
1

SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution)

SRM Nagar, Kattankulathur-603203.

CS3466 - DATABASE MANAGEMENT SYSTEMS LABORATORY

Lab Manual

Regulation 2023

II Year (IV Semester)

2024-25 (Even Semester)

Prepared by

Mrs.G.Santhiya, Assistant Professor(Sr.G) / IT

Mrs.S.Priya, Assistant Professor(O.G) / IT

2

Ex.

NO

LIST OF EXPERIMENTS: PAGE

NO

 INSTRUCTIONS FOR ORACLE

COMMANDS, SYNTAXES FOR VIVA VOCE
3

1 Creation of a database and writing SQL queries to

retrieve information from the database.
9

2 Performing Insertion, Deletion, Modifying, Altering,

Updating and Viewing records based on conditions.
11

3 Creating an Employee database to set various

constraints and Creation of Views Indexes, Save point.
19

4 Joins and Nested Queries. 23

5 Study of PL/SQL block. 29

6 Write a PL/SQL block to satisfy some conditions by

accepting input from the user.
32

7 Write a PL/SQL block that handles all types of

exceptions.
33

8 Creation of Procedures. 37

9 Creation of database triggers and functions 42

10 Creation of Database in MS Access. 44

11 Database connectivity using Front End Tools (Application

Development using Oracle/ MySql)
49

 Mini Project

3

INSTRUCTIONS FOR ORACLE COMMANDS, SYNTAXES FOR

VIVA VOCE

SQL consists o f a small number of high-level commands that let you query a

database, and even build new databases.

• Tables are the basic building blocks of a database.

• Columns define the categories of information in the table

• Rows represent individual records in the table.

• SQL is provided in two modes.

Interactive SQL

This is mode is used to operate directly on a database that is the response to

any SQL command can be seen almost immediately on the same terminal.

Embedded SQL

Embedded SQL consists of SQL commands used within programs written in

some other language like COBAL, PASCAL or C

SQL features

1. It is a unified language.

2. It is common language for relational database

3. It is a non-procedural language.

SQL Language commands

1. Data Definition Language [DDL] – Create, Alter, Drop

2. Data Manipulation Language [DML]– Insert, Update, Delete

3. Transaction Control Language [TCL] – Commit, RollBack, Savepoint

ORACLE DATA TYPES

1. Char(n)

2. varchar2(n)

3. Number(p , s)

4. Date

5. Raw(n)

1) Char(n) – It is used for fixed length character data of length ‘n’ at maximum bytes of 255

-n is used for number of character(s)

2) Varchar2(n) - It is used for variable length character data . A max. n (column 2000

bytes in length) must be specified.

3) Number(P,S) – It is used for variable numeric data with Precision P & Scales S. Eg.

Salary Number(10,3)

Here, the number values up to 10 digits wide, three of the digits following the decimal point.

4) Date - It is used for fixed length date & time data - 1-JAN-4712 BC to 31-DEC- 4712

AD

6. Raw(n) – Binary data of max. n (max. 255 bytes)

7. Long - It is used for variable length character data at a maximum of 231 -1 bytes

Rules for naming a TABLE: All the rules for naming a variable in a high level language

will apply to table’s name also.

1) Must begin with an alphabet (ie) A-Z or a-z

4

2) May contain letters, numerals and the special characters, _(underscore). It is

advisable to avoid the usage of $ and # symbols).

3) Not case sensitive. The length of the table name may extend up to 30

characters in length. Eg. 1) Dept 2)DEPT 3)dept

4) The table name should be unique

5) Should not be an ORACLE reserved word

6) Blank spaces, commas are not allowed.

7) No two columns in the same table have the same column name.

DATA DEFINITION LANGUAGE (DDL)

DDL consists of three SQL commands.

1. CREATE

2. ALTER

3. DROP

Data Manipulation Language (DML)

The DML consists of four SQL commands.

1) INSERT

2) SELECT

3) UPDATE

4) DELETE

TRANSANCTION CONTROL LANGUAGE(TCL)

• A transaction is not made permanent in ORACLE database unless it is committed

or until it executes an ALTER, AUDIT, CREATE, DISCONNECT, DROP, NEXT,

GRANT, NO AUDIT, QUIT OR REVOKE.

TCL commands are

1. COMMIT

2. ROLLBACK

3. SAVEPOINT

COMMIT:

Syntax:

 It is not necessary to have any privileges to commit current transaction.

 The COMMIT (save with recent changes) command forces SQL to
commit pending table changes to the database.

 It is good practice to commit changes to the database as soon as you finish a

work and at frequent intervals.

5

SQL>COMMIT WORK;(Press enter key)

SQL>COMMIT; (Press enter key)

ROLLBACK

• To undo work done in the current transactions
• Rolling back means undoing any changes to data that have been performed by SQL

statements within an uncommitted transaction.

• To roll back with savepoint_id

– Rollback the current transaction to the specified savepoint.

– If omitted, the ROLLBACK statement roll back the entire transaction.

– Savepoint_id is an valid character string.

Syntax:

SQL>ROLLBACK WORK; (Press enter key)

SQL> ROLLBACK; (Press enter key)

Work is optional

SAVEPOINT:

To identify a point in a transaction to which you can later rollback. Savepoints

are often used to divide a long transaction into smaller parts. Syntax:

SQL>SAVEPOINT <savepoint_id>; (Press enter key)

Example: SQL>SAVEPOINT R;(Press enter key) Output:

Savepoint created.

PRIVILEGE COMMANDS (Data Control Commands)

Privilege commands are

1) Grant

2) Revoke

Some of the privileges & objects are

Privilege Object

SELECT Data in a table in or view

INSERT Rows into a table or view

UPDATE Values in a table or view

DELETE Rows from a table or view

ALTER Column definitions in a table

INDEX A column in a table or view

Grant: If one user wants to share another user’s table the privilege should be given first

Syntax:

SQL>GRANT <privileges> ON <table name> TO <user name> ; (Press enter key)

Granting Privileges: To grant a user the privilege to select from our table name.

Syntax:

SQL> GRANT SELECT ON DEPT TO GANESH;(Press enter key)

Output Result: Grant succeded

Note: Here, GANESH is another user. The above message grant succeeded tells you that

the privilege has been granted

Passing privileges

When you grant an access privilege, the user who receives the grant normally does not

receive authority to pass the privilege onto others.

To give user a authority to pass privileges use the clause with GRANT option. SQL>GRANT

SELECT ON DEPT TO GANESH WITH GRANT OPTION;(Press enter

key)

Output: Grant Succeeded.

6

REVOKE: To withdraw a privilege you have granted, use the revoke command.

Syntax:

SQL> REVOKE <privileges> ON <table or view> FROM <users>; (Press enter key)

• When you user revoke, the privileges you specify are revoked from the users you

name and from any other users to whom they have granted those privileges.

Example
SQL>REVOKE SELECT ON DEPT FROM GANESH; (Press enter key)

Output: Revoke Succeeded.

Cursors

A cursor is a variable that runs through the tuples of some relation. This relation can be a

stored table, or it can be the answer to some query. By fetching into the cursor each tuple of

the relation, we can write a program to read and process the value of each such tuple. If the

relation is stored, we can also update or delete the tuple at the current cursor position.

syntax
CURSOR cursor_name IS select_statement;

Procedure
A procedure is created with the CREATE OR REPLACE PROCEDURE statement. The

simplified syntax for the CREATE OR REPLACE PROCEDURE statement is as follows:

CREATE [OR REPLACE] PROCEDURE procedure_name

[(parameter_name [IN | OUT | IN OUT] type [, ...])]

{IS | AS}

BEGIN

< procedure_body >

END procedure_name;

Where,

 procedure-name specifies the name of the procedure.

 [OR REPLACE] option allows modifying an existing procedure.

 The optional parameter list contains name, mode and types of the parameters. IN

represents that value will be passed from outside and OUT represents that this

parameter will be used to return a value outside of the procedure.

 procedure-body contains the executable part.

 The AS keyword is used instead of the IS keyword for creating a standalone

procedure.

Function
A PL/SQL function is same as a procedure except that it returns a value. Therefore, all the

discussions of the previous chapter are true for functions too.

Creating a Function

A standalone function is created using the CREATE FUNCTION statement. The

simplified syntax for the CREATE OR REPLACE PROCEDURE statement is as follows:

CREATE [OR REPLACE] FUNCTION function_name

[(parameter_name [IN | OUT | IN OUT] type [, ...])]

RETURN return_datatype

{IS | AS}

BEGIN

< function_body > END

7

[function_name]; Where,

 function-name specifies the name of the function.

 [OR REPLACE] option allows modifying an existing function.

 The optional parameter list contains name, mode and types of the parameters. IN

represents that value will be passed from outside and OUT represents that this

parameter will be used to return a value outside of the procedure.

 The function must contain a return statement.

 RETURN clause specifies that data type you are going to return from the

function.

 function-body contains the executable part.

 The AS keyword is used instead of the IS keyword for creating a standalone

function.

Triggers
Triggers are stored programs, which are automatically executed or fired when some events occur. Triggers are, in fact,

written to be executed in response to any of the following events:

A database manipulation (DML) statement (DELETE, INSERT, or UPDATE).

A database definition (DDL) statement (CREATE, ALTER, or DROP).

A database operation (SERVERERROR, LOGON, LOGOFF, STARTUP, or SHUTDOWN).

Triggers could be defined on the table, view, schema, or database with which the event is associated.

Benefits of Triggers
Triggers can be written for the following purposes:

 Generating some derived column values automatically

 Enforcing referential integrity

 Event logging and storing information on table access

 Auditing

 Synchronous replication of tables

 Imposing security authorizations

 Preventing invalid transactions

8

Creating Triggers
The syntax for creating a trigger is:
CREATE [OR REPLACE] TRIGGER trigger_name

{BEFORE | AFTER | INSTEAD OF }

{INSERT [OR] | UPDATE [OR] | DELETE}

[OF col_name]

ON table_name

[REFERENCING OLD AS o NEW AS n]

[FOR EACH ROW]

WHEN (condition)

DECLARE

Declaration-statements

BEGIN

Executable-statements

EXCEPTION

Exception-handling-statements

END;

Where,

 CREATE [OR REPLACE] TRIGGER trigger_name: Creates or replaces an existing trigger

with the trigger_name.

 {BEFORE | AFTER | INSTEAD OF}: This specifies when the trigger would be

executed. The INSTEAD OF clause is used for creating trigger on a view.

 {INSERT [OR] | UPDATE [OR] | DELETE}: This specifies the DML operation.

 [OF col_name]: This specifies the column name that would be updated.

 [ON table_name]: This specifies the name of the table associated with the trigger.

 [REFERENCING OLD AS o NEW AS n]: This allows you to refer new and old values for

various DML statements, like INSERT, UPDATE, and DELETE.

 [FOR EACH ROW]: This specifies a row level trigger, i.e., the trigger would be executed for

each row being affected. Otherwise the trigger will execute just once when the SQL statement is

executed, which is called a table level trigger.

 WHEN (condition): This provides a condition for rows for which the trigger would fire. This

clause is valid only for row level triggers.

9

Ex No. 1 SQL – Structured Query Language

Date:

Aim: To create database tables and views using Oracle.

Procedure:

1) CREATE: This command helps to create a table

Syntax: SQL> CREATE TABLE <table-name> (Column-element1 datatype,

column-element2 datatype….)

Eg. SQL> CREATE TABLE DEPT(deptno number(2), deptname varchar2(5), loc char2(8));

(Press enter key)

If you want to see the structure of the table

SQL> DESCRIBE <table-name> (Press enter key)

SQL>DESC <table-name> (Press enter key)

2) ALTER – used to add a new column or modify the width of an existing column in a table

Syntax: 1) With MODIFY command (MODIFY –oracle reserved word)

SQL> ALTER <table-name> MODIFY (column-definitions) (Press Enter Key)

Example

SQL>ALTER TABLE DEPT MODIFY(DEPTNAME VARCHAR2(20)); (Press enter

key)

Syntax: 2) With ADD command (ADD – Oracle Reserved word) is used to add

column/s) in a table.

SQL>ALTER TABLE <table-name> ADD(column-definitions); (Press enter key)

Example;

SQL>ALTER TABLE EMP ADD(ADDRESS CHAR(30)); (Press enter key)

-Column to be modified must be empty to decrease precision or scale

3) DROP: To delete the table values with structure

Syntax: SQL> DROP TABLE <tablename>; (press enter key)

Example : SQL>DROP TABLE DEPT;

10

OUTPUT

11

Viva Questions:

1. What is a database?

2. What are the different types of databases?

3. What is the difference between a database and a database management system (DBMS)?

4. Define a relational database.

5. What is a schema?

6. What are tables, rows, and columns in a database?

Result:

 Thus the above experiment was successfully completed.

12

Ex No. 2 Data Manipulation Language (DML)

Date:

Aim: To perform insert, update, delete and query operations in database tables.

Procedure:

1) INSERT

SQL> INSERT INTO table-name VALUES (a list of data values); (Press enter key)

Example : Method-1

SQL>INSERT INTO EMP VALUES(396,’RAMA’,300,5000,200,’6-JUN-59’); (press

enter key)

Note: Date and character data-type values should be enclosed in quotes

Example: Method-2

If we want to insert only empno and age the command would be SQL>INSERT

INTO EMP(ENAME, AGE) VALUES(396,38); (Press enter key)

Example : Method-3

We can insert into one table by copying rows another table, by using “select”

statement.

SQL> INSERT INTO EMP(ENAME,JOB,SAL,COMM) SELECT ENAE, JOB,SAL,

COMM FROM EMP WHERE DESIGN =“SALESMAN”; (Press enter key)

Method-4

SQL>INSERT INTO <table-name> values(‘&empno’,’&empname’, --------------); (press

enter key)

QUERY –A query is a request for information.

2) SELECT

Syntax

SQL>SELECT column-name1, column-name2 ___________ FROM table-name1, table-

name2 _ _ _ ;(Press enter key)

Example

SQL> SELECT EMPNAME, AGE FROM EMP; (Press enter key)

OUTPUT EMPNAME AGE

RAMESH 24

SURESH 20

SATISH 30

SQL>SELECT * FROM EMP; (Press enter key)

->displays all rows and columns in the table ‘emp”

OUTPUT

EMPNO EMPNAME AGE SALARY
1001 RAMESH 24 10000
1002 SURESH 20 8000

:

:

CHANGING COLUMN ORDER: The order of column name in a select command

determines the order in which the columns are displayed.

Example 1: SQL> SELECT EMPNO,AGE FROM EMP;

Example 2: SQL> SELECT AGE,EMPNO FROM EMP;

SQL> SELECT JOB FROM EMP; (Press Enter key)

Output

13

JOB

ASSISTANT

SUPDT

ASSISTANT

HELPER

MECHANIC

SUPDT

CLERK

To eliminate duplicate rows in the result, include the distinct clause in the ‘select’

command

SQL>SELECT DISTINCT JOB FROM EMP;(Press enter key)

JOB

ASSISTANT

SUPDT

HELPER

MECHANIC

CLERK

SELECT command with WHERE clause

Syntax:

SELECT columns FROM table-name WHERE logical conditions to be met; (Press Enter

key)

Example:

SQL>SELECT ENAME FROM EMP WHERE DEPT=‘CSG’; (Press enter key)

UPDATE

• To change the value entered in the given table

• SET clause and optional WHERE clause.

• To update one or many rows in a table

Method -1 WHERE clause

Syntax:

SQL>UPDATE tablename SET field = value, field= value, WHERE logical

expressions; (Press enter key)

Example

SQL>UPDATE EMP SET AGE=45 WHERE ENAME=“RAJA”; (Press enter key)

Method-2 Arithmetic Operations

Example

SQL>UPDATE EMP SET SALARY = SALARY *0.25 + SALARY; (Press enter key)

Method-3 UPDATE with another table

Example

SQL>UPDATE EMP SET SALARY = SALARY* 1.15 WHERE ENAME IN (SELECT

ENAME FROM BONUS); (Press enter key)

DELETE

• Used to delete rows from a table

• Contains FROM clause followed by optional WHERE clause
• One or more rows can be deleted at a time. Deletion of single column element is not

possible

Method-1: To delete a particular column with WHERE clause

Syntax:

SQL>DELETE FROM table-name WHERE <logical conditions>; (Press Enter Key)

Example:

14

SQL>DELETE FROM EMP WHERE CODE=5; (Press enter key)

Method-2: To delete all rows in a table.
Example: SQL> DELETE FROM EMP; (Press Enter Key)

OUTPUT:

15

16

17

18

19

Viva Questions:

1. What is DML in SQL, and why is it important?

2. What are the key DML commands in SQL?

3. How is DML different from DDL (Data Definition Language)?

4. Can DML operations be rolled back? Why?

5. What is the purpose of the INSERT command?

Result:

Thus the above experiment was successfully completed.

20

Ex No. 3 Data Control Language (DCL) and Transaction Control

Language (TCL)

Date:

Aim: To demonstrate DCL and TCL commands

Procedure:

TCL commands

1) Create a table

2) Insert records into the table

3) Using SELECT command check the inserted records

4) Type the command rollback and press enter key

5) Again check the records in the table using SELECT command. Inserted records

will not be there in the table.

6) Now one record into the table and then place a savepoint using SAVEPOINT

command.

7) Now insert two records and then execute a rollback.

8) Check the records in the table using SELECT command. You will have one record

in the table. Last two records inserted will not be there.

9) Now one record into the table and then execute COMMIT command. 10)Now if

you execute roll back no records will be deleted. Because COMMIT

command will save all the previous transactions.

DCL commands

1) Let A be a super user and B be a ordinary user.

2) ‘A’ Log in as super user

3) Using Grand command grant SELECT privilege to user B

4) ‘B’ Log in as ordinary user and can use Select command to display the

records of super user A

5) If B tries to use update command (or any command other than SELECT

command) then error message indicating insufficient privileges will be

displayed.

6) Superuser A can execute any command on the table of ordinary user.

7) Superuser can revoke the privileges granted to Ordinary user using REVOKE

command.

OUTPUT

21

22

23

24

Viva Questions:

1. What is Data Control Language (DCL) in SQL?

2. Explain the GRANT command. How is it used to assign permissions?

3. What types of permissions can be granted using the GRANT command (e.g., SELECT, INSERT)?

4. What is the REVOKE command, and how does it differ from GRANT?

5. If a user has multiple roles with conflicting permissions, which permissions take precedence?

Result:

Thus the above experiment was successfully completed.

25

Ex. No. 4 JOINS AND NESTED QUERIES

Date:

Aim: To demonstrate Joins and Nested Queries

Procedure

In nested queries, a query is written inside a query. The result of inner query is used in

execution of outer query. We will use STUDENT, COURSE, STUDENT_COURSE tables for

understanding nested queries.

STUDENT

S_ID S_NAME S_ADDRESS S_PHONE S_AGE

S1 RAM DELHI 9455123451 18

S2 RAMESH GURGAON 9652431543 18

S3 SUJIT ROHTAK 9156253131 20

S4 SURESH DELHI 9156768971 18

COURSE

C_ID C_NAME

C1 DSA

C2 Programming

C3 DBMS

STUDENT_COURSE

S_ID C_ID

S1 C1

S1 C3

S2 C1

S3 C2

S4 C2

S4 C3

There are mainly two types of nested queries:

Independent Nested Queries: In independent nested queries, query execution starts from

innermost query to outermost queries. The execution of inner query is independent of outer

query, but the result of inner query is used in execution of outer query. Various operators like

IN, NOT IN, ANY, ALL etc are used in writing independent nested queries.

IN: If we want to find out S_ID who are enrolled in C_NAME ‘DSA’ or ‘DBMS’, we can

write it with the help of independent nested query and IN operator. From COURSE table, we

can find out C_ID for C_NAME ‘DSA’ or DBMS’ and we can use these C_IDs for finding

S_IDs from STUDENT_COURSE TABLE.

26

STEP 1: Finding C_ID for C_NAME =’DSA’ or ‘DBMS’

Select C_ID from COURSE where C_NAME = ‘DSA’ or C_NAME = ‘DBMS’

STEP 2: Using C_ID of step 1 for finding S_ID

Select S_ID from STUDENT_COURSE where C_ID IN

(SELECT C_ID from COURSE where C_NAME = ‘DSA’ or C_NAME=’DBMS’);

The inner query will return a set with members C1 and C3 and outer query will return those

S_IDs for which C_ID is equal to any member of set (C1 and C3 in this case). So, it will

return S1, S2 and S4.

Note: If we want to find out names of STUDENTs who have either enrolled in ‘DSA’ or

‘DBMS’, it can be done as:

Select S_NAME from STUDENT where S_ID IN

(Select S_ID from STUDENT_COURSE where C_ID IN

(SELECT C_ID from COURSE where C_NAME=’DSA’ or C_NAME=’DBMS’));

NOT IN: If we want to find out S_IDs of STUDENTs who have neither enrolled in ‘DSA’

nor in ‘DBMS’, it can be done as:

Select S_ID from STUDENT where S_ID NOT IN

(Select S_ID from STUDENT_COURSE where C_ID IN

(SELECT C_ID from COURSE where C_NAME=’DSA’ or C_NAME=’DBMS’));

The innermost query will return a set with members C1 and C3. Second inner query will

return those S_IDs for which C_ID is equal to any member of set (C1 and C3 in this case)

which are S1, S2 and S4. The outermost query will return those S_IDs where S_ID is not a

member of set (S1, S2 and S4). So it will return S3.

27

Co-related Nested Queries: In co-related nested queries, the output of inner query depends on

the row which is being currently executed in outer query. e.g.; If we want to find out

S_NAME of STUDENTs who are enrolled in C_ID ‘C1’, it can be done with the help of co-

related nested query as:

Select S_NAME from STUDENT S where EXISTS

(select * from STUDENT_COURSE SC where S.S_ID=SC.S_ID and SC.C_ID=’C1’);

For each row of STUDENT S, it will find the rows from STUDENT_COURSE where

S.S_ID = SC.S_ID and SC.C_ID=’C1’. If for a S_ID from STUDENT S, atleast a row exists

in STUDENT_COURSE SC with C_ID=’C1’, then inner query will return true and

corresponding S_ID will be returned as output.

JOIN OPERATIONS

A SQL Join statement is used to combine data or rows from two or more tables based on a

common field between them. Different types of Joins are:

INNER JOIN

LEFT JOIN

RIGHT JOIN

FULL JOIN

Consider the two tables below:

Student

StudentCourse

28

The simplest Join is INNER JOIN.

INNER JOIN: The INNER JOIN keyword selects all rows from both the tables as long as the

condition satisfies. This keyword will create the result-set by combining all rows from both

the tables where the condition satisfies i.e value of the common field will be same.

Syntax:

SELECT table1.column1,table1.column2,table2.column1,....

FROM table1

INNER JOIN table2

ON table1.matching_column = table2.matching_column;

table1: First table.

table2: Second table

matching_column: Column common to both the tables.

Note: We can also write JOIN instead of INNER JOIN. JOIN is same as INNER JOIN.

Example Queries(INNER JOIN)

This query will show the names and age of students enrolled in different courses.

SELECT StudentCourse.COURSE_ID, Student.NAME, Student.AGE FROM Student

INNER JOIN StudentCourse

ON Student.ROLL_NO = StudentCourse.ROLL_NO;

Output:

29

LEFT JOIN: This join returns all the rows of the table on the left side of the join and

matching rows for the table on the right side of join. The rows for which there is no matching

row on right side, the result-set will contain null. LEFT JOIN is also known as LEFT OUTER

JOIN.

Syntax:

SELECT table1.column1,table1.column2,table2.column1,....
FROM table1

LEFT JOIN table2

ON table1.matching_column = table2.matching_column;

table1: First table.

table2: Second table

matching_column: Column common to both the tables.

Note: We can also use LEFT OUTER JOIN instead of LEFT JOIN, both are same.

Example Queries(LEFT JOIN):

SELECT Student.NAME,StudentCourse.COURSE_ID

FROM Student

LEFT JOIN StudentCourse

ON StudentCourse.ROLL_NO = Student.ROLL_NO;

Output:

30

RIGHT JOIN: RIGHT JOIN is similar to LEFT JOIN. This join returns all the rows of the

table on the right side of the join and matching rows for the table on the left side of join. The

rows for which there is no matching row on left side, the result-set will contain null. RIGHT

JOIN is also known as RIGHT OUTER JOIN.

Syntax:

SELECT table1.column1,table1.column2,table2.column1,....
FROM table1

RIGHT JOIN table2

ON table1.matching_column = table2.matching_column;

table1: First table.

table2: Second table

matching_column: Column common to both the tables.

Viva Questions:

1. What are JOINS in SQL, and why are they used?

2. Name and explain the different types of JOINS in SQL (e.g., INNER JOIN, LEFT JOIN,

RIGHT JOIN, FULL OUTER JOIN).

3. How does INNER JOIN differ from OUTER JOIN? Provide an example query for both.

4. What is a SELF JOIN, and when would you use it? Provide a real-world example.

5. Can you perform a JOIN across multiple tables? How would you write a query for this?

Result : Thus the above experiment was successfully completed.

31

Ex. No. 5 High level language extensions – PL/SQL

Date:

Aim: To write simple program using PL/SQL

Procedure:

CREATE TABLE T1(

e INTEGER, f

INTEGER

);

DELETE FROM T1;

INSERT INTO T1 VALUES(1, 3);

INSERT INTO T1 VALUES(2, 4);

/* Above is plain SQL; below is the PL/SQL program. */ DECLARE

a NUMBER;
b NUMBE

R;

BEGIN

SELECT e,f INTO a,b FROM T1 WHERE e>1; INSERT

INTO T1 VALUES(b,a);

END;

.
run;

Fortuitously, there is only one tuple of T1 that has first component greater than 1, namely (2,4). The

INSERT statement thus inserts (4,2) into T1.

32

OUTPUT:

33

EXECUTING COMMANDS STORED IN FILE

34

Viva Questions

1. What is PL/SQL, and how does it differ from standard SQL?

2. What are the main advantages of using PL/SQL in database programming?

3. Describe the structure of a PL/SQL block. What are the main sections, and which are optional?

4. What are PL/SQL control structures? Name and explain the types of control structures available in

PL/SQL.

5. How does PL/SQL handle date and time values? Name some commonly used date and time

functions in PL/SQL and their purposes.

RESULT:

Thus the above experiment was successfully completed.

35

Ex No. 6 Write a PL/SQL block to satisfy some conditions by accepting input from

the user.
Date:

Aim: To Write a PL/SQL block to satisfy some conditions by accepting input from the user

Syntax of taking input from the user:

<variablename>:=:<variablename>;

Just by writing only this statement we will able to take input from user.

Example:

First write the given code in your SQL command prompt

declare

i integer;

j integer;

s integer;

begin

i:=:i; ------- observe this statement. This statement will tell the machine to take input of i

through user.

j:=:j; ------- observe this statement. This statement will tell the machine to take input of j

through user.

s:=i+j;

dbms_output.put_line('sum of '||i||' and '||j||' is '||s);

end;

36

Ex No. 7 Write a PL/SQL block that handles all types of exceptions.
Date:

Aim: To a PL/SQL block that handles all types of exceptions
Syntax for Exception Handling

The general syntax for exception handling is as follows. Here you can list down as many exceptions

as you can handle. The default exception will be handled using WHEN others THEN –

Example

Let us write a code to illustrate the concept. We will be using the CUSTOMERS table we had

created and used in the previous chapters –

PL SQL CODE CODE:

When the above code is executed at the SQL prompt, it produces the following result −

No such customer!

DECLARE

<declarations section>

BEGIN

<executable command(s)>

EXCEPTION

<exception handling goes here >

WHEN exception1 THEN

exception1-handling-statements

WHEN exception2 THEN

exception2-handling-statements

WHEN exception3 THEN

exception3-handling-statements

........

WHEN others THEN

exception3-handling-statements

END;

DECLARE

c_id customers.id%type := 8;

c_name customerS.Name%type;

c_addr customers.address%type;

BEGIN

SELECT name, address INTO c_name, c_addr

FROM customers

WHERE id = c_id;

DBMS_OUTPUT.PUT_LINE ('Name: '|| c_name);

DBMS_OUTPUT.PUT_LINE ('Address: ' || c_addr);

EXCEPTION

WHEN no_data_found THEN

dbms_output.put_line('No such customer!');

WHEN others THEN

dbms_output.put_line('Error!');

END;

/

37

PL/SQL procedure successfully completed.

The above program displays the name and address of a customer whose ID is given. Since there is no

customer with ID value 8 in our database, the program raises the run-time

exception NO_DATA_FOUND, which is captured in the EXCEPTION block.

Raising Exceptions

Exceptions are raised by the database server automatically whenever there is any internal database

error, but exceptions can be raised explicitly by the programmer by using the command RAISE.

Following is the simple syntax for raising an exception −

You can use the above syntax in raising the Oracle standard exception or any user-defined exception.

In the next section, we will give you an example on raising a user-defined exception. You can raise

the Oracle standard exceptions in a similar way.

User-defined Exceptions

PL/SQL allows you to define your own exceptions according to the need of your program. A user-

defined exception must be declared and then raised explicitly, using either a RAISE statement or the

procedure DBMS_STANDARD.RAISE_APPLICATION_ERROR.

The syntax for declaring an exception is −

DECLARE

my-exception EXCEPTION;

Example

The following example illustrates the concept. This program asks for a customer ID, when the user

enters an invalid ID, the exception invalid_id is raised.

DECLARE

exception_name EXCEPTION;

BEGIN

IF condition THEN

RAISE exception_name;

END IF;

EXCEPTION

WHEN exception_name THEN

statement;

END;

DECLARE

c_id customers.id%type := &cc_id;

c_name customerS.Name%type;

c_addr customers.address%type;

-- user defined exception

ex_invalid_id EXCEPTION;

BEGIN

38

When the above code is executed at the SQL prompt, it produces the following result −

Enter value for cc_id: -6 (let's enter a value -6)

old 2: c_id customers.id%type := &cc_id;

new 2: c_id customers.id%type := -6;

ID must be greater than zero!

PL/SQL procedure successfully completed.

Pre-defined Exceptions

PL/SQL provides many pre-defined exceptions, which are executed when any database rule is

violated by a program. For example, the predefined exception NO_DATA_FOUND is raised when

a SELECT INTO statement returns no rows. The following table lists few of the important pre-

defined exceptions −

Exception Oracle

Error

SQLCODE Description

ACCESS_INTO_NULL 06530 -6530 It is raised when a null object is

automatically assigned a value.

CASE_NOT_FOUND 06592 -6592 It is raised when none of the choices in the

WHEN clause of a CASE statement is

selected, and there is no ELSE clause.

COLLECTION_IS_NUL

L

06531 -6531 It is raised when a program attempts to

apply collection methods other than

EXISTS to an uninitialized nested table
or varray, or the program attempts to

IF c_id <= 0 THEN

RAISE ex_invalid_id;

ELSE

SELECT name, address INTO c_name, c_addr

FROM customers

WHERE id = c_id;

DBMS_OUTPUT.PUT_LINE ('Name: '|| c_name);

DBMS_OUTPUT.PUT_LINE ('Address: ' || c_addr);

END IF;

EXCEPTION

WHEN ex_invalid_id THEN

dbms_output.put_line('ID must be greater than zero!');

WHEN no_data_found THEN

dbms_output.put_line('No such customer!');

WHEN others THEN

dbms_output.put_line('Error!');

END;

/

39

 assign values to the elements of an

uninitialized nested table or varray.

DUP_VAL_ON_INDEX 00001 -1 It is raised when duplicate values are

attempted to be stored in a column with

unique index.

INVALID_CURSOR 01001 -1001 It is raised when attempts are made to

make a cursor operation that is not

allowed, such as closing an unopened

cursor.

INVALID_NUMBER 01722 -1722 It is raised when the conversion of a

character string into a number fails

because the string does not represent a

valid number.

LOGIN_DENIED 01017 -1017 It is raised when a program attempts to log

on to the database with an invalid

username or password.

NO_DATA_FOUND 01403 +100 It is raised when a SELECT INTO

statement returns no rows.

NOT_LOGGED_ON 01012 -1012 It is raised when a database call is issued

without being connected to the database.

PROGRAM_ERROR 06501 -6501 It is raised when PL/SQL has an

internal problem.

ROWTYPE_MISMATCH 06504 -6504 It is raised when a cursor fetches value in a

variable having incompatible data type.

SELF_IS_NULL 30625 -30625 It is raised when a member method is

invoked, but the instance of the object type

was not initialized.

STORAGE_ERROR 06500 -6500 It is raised when PL/SQL ran out of

memory or memory was corrupted.

TOO_MANY_ROWS 01422 -1422 It is raised when a SELECT INTO

statement returns more than one row.

VALUE_ERROR 06502 -6502 It is raised when an arithmetic,

conversion, truncation, or

sizeconstraint error occurs.

ZERO_DIVIDE 01476 1476 It is raised when an attempt is made to

divide a number by zero.

40

Viva Questions

1. How do you accept user input in a PL/SQL block? What techniques or tools are commonly used

for this?

2. What is the difference between using DECLARE variables in PL/SQL and using INPUT directly

within SQL statements?

3. Explain how you can handle conditional logic in PL/SQL using IF...ELSE or CASE statements.

4. What happens if a user inputs invalid data? How do you handle exceptions in a PL/SQL block to

prevent program crashes?

5. Write or explain a PL/SQL block where the user inputs their age, and based on the age, it outputs

whether they are a minor (below 18), an adult (18–60), or a senior citizen (above 60).

Result:

 Thus the above program is executed Successfully.

41

Ex. No. 8 Use of Cursors, Procedures and Functions

Date:

Aim: To demonstrate the use of Cursors, Procedures and Functions

Procedure:

Cursor

1. Declare temporary variables to store the fields of the records.

2. Declare the cursor

3. Open the cursor

4. Start a Loop

5. Fetch the field values of record in the cursor to variables

6. Do the required processing.

7. Update the processed record.

8. Repeat the loop until end of the file is reached

9. Stop

Procedures

Procedure to find smallest of two numbers

1. Declare the required number of variables

2. Create a procedure for finding minimum of two numbers

3. From the main program call the procedure with required parameters.

4. Display the output.

Program Using Cursor

DECLARE

c_regno test.regno%type;

c_name test.name%type;

c_mark1 test.mark1%type;

c_mark2 test.mark2%type; i

number(2);

/*type avg IS VARRAY(10) OF number(6,2); */

c_avg number(6,2);

cursor c_stud is select regno,name,mark1,mark2,avg from test; BEGIN

OPEN c_stud;

-- i:=1;

LOOP

FETCH c_stud into c_regno,c_name,c_mark1, c_mark2,c_avg; c_avg :=

(c_mark1 + c_mark2)/2;

UPDATE test SET avg=c_avg WHERE regno=c_regno;

EXIT WHEN c_stud%notfound;

END LOOP;

CLOSE c_stud;

END;

Program Using Procedure

42

DECLARE

a number; b

number; c

number;

PROCEDURE findMin(x IN number, y IN number, z OUT number) IS

BEGIN

IF x < y THEN

z:= x;

ELSE

z:= y;

END IF;

END;

BEGIN

a:= 23;

b:= 45;

findMin(a, b, c);

dbms_output.put_line(' Minimum of (23, 45) : ' || c);

END;
/

OUTPUT:

43

PROCEDURE

PROCEDURE

44

FUNCTIONS

45

46

Viva Questions:

1. What is a cursor in PL/SQL, and why is it used?

2. Differentiate between explicit cursors and implicit cursors in PL/SQL.
Provide examples.

3. What are the steps involved in working with an explicit cursor?

(Hint: Declare, Open, Fetch, Close.)

4. What is the purpose of the %ROWTYPE attribute in relation to cursors?

5. How do you use a cursor to fetch multiple rows from a table in PL/SQL? Can

it handle complex queries?

Result:

Thus the above program is executed successfully.

47

Ex. No. 9 . Oracle or SQL Server Triggers – Block Level – Form Level

Triggers

Date:

Aim: To demonstrate the use of Triggers

Procedure:

1. Create a table named emp with fields for empno, name, department,

designation and salary.

2. Create a trigger using CREATE OR REPLACE TRIGGER command.

3. In the trigger write code in such a way that when a new record is inserted or updated

or deleted the trigger shoots up and do the following

4. Find difference between existing salary and new salary

5. Display the Old Salary, New Salary and the Difference between old and new

Salaries.

6. Insert a record into the table emp and test whether trigger is executed.

PROGRAM

CREATE OR REPLACE TRIGGER display_salary_changes

BEFORE DELETE OR INSERT OR UPDATE ON customers FOR

EACH ROW

WHEN (NEW.ID > 0)

DECLARE

sal_diff number;

BEGIN

sal_diff := :NEW.salary - :OLD.salary;

dbms_output.put_line('Old salary: ' || :OLD.salary);

dbms_output.put_line('New salary: ' || :NEW.salary);

dbms_output.put_line('Salary difference: ' || sal_diff);

END;

/

OUTPUT:

48

v

49

Viva Questions

1. What is a trigger in SQL? How does it differ from a stored

procedure?

2. What are the main components of a trigger (e.g., event,

condition, action)?

3. What are the types of triggers supported by Oracle or SQL

Server?

4. Explain the difference between row-level triggers and statement-

level (block-level) triggers.

5. What are form-level triggers, and where are they used

Result:

Thus the above program is executed Sucessfully.

50

Ex. No. 10 Embedded SQL or Database Connectivity

Date:

Aim: To demonstrate embedded SQL or Database connectivity

Procedure:

1. Develop database tables in oracle

2. Design the required screen in Visual Basic with all the required tools and objects(text

boxes, labels, combo box, option box)

3. Write the coding for connecting the oracle database table with the visual basic

application.

4. Run the application.

5. Verify the database connectivity by adding, deleting and viewing records through

Visual Basic application.

Program:
Dim cnn1 As

ADODB.Connection Dim rs As

ADODB.Recordset Dim strcnn

As String

Private Sub

ADD_Click() With rs

.Fields("empname") = nametxt.Text

.Fields("dob") = DTPicker1.Value

.Fields("gender") = maleopt.Value

.Fields("designation") = desgtxt.Value

.Fields("dept") = deptcbo.Value

.Fields("addr") = addrtxt.Text

.Fields("basic") = basictxt.Text

.Update

End With

rs.AddNe

w End Sub

Private Sub

cancelcmd_Click()

rs.CancelBatch

cnn1.CommitTrans

End Sub

Private Sub

clrcmd_Click()

nametxt.Text = ""

DTPicker1.Value = ""

maleopt.Value = False

desgtxt.Value = ""

deptcbo.Value = ""

addrtxt.Text = ""

basictxt.Text = ""

51

End Sub

Private Sub

delcmd_Click()

cnn1.BeginTrans

rs.Delete rs.UpdateBatch

cnn1.CommitTrans

MsgBox ("Record

Deleted") End Sub

Private Sub

endcmd_Click() End

End Sub

Private Sub

firstcmd_Click() On Error

GoTo l1:

rs.Open "Select * from emp1", cnn1, adOpenKeyset,

adLockBatchOptimistic l1: rs.MoveFirst

transfer

End Sub

Private Sub Form_Load()

Form2.WindowState = 2

Set cnn1 = New

ADODB.Connection Set rs = New

ADODB.Recordset

rs.CursorLocation = adUseClient

'strcnn = "User ID =leo; Password=leo; Data Source = dbserver; Persist Security Info =False"

strcnn = "Provider=MSDAORA.1;User ID=leo;Password=leo;Data Source=dbserver;Persist

Security Info=False"

'strcnn = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=Z:\emp.mdb;Persist Security

Info=False" cnn1.Open strcnn

End Sub

Private Sub

lastcmd_Click() On Error

GoTo l5:

rs.Open "Select * from emp1", cnn1, adOpenKeyset,

adLockBatchOptimistic l5: rs.MoveLast

transfer

End Sub

Private Sub

modcmd_Click() On Error

GoTo l3:
rs.Open "Select * from emp1", cnn1, adOpenKeyset,

adLockBatchOptimistic l3: cnn1.BeginTrans

End Sub

52

Private Sub newcmd_Click()

53

On Error GoTo l6:

rs.Open "Select * from emp1", cnn1, adOpenKeyset, adLockBatchOptimistic

l6: cnn1.BeginTrans

rs.AddNew

End Sub

Private Sub

nextcmd_Click() On Error

GoTo l2:

rs.Open "Select * from emp1", cnn1, adOpenKeyset,

adLockBatchOptimistic l2: rs.MoveNext

transfer

End Sub

Private Sub
prevcmd_Click() On Error
GoTo l4:

rs.Open "Select * from emp1", cnn1, adOpenKeyset,

adLockBatchOptimistic l4: rs.MovePrevious

transfer

End Sub

Private Sub

savecmd_Click() With rs

.Fields("empname") = nametxt.Text

.Fields("dob") =

DTPicker1.Value If

maleopt.Value = True Then

.Fields("gender") =

"Male" Else

.Fields("gender") =

"Female" End If

.Fields("designation") = desgtxt.Text

.Fields("dept") = deptcbo.Text

.Fields("addr") = addrtxt.Text

.Fields("basic") = basictxt.Text

.UpdateBatch

End With

cnn1.CommitTrans

MsgBox ("Record is saved

successfully") End Sub

Public Sub transfer()

With rs

If .EOF = False Then

nametxt.Text = .Fields("empname")

DTPicker1.Value = .Fields("dob")

54

If .Fields("gender") <> 0
Then maleopt.Value = True

Else

femaleopt.Value = True

End If

desgtxt.Text =

.Fields("designation") deptcbo.Text

= .Fields("dept") addrtxt.Text =

.Fields("addr") basictxt.Text

.Fields("basic")

End If

End With

End Sub

Output

55

56

Ex. No. 11. Front-end tools – Visual Basic/Developer 2000

Date:

Database connectivity using Front End Tools (Application Development using Oracle/ Mysql)

Mini Project

a) Inventory Control System.

b) Material Requirement Processing.

c) Hospital Management System.

d) Railway Reservation System.

e) Personal Information System

Aim: To demonstrate embedded SQL or Database connectivity

Procedure:

1. Develop database tables in oracle

2. Design the required screen in Visual Basic with all the required tools and objects(text

boxes, labels, combo box, option box)

3. Write the coding for connecting the oracle database table with the visual basic

application.

4. Run the application.

5. Verify the database connectivity by adding, deleting and viewing records through

Visual Basic application.

Program:

Dim cnn1 As

ADODB.Connection Dim rs As

ADODB.Recordset Dim strcnn

As String

Private Sub

ADD_Click() With rs

.Fields("sname") = nametxt.Text

.Fields("dob") = DTPicker1.Value

.Fields("gender") = maleopt.Value

.Fields("UG") = ugchk.Value

.Fields("PG") = pgchk.Value

.Fields("ugcourse") = ugcourse.Text

.Fields("pgcourse") = pgcourse.Text

.Update

End With

rs.AddNe

w End Sub

Private Sub

cancelcmd_Click()

rs.CancelBatch

cnn1.CommitTrans

End Sub

Private Sub clrcmd_Click()

57

nametxt.Text = " "

maleopt.Value = True

femaleopt.Value = True

ugchk.Value = 0

pgchk.Value = 0

ugcourse.Text =

"" pgcourse.Text =

""

End Sub

Private Sub

delcmd_Click()

cnn1.BeginTrans

rs.Delete rs.UpdateBatch

cnn1.CommitTrans

MsgBox ("Record

Deleted") End Sub

Private Sub

endcmd_Click() End

End Sub

Private Sub

firstcmd_Click() On Error

GoTo l1:

rs.Open "Select * from personal", cnn1, adOpenKeyset,

adLockBatchOptimistic l1: rs.MoveFirst

transfer

End Sub

Private Sub Form_Load()

Form2.WindowState = 2

Set cnn1 = New

ADODB.Connection Set rs = New

ADODB.Recordset

rs.CursorLocation = adUseClient

strcnn = "User ID =scott; Password=tiger; Data Source = leo; Persist Security Info

=False" 'strcnn = "Provider=MSDAORA.1;User ID=scott;Password=tiger;Data

Source=dbserver;Persist Security Info=False"

strcnn = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=E:\student.mdb;Persist

Security Info=False"

cnn1.Open strcnn

End Sub

Private Sub

lastcmd_Click() On Error

58

GoTo l5:

59

rs.Open "Select * from personal", cnn1, adOpenKeyset,

adLockBatchOptimistic l5: rs.MoveLast

transfer

End Sub

Private Sub

modcmd_Click() On Error

GoTo l3:

rs.Open "Select * from personal", cnn1, adOpenKeyset, adLockBatchOptimistic

l3: cnn1.BeginTrans

End Sub

Private Sub

newcmd_Click() On Error

GoTo l6:

rs.Open "Select * from personal", cnn1, adOpenKeyset, adLockBatchOptimistic

l6:

 cnn1.BeginTran

s rs.AddNew

End Sub

Private Sub

nextcmd_Click() On Error

GoTo l2:

rs.Open "Select * from personal", cnn1, adOpenKeyset,

adLockBatchOptimistic l2: rs.MoveNext

transfer

End Sub

Private Sub

pgchk_Click() If

pgchk.Value = 1 Then

pgcourse.Enabled = True

Else

pgcourse.Enabled = False

End If

End Sub

Private Sub

prevcmd_Click() On Error

GoTo l4:

rs.Open "Select * from personal", cnn1, adOpenKeyset,

adLockBatchOptimistic l4: rs.MovePrevious

transfer

End Sub

60

Private Sub

savecmd_Click() With rs

61

.Fields("sname") = nametxt.Text

.Fields("dob") = DTPicker1.Value

.Fields("gender") = maleopt.Value

.Fields("UG") = ugchk.Value

.Fields("PG") = pgchk.Value

.Fields("ugcourse") = ugcourse.Text

.Fields("pgcourse") = pgcourse.Text

.UpdateBatch

End With

cnn1.CommitTrans

MsgBox ("Record is saved

successfully") End Sub

Private Sub ugchk_Click()

If ugchk.Value = 1 Then

ugcourse.Enabled = True

Else

ugcourse.Enabled = False

End If

End Sub

Public Sub transfer()

With rs

If .EOF = False Then

nametxt.Text = .Fields("sname")

DTPicker1.Value =

.Fields("dob") If

.Fields("gender") <> 0 Then

maleopt.Value = True

Else

femaleopt.Value = True

End If

ugchk.Value = .Fields("UG")

pgchk.Value = .Fields("PG")

ugcourse.Text =

.Fields("ugcourse")

If .Fields("pgcourse") <> "" Then

pgcourse.Text =

.Fields("pgcourse")

End If

End If

End

With

End Sub

62

Viva questions:

1. What is a front-end tool, and how does it interact with the database?

2. What is the main purpose of using a tool like Visual Basic or Developer 2000 in application

development?

3. How does Visual Basic differ from other programming languages like C or C++ in terms of GUI-

based application development?

4. What is Visual Basic, and what kind of applications can you build with it?

5. What is the Integrated Development Environment (IDE) in Visual Basic, and what are its key

components?

Result:

 Thus the above program is executed successfully

63

Ex No:12 Normalization

Aim:

To normalize a given unnormalized relation into higher normal forms (1NF, 2NF, 3NF, and BCNF) and

remove data redundancies while maintaining data integrity

Algorithm:

1. First Normal Form (1NF):
o Goal: Eliminate repeating groups by ensuring that each column contains atomic (indivisible)

values.

o Steps:
 Identify repeating groups and separate them into individual rows.

 Make sure each cell contains only a single value.

2. Second Normal Form (2NF):
o Goal: Eliminate partial dependencies, i.e., all non-prime attributes must depend on the entire

primary key.

o Steps:
 Ensure the relation is in 1NF.

 Identify attributes that depend only on part of the composite primary key and remove

them into new relations.

 Make sure all non-prime attributes depend on the entire primary key.

3. Third Normal Form (3NF):
o Goal: Eliminate transitive dependencies, i.e., non-prime attributes should not depend on

other non-prime attributes.

o Steps:
 Ensure the relation is in 2NF.

 Identify transitive dependencies and remove them by creating new relations with only

direct dependencies.

4. Boyce-Codd Normal Form (BCNF):
o Goal: Ensure every determinant is a candidate key.

o Steps:
 Ensure the relation is in 3NF.

 Identify any cases where a non-candidate key determines another attribute and

resolve them by splitting the relation further.

Procedure:

Step 1: Given Unnormalized Table

Let’s consider an example of a Student-Course table:

Student_ID Student_Name Course1 Instructor1 Course2 Instructor2

S101 Alice Math Dr. Smith Science Dr. Brown

S102 Bob English Dr. Adams Math Dr. Smith

S103 Charlie Science Dr. Brown English Dr. Adams

This table contains non-atomic data in columns Course1, Instructor1, Course2, and Instructor2.

64

Step 2: First Normal Form (1NF)

We will remove repeating groups and ensure each column contains atomic values.

Converted to 1NF:

Student_ID Student_Name Course Instructor

S101 Alice Math Dr. Smith

S101 Alice Science Dr. Brown

S102 Bob English Dr. Adams

S102 Bob Math Dr. Smith

S103 Charlie Science Dr. Brown

S103 Charlie English Dr. Adams

Step 3: Second Normal Form (2NF)

We eliminate partial dependencies. Student_Name depends only on Student_ID and not on Course. This

results in two relations:

1. Student Table:

Student_ID Student_Name

S101 Alice

S102 Bob

S103 Charlie

2. Course-Student Table:

Student_ID Course Instructor

S101 Math Dr. Smith

S101 Science Dr. Brown

S102 English Dr. Adams

S102 Math Dr. Smith

S103 Science Dr. Brown

S103 English Dr. Adams

Step 4: Third Normal Form (3NF)

We eliminate transitive dependencies. In the Course-Student Table, Instructor is dependent on Course,

not on the entire primary key. Therefore, we decompose further:

1. Student Table (unchanged):

Student_ID Student_Name

S101 Alice

S102 Bob

S103 Charlie

2. Course-Student Table:

Student_ID Course

S101 Math

S101 Science

S102 English

S102 Math

S103 Science

S103 English

3. Instructor Table:

65

Course Instructor

Math Dr. Smith

Science Dr. Brown

English Dr. Adams

Step 5: Boyce-Codd Normal Form (BCNF)

Since in Instructor Table, Course is not a candidate key (it is not unique), we break down the table further

to ensure that each determinant is a candidate key.

1. Student Table:

Student_ID Student_Name

S101 Alice

S102 Bob

S103 Charlie

2. Course-Student Table:

Student_ID Course

S101 Math

S101 Science

S102 English

S102 Math

S103 Science

S103 English

3. Course Table:

Course Instructor

Math Dr. Smith

Science Dr. Brown

English Dr. Adams

Output:

1. Normalized Table in 1NF:

Student_ID Student_Name Course Instructor

S101 Alice Math Dr. Smith

S101 Alice Science Dr. Brown

S102 Bob English Dr. Adams

S102 Bob Math Dr. Smith

S103 Charlie Science Dr. Brown

S103 Charlie English Dr. Adams

2. Normalized Table in 2NF:

Student Table:

Student_ID Student_Name

S101 Alice

S102 Bob

S103 Charlie

Course-Student Table:

Student_ID Course Instructor

S101 Math Dr. Smith

S101 Science Dr. Brown

66

Student_ID Course Instructor

S102 English Dr. Adams

S102 Math Dr. Smith

S103 Science Dr. Brown

S103 English Dr. Adams

3. Normalized Table in 3NF:

Instructor Table:

Course Instructor

Math Dr. Smith

Science Dr. Brown

English Dr. Adams

4. Normalized Table in BCNF:
o All the relations are now in BCNF, ensuring that every determinant is a candidate key.

Result:

By following the steps of normalization, the original unnormalized table is successfully decomposed into

1NF, 2NF, 3NF, and BCNF relations. This process eliminates redundancy, improves consistency, and

ensures that the database design is optimized for querying and data integrity.

