.columni,....

FROM tablel

INNER JOIN table2

ON tablel.matching_column = table2.matching_column;

tablel: First table.

table2: Second table

matching_column: Column common to both the tables.

Note: We can also write JOIN instead of INNER JOIN. JOIN is same as INNER JOIN.

Example Queries(INNER JOIN)

This query will show the names and age of students enrolled in different courses.
SELECT StudentCourse. COURSE_ID, Student. NAME, Student. AGE FROM Student
INNER JOIN StudentCourse

ON Student.ROLL_NO = StudentCourse.ROLL_NO;

Output:

28

COURSE_ID NAME Age
1 HARSH 18
2 FRATIK 19
2 RIYANKA 20
3 DEEFP 18
1 SAPTARHI 19

LEFT JOIN: This join returns all the rows of the table on the left side of the join and
matching rows for the table on the right side of join. The rows for which there is no matching
row on right side, the result-set will contain null. LEFT JOIN is also known as LEFT OUTER
JOIN.

Syntax:

SELECT tablel.columnl,tablel.column2,table2.columni,....
FROM tablel

LEFT JOIN table2

ON tablel.matching_column = table2.matching_column;

tablel: First table.

table2: Second table

matching_column: Column common to both the tables.

Note: We can also use LEFT OUTER JOIN instead of LEFT JOIN, both are same.

Example Queries(LEFT JOIN):

SELECT Student. NAME,StudentCourse. COURSE_ID
FROM Student

LEFT JOIN StudentCourse

ON StudentCourse.ROLL_NO = Student.ROLL_NO;

Output:

NAME COURSE_ID
HARSH 1
FRATIK 2

RIYANKA 2
DEEF 3

SAPTARHI 1

DHANRAJ MNULL
ROHIT MNULL
MIRAJ NULL

29

RIGHT JOIN: RIGHT JOIN is similar to LEFT JOIN. This join returns all the rows of the
table on the right side of the join and matching rows for the table on the left side of join. The
rows for which there is no matching row on left side, the result-set will contain null. RIGHT
JOIN is also known as RIGHT OUTER JOIN.

Syntax:

SELECT tablel.columnl,tablel.column2,table2.columni,....
FROM tablel

RIGHT JOIN table2

ON tablel.matching_column = table2.matching_column;

tablel: First table.
table2: Second table
matching_column: Column common to both the tables.

Viva Questions:

1. What are JOINS in SQL, and why are they used?

2. Name and explain the different types of JOINS in SQL (e.g., INNER JOIN, LEFT JOIN,
RIGHT JOIN, FULL OUTER JOIN).

3. How does INNER JOIN differ from OUTER JOIN? Provide an example query for both.

4. What is a SELF JOIN, and when would you use it? Provide a real-world example.

5. Can you perform a JOIN across multiple tables? How would you write a query for this?

Result : Thus the above experiment was successfully completed.

30

Ex. No.5 High level language extensions — PL/SQL
Date:

Aim: To write simple program using PL/SQL

Procedure:
CREATE TABLE T1(

e INTEGER,f
INTEGER

);

DELETE FROM T1,
INSERT INTO T1 VALUES(1, 3);
INSERT INTO T1 VALUES(2, 4);

/* Above is plain SQL; below is the PL/SQL program. */DECLARE
a NUMBER;
b NUMBE

R;

BEGIN
SELECT e,f INTO a,b FROM T1 WHERE e>1;INSERT
INTO T1 VALUES(b,a);

END;

run;
Fortuitously, there is only one tuple of T1that has first component greater than 1, namely (2,4). The
INSERTSstatement thus inserts (4,2) into T1.

31

QUTPUT:

SQL> CREATE TABLE T1{
2 e HUMBER{3),
3 f HUMBER(3));
Table created.
SQL> DELETE FROHM T1;
A rows deleted.
SOL>» INSERT IHTO T1 UALUES{1, 3);
1 row created.

SOL> INSERT IHTO T1 UALUES(2, 4});

1 row created.

SQL> ED
Wrote File afiedt.buf

1% IHSERT INHTD T1 UALUES(Z, 4)
SOL> ED;
Wrote file afiedt.buf

1 DECLARE
2 a MUMBER;
3 b HUMBER;
4L BEGIHN
Y SELECT e,f INTO a,b FROM T1 WHERE
i} IMSERT IHTO T1 UALUES{b,a};
7= EHD;
SQL> S

PL/SOL procedure successfully completed.

soL> |

ex1;

32

SQL> ED;
Wrote File afiedt.buf
1 DECLARE
2 a HUHMBER ;
3 b HUHMBER ;
4 BEGIH
L SELECT e,f INTO a,b FROM T1 WHERE eX1;
6 INSERT INTO T1 UALUES(b,a});
¥=x EHND;
S0QL> SELECT = FROM T1;
E F
1 3
2 4
L 2
sqL> |

EXECUTING COMMANDS STORED IN FILE

sQL>

1
2
3
N
L
i
¥

3*

SQL>

SOL> INSERT IHTO T1 UALUES(1,3);
1 row created.

INSERT INTO T1 UALUES{2,4);
1 row created.

SOL> @ETEST.S(L

DECLARE

a NUMBER:

b NUMBER:

BEGIM

SELECT e,f INTO a,b FROHM TH
INSERT IMTD T1 UALUES(b,a);
END;

SQL> SELECT = FROM T1;

WHERE e>1;

IPLASQL procedure successfully completed.

33

Viva Questions

1. What is PL/SQL, and how does it differ from standard SQL?

2. What are the main advantages of using PL/SQL in database programming?

3. Describe the structure of a PL/SQL block. What are the main sections, and which are optional?
4

. What are PL/SQL control structures? Name and explain the types of control structures available in
PL/SQL.

5. How does PL/SQL handle date and time values? Name some commonly used date and time
functions in PL/SQL and their purposes.

RESULT:
Thus the above experiment was successfully completed.

34

Ex No. 6

the user.

Date:

Aim: To Write a PL/SQL block to satisfy some conditions by accepting input from the user

Syntax of taking input from the user:
<variablename>:=:<variablename>;

Just by writing only this statement we will able to take input from user.

Example:

First write the given code in your SQL command prompt

end;

declare

i integer;

j integer;

s integer;

begin

= - observe this statement. This statement will tell the machine to take input of i
through user.

=g - observe this statement. This statement will tell the machine to take input of j
through user.
S:=i+j;

dbms_output.put_line('sum of '||i]|" and '||j|| is '||S);

Write a PL/SQL block to satisfy some conditions by accepting input from

35

Ex No. 7 Write a PL/SQL block that handles all types of exceptions.
Date:

Aim: To a PL/SQL block that handles all types of exceptions
Syntax for Exception Handling

The general syntax for exception handling is as follows. Here you can list down as many exceptions
as you can handle. The default exception will be handled using WHEN others THEN —

DECLARE
<declarations section>
BEGIN
<executable command (s)>
EXCEPTION
<exception handling goes here >
WHEN exceptionl THEN
exceptionl-handling-statements
WHEN exception2 THEN
exception2-handling-statements
WHEN exception3 THEN
exception3-handling-statements
WHEN others THEN
exception3-handling-statements
END;

Example

Let us write a code to illustrate the concept. We will be using the CUSTOMERS table we had
createdand used in the previous chapters —

PL SQL CODE CODE:

DECLARE
c_id customers.idStype := 8;
Cc_name customerS.Namestype;
c_addr customers.addressStype;
BEGIN
SELECT name, address INTO c name, c_addr
FROM customers
WHERE id = c id;

DBMS OUTPUT.PUT LINE ('Name: '|| c_name);
DBMS OUTPUT.PUT LINE ('Address: ' || c_addr);
EXCEPTION
WHEN no_data found THEN
dbms output.put line('No such customer!');
WHEN others THEN
dbms output.put line('Error!');
END;

/

When the above code is executed at the SQL prompt, it produces the following result —

No such customer!

PL/SQL procedure successfully completed.

The above program displays the name and address of a customer whose ID is given. Since there is no
customer with 1D value 8 in our database, the program raises the run-time
exception NO_DATA_FOUND, which is captured in the EXCEPTION block.

Raising Exceptions

Exceptions are raised by the database server automatically whenever there is any internal database
error, but exceptions can be raised explicitly by the programmer by using the command RAISE.
Following is the simple syntax for raising an exception —

DECLARE
exception name EXCEPTION;
BEGIN
IF condition THEN
RAISE exception name;
END TF;
EXCEPTION
WHEN exception name THEN
statement;
END;

You can use the above syntax in raising the Oracle standard exception or any user-defined exception.
In the next section, we will give you an example on raising a user-defined exception. You can raise
the Oracle standard exceptions in a similar way.

User-defined Exceptions

PL/SQL allows you to define your own exceptions according to the need of your program. A user-
defined exception must be declared and then raised explicitly, using either a RAISE statement or the
procedure DBMS_STANDARD.RAISE_APPLICATION_ERROR.

The syntax for declaring an exception is —
DECLARE

my-exception EXCEPTION;

Example

The following example illustrates the concept. This program asks for a customer ID, when the user
enters an invalid ID, the exception invalid_id is raised.

DECLARE
c_id customers.id%type := &cc_id;
Cc_name customerS.Namestype;
c_addr customers.address%type;

-—- user defined exception
ex invalid id EXCEPTION;
BEGIN

37

IF ¢ id <= 0 THEN
RAISE ex invalid id;
ELSE
SELECT name, address INTO c¢ name, c_addr
FROM customers
WHERE id = c¢ id;

DBMS_OUTPUT.?UT_LINE ('"Name: '|| c name);
DBMS OUTPUT.PUT LINE ('Address: ' || c_addr);
END IF;
EXCEPTION
WHEN ex invalid id THEN
dbms output.put line('ID must be greater than zero!');
WHEN no data found THEN
dbms_output.put_line('No such customer!');
WHEN others THEN
dbms output.put line('Error!');
END;
/

When the above code is executed at the SQL prompt, it produces the following result —
Enter value for cc_id: -6 (let's enter a value -6)

old 2: c_id customers.id%type := &cc_id;

new 2: c¢_id customers.id%type := -6;

ID must be greater than zero!

PL/SQL procedure successfully completed.
Pre-defined Exceptions

PL/SQL provides many pre-defined exceptions, which are executed when any database rule is
violated by a program. For example, the predefined exception NO_DATA_FOUND is raised when
a SELECT INTO statement returns no rows. The following table lists few of the important pre-
definedexceptions —

Exception Oracle | SQLCODE Description
Error
ACCESS_INTO_NULL 06530 -6530 It is raised when a null object is

automatically assigned a value.

CASE_NOT_FOUND 06592 -6592 It is raised when none of the choices inthe
WHEN clause of a CASE statement is
selected, and there is no ELSE clause.

COLLECTION_IS_NUL | 06531 -6531 It is raised when a program attempts to
L apply collection methods other than
EXISTS to an uninitialized nested table
or varray, or the program attempts to

38

DUP_VAL_ON_INDEX

INVALID_CURSOR

INVALID_NUMBER

LOGIN_DENIED

NO_DATA_FOUND

NOT_LOGGED_ON

PROGRAM_ERROR

ROWTYPE_MISMATCH

SELF_IS_NULL

STORAGE_ERROR

TOO_MANY_ROWS

VALUE_ERROR

ZERO_DIVIDE

00001

01001

01722

01017

01403

01012

06501

06504

30625

06500

01422

06502

01476

-1001

-1722

-1017

+100

-1012

-6501

-6504

-30625

-6500

-1422

-6502

1476

assign values to the elements of an
uninitialized nested table or varray.

It is raised when duplicate values are
attempted to be stored in a column with
unique index.

It is raised when attempts are made to
make a cursor operation that is not
allowed, such as closing an unopened
cursor.

It is raised when the conversion of a
character string into a number fails
because the string does not representa
valid number.

It is raised when a program attempts tolog
on to the database with an invalid
username or password.

It is raised when a SELECT INTO
statement returns no rows.

It is raised when a database call is issued
without being connected to thedatabase.

It is raised when PL/SQL has an
internal problem.

It is raised when a cursor fetches valuein a
variable having incompatible data type.

It is raised when a member method is
invoked, but the instance of the objecttype
was not initialized.

It is raised when PL/SQL ran out of
memory or memory was corrupted.

It is raised when a SELECT INTO
statement returns more than one row.

It is raised when an arithmetic,
conversion, truncation, or
sizeconstraint error occurs.

It is raised when an attempt is made to
divide a number by zero.

39

Viva Questions

1. How do you accept user input in a PL/SQL block? What techniques or tools are commonly used
for this?

2. What is the difference between using DECLARE variables in PL/SQL and using INPUT directly
within SQL statements?

3. Explain how you can handle conditional logic in PL/SQL using IF...ELSE or CASE statements.
4. What happens if a user inputs invalid data? How do you handle exceptions in a PL/SQL block to
prevent program crashes?

5. Write or explain a PL/SQL block where the user inputs their age, and based on the age, it outputs
whether they are a minor (below 18), an adult (18-60), or a senior citizen (above 60).

Result:
Thus the above program is executed Successfully.

40

Ex. No. 8 Use of Cursors, Procedures and Functions
Date:

Aim: To demonstrate the use of Cursors, Procedures and Functions

Procedure:

Cursor

Declare temporary variables to store the fields of the records.
Declare the cursor

Open the cursor

Start a Loop

Fetch the field values of record in the cursor to variables

Do the required processing.

Update the processed record.

Repeat the loop until end of the file is reached

Stop

©oNOoOhsWNE

Procedures
Procedure to find smallest of two numbers
1. Declare the required number of variables
2. Create a procedure for finding minimum of two numbers

3. From the main program call the procedure with required parameters.

4. Display the output.

Program Using Cursor
DECLARE
C_regno test.regno%type;
C_name test.name%type;
c_markl test.mark1%type;
c_mark2 test.mark2%type; i
number(2);
[*type avg IS VARRAY(10) OF number(6,2); */
¢_avg number(6,2);
cursor c¢_stud is select regno,name,mark1,mark2,avg from test;BEGIN
OPEN c_stud;
--i:=1;
LOOP
FETCH c_stud into c_regno,c_name,c_markl, c_mark2,c_avg;c_avg :=
(c_markl + ¢_mark?2)/2;
UPDATE test SET avg=c_avg WHERE regno=c_regno;
EXIT WHEN c_stud%notfound,;
END LOOP;
CLOSE c_stud,;
END;

Program Using Procedure

41

DECLARE
a number;b
number; ¢
number;

PROCEDURE findMin(x IN number, y IN number, z OUT number) IS

BEGIN
IFx<yTHEN
Z:=X;
ELSE
=Y,
END IF;
END;

BEGIN

a:= 23;

b:=45;

findMin(a, b, c);

dbms_output.put_line(" Minimum of (23, 45)
END;
/

OUTPUT:

le);

42

SQL:

s0L>

ed;

|Wrote file afiedt.buf

1 DECLARE
2 c_regno test.regno%type;
3 c_name test_nameZtype;
L c_markl test.marki1%type;
L c_mark? test.mark2%type;
(i i number{2};
i F=type avg IS UARRAY(18) OF number{bH,2); =/
] c_avg number(6,2);
9 cursor c_stud is select regno,name,markl,mark?,avg from test;
18 BEGIH
11 OPEH c_stud;
12 -— izz=1;
13 LOaP
14 FETCH c_stud into c_regno,c_name,c_markl, c_mark?,c_avqg;
15 c_awg := {(c_mark1 + c_mark2)}s2;
16 UPDATE test SET avg=c_avqg WHERE regno=c_regno;
17 EXIT WHEH c¢_stud%notfound;
18 EHD LOOFP;
19 CLOSE c_stud;
28= EHD,;
sqQL> /

|IPL/SOL procedure successfully completed.

select *= Ffrom test;

REGHD HAHE MARK HARKZ
5861 ARUH 6@ 4
5848 SAHKAR 65 48

PROCEDURE

SQL>
1
2
3

SQL>
SOQL>
This
This
This

sQL>

4

BEGIHN
dbms_output.enable;
dbms_output.put line{'This is to test"};

4= EHNHD;

[PL/3QL procedure successfully completed.

set serveroutput on;
@ testing.sql;

is to test

is to test

is to test

IPL/SOL procedure successfully completed.

PROCEDURE

proc.sql - Hotepad

File= Edit Format “ew Help

DECLARE

a number;

b number;

¢ humber;
PROCEDURE findMin(x IN number, y IN number, z QUT number) IS
BEGINM

IF x < y THEN
Zi= X

ELSE

Zi= Y,

END IF;

END;

BEGIN
a:= 23;
b:= 45;
findMinda, b, <);
dbms_output.put_Tline(' Minimum of (23, 45) = ' ||);
END;

SQL> set serveroutput on
SQL> @ proc.sql;
Hinimum of {23, 4%) : 23

PL/SOL procedure successfully completed.

FUNCTIONS

44

S0L> ed func.sql;

S0QL> CREATE OR REPLACE FUHCTION totalstudents

2 RETURH number I3

3 total number({(2) := 8;

4 BEGIH

5 SELECT count({%) into total FROH test;
6 RETURH total;

¥ EHD;

g /

Function created.

S0L> @ func.sql;

PL/SOL procedure successfully completed.
SL> set serveroutput on

SOL> @ func.sql;

Total no. of students: 2

PL/SOL procedure successfully completed.

S0QL

rd

45

Viva Questions:

1. What is a cursor in PL/SQL, and why is it used?

2. Differentiate between explicit cursors and implicit cursors in PL/SQL.
Provide examples.

3. What are the steps involved in working with an explicit cursor?
(Hint: Declare, Open, Fetch, Close.)

4. What is the purpose of the %ROWTYPE attribute in relation to cursors?

5. How do you use a cursor to fetch multiple rows from a table in PL/SQL? Can
it handle complex queries?

Result:

Thus the above program is executed successfully.

46

Ex. No. 9 . Oracle or SQL Server Triggers — Block Level — Form Level
Triggers

Date:

im: To demonstrate the use of Triggers

Procedure:

1.

Create a table named emp with fields for empno, name, department,
designation and salary.

2. Create atrigger using CREATE OR REPLACE TRIGGER command.

3. In the trigger write code in such a way that when a new record is inserted orupdated
or deleted the trigger shoots up and do the following

4. Find difference between existing salary and new salary

5. Display the Old Salary, New Salary and the Difference between old and new
Salaries.

6. Insert a record into the table emp and test whether trigger is executed.

PROGRAM

CREATE OR REPLACE TRIGGER display_salary changes
BEFORE DELETE OR INSERT OR UPDATE ON customersFOR
EACH ROW

WHEN (NEW.ID > 0)

DECLARE

sal_diff number;

BEGIN

sal_diff := :NEW.salary - :OLD.salary;
dbms_output.put_line('Old salary: ' || :OLD.salary);
dbms_output.put_line('New salary: ' || :NEW.salary);
dbms_output.put_line('Salary difference: ' || sal_diff);

END;

/

OUTPUT:

47

SQL> ALTER TABLE EWP ADD(SALARY HUMBER(18,2));
Table altered.

SQL> ED;
Wrote file afiedt.buf

1 CREATE OR REPLACE TRIGGER display_salary_changes BEFORE DELETE OR INSERT OR UPDATE
2 OH emp
3 FOR EACH ROW WHEN (MEW.EHPHO > A)
4 DECLARE sal_diff number;
5 BEGIN
3] sal _diff :-= :HEW.salary - :0LD.salary; dbms_output.put_line{'01d salary: ' || :OLD.salary);
7 dbms_output.put_line{'Mew salary: ' || :HEW.salary);
8 dbms_output.put_line{'Salary difference: ' || sal_diff);
9% EHD;
sQL> /

Trigger created.

SOL> INSERT INTO EWP UALUES(5855, KUMAR', "MAINTENANCE
2 *,"SUPERVISOR' ,8389233344,6000);

01d salary:

Hew salary: 608688

Salary difference:

1 row created.
soL> |
<

48

Viva Questions

1. What is a trigger in SQL? How does it differ from a stored
procedure?

2. What are the main components of a trigger (e.g., event,
condition, action)?

3. What are the types of triggers supported by Oracle or SQL
Server?

4. Explain the difference between row-level triggers and statement-
level (block-level) triggers.

5. What are form-level triggers, and where are they used

Result:

Thus the above program is executed Sucessfully.

49

Ex. No. 10 Embedded SQL or Database Connectivity
Date:

Aim: To demonstrate embedded SQL or Database connectivity

Procedure:
1. Develop database tables in oracle
2. Design the required screen in Visual Basic with all the required tools and objects(text
boxes, labels, combo box, option box)
3. Write the coding for connecting the oracle database table with the visual basic
application.
4. Run the application.
Verify the database connectivity by adding, deleting and viewing records through
Visual Basic application.

b

Program:
Dim cnnl As

ADODB.ConnectionDim rs As
ADODB.Recordset Dim strcnn
As String

Private Sub

ADD_Click()With rs
.Fields("empname") = nametxt.Text
.Fields("dob") = DTPickerl.Value
.Fields("gender") = maleopt.Value
.Fields("designation™) = desgtxt.Value
.Fields("dept") = deptcbo.Value
.Fields("addr") = addrtxt. Text
.Fields("basic") = basictxt. Text
.Update

End With
rs.AddNe

wEnd Sub

Private Sub
cancelcmd_Click()
rs.CancelBatch
cnnl.CommitTrans

End Sub

Private Sub
clremd_Click()
nametxt. Text =
DTPickerl.Value ="
maleopt.Value = False
desgtxt.Value ="
deptcbo.Value =
addrtxt. Text =""
basictxt.Text =""

50

End Sub

Private Sub
delcmd_Click()
cnnl.BeginTrans
rs.Delete rs.UpdateBatch
cnnl.CommitTrans
MsgBox ("Record

Deleted")End Sub

Private Sub
endcmd_Click()End
End Sub

Private Sub
firstcmd_Click()On Error
GoTo I1:
rs.Open "Select * from empl", cnnl, adOpenKeyset,
adLockBatchOptimisticll: rs.MoveFirst
transfer

End Sub

Private Sub Form_Load()
Form2.WindowState = 2

Set cnnl = New

ADODB.ConnectionSet rs = New

ADODB.Recordset

rs.CursorLocation = adUseClient

'strcnn = "User ID =leo; Password=leo; Data Source = dbserver; Persist Security Info =False"
strcnn = "Provider=MSDAORA.1;User ID=leo;Password=leo;Data Source=dbserver;Persist
Security Info=False"

'strcnn = "Provider=Microsoft.Jet. OLEDB.4.0;Data Source=Z:\emp.mdb;Persist Security

Info=False"cnnl1.Open strcnn

End Sub

Private Sub
lastcmd_Click()On Error
GoTo I5:
rs.Open "Select * from empl", cnnl, adOpenKeyset,
adLockBatchOptimisticl5: rs.MoveLast
transfer

End Sub

Private Sub
modcmd_Click()On Error
GoTo 13:
rs.Open "Select * from empl", cnnl, adOpenKeyset,
adLockBatchOptimisticl3: cnnl.BeginTrans

End Sub

Private Sub newcmd_Click()

52

On Error GoTo 16:
rs.Open "Select * from empl", cnnl, adOpenKeyset, adLockBatchOptimistic

16: cnnl.BeginTrans
rs.AddNew

End Sub

Private Sub
nextcmd_Click()On Error
GoTo l2:
rs.Open "Select * from empl", cnnl, adOpenKeyset,
adLockBatchOptimisticl2: rs.MoveNext
transfer
End Sub

Private Sub
prevemd_Click()On Error
GoTo l4:
rs.Open "Select * from empl", cnnl, adOpenKeyset,
adLockBatchOptimisticl4: rs.MovePrevious
transfer

End Sub

Private Sub

savecmd_Click()With rs
.Fields("empname") = nametxt.Text
.Fields("dob™) =
DTPickerl.Valuelf
maleopt.Value = True Then
.Fields("gender") =
"Male"Else

.Fields("gender") =
"Female"End If
.Fields("designation™) = desgtxt. Text

.Fields("dept™) = deptcbo.Text
.Fields("addr") = addrtxt. Text
.Fields("basic") = basictxt. Text
.UpdateBatch

End With

cnnl.CommitTrans

MsgBox ("Record is saved

successfully")End Sub

Public Sub transfer()
With rs
If .EOF = False Then
nametxt. Text = .Fields("empname")
DTPickerl.Value = .Fields("dob")

53

If .Fields("gender") <>0
Thenmaleopt.Value = True
Else
femaleopt.Value = True
End If
desgtxt. Text =
.Fields("designation™)deptcbo.Text
= .Fields("dept™) addrtxt. Text =
.Fields("addr") basictxt. Text
.Fields("basic")
End If
End With

End Sub
Qutput

1* create table empi{empname varchar2{25),dob varchar2{10),gender varchar2(6),designation varchar2
SQL> /

Table created.

sqL>
£l

n Project - Microsofl Visual Basic [design] - [Project! - Form2 (Form))
B fle e Yew Gromet fomet Deboy Bun Query Dopan Took ddddre Window Quanfy PursCoverage Heb P 4k.3)
S-a-MEB AN - -) | « NEFFEAEFRXRADG Troqozm Fimsxs

515 e S i 1= Se s | | SSHHER SMERBE

L T —

* . AT)[BT e W Bt e Xe) |4 ey Ky SEeYe Yl I aTee) | Ln _gan(P)&!l.vﬁl

4 s =~ 3 Pormes
A = et (o) e T Srrerelt Lrasy 150 S¥oYe 5 150 5000 SO 150 BY Foemg {ampFormd.frm)

[A MR YR S e =S e S el e O B bR S S
2 sl o a Li
o B Pttt Sl RS B
So L e e e L R R e P o e e r o

: e TN 158 fII_f
HOm DATE OF B | Q!

WSS FeR A R R A S e e DA e BT g s
F% Lol GENDER L MALE ; FEMALE ::
= =Y ¥ & O E T e e
i 7 i o . DO E SR B I oot s B s T
| C DEPSRIMENT ead B i

L3

100

s | aHbes

aopess . il S

Caption
¥ Atunsfests the tet dsplaysd nan
< > [obgmet’s tithe bar or befowy an objeet’s

-2 start T Mibw DwTabonn g 2 0 mars % T M1 0BMS L £ vbrorache e

54

w~ Form2 E'rg—‘gl

NAME ‘
Bar [
DATE OF BATH f
|
%
Sl MoLE & FEMALE MODIFY [
DEPRHTMENT [SAVE [
DESIGNATION]

ADDRESS CANCEL

BASIE PaY] :) ‘) \

Y M Ovabonn ., | B9 W8 B9 Meromlt OF,, « - Proidd « B, + Qv ST &2

S0L> select = from empl;

EMPHAME DOB GEHDER DESIGHATIOH
DEPT ADDR BASIC
Leo 27372414 True Technician
B.C.A Kattankulathur 150048

S0L> SELECT = FROW EHMP1;

EMPHAHE DOB GENDER DESIGHATIOHN
DEPT ADDR BASIC
Leo 27372014 True Technician
B.C.A Kattankulathur 150048
Rani LiGf201h Female TEACHER

HCA CHEHHAI 16088
sS0L>

55

Ex. No. 11. Front-end tools — Visual Basic/Developer 2000
Date:
Database connectivity using Front End Tools (Application Development using Oracle/ Mysql)
Mini Project
a) Inventory Control System.
b) Material Requirement Processing.
c) Hospital Management System.
d) Railway Reservation System.
e) Personal Information System

Aim: To demonstrate embedded SQL or Database connectivity

Procedure:

1. Develop database tables in oracle

2. Design the required screen in Visual Basic with all the required tools and objects(text
boxes, labels, combo box, option box)

3. Write the coding for connecting the oracle database table with the visual basic
application.

4. Run the application.

5. Verify the database connectivity by adding, deleting and viewing records through
Visual Basic application.

Program:
Dim cnnl As

ADODB.ConnectionDim rs As
ADODB.Recordset Dim strcnn
As String

Private Sub

ADD_Click()With rs
Fields(*'sname™) = nametxt. Text
.Fields("dob™) = DTPickerl.Value
.Fields("gender") = maleopt.Value
Fields("UG") = ugchk.Value
.Fields("PG") = pgchk.Value
Fields("ugcourse™) = ugcourse. Text
.Fields("pgcourse™) = pgcourse. Text
.Update

End With
rs.AddNe

wEnd Sub

Private Sub
cancelcmd_Click()
rs.CancelBatch
cnnl.CommitTrans

End Sub

Private Sub clrcmd_Click()

56

nametxt. Text =
maleopt.Value = True
femaleopt.Value = True
ugchk.Value = 0
pgchk.Value =0
ugcourse.Text =
""pgcourse. Text =

End Sub

Private Sub
delcmd_Click()
cnnl.BeginTrans
rs.Delete rs.UpdateBatch
cnnl.CommitTrans

MsgBox ("Record
Deleted")End Sub

Private Sub
endcmd_Click()End
End Sub

Private Sub
firstcmd_Click()On Error
GoTo I1:
rs.Open "Select * from personal”, cnnl, adOpenKeyset,
adLockBatchOptimisticll: rs.MoveFirst
transfer

End Sub

Private Sub Form_Load()
Form2.WindowState = 2

Set cnnl = New

ADODB.ConnectionSet rs = New

ADODB.Recordset

rs.CursorLocation = adUseClient

strcnn = "User ID =scott; Password=tiger; Data Source = leo; Persist Security Info
=False"'strcnn = "Provider=MSDAORA.1;User ID=scott;Password=tiger;Data
Source=dbserver;Persist Security Info=False"

strcnn = "Provider=Microsoft.Jet. OLEDB.4.0;Data Source=E:\student.mdb;Persist
SecurityInfo=False"

cnnl.Open strcnn

End Sub

Private Sub
lastcmd_Click()On Error

57

GoTo I5:

58

rs.Open "Select * from personal”, cnnl, adOpenKeyset,
adLockBatchOptimisticl5: rs.MovelLast
transfer

End Sub

Private Sub
modcmd_Click()On Error
GoTo I3:
rs.Open "Select * from personal”, cnnl, adOpenKeyset, adLockBatchOptimistic
I3: cnnl.BeginTrans

End Sub

Private Sub
newcmd_Click()On Error
GoTo I6:
rs.Open "Select * from personal”, cnnl, adOpenKeyset, adLockBatchOptimistic

16:
cnnl.BeginTran
srs.AddNew

End Sub

Private Sub
nextcmd_Click()On Error
GoTo I2:
rs.Open "Select * from personal”, cnnl, adOpenKeyset,
adLockBatchOptimisticl2: rs.MoveNext
transfer
End Sub

Private Sub
pgchk_Click()If
pgchk.Value = 1 Then
pgcourse.Enabled = True
Else

pgcourse.Enabled = False
End If
End Sub

Private Sub
prevemd_Click()On Error
GoTo l4:
rs.Open "Select * from personal”, cnnl, adOpenKeyset,
adLockBatchOptimisticl4: rs.MovePrevious
transfer

End Sub

59

Private Sub
savecmd_Click()With rs

60

Fields('sname™) = nametxt. Text
.Fields("dob™) = DTPickerl.Value
Fields(""gender") = maleopt.Value
Fields("UG") = ugchk.Value
.Fields("PG") = pgchk.Value
Fields("ugcourse™) = ugcourse. Text
.Fields("pgcourse™) = pgcourse. Text
.UpdateBatch

End With

cnnl.CommitTrans

MsgBox ("Record is saved

successfully™)End Sub

Private Sub ugchk_Click()
If ugchk.Value =1 Then
ugcourse.Enabled = True
Else

ugcourse.Enabled = False
End If

End Sub

Public Sub transfer()
With rs
If .EOF = False Then
nametxt. Text = .Fields("'sname")
DTPickerl.Value =
Fields("dob™)If
.Fields(""gender") <> 0 Then
maleopt.Value = True
Else
femaleopt.Value = True

End If

ugchk.Value = .Fields("UG")

pgchk.Value = .Fields("PG")

ugcourse. Text =

Fields("ugcourse™)

If .Fields("pgcourse™) <> """ Then
pgcourse. Text =
Fields("pgcourse™)

End If
End If
End
With

End Sub

61

w Projectl - Microsofl Visual Basic [design] - [Project - Form2 {Farm)]

B Pl [ew Eromet Fune [bug Bun Ouery Disgam Took addbe Window Quertly PrsCrmage Hel =l
S-a-7ed CTE v« MESYREDS T o Femwuss
5 R G e vt SREPED HMENEE

| EI) EREERETIRREERRy W (o Poeccl E
Garerd | - : [{1
" ; : . ; T e
8 5 A ; s : : s = I Project] {Project Lvbp)
: Sl as SEn=agy it i 2 0 eI R =l Forms
A [wi B3 Formg {Forme frm)
L | | DATE OF BIATH ELIER)] i : : i
¥ o = N e s Neren = o Ty
=
FR = it : R T : e HOOIFY
am ¥ : i N i N 2ol S I S vy
a ;s GEMDER [~ MALE + FEMALE
= e Lieedid SSoreEeosesasiisviiiet SR zEh bl SR Anmn o SAVE :
5 el et s Gizan T T
U =
E?E L OuUASE r=in , e :] 4 ’ =l
Sralt : : e fchsberk: | ¢ [
= I’EI ' Y = et o DELETE ”::’“ n
‘®m 1«30
BER | R e S ol S N e Faise
2 D I8t] ke =isil LS iRl CANCEL [ereoocooor
™ == 2 - Seabhe
Forms
A Gl e T e AR s sty 2 AR SRR ATl eI e s
3 Tra WA & ;
ME : e S T
ME Compuber Soience 13 - Cope Pan
0+ Sobd
i
< £y ‘ Trm
' W EHO000T
DR ety O ARG TR L L - Traruparent
M5 Sans Serf
" 17 R 1" " hwﬂunmr! Trim -w
| Caption
54 ¥ A
« ¥ s b

‘a Sa}f ¥ Mubw Dy = ! e - Pt

Viva questions:

=

What is a front-end tool, and how does it interact with the database?

2. What is the main purpose of using a tool like Visual Basic or Developer 2000 in application
development?

3. How does Visual Basic differ from other programming languages like C or C++ in terms of GUI-

based application development?

What is Visual Basic, and what kind of applications can you build with it?

What is the Integrated Development Environment (IDE) in Visual Basic, and what are its key

components?

ok~

Result:

Thus the above program is executed successfully
62

Ex No:12 Normalization

Aim:

To normalize a given unnormalized relation into higher normal forms (INF, 2NF, 3NF, and BCNF) and

remove data redundancies while maintaining data integrity
Algorithm:

1. First Normal Form (1NF):

o Goal: Eliminate repeating groups by ensuring that each column contains atomic (indivisible)

values.
o Steps:

= ldentify repeating groups and separate them into individual rows.

= Make sure each cell contains only a single value.
2. Second Normal Form (2NF):

o Goal: Eliminate partial dependencies, i.e., all non-prime attributes must depend on the entire

primary key.
o Steps:
= Ensure the relation is in 1NF.

= |dentify attributes that depend only on part of the composite primary key and remove

them into new relations.

= Make sure all non-prime attributes depend on the entire primary key.

3. Third Normal Form (3NF):

o Goal: Eliminate transitive dependencies, i.e., non-prime attributes should not depend on

other non-prime attributes.

o Steps:
= Ensure the relation is in 2NF.

= Identify transitive dependencies and remove them by creating new relations with only

direct dependencies.
4. Boyce-Codd Normal Form (BCNF):
o Goal: Ensure every determinant is a candidate key.
o Steps:
= Ensure the relation is in 3NF.

= Identify any cases where a non-candidate key determines another attribute and

resolve them by splitting the relation further.
Procedure:

Step 1: Given Unnormalized Table

Let’s consider an example of a Student-Course table:

Student_ID Student_Name Coursel Instructorl Course2 Instructor2

S101 Alice Math ~ Dr. Smith Science Dr. Brown
S102 Bob English Dr. Adams Math Dr. Smith
S103 Charlie Science Dr. Brown English Dr. Adams

This table contains non-atomic data in columns Coursel, Instructorl, Course2, and Instructor?2.

63

Step 2: First Normal Form (1NF)
We will remove repeating groups and ensure each column contains atomic values.
Converted to INF:

Student_ID Student_Name Course Instructor

S101 Alice Math Dr. Smith
S101 Alice Science Dr. Brown
S102 Bob English Dr. Adams
S102 Bob Math Dr. Smith
S103 Charlie Science Dr. Brown
S103 Charlie English Dr. Adams

Step 3: Second Normal Form (2NF)
We eliminate partial dependencies. Student_Name depends only on Student_ID and not on Course. This
results in two relations:

1. Student Table:

Student_ID Student_Name

S101 Alice
S102 Bob
S103 Charlie

2. Course-Student Table:
Student_ID Course Instructor

S101 Math Dr. Smith
S101 Science Dr. Brown
S102 English Dr. Adams
S102 Math Dr. Smith
S103 Science Dr. Brown
S103 English Dr. Adams

Step 4: Third Normal Form (3NF)
We eliminate transitive dependencies. In the Course-Student Table, Instructor is dependent on Course,
not on the entire primary key. Therefore, we decompose further:

1. Student Table (unchanged):

Student_ID Student_Name

S101 Alice
S102 Bob
S103 Charlie

2. Course-Student Table:
Student_ID Course

S101 Math
S101 Science
S102 English
S102 Math
S103 Science
S103 English

3. Instructor Table:

64

Course Instructor
Math Dr. Smith

Science Dr. Brown
English Dr. Adams

Step 5: Boyce-Codd Normal Form (BCNF)
Since in Instructor Table, Course is not a candidate key (it is not unique), we break down the table further
to ensure that each determinant is a candidate key.

1. Student Table:

Student_ID Student_Name

S101 Alice
S102 Bob
S103 Charlie

2. Course-Student Table:
Student_ID Course

S101 Math
S101 Science
S102 English
S102 Math
S103 Science
S103 English

3. Course Table:
Course Instructor
Math Dr. Smith
Science Dr. Brown
English Dr. Adams

Output:
1. Normalized Table in 1NF:

Student_ID Student_Name Course Instructor

S101 Alice Math Dr. Smith
S101 Alice Science Dr. Brown
S102 Bob English Dr. Adams
S102 Bob Math Dr. Smith
S103 Charlie Science Dr. Brown
S103 Charlie English Dr. Adams

2. Normalized Table in 2NF:
Student Table:

Student_ID Student_Name

S101 Alice
S102 Bob
S103 Charlie

Course-Student Table:

Student_ID Course Instructor

S101
S101

Math

Dr. Smith

Science Dr. Brown

65

Student_ID Course Instructor

S102 English Dr. Adams
S102 Math Dr. Smith

S103 Science Dr. Brown
S103 English Dr. Adams

3. Normalized Table in 3NF:
Instructor Table:

Course Instructor
Math Dr. Smith

Science Dr. Brown
English Dr. Adams

4. Normalized Table in BCNF:
o All the relations are now in BCNF, ensuring that every determinant is a candidate key.

Result:
By following the steps of normalization, the original unnormalized table is successfully decomposed into

INF, 2NF, 3NF, and BCNF relations. This process eliminates redundancy, improves consistency, and
ensures that the database design is optimized for querying and data integrity.

66

