SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution)

SRM Nagar, Kattankulathur — 603 203
DEPARTMENT OF CYBER SECURITY
Lab Manual

CS3466 - DATABASE MANAGEMENT SYSTEMS LABORATORY

Regulation 2023

eNc"NEE’?q,

& ¢

& Oo

5 7
~ ™
I o
) m

Il Year (IV Semester)
Academic Year: 2024 — 2025 (EVEN SEMESTER)

Prepared by

Dr. G. Kumaresan, Associate Professor / CSE
Dr. M. Mayuranathan, Associate Professor / CSE
Ms. S. Anslam Sibi/ A.P - Sr.G / CSE

Ms. N.Jothi /AP - O.G/CYS

PROGRAMME OUTCOMES

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals, and an engineering specialization to the solution of complex engineering problems.
2. Problem analysis: Identify, formulate, review research literature, and analyze complex
engineering problems reaching substantiated conclusions using the first principles of mathematics,
natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for the complex engineering problems and
design system components or processes that meet the specified needs with appropriate
consideration for the public health and safety, and the cultural, societal, and environmental
considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research
methods including the design of experiments, analysis and interpretation of data, and the synthesis
of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
engineering and IT tools including prediction and modeling to complex engineering activities with an
understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess
societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the
professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering
solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for
sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms
of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in
diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the
engineering community and with society at large, such as, being able to comprehend and write
effective reports and design documentation, make effective presentations, and give and receive clear
instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the
engineering and management principles and apply these to one’s own work, as a member and leader

in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in
independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSOL1: Exhibit proficiency in planning, implementing and evaluating team oriented-software
programming solutions to specific business problems and society needs.

PSO2: Demonstrate professional skills in applying programming skills, competency and
decision making capability through hands-on experiences.

PSO3: Apply logical thinking in analyzing complex real world problems, and use professional
and ethical behaviors to provide proper solutions to those problems.

PSO4: Demonstrate the ability to work effectively as part of a team in applying technology to
Business and personal situations.

PROGRAM EDUCATIONAL OBJECTIVES (PEOS)

PEO1: To mould students to exhibit top performance in higher education and research and
to become a State-of —the- art technocrat.

PEO2: To impart the necessary background in Computer Science and Engineering by
providing solid foundation in Mathematical, Science and Engineering fundamentals.

PEO3: To equip the students with the breadth of Computer Science and Engineering
innovate novel solutions for the benefit of common man.

CO - PO and PSO MAPPING:

CO’sPO’s PSO’s
1 2] 3 (4|5 |6 |7 |89 10|11 (12|12 | 3| 4
1 3 3] 3 3] - |- |- - [3113 2123]| 2] -
2 2 |2 3 2] 2 | - | - - 112 13 |32 | 1]2] -
3 3 3] 2 (1] 1 - | - - 1111 [3]2]3]| 3] -
4 1 (3] 3 [3]1 - | - - 11113 |23 [1]3] -
5 3 |12] 1 1] 1 - | - - 121213 1|13 [1]2] -
AVG| 2 [3]| 2 |2] 1 - | - - 21113 21222 -

CS3466 DATABASE MANAGEMENT SYSTEMS LABORATORY L TP C
0035

COURSE OBJECTIVES:

* To learn and implement important commands in SQL.

* To learn the usage of nested and joint queries.

* To understand functions, procedures and procedural extensions of databases.

* To understand design and implementation of typical database applications.

* To be familiar with the use of a front end tool for GUI based application development.

LIST OF EXPERIMENTS

1. Create a database table, add constraints (primary key, unique, check, Not null), insert rows,
update and delete rows using SQL DDL and DML commands.
2. Create a set of tables, add foreign key constraints and incorporate referential integrity.
3. Query the database tables using different ‘where’ clause conditions and also implement
aggregate functions.
4. Query the database tables and explore sub queries and simple join operations.
5. Query the database tables and explore natural, equi and outer joins.
6. Write user defined functions and stored procedures in SQL.
7. Execute complex transactions and realize DCL and TCL commands.
8. Write SQL Triggers for insert, delete, and update operations in a database table.
9. Create View and index for database tables with a large number of records.
10. Case Study using any of the real life database applications from the following list
a) Inventory Management for a EMart Grocery Shop
b) Society Financial Management
c) Cop Friendly App — Eseva
d) Property Management — eMall
e) Star Small and Medium Banking and Finance
* Build Entity Model diagram. The diagram should align with the business and functional goals
stated in the application.
* Apply Normalization rules in designing the tables in scope.
* Prepared applicable views, triggers (for auditing purposes), and functions for enabling enterprise
grade features.

List of Equipment :(30 Students per Batch)
MYSQL / SQL : 30 Users TOTAL.: 45 PERIODS

INDEX

Ex. LIST OF EXPERIMENTS: PAGE

NO NO
Instructions for oracle Commands, syntaxes for viva 3
voce

1 Creation of a database and writing SQL queries to 9
Retrieve information from the database.

2 Performing insertion, deletion, modifying, 11
altering,Updating and viewing records based on
conditions.

3 Creating an Employee database to set various 19
Constraints and Creation of Views Indexes, Save point.

4| Joins and Nested Queries. 23
Study of PL/SQL block. 29
Write a PL/SQL block to satisfy some conditions by, 32
accepting input from the user.

7 Write a PL/SQL block that handles all types of 33
Exceptions.

8 Creation of Procedures. 37

9 Creation of database triggers and functions 42

10 Creation of Database in MS Access. 44

11 | Database connectivity using Front End Tools 49

(Application Development using Oracle/ mysql)

Mini project

INSTRUCTIONS FOR ORACLE
COMMANDS, SYNTAXES FOR VIVA VOCE

SQL consists of a small number of high-level commands that let you query a
database, and even build new databases.

+ Tables are the basic building blocks of a database.

+ Columns define the categories of information in the table

* Rows represent individual records in the table.

* SQL is provided in two modes.
Interactive SQL
This is mode is used to operate directly on a database that is the
response to any SQL command can be seen almost immediately on the
same terminal.
Embedded SOQL
Embedded SQL consists of SQL commands used within programs
written in some other language like COBAL, PASCAL or C
SQL features

1. Itis a unified language.
2. Itis common language for relational database
3. Itis a non-procedural language.
SQL Language commands
1. Data Definition Language [DDL] - Create, Alter, Drop
2. Data Manipulation Language [DML]- Insert, Update, Delete

3. Transaction Control Language [TCL] — Commit, RollBack, Savepoint

ORACLE DATA TYPES
Char(n)
varchar2(n)
Number(p , s)
Date

5. Raw(n)
1) Char(n) — It is used for fixed length character data of length ‘n’ at maximum bytes
of 255

-n is used for number of character(s)

2) Varchar2(n) - It is used for variable length character data . A max. n (column
2000 bytes in length) must be specified.
3) Number(P,S) — It is used for variable numeric data with Precision P & Scales S.

Eg. Salary Number(10,3)
Here, the number values up to 10 digits wide, three of the digits following the decimal
point.
4) Date - It is used for fixed length date & time data - 1-JAN-4712 BC to 31-DEC-
4712 AD
6. Raw(n) — Binary data of max. n (max. 255 bytes)
7. Long - Itis used for variable length character data at a maximum of 23! -1 bytes

PoONE

Rules for naming a TABLE: All the rules for naming a variable in a high level
language will apply to table’s name also.
1) Must begin with an alphabet (ie) A-Z or a-z

2) May contain letters, numerals and the special characters, _(underscore). Itis
advisable to avoid the usage of $ and # symbols).

3) Not case sensitive. The length of the table name may extend up to 30
characters in length. Eg. 1) Dept 2)DEPT 3)dept

4) The table name should be unique

5) Should not be an ORACLE reserved word

6) Blank spaces, commas are not allowed.

7) No two columns in the same table have the same column name.

DATA DEFINITION LANGUAGE (DDL)
DDL consists of three SQL commands.
1. CREATE
2. ALTER
3. DROP

Data Manipulation Language (DML)
The DML consists of four SQL commands.
1) INSERT
2) SELECT
3) UPDATE
4) DELETE

TRANSANCTION CONTROL LANGUAGE(TCL)
« Atransaction is not made permanent in ORACLE database unless it is
committed or until it executes an ALTER, AUDIT, CREATE, DISCONNECT,
DROP, NEXT, GRANT, NO AUDIT, QUIT OR REVOKE.

TCL commands are
1. COMMIT
2. ROLLBACK
3. SAVEPOINT
COMMIT:
e Itis not necessary to have any privileges to commit current transaction.
e The COMMIT (save with recent changes) command forces SQL to
commit pending table changes to the database.
e |tis good practice to commit changes to the database as soon as you
finish a work and at frequent intervals.

SQL>COMMIT WORK;(Press enter key)
SQL>COMMIT; (Press enter key)

ROLLBACK

» To undo work done in the current transactions

* Rolling back means undoing any changes to data that have been performed
by SQL statements within an uncommitted transaction.

« To roll back with savepoint_id

SMHLQXZ

Rollback the current transaction to the specified savepoint.
If omitted, the ROLLBACK statement roll back the entire transaction.
Savepoint_id is an valid character string.

SQL>ROLLBACK WORK; (Press enter key)
SQL> ROLLBACK; (Press enter key)

Work is optional

SAVEPOINT:

To identify a point in a transaction to which you can later rollback.
Savepoints are often used to divide a long transaction into smaller parts.

Syntax:

SQL>SAVEPOINT <savepoint_id>; (Press enter key)
Example: SQL>SAVEPOINT R;(Press enter key)
Output: Savepoint created.

PRIVILEGE COMMANDS (Data Control Commands)
Privilege commands are

1) Grant
2) Revoke

Some of the privileges & objects are

Privilege
SELECT
INSERT
UPDATE
DELETE
ALTER
INDEX

Object
Data in a table in or view
Rows into a table or view
Values in a table or view
Rows from a table or view
Column definitions in a table
A column in a table or view

Grant: If one user wants to share another user’s table the privilege should be given

first

Syntax:

SQL>GRANT <privileges> ON <table name> TO <user name> ; (Press enter key)
Granting Privileges: To grant a user the privilege to select from our table name.

Syntax:

SQL> GRANT SELECT ON DEPT TO GANESH;(Press enter key)

Output Result: Grant succeded

Note: Here, GANESH is another user. The above message grant succeeded tells
you that the privilege has been granted

Passing privileges

When you grant an access privilege, the user who receives the grant normally does
not receive authority to pass the privilege onto others.

To give user a authority to pass privileges use the clause with GRANT option.
SQL>GRANT SELECT ON DEPT TO GANESH WITH GRANT OPTION;(Press enter

6

key)
Output: Grant Succeeded.

REVOKE: To withdraw a privilege you have granted, use the revoke command.

Syntax:

SQL> REVOKE <privileges> ON <table or view> FROM <users>; (Press enter key)

* When you user revoke, the privileges you specify are revoked from the users

you name and from any other users to whom they have granted those
privileges.

Example

SQL>REVOKE SELECT ON DEPT FROM GANESH; (Press enter key)

Output: Revoke Succeeded.

Cursors

A cursor is a variable that runs through the tuples of some relation. This relation can
be a stored table, or it can be the answer to some query. By fetching into the cursor
each tuple of the relation, we can write a program to read and process the value of
each such tuple. If the relation is stored, we can also update or delete the tuple at
the current cursor position.

syntax

CURSOR cursor_name IS select_statement;
Procedure
A procedure is created with the CREATE OR REPLACE PROCEDURE statement.
The simplified syntax for the CREATE OR REPLACE PROCEDURE statement is as
follows:

CREATE [OR REPLACE] PROCEDURE procedure_name
[(parameter_name [IN | OUT | IN OUT] type [, ...])]

{IS | AS}

BEGIN

< procedure_body >

END procedure_name;

Where,

e procedure-name specifies the name of the procedure.

e [OR REPLACE] option allows modifying an existing procedure.

e The optional parameter list contains name, mode and types of the
parameters. IN represents that value will be passed from outside and OUT
represents that this parameter will be used to return a value outside of the
procedure.

e procedure-body contains the executable part.

« The AS keyword is used instead of the IS keyword for creating a standalone
procedure.

Function

A PL/SQL function is same as a procedure except that it returns a value. Therefore,
all the discussions of the previous chapter are true for functions too.

Creating a Function

A standalone function is created using the CREATE FUNCTION statement. The
simplified syntax for the CREATE OR REPLACE PROCEDURE statement is as
follows:

CREATE [OR REPLACE] FUNCTION function_name
[(parameter_name [IN | OUT | IN OUT] type [, ...])]
RETURN return_datatype

{IS | AS}

BEGIN

< function_body >

END [function_name];

Where,

e function-name specifies the name of the function.
¢ [OR REPLACE] option allows modifying an existing function.

e The optional parameter list contains name, mode and types of the
parameters. IN represents that value will be passed from outside and OUT
represents that this parameter will be used to return a value outside of the
procedure.

e The function must contain a return statement.

e RETURN clause specifies that data type you are going to return from the
function.

e function-body contains the executable part.

e The AS keyword is used instead of the IS keyword for creating a standalone
function.

Triggers

Triggers are stored programs, which are automatically executed or fired when some events occur. Triggers are,
in fact, written to be executed in response to any of the following events:

O A database manipulation (DML) statement (DELETE, INSERT, or UPDATE).
0 A database definition (DDL) statement (CREATE, ALTER, or DROP).
U A database operation (SERVERERROR, LOGON, LOGOFF, STARTUP, or SHUTDOWN).

Triggers could be defined on the table, view, schema, or database with which the event is associated.

Benefits of Triggers

Triggers can be written for the following purposes:

Generating some derived column values automatically
Enforcing referential integrity

Event logging and storing information on table access
Auditing

Synchronous replication of tables

Imposing security authorizations

Preventing invalid transactions

Creating Triggers

The syntax for creating a trigger is:
CREATE [OR REPLACE | TRIGGER trigger_name
{BEFORE | AFTER | INSTEAD OF }
{INSERT [OR] | UPDATE [OR] | DELETE}
[OF col_name]

ON table_name

[REFERENCING OLD AS o NEW AS n|
[FOR EACH ROW]

WHEN (condition)

DECLARE

Declaration-statements

BEGIN

Executable-statements

EXCEPTION
Exception-handling-statements

END,;

Where,

e CREATE [OR REPLACE] TRIGGER trigger_name: Creates or replaces an existing
trigger with the trigger_name.

o {BEFORE | AFTER | INSTEAD OF}: This specifies when the trigger would be
executed. The INSTEAD OF clause is used for creating trigger on a view.

e {INSERT [OR] | UPDATE [OR] | DELETE}: This specifies the DML operation.

¢ [OF col_name]: This specifies the column name that would be updated.

¢ [ON table_name]: This specifies the name of the table associated with the trigger.

o [REFERENCING OLD AS o NEW AS n]: This allows you to refer new and old values
for various DML statements, like INSERT, UPDATE, and DELETE.

¢ [FOR EACH ROW]: This specifies a row level trigger, i.e., the trigger would be
executed for each row being affected. Otherwise the trigger will execute just once when
the SQL statement is executed, which is called a table level trigger.

¢ WHEN (condition): This provides a condition for rows for which the trigger would fire.
This clause is valid only for row level triggers.

Ex No. 1 SQL - Structured Query Language
Date:

Aim: To create database tables and views using Oracle.

Procedure:

1) CREATE: This command helps to create a table

Syntax: SQL> CREATE TABLE <table-name> (Column-elementl datatype,
column-element2 datatype....)

Eg. SQL> CREATE TABLE DEPT(deptno number(2), deptname varchar2(5), loc
char2(8)); (Press enter key)

If you want to see the structure of the table

SQL> DESCRIBE <table-name> (Press enter key)

SQL>DESC <table-name> (Press enter key)

2) ALTER — used to add a new column or modify the width of an existing column in a
table

Syntax: 1) With MODIFY command (MODIFY —oracle reserved word)

SQL> ALTER <table-name> MODIFY (column-definitions) (Press Enter Key)
Example

SQL>ALTER TABLE DEPT MODIFY(DEPTNAME VARCHAR2(20)); (Press enter
key)

Syntax: 2) With ADD command (ADD — Oracle Reserved word) is used to add
column/s) in a table.

SQL>ALTER TABLE <table-name> ADD(column-definitions); (Press enter key)
Example;

SQL>ALTER TABLE EMP ADD(ADDRESS CHAR(30)); (Press enter key)
-Column to be modified must be empty to decrease precision or scale

3) DROP: To delete the table values with structure

Svntax: SQL> DROP TABLE <tablename>; (press enter key)

Example : SQL>DROP TABLE DEPT;

10

ouTPUT

% Oracle SQL*Plus

Fle Edt Search Options Help
SQL> create table emp{empno number{12) primary key, empname varchar2(38),dept varchar2{38), desq va

lrchar2(38))
2/

Table created.

SOL> desc emp;

Hane Hull? Type

EHPHD NOT MULL NUMBER(12)
EHPHAME UARCHARZ (38)
DEPT UARCHAR2(38)
DESE UARCHARZ (38)

SOL> alter table emp add{phoneno number{38));
Table altered.

SOL> desc emp;

Hane Hull? Type

EHPHD NOT MULL NUMBER(12)
EHPHANE UARCHARZ(38)
DEPT UARCHARZ (38)
DESE UARCHAR2(38)
PHONENO NUHBER(38)

SQL> alter table emp modify{phoneno number(28));
Table altered.

SOL> desc emp;

Hane Hull? Type

EHPHD NOT MULL NUMBER(12)
EHPHAME UARCHARZ (38)
DEPT UARCHAR2(38)
DESE UARCHARZ (38)
PHONEND NUMBER(28)
SOL |

: 5 Start 4 Oracke 50L*Plus ' ﬂ_7| MC7111 DEMS LAE..

Result:
Thus the above experiment was successfully completed.

11

Ex No. 2 Data Manipulation Language (DML)
Date:

Aim: To perform insert, update, delete and query operations in database tables.
Procedure:

1) INSERT

SQL> INSERT INTO table-name VALUES (a list of data values); (Press enter key)
Example : Method-1

SQL>INSERT INTO EMP VALUES(396,'RAMA’,300,5000,200,'6-JUN-59’); (press
enter key)

Note: Date and character data-type values should be enclosed in quotes
Example: Method-2

If we want to insert only empno and age the command would be

SQL>INSERT INTO EMP(ENAME, AGE) VALUES(396,38); (Press enter key)
Example : Method-3

We can insert into one table by copying rows another table, by using “select”
statement.

SQL> INSERT INTO EMP(ENAME,JOB,SAL,COMM) SELECT ENAE, JOB,SAL,
COMM FROM EMP WHERE DESIGN =“SALESMAN?”; (Press enter key)
Method-4

SQL>INSERT INTO <table-name> values(‘&empno’,’&empname’, ---------); (press
enter key)

QUERY —A query is a request for information.

2)SELECT
Syntax
SQL>SELECT column-namel, column-name2 FROM table-namel, table-
name2 __ _ ;(Press enter key)
Example
SQL> SELECT EMPNAME, AGE FROM EMP; (Press enter key)
OUTPUT EMPNAME AGE
RAMESH 24
SURESH 20
SATISH 30

SQL>SELECT * FROM EMP; (Press enter key)
->displays all rows and columns in the table ‘emp”

OuUTPUT
EMPNO EMPNAME AGE SALARY
1001 RAMESH 24 10000

1002 SURESH 20 8000

CHANGING COLUMN ORDER: The order of column name in a select command
determines the order in which the columns are displayed.
Example 1: SQL> SELECT EMPNO,AGE FROM EMP;
Example 2: SQL> SELECT AGE,EMPNO FROM EMP;
SQL> SELECT JOB FROM EMP; (Press Enter key)
Output

12

JOB
ASSISTANT
SUPDT
ASSISTANT
HELPER
MECHANIC
SUPDT
CLERK
To eliminate duplicate rows in the result, include the distinct clause in the
‘select’ command
SQL>SELECT DISTINCT JOB FROM EMP;(Press enter key)
JOB
ASSISTANT
SUPDT
HELPER
MECHANIC
CLERK
SELECT command with WHERE clause
Syntax:
SELECT columns FROM table-name WHERE logical conditions to be met; (Press
Enter key)
Example:
SQL>SELECT ENAME FROM EMP WHERE DEPT='‘CSG’; (Press enter key)

UPDATE
« To change the value entered in the given table
« SET clause and optional WHERE clause.
« To update one or many rows in a table
Method -1 WHERE clause
Syntax:
SQL>UPDATE tablename SET field = value, field= value, WHERE logical
expressions; (Press enter key)
Example
SQL>UPDATE EMP SET AGE=45 WHERE ENAME=“RAJA”; (Press enter key)
Method-2 Arithmetic Operations
Example
SQL>UPDATE EMP SET SALARY = SALARY *0.25 + SALARY; (Press enter key)
Method-3 UPDATE with another table
Example
SQL>UPDATE EMP SET SALARY = SALARY* 1.15 WHERE ENAME IN (SELECT
ENAME FROM BONUS); (Press enter key)

DELETE
« Used to delete rows from a table
« Contains FROM clause followed by optional WHERE clause
« One or more rows can be deleted at a time. Deletion of single column element
IS not possible
Method-1: To delete a particular column with WHERE clause
Syntax:
SQL>DELETE FROM table-name WHERE <logical conditions>; (Press Enter Key)
Example:

13

SQL>DELETE FROM EMP WHERE CODE-=5; (Press enter key)
Method-2: To delete all rows in a table.
Example: SQL> DELETE FROM EMP; (Press Enter Key)

OUTPUT:

% Oracle SQL*Plus

Fe £d Sexch Ogtirs hep
SOL> INSERT INTO EWP UALUES{S®87, DAVID", HAMIFACTURING','VELDER",92328939328); "

1 row created.

SQL> SELECT = FROH EWP;

EMPHD ENPHAME BEPT DESE PHOREND
5881 ARUN PRODUCTION SUPERVISOR 9238283820
5887 D&VID HENUFACTUR VELDER 9.2329E+18

IHE

SOL> INSERT INTO EWP(EWPND, EWPMSME) URLUES{5818,'Bala’);
1 row created.

SQL> SELECT = FROH EWP;

EHPHD EWPHAKE DEPT DESE PHOREMD
5881 ARUN PRODUCTION SUPERVISOR 9238283820
5887 D&UID HANUFACTUR VELDER 9.2329E+18

IHE
5818 BalA

[SOL> INSERT INTD EWP UALUES{EEFPND,GEMPMANE ,EDEPT EDESE,EPHONEND);

Enter value for enpeo: 5828

Enter walue for enpaane: "SAHSON'

Enter walue for dept: 'DESPATCH"

Enter walue for desg: 'PACKER'

Enter walue for pheseno: $337339373

1d 1: IKSERT INT® EWP USLUES(ZENPND,2EWPNAHE ,EDEPT,GDESE,&PHONEND)

ew 1: INSERT INT® EWP UALUES(5828,"SaMSON', DESPATCH','PaCKER",9337339373)

1 rov created.

SoL> |

14

SQL> select = fron test;

REGKD HRHE HARK H&RK2
5881 ARUN 68 88
5658 SANKAR 5 88
5885 DRILI? 48 L1

SQL> INSERT INTO EWP{EWPNO,EMPMAHE} SELECT REGND, MAME FROM TEST WHERE RECND-5848;

1 row created.

SQL> SELECT = FROM EWP,

EHPRD EHPRAME DEPT DESE PHONERD
5881 ARUN PRODUCTION SUPERVISOR 0238283828
5887 DAVID HAKUFACTUR WELDER 9.2329E+18
N6

5810 BALA

5828 SAHSON DESPATCH PACKER 9337339373
5858 SAHKAR

s |

{

TomEsoom. | Janmendil. | &85

15

SOL> SELECT = FROWM EHP;

EMPHO EHMPHAME DEPT DESG
L8a1 ARUH PRODUCTION SUPERUISOR
584y DAUID HAHUFACTUR WELDER
ING
5818 BALA
L8208 SAMSOHN DESPATCH PACKER

5848 SAHKAR

3QL> SELECT EWPHAME ,PHOHEHO FROM EMP;

EMP HAME PHOHEHD
ARUH 02382038240
DAVID 9.2329E+18
BALA

SAMSOH 0337339373
SAHKAR

3QL> SELECT DEPT,EHMPHAME ,PHOHEHO FROM EHWP;

DEPT EHPHAME PHOHEHO
PRODUCTION ARUH 02382038208
MAHUFACTUR DAUID 9.2329E+18
ING
BALA
DESPATCH SANSOH 0337330373
SAHKAR

3QL> UPDATE EWP SET DEPT='DESPATCH' WHERE EWPHAME='SAHKAR';

1 row updated.

FHOHEHD

0238283828
Q.2329E+18

03373303732

16

SQL> UPDATE EWMP SET DEPT="DESPATCH® WHERE EHPHAME="SAHKAR®
1 row updated.

S50L> SELECT = FROM EHWP;

PHOHEHOD

0238203828
9.2329E+18

0337330373

EMPHO EHWPHAME DEPT DESG
5881 ARUHN PRODUCTION SUPERUISOR
5aa7 DAVID MAHUFACTUR WELDER

ING
5818 BALA
5828 SAMSON DESPATCH PACKER
5848 SAHKAR DESPATCH

S5QL> SELECT DISTIHCT DEPT FROM EHP;

DESPATCH
MAMUFACTUR
IHG

PRODUCTION

sQL
£

Page:1 ofl | Words: 0 ajﬁ

17

SQL> SELECT = FROM EHP;

EMPHO EHMPHAME

5618 BALA
5028 SAMSOH
5048 SAHKAR
S0L> SELECT = FROM TEST;
REGHD HAME
5801 ARUH

5048 SAHKAR
58685 DHILIP

1 row updated.

SQL> SELECT = FROM EHWP
2 7

EMPHO EHMPHAME
5881 ARUN
5887 DAVID

5618 BALA
5028 SAMSOH
50848 SAHKAR

soL> |

PRODUCTIDN SUPERUISOR
MAHUFACTUR WELDER
IHG

DESPATCH PACKER
DESPATCH

PRODUCTIDHN SUPERUISOR
MAHUFACTUR WELDER
IHG

DESPATCH PACKER
DESPATCH SUPERUISOR

PHOHEHO

9238203820
9.2329E+18

9337339373

PHOHEND

9238283828
9.2329E+18

9337339373

S0L> UPDATE EMP 3ET DESG="SUPERUVISOR® WHERE EWMPHAME IN (SELECT HAME FROM TEST WHERE HMARK1=65);

18

SQL> SELECT = FROM TEST;

REGHO HAME MARKA1 MARK2
5861 ARUH 6@ 48
5848 SAHKAR 65 48
LAas DHILIP LA LA

SQL> DELETE FROM TEST WHERE HMAME= ‘'DHILIP®;

1 row deleted.

S0L> CREATE TABLE TEST1 AS SELECT * FROM TEST;
Table created.

SQL> SELECT = FROM TEST;

REGHO HAME MARKA1 MARK2
5881 ARUH 68 48
LA4d SAMKAR 65 LA

S0QL> SELECT = FROM TEST1;

REGHO HAME MARKA1 MARK2
5861 ARUH 6@ 48
5848 SAHKAR 65 48

SOQL> DELETE FROM TEST1;
2 rous deleted.
SOL> SELECT = FROM TESTH1;

no rows selected

LTI |

Result:
Thus the above experiment was successfully completed.

19

Ex No. 3 Data Control Language (DCL) and Transaction Control
Language (TCL)
Date:

Aim: To demonstrate DCL and TCL commands
Procedure:

TCL commands

1) Create atable

2) Insert records into the table

3) Using SELECT command check the inserted records

4) Type the command rollback and press enter key

5) Again check the records in the table using SELECT command. Inserted
records will not be there in the table.

6) Now one record into the table and then place a savepoint using SAVEPOINT
command.

7) Now insert two records and then execute a rollback.

8) Check the records in the table using SELECT command. You will have one
record in the table. Last two records inserted will not be there.

9) Now one record into the table and then execute COMMIT command.

10)Now if you execute roll back no records will be deleted. Because COMMIT
command will save all the previous transactions.

DCL commands

1) Let A be a super user and B be a ordinary user.

2) ‘A’ Log in as super user

3) Using Grand command grant SELECT privilege to user B

4) ‘B’ Log in as ordinary user and can use Select command to display the
records of super user A

5) If B tries to use update command (or any command other than SELECT
command) then error message indicating insufficient privileges will be
displayed.

6) Superuser A can execute any command on the table of ordinary user.

7) Superuser can revoke the privileges granted to Ordinary user using REVOKE
command.

OUTPUT

20

S0OL> SELECT == FROM ENFP;
EMPHO EHMPHAME

5881 ARUH
5887 DAUID
5818 BALA
528 SAHMS0ON
5848 SANKAR

1 row created.
S0L>» SELECT = FROM EHP;

EMPHO EMPHAME

5818 BALA
5828 SAMSOH
848 SANMKAR
5858 .JOKER

6 rows selected.

SOL> ROLLBACK;

Rollback complete.

S0L> SELECT = FROM EMP;

EMPHO EHMPHAME

PRODUCTION
HAHUFACTURIHNG

DESPATCH
DESPATCH

PRODUCTION
HAHUFACTURIHNG

DESPATCH
DESPATCH
BILLING

SUPERVIZOR
WELDER

PACKER
SUPERVISOR

SUPERUISOR
WELDER

PACKER
SUPERVISOR
CLERK

PHOHEHD

0238203820
0.2329E+18

0337339373

SOL> INSERT INHTO EMP UALUES(5858,'JOKER','BILLING','CLERK®,9234234838);

PHOMEHOD

923820838240
9.2329E+148

0337339373

0234234838

PHOHEHD

5881 ARUH
5887 DAUID
5818 BALA
528 SAHMS0ON
5848 SANKAR

SOLZ

PRODUCTION
HAHUFACTURIHNG

DESPATCH
DESPATCH

SUPERVIZOR
WELDER

PACKER
SUPERVISOR

0238203820
0.2329E+18

0337339373

21

|ro11back complete.
S0L> SELECT = FROM EHWP;
EMPHO EWMPHAHE
Lae1 ARUH
Laa7 DAVID
18 BALA

5828 SAMSON
5048 SAHKAR

1 row created.

SOL> SAUEPODIHNT 351;
Savepoint created.

S0L> SELECT = FROM EHWF;

EMPHD EMPHAME

5818 BALA
5828 SAMSON
5048 SAHKAR
5868 RAM

6 rows selected.

1 row deleted.

S0L> SAVEPOINT 523

Savepoint created.

1 row deleted.
SQL> ROLLBACK TO S2;
jRollback complete.
S0L> SELECT = FROM EMP;
EMPHD EMPHAME
5881 ARUH
587 pAVID
5818 BALA
5828 SAMSOH
5848 SAHKAR
5868 RAH

|6 rows selected.

sQL>

FRODUCTION
MAMUFACTURIHG

DESPATCH
DESPATCH

FRODUCTION
MAMUFACTURIHG

DESPATCH
DESPATCH

QUALITY CONTROL

SQL> DELETE FROM EMP WHERE EMPHO=5868;

SQL> DELETE FROH EHWP WHERE EMPHO=5868;

PRODUCTIOHN

HAMUFACTURIHNG

DESPATCH
DESPATCH

SUPERUISOR
WELDER

FACKER
SUPERUISOR

SQL> IHSERT INTO EMP VALUES{5868,'RAH', QUALITY CONTROL®

SUPERUISOR
WELDER

FACKER
SUPERUISOR
ENGIHEER

SUPERVUISOR
WELDER

PACKER
SUPERVISOR

QUALITY CONTROL EHGIHEER

FHOHEHD

9238203828
9.2329E+18

9337339373

FHOHEHD

9238203828
9.2329E+18

9337339373

9483837483

PHOHEHD

023820832820
0.2320E+18

9337339373

O4B3B37483

» EMGIMEER' ,9483837483);

22

SQL> SHOW USER
USER is "PRIMCE"
SQL> GCOHHECT LEOSLEDEDBSERUER
Connected.
SOL> SELECT * FROM PRIHNCE .STUDEHT ;
SELECT = FROM PRIHCE.STUDEHT
*
ERROR at line 1:
ORA-808942: table or view does not exist

S0L> COHMHMECT PRINCE/JAMESEDBSERVER;
IConnected.
S0OL> GRANT SELECT OH STUDEHWHT TO LEOD;

IGrant succeeded.
S0L> COWMMECT LEO/LEOE@DBSERVER;

IConnected.
SOL> SELECT * FROM PRIMCE.STUDEHNT;

REGHOD HAME DEPT M1 M2
M3 M4 M5 TOTAL AVERAGE REsU G RAHK
4.22089E+18 Annie MCA 65 7o
88 68 67 356 71.2 2
4.2289E+18 Prince MCA
4. 2209E+18 Divya S MCA 61 77
66 70 68 351 7a.2 3
REGHD HAME DEPT M1 M2
M3 M4 g TOTAL AVERAGE RESU G RAHK
4.2209E+18 Elayaraja T MCA c1 63
68 i1 53 208 LO.6 7
4.2209E+18 Ezhilarasan D MCA 61 72
65 L 5o 31 66 .2 5
4_.22089E+18 Shanmuga Priya IT

12 rows selected.

SQL> UPDATE PRIMCE .STUDEMT SET MAME='Diuvya S';
UPDATE PRIHCE.STUDENT SET HAME='Diwya §°

*

ERROR at line 1:
ORA-810831: insufficient privileges

soL> |

Result:
Thus the above experiment was successfully completed.

23

Ex. No. 4 JOINS AND NESTED QUERIES
Date:
Aim: To demonstrate Joins and Nested Queries

Procedure

In nested queries, a query is written inside a query. The result of inner query is used
in execution of outer query. We will use STUDENT, COURSE, STUDENT_COURSE
tables for understanding nested queries.

STUDENT

S ID S NAME S _ADDRESS S_PHONE S_AGE
S1 RAM DELHI 9455123451 18
S2 RAMESH GURGAON 9652431543 18
S3 SUWJIT ROHTAK 9156253131 20
S4 SURESH DELHI 9156768971 18
COURSE

C_ID C_NAME

Cl DSA

C2 Programming

C3 DBMS

STUDENT_COURSE

SID C_ID
s1 c1
S1 C3
s2 c1
S3 C2
sS4 C2
sS4 C3

There are mainly two types of nested queries:

Independent Nested Queries: In independent nested queries, query execution starts from
innermost query to outermost queries. The execution of inner query is independent of outer
query, but the result of inner query is used in execution of outer query. Various operators like
IN, NOT IN, ANY, ALL etc are used in writing independent nested queries.

IN: If we want to find out S_ID who are enrolled in C NAME ‘DSA’ or ‘DBMS’, we can
write it with the help of independent nested query and IN operator. From COURSE table, we
can find out C_ID for C NAME ‘DSA’ or DBMS’ and we can use these C_IDs for finding
S_IDs from STUDENT_COURSE TABLE.

24

STEP 1: Finding C_ID for C_NAME ="DSA’ or ‘DBMS’

Select C_ID from COURSE where C_NAME = ‘DSA’ or C_NAME = ‘DBMS’

STEP 2: Using C_ID of step 1 for finding S_ID
Select S_ID from STUDENT_COURSE where C_ID IN

(SELECT C_ID from COURSE where C_NAME = ‘DSA’ or C NAME="DBMS");

The inner query will return a set with members C1 and C3 and outer query will return those
S_IDs for which C_ID is equal to any member of set (C1 and C3 in this case). So, it will
return S1, S2 and S4.

Note: If we want to find out names of STUDENTSs who have either enrolled in ‘DSA’ or
‘DBMS’, it can be done as:

Select S NAME from STUDENT where S_ID IN
(Select S_ID from STUDENT_COURSE where C_ID IN

(SELECT C_ID from COURSE where C NAME="DSA’ or C NAME="DBMS”));

NOT IN: If we want to find out S_IDs of STUDENTS who have neither enrolled in ‘DSA’
nor in ‘DBMS’, it can be done as:

Select S_ID from STUDENT where S_ID NOT IN
(Select S_ID from STUDENT_COURSE where C_ID IN

(SELECT C_ID from COURSE where C NAME="DSA’ or C NAME="DBMS”));

The innermost query will return a set with members C1 and C3. Second inner query will
return those S_IDs for which C_ID is equal to any member of set (C1 and C3 in this case)
which are S1, S2 and S4. The outermost query will return those S_IDs where S_ID is not a
member of set (S1, S2 and S4). So it will return S3.

25

Co-related Nested Queries: In co-related nested queries, the output of inner query depends on
the row which is being currently executed in outer query. e.g.; If we want to find out
S_NAME of STUDENTS who are enrolled in C_ID ‘C1’, it can be done with the help of co-
related nested query as:

Select S_NAME from STUDENT S where EXISTS

(select * from STUDENT_COURSE SC where S.S_ID=SC.S_ID and SC.C_ID="C1);

For each row of STUDENT S, it will find the rows from STUDENT_COURSE where
S.S ID=SC.S ID and SC.C ID="C1’. If for a S_ID from STUDENT 8§, atleast a row exists
in STUDENT COURSE SC with C_ID="C1’, then inner query will return true and
corresponding S_ID will be returned as output.

JOIN OPERATIONS
A SQL Join statement is used to combine data or rows from two or more tables based on a
common field between them. Different types of Joins are:

INNER JOIN

LEFT JOIN

RIGHT JOIN

FULL JOIN

Consider the two tables below:

Student
ROLL_NO NAME ADDRESS PHONE Age
1 HARSH DELHI RO 18
2 PRATIK EBIHAR OO 19
3 RIYANEKA SILIGURI NN 20
4 DEEP RAMMNAGAR OO 18
5 SAFPTARHI KOLKATA EEEEEE L L LR 19
6 DHANRAJ BARABAJAR RS E 20
7 ROHIT BALURGHAT RS RS 18
8 NIRAJ ALIPUR RS 19
StudentCourse

26

COURSE_ID ROLL_NO
1 1
2 2
2 3
3 4
1 2
4 9
5 10
4 11

The simplest Join is INNER JOIN.

INNER JOIN: The INNER JOIN keyword selects all rows from both the tables as long as the

condition satisfies. This keyword will create the result-set by combining all rows from both

the tables where the condition satisfies i.e value of the common field will be same.
Syntax:

SELECT tablel.columnl,tablel.column2,table2.columni,....

FROM tablel

INNER JOIN table2

ON tablel.matching_column = table2.matching_column;

tablel: First table.
table2: Second table
matching_column: Column common to both the tables.

Note: We can also write JOIN instead of INNER JOIN. JOIN is same as INNER JOIN.

Example Queries(INNER JOIN)

This query will show the names and age of students enrolled in different courses.
SELECT StudentCourse. COURSE_ID, Student. NAME, Student. AGE FROM Student
INNER JOIN StudentCourse

ON Student.ROLL_NO = StudentCourse.ROLL_NO;

Output:

27

COURSE_ID NAME Age
1 HARSH 18
2 FRATIK 19
2 RIYAMNEA 20
3 DEEP 18
1 SAPTARHI 19

LEFT JOIN: This join returns all the rows of the table on the left side of the join and
matching rows for the table on the right side of join. The rows for which there is no matching
row on right side, the result-set will contain null. LEFT JOIN is also known as LEFT OUTER
JOIN.

Syntax:

SELECT tablel.columnl,tablel.column2,table2.columni,....
FROM tablel

LEFT JOIN table2

ON tablel.matching_column = table2.matching_column;

tablel: First table.

table2: Second table

matching_column: Column common to both the tables.

Note: We can also use LEFT OUTER JOIN instead of LEFT JOIN, both are same.

Example Queries(LEFT JOIN):

SELECT Student. NAME,StudentCourse. COURSE_ID
FROM Student

LEFT JOIN StudentCourse

ON StudentCourse.ROLL_NO = Student.ROLL_NO;

Output:

NAME COURSE_ID
HARSH 1
FRATIK 2

RIYAMNKA 2
DEEF 3

SAPTARHI 1

DHANRAJ MULL
ROHIT MNULL
NIRAJ MNULL

28

RIGHT JOIN: RIGHT JOIN is similar to LEFT JOIN. This join returns all the rows of the
table on the right side of the join and matching rows for the table on the left side of join. The
rows for which there is no matching row on left side, the result-set will contain null. RIGHT
JOIN is also known as RIGHT OUTER JOIN.

Syntax:

SELECT tablel.columnl,tablel.column2,table2.columni,....
FROM tablel

RIGHT JOIN table2

ON tablel.matching_column = table2.matching_column;

tablel: First table.
table2: Second table
matching_column: Column common to both the tables.

Result : Thus the above experiment was successfully completed.

29

Ex. No. 5 High level language extensions — PL/SQL

Date:
Aim: To write simple program using PL/SQL

Procedure:
CREATE TABLE T1 (

e INTEGER,
f INTEGER
)7

DELETE FROM T1;
INSERT INTO T1 VALUES (1, 3);
INSERT INTO T1 VALUES (2, 4);

/* Above is plain SQL; below is the PL/SQL program.

DECLARE
a NUMBER;
b NUMBER;
BEGIN
SELECT e, f INTO a,b FROM Tl WHERE e>1;
INSERT INTO T1 VALUES (b,a);
END;

run;

*/

Fortuitously, there is only one tuple of T1 that has first component greater than 1, namely (2,4). The

INSERT statement thus inserts (4,2) into T1.

30

OUTPUT:

SQL> CREATE TABLE T1(
2 e HUHMBER(3),
3 f HUMBER(3));
Table created.
SQL> DELETE FROH T1;:
8 rows deleted.
SOL> INSERT IHTO T1 UALUES({1, 3):
1 row created.

SOL> INSERT INTO T1 UALUES(Z, 4);

1 row created.

SQL> ED
Wrote File afFiedt.buf

1% IHSERT INTD T1 UALUES(Z, 4)
SOL> ED;
Wrote file afiedt.buf

1 DECLARE
2 a MUMBER;
3 b MUMBER;
4L BEGIH
5 SELECT e,.f IHTO a,b FROM T1 WHERE el1;
i} INSERT INTO T1 UALUES(bh,a};
7= EHD;
sQL> /

PL/SQL procedure successfully completed.

sqQL> |

31

soL> |

SQL> ED;
Wrote File afiedt.buf
1 DECLARE
2 a HUMBER ;
3 b HUMBER ;
4 BEGIH
c SELECT e,f INTD a,b FROWM T1 WHERE e>1;
é IMSERT INTOD T1 UALUES(b,a);
7= END:
S0QL> SELECT = FROM T1;
E F
1 3
2 4
L 2

EXECUTING COMMANDS STORED IN FILE

sSQL>
1 row
SOQL>

1 rouw

sQL>

IMSERT INTO T1 UALUES{1,3);
created.
IMSERT IHTO T4 UALUES{Z.,4);

created.

SOL> @ETEST.S(L
1 DECLARE

2 a HUMBER;

3 b HUMBER;

4 BEGIH

L SELECT e,f INMTOD a,b FROM T1 WHERE el1;

i}

7

INSERT INMTD T1 UALUES(b,a);

* END;
IPLASQL procedure successfully completed.

SQL> SELECT = FROHM TH1;

E F
1 3
2 4
4 2

RESULT:

Thus the above experiment was successfully completed.

32

Ex No. 6 Write a PL/SQL block to satisfy some conditions by accepting input from
the user.
Date:

Aim: To Write a PL/SQL block to satisfy some conditions by accepting input from the user

Syntax of taking input from the user:
<variablename>:=:<variablename>;

Just by writing only this statement we will able to take input from user.

Example:

First write the given code in your SQL command prompt
declare
iinteger;j
integer; s
integer;
begin
ii=ti; - observe this statement. This statement will tell the machine to take input of i
through user.

ji=tj; - observe this statement. This statement will tell the machine to take input of j
through user.

S:=i+j;

dbms_output.put_line('sum of '| |i||"and | |j||"is '] |s);

end;

33

Ex No. 7 Write a PL/SQL block that handles all types of exceptions.
Date:

Aim: To a PL/SQL block that handles all types of exceptions
Syntax for Exception Handling

The general syntax for exception handling is as follows. Here you can list down as many exceptions
as you can handle. The default exception will be handled using WHEN others THEN —

DECLARE
<declarations section>
BEGIN
<executable command (s)>
EXCEPTION
<exception handling goes here >
WHEN exceptionl THEN
exceptionl-handling-statements
WHEN exception2 THEN
exception2-handling-statements
WHEN exception3 THEN
exception3-handling-statements
WHEN others THEN
exception3-handling-statements
END;

Example

Let us write a code to illustrate the concept. We will be using the CUSTOMERS table we had created

and used in the previous chapters —

PL SQL CODE CODE:
DECLARE
c_1id customers.id%type := 8;

c _name customerS.NameStype;
c_addr customers.addressstype;
BEGIN
SELECT name, address INTO ¢ name, c_ addr
FROM customers
WHERE id = c_id;

DBMS OUTPUT.PUT LINE ('Name: '|[| c name);
DBMS OUTPUT.PUT LINE ('Address: ' || c¢_addr);
EXCEPTION
WHEN no data found THEN
dbms output.put line ('No such customer!');
WHEN others THEN
dbms output.put line('Error!');
END;

/

When the above code is executed at the SQL prompt, it produces the following result -

No such customer!

34

PL/SQL procedure successfully completed.

The above program displays the name and address of a customer whose ID is given. Since there is no
customer with ID value 8 in our database, the program raises the run-time
exception NO_DATA_FOUND, which is captured in the EXCEPTION block.

Raising Exceptions
Exceptions are raised by the database server automatically whenever there is any internal database

error, but exceptions can be raised explicitly by the programmer by using the command RAISE.
Following is the simple syntax for raising an exception -

DECLARE

exception name EXCEPTION;
BEGIN

IF condition THEN

RAISE exception name;

END TIF;
EXCEPTION

WHEN exception name THEN

statement;
END;

You can use the above syntax in raising the Oracle standard exception or any user-defined exception.
In the next section, we will give you an example on raising a user-defined exception. You can raise

the Oracle standard exceptions in a similar way.

User-defined Exceptions

PL/SQL allows you to define your own exceptions according to the need of your program. A user-
defined exception must be declared and then raised explicitly, using either a RAISE statement or the
procedure DBMS_STANDARD.RAISE_APPLICATION_ERROR.

The syntax for declaring an exception is —
DECLARE

my-exception EXCEPTION;

Example

The following example illustrates the concept. This program asks for a customer ID, when the user
enters an invalid ID, the exception invalid_id is raised.

DECLARE
c _1d customers.id%type := &cc_id;

Cc _name customerS.NameStype;

c_addr customers.addressStype;

-— user defined exception
ex invalid id EXCEPTION;
BEGIN

35

IF ¢ id <= 0 THEN
RAISE ex invalid id;
ELSE
SELECT name, address INTO c name, c_ addr
FROM customers
WHERE id = c_id;

DBMS OUTPUT.PUT LINE ('Name: '|| c_name);
DBMS OUTPUT.PUT LINE ('Address: ' || c_addr);
END TF;
EXCEPTION
WHEN ex invalid id THEN
dbms output.put line ('ID must be greater than zero!');
WHEN no_data found THEN
dbms output.put line ('No such customer!');
WHEN others THEN
dbms output.put line('Error!'");
END; B B
/

When the above code is executed at the SQL prompt, it produces the following result -
Enter value for cc_id: -6 (let's enter a value -6)

old 2: c_id customers.id%type := &cc_id;

new 2: c_id customers.id%type := -6;

ID must be greater than zero!

PL/SQL procedure successfully completed.
Pre-defined Exceptions

PL/SQL provides many pre-defined exceptions, which are executed when any database rule is
violated by a program. For example, the predefined exception NO_DATA_FOUND is raised when a
SELECT INTO statement returns no rows. The following table lists few of the important pre-defined

exceptions -
Exception Oracle | SQLCODE Description
Error
ACCESS_INTO_NULL 06530 -6530 It is raised when a null object is
automatically assigned a value.
CASE_NOT_FOUND 06592 -6592 It is raised when none of the choices in
the WHEN clause of a CASE
statement is selected, and there is no
ELSE clause.
COLLECTION_IS_NULL | 06531 -6531 It is raised when a program attempts to

apply collection methods other than
EXISTS to an uninitialized nested table
or varray, or the program attempts to

36

DUP_VAL_ON_INDEX

INVALID_CURSOR

INVALID_NUMBER

LOGIN_DENIED

NO_DATA_FOUND

NOT_LOGGED_ON

PROGRAM_ERROR

ROWTYPE_MISMATCH

SELF_IS_NULL

STORAGE_ERROR

TOO_MANY_ROWS

VALUE_ERROR

ZERO_DIVIDE

00001

01001

01722

01017

01403

01012

06501

06504

30625

06500

01422

06502

01476

-1001

-1722

-1017

+100

-1012

-6501

-6504

-30625

-6500

-1422

-6502

1476

assign values to the elements of an
uninitialized nested table or varray.

It is raised when duplicate values are
attempted to be stored in a column
with unique index.

It is raised when attempts are made to
make a cursor operation that is not
allowed, such as closing an unopened
cursor.

It is raised when the conversion of a
character string into a number fails
because the string does not represent
a valid number.

It is raised when a program attempts to
log on to the database with an invalid
username or password.

It is raised when a SELECT INTO
statement returns no rows.

It is raised when a database call is
issued without being connected to the
database.

It is raised when PL/SQL has an
internal problem.

It is raised when a cursor fetches value
in a variable having incompatible data

type.

It is raised when a member method is
invoked, but the instance of the object
type was not initialized.

It is raised when PL/SQL ran out of
memory or memory was corrupted.

It is raised when a SELECT INTO
statement returns more than one row.

It is raised when an arithmetic,
conversion, truncation, or
sizeconstraint error occurs.

It is raised when an attempt is made to
divide a number by zero.

37

Ex. No. 8 Use of Cursors, Procedures and Functions
Date:

Aim: To demonstrate the use of Cursors, Procedures and Functions

Procedure:

Cursor
Declare temporary variables to store the fields of the records.
Declare the cursor
Open the cursor
Start a Loop
Fetch the field values of record in the cursor to variables
Do the required processing.
Update the processed record.
Repeat the loop until end of the file is reached
Stop

©oOoNOO~WDRE

Procedures
Procedure to find smallest of two humbers
1. Declare the required number of variables
Create a procedure for finding minimum of two numbers

2.
3. From the main program call the procedure with required parameters.
4.

Display the output.

Program Using Cursor
DECLARE
C_regno test.regno%itype;
C_name test.name%itype;
c_markl test.mark1%type;
c_mark?2 test.mark2%type;
i number(2);
[*type avg IS VARRAY(10) OF number(6,2); */
c_avg number(6,2);
cursor ¢_stud is select regno,name,markl,mark2,avg from test;
BEGIN
OPEN c_stud;
- i:=1;
LOOP
FETCH c_stud into ¢c_regno,c_name,c_markl, c_mark2,c_avg;
c_avg := (c_markl + c_mark2)/2;
UPDATE test SET avg=c_avg WHERE regno=c_regno;
EXIT WHEN c_stud%notfound;
END LOOP;
CLOSE c_stud;
END;

Program Using Procedure

38

DECLARE
a number;
b number;
Cc number;
PROCEDURE findMin(x IN number, y IN number, z OUT number) IS
BEGIN
IF x <y THEN
Z:=X;
ELSE
z.=y,
END IF;
END;

BEGIN

a:=23;

b:=45;

findMin(a, b, c);

dbms_output.put_line(" Minimum of (23, 45) : ' || ¢);
END;
/

OUTPUT:

39

sSQL:

s0L>

ed;

Mrote file afiedt.buf

1 DECLARE
2 c_reqno test.regno%type;
3 c_name test_nameZtype;
h c_marki test.marki1%type;
5 c_mark? test_mark2%type;
i i number{2};
7 f=type avg IS UVARRAY(18) OF number{6,2}); =/
8 Cc_avg number(6,2);
9 cursor c_stud is select regno,name,marki,mark?,avg from test;
18 BEGIH
11 OPEH c_stud;
12 -— izz=1;
13 LOOP
14 FETCH c_stud into c_regno,c_name,c_markl, c_mark?,c_avg;
15 c_auwg = {c_mark1 + c_mark2)};s2;
16 UPDATE test SET avg=c_avg WHERE regno=c_regno;
17 EXIT WHEH c¢_stud%notfound;
18 EHD LOOP;
19 CLOSE c_stud;
28= EHD,;
sqQL> /

|IPL/SOL procedure successfully completed.

select *= Ffrom test;

REGHD HAHE MARK HARKZ
5861 ARUH 6@ 4
5848 SAHKAR 65 48

PROCEDURE

SQL>
1
2
3

SQL>
SQL>
This
This
This

sQL>

<

BEGIHN
dbms_output.enable;
dbms_output.put line{'This is to test');

L= END;

IPL/SOL procedure successfully completed.

set serveroutput on;
@ testing.sql;

is to test

is to test

is to test

IPL/SOL procedure successfully completed.

PROCEDURE

40

proc.sql - Motepad

File= Edit Format “ew Help

DECLARE

a number;

b number;

¢ humber;

PROCEDURE findMin{x IN number, v IN number, z OUT number) IS
BEGIN

IF x < y THEN

Zi= X;

ELSE

%indMin(a, b, c);
dbms_output.put_Tline(' Minimum of (23, 45) = " ||);
END;

50L> set serveroutput on
50L> @ proc.sql;
Minimum of (23, 45) : 23

PL/SQL procedure successfully completed.

FUNCTIONS

41

S0L> ed func.sql;

S0QL> CREATE OR REPLACE FUNMCTION totalstudents

2 RETURH number I3

3 total number(2) = 8;

4 BEGIH

5 SELECT count({=) into total FROH test;
G RETURH total;

7 EHND;

8 /

Function created.

SO0L> @ func.sql;

PL/SOL procedure successfully completed.
S0L> set serveroutput on

SOL> @ func.sql;

Total no. of students: 2

PL/SQL procedure successfully completed.

S0QL

rd

42

Ex. No. 9 . Oracle or SQL Server Triggers — Block Level — Form Level
Triggers

Date:

Aim: To demonstrate the use of Triggers

Procedure:

1.

Create a table named emp with fields for empno, name, department,
designation and salary.

2. Create a trigger using CREATE OR REPLACE TRIGGER command.

3. In the trigger write code in such a way that when a new record is inserted or
updated or deleted the trigger shoots up and do the following

4. Find difference between existing salary and new salary

5. Display the Old Salary, New Salary and the Difference between old and new
Salaries.

6. Insert arecord into the table emp and test whether trigger is executed.

PROGRAM

CREATE OR REPLACE TRIGGER display_salary_changes
BEFORE DELETE OR INSERT OR UPDATE ON customers
FOR EACH ROW

WHEN (NEW.ID > 0)

DECLARE

sal_diff number;

BEGIN

sal_diff := :NEW.salary - :OLD.salary;
dbms_output.put_line('Old salary: ' || :OLD.salary);
dbms_output.put_line('New salary: ' || :NEW.salary);
dbms_output.put_line('Salary difference: ' || sal_diff);

END;

/

QUTPUT:

43

SQL> ALTER TABLE EHWP ADD({SALARY HUMBER({1@8,2})};
Table altered.

SQL> ED;
Wrote file afiedt.buf

1 CREATE OR REPLACE TRIGGER display_salary_changes BEFORE DELETE OR INSERT OR UPDATE
2 OH emp
3 FOR EACH ROW WHEHN (NEW.EHPND > @)
4 DECLARE sal_diff number;
5 BEGIH
1] sal_diff == :=MEW.salary - :0LD.salary; dbms_output.put_line{ 01d salary: ‘' || :z0LD.salary);
7 dbms_output.put_line('New salary: ' || :HEW.salary);
8 dbms_output.put_line('Salary difference: ° || sal_diff};
9% EHD;
sQL> /

Trigger created.

SOL> INSERT INTO EWP UALUES(5855,° KUMAR', "MAINTENANCE
2 ',"SUPERVISOR' ,8389233344,6000);

01d salary:

Hew salary: 60688

Salary difference:

1 rouw created.
soL> |
£

44

Ex. No. 10 Embedded SQL or Database Connectivity
Date:
Aim: To demonstrate embedded SQL or Database connectivity

Procedure:

1. Develop database tables in oracle

2. Design the required screen in Visual Basic with all the required tools and objects(text
boxes, labels, combo box, option box)

3. Write the coding for connecting the oracle database table with the visual basic
application.

4. Run the application.

5. Verify the database connectivity by adding, deleting and viewing records through
Visual Basic application.

Program:
Dim cnnl As ADODB.Connection

Dim rs As ADODB.Recordset
Dim strcnn As String

Private Sub ADD_Click()

With rs
.Fields("empname") = nametxt.Text
.Fields("dob") = DTPickerl.Value
.Fields("gender") = maleopt.Value
.Fields("designation") = desgtxt.Value
.Fields("dept") = deptcbo.Value
.Fields("addr") = addrtxt.Text
.Fields("basic") = basictxt.Text
.Update

End With
rs.AddNew

End Sub

Private Sub cancelcmd_Click()
rs.CancelBatch
cnnl.CommitTrans

End Sub

Private Sub clrcmd_Click()
nametxt. Text =""
DTPicker1.Value =""
maleopt.Value = False
desgtxt.Value =""
deptcbo.Value =
addrtxt.Text=""
basictxt.Text=""

45

End Sub

Private Sub delcmd_Click()
cnnl.BeginTrans
rs.Delete
rs.UpdateBatch
cnnl.CommitTrans
MsgBox ("Record Deleted")
End Sub

Private Sub endcmd_Click()
End
End Sub

Private Sub firstcmd_Click()
On Error GoTo I1:

rs.Open "Select * from emp1", cnn1, adOpenKeyset, adLockBatchOptimistic
[1: rs.MoveFirst

transfer

End Sub

Private Sub Form_Load()
Form2.WindowState =2

Set cnnl = New ADODB.Connection

Set rs = New ADODB.Recordset

rs.CursorLocation = adUseClient

'strcnn = "User ID =leo; Password=leo; Data Source = dbserver; Persist Security Info =False"
strcnn = "Provider=MSDAORA.1;User ID=leo;Password=leo;Data Source=dbserver;Persist Security
Info=False"

'strcnn = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=Z:\emp.mdb;Persist Security Info=False"

cnnl.0Open strcnn

End Sub

Private Sub lastcmd_Click()
On Error GoTo I5:

rs.Open "Select * from emp1", cnnl, adOpenKeyset, adLockBatchOptimistic
I5: rs.Movelast

transfer

End Sub
Private Sub modcmd_Click()
On Error GoTo 13:
rs.Open "Select * from emp1", cnn1, adOpenKeyset, adLockBatchOptimistic
I3: cnnl.BeginTrans

End Sub

Private Sub newcmd_Click()
46

On Error GoTo 16:
rs.Open "Select * from emp1", cnnl, adOpenKeyset, adLockBatchOptimistic

[6: cnnl.BeginTrans
rs.AddNew

End Sub

Private Sub nextcmd_Click()
On Error GoTo 12:
rs.Open "Select * from emp1", cnnl, adOpenKeyset, adLockBatchOptimistic
[2: rs.MoveNext
transfer
End Sub

Private Sub prevemd_Click()
On Error GoTo 4:

rs.Open "Select * from empl", cnnl, adOpenKeyset, adLockBatchOptimistic
|4: rs.MovePrevious

transfer

End Sub

Private Sub savecmd_Click()

With rs
.Fields("empname") = nametxt.Text
.Fields("dob") = DTPicker1.Value
If maleopt.Value = True Then
.Fields("gender") = "Male"
Else

.Fields("gender") = "Female"
End If
.Fields("designation") = desgtxt.Text

.Fields("dept") = deptcbo.Text
.Fields("addr") = addrtxt.Text
.Fields("basic") = basictxt.Text
.UpdateBatch

End With

cnnl.CommitTrans

MsgBox ("Record is saved successfully")

End Sub

Public Sub transfer()
With rs
If .EOF = False Then
nametxt.Text = .Fields("empname")
DTPickerl.Value = .Fields("dob")

47

If .Fields("gender") <> 0 Then
maleopt.Value = True
Else
femaleopt.Value = True
End If
desgtxt.Text = .Fields("designation")
deptcbo.Text = .Fields("dept")
addrtxt.Text = .Fields("addr")
basictxt.Text .Fields("basic")
End If
End With

End Sub
Output

1* create table empi{empname varchar2{25),dob varchar2{18),gender varchar2(6),designation varchar2
sSQL> /

Table created.

sQL>
<1\

n Project - Microsofl Visual Basic [design] - [Project! - Form2 (Form))

1]

B fle [Yew fromet Fomet Debop Bun Query Disgram Took add-re Window Quadkfy PursCormrags teb P 4E.3)
S-a-MEB fR@AN -) | « MPAEFRR NG Trwomam Fissxis
< R e =iz S s | FSEHER SMEREBR ;
e - o >
_Gowed | [l 8=
R s e e ST e e R = D Project] (empProject 1.vby
e 3 = U8 Porms
A fei BY Form {anpFormd.fra)
” B R B P e e P
P& st peieaRa e fibie
S:4=0) RedE 1 s =
an ¥ i par d
: : A n A
G o TeTEeaviis sosieees T SES
DATE OF BRTH 2 d) < >
- & | Eowe —
& 2o e e e M TS A £
&= T »
ié. GENDER 1o T MALE o FEMALE o 'OFNF‘(g::
fl Ja %
. B oeesarment =l o s
— = : i
CESIGHATION | g
old \ 150 2 I - " | <5 2y 7o e 4 115 O . D 2 g HpCorkectld 0
: o DERETE j Lot 3850
¥ M Cobor £ seocococ
N (MoLszPonter 0 - Default
St sil e I o O L T . CANCEL e R EDroptods |0 - oo
. p F PiheToleft Fase
‘ . yle 0 - Zancard
TabStop Trum ~
Caption
¥ Retumsfssts the test deplasd nan
< > (obgmct’s tithe bar or befowy an objeet’s

-Téié_n T M Dwraionn 2 W0 manas o T MCT111 ORMS L

ﬂ Wh- i e e

48

~ Form2 E|@]Et

N ‘
Bar I
DATE OF BRTH | ,
NEW NEXT
3
GENDER o - PEMALE MODIFY I
DEPARTMENT l SAVE ‘
DESIGNATION]
DELETE I
ADDRESS EANCEL J
e J
BASIC PAY] ‘

LS Mroml OF,, = i Paimad Hom + Orcn UM &2 2

50L> select = from empl;

EMPHAME DOB GEHMDER DESIGHATIOHN
DEPT ADDR BASIC
Leo 273/72M14 True Technician
B.C.A Kattankulathur 15080848

S30L> SELECT = FROWM EHMP1;

EMPHAME DOB GEHMDER DESIGHATIOHN
DEPT ADDR BASIC
Leo 273752414 True Technician
B.C.A Kattankulathur 158848
Rani LiG6f2014 Female TEACHER

HCA GCHEHHAI 16888
sSQL>

49

Ex. No. 11. Front-end tools — Visual Basic/Developer 2000
Date:
Database connectivity using Front End Tools (Application Development using Oracle/ Mysq]l)
Mini Project
a) Inventory Control System.
b) Material Requirement Processing.
c) Hospital Management System.
d) Railway Reservation System.
e) Personal Information System

Aim: To demonstrate embedded SQL or Database connectivity

Procedure:
1. Develop database tables in oracle

2. Design the required screen in Visual Basic with all the required tools and objects(text

boxes, labels, combo box, option box)

3. Write the coding for connecting the oracle database table with the visual basic
application.

4. Run the application.

5. Verify the database connectivity by adding, deleting and viewing records through

Visual Basic application.

Program:
Dim cnnl As ADODB.Connection

Dim rs As ADODB.Recordset
Dim strcnn As String

Private Sub ADD_Click()

With rs
.Fields("sname") = nametxt.Text
.Fields("dob") = DTPickerl.Value
.Fields("gender") = maleopt.Value
.Fields("UG") = ugchk.Value
.Fields("PG") = pgchk.Value
.Fields("ugcourse") = ugcourse.Text
.Fields("pgcourse") = pgcourse.Text
.Update

End With
rs.AddNew

End Sub

Private Sub cancelcmd_Click()
rs.CancelBatch
cnnl.CommitTrans

End Sub

Private Sub clrcmd_Click()

50

nmn

nametxt.Text =
maleopt.Value = True

femaleopt.Value = True
ugchk.Value=0
pgchk.Value =0
ugcourse.Text =
pgcourse.Text =

End Sub

mnmn

Private Sub delcmd_Click()
cnnl.BeginTrans
rs.Delete
rs.UpdateBatch
cnnl.CommitTrans
MsgBox ("Record Deleted")
End Sub

Private Sub endcmd_Click()
End
End Sub

Private Sub firstcmd_Click()
On Error GoTo I1:

rs.Open "Select * from personal”, cnnl, adOpenKeyset, adLockBatchOptimistic
I1: rs.MoveFirst

transfer

End Sub

Private Sub Form_Load()
Form2.WindowState = 2

Set cnnl = New ADODB.Connection

Set rs = New ADODB.Recordset

rs.CursorLocation = adUseClient

strcnn = "User ID =scott; Password=tiger; Data Source = leo; Persist Security Info =False"
'strcnn = "Provider=MSDAORA.1;User ID=scott;Password=tiger;Data
Source=dbserver;Persist Security Info=False"

strcnn = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=E:\student.mdb;Persist Security
Info=False"

cnnl.0pen strcnn

End Sub

Private Sub lastcmd_Click()
On Error GoTo I5:

51

rs.Open "Select * from personal", cnnl, adOpenKeyset, adLockBatchOptimistic
I5: rs.Movelast
transfer

End Sub

Private Sub modcmd_ Click()
On Error GoTo 13:

rs.Open "Select * from personal”, cnnl, adOpenKeyset, adLockBatchOptimistic
I3: cnn1.BeginTrans

End Sub

Private Sub newcmd_Click()
On Error GoTo I6:
rs.Open "Select * from personal”, cnnl, adOpenKeyset, adLockBatchOptimistic

I6: cnnl.BeginTrans
rs.AddNew

End Sub

Private Sub nextcmd_Click()
On Error GoTo 12:
rs.Open "Select * from personal”, cnnl, adOpenKeyset, adLockBatchOptimistic
[2: rs.MoveNext
transfer
End Sub

Private Sub pgchk_Click()
If pgchk.Value = 1 Then
pgcourse.Enabled = True
Else

pgcourse.Enabled = False
End If
End Sub

Private Sub prevemd_Click()
On Error GoTo 14:

rs.Open "Select * from personal”, cnnl, adOpenKeyset, adLockBatchOptimistic
|4: rs.MovePrevious

transfer

End Sub

Private Sub savecmd_Click()
With rs

52

.Fields("sname") = nametxt.Text
.Fields("dob") = DTPicker1.Value
.Fields("gender") = maleopt.Value
.Fields("UG") = ugchk.Value
.Fields("PG") = pgchk.Value
.Fields("ugcourse") = ugcourse.Text
.Fields("pgcourse") = pgcourse.Text
.UpdateBatch

End With

cnnl.CommitTrans

MsgBox ("Record is saved successfully")

End Sub

Private Sub ugchk_Click()
If ugchk.Value = 1 Then
ugcourse.Enabled = True
Else

ugcourse.Enabled = False
End If

End Sub

Public Sub transfer()
With rs
If .EOF = False Then
nametxt.Text = .Fields("sname"
DTPickerl.Value = .Fields("dob")
If .Fields("gender") <> 0 Then
maleopt.Value = True
Else
femaleopt.Value = True

End If

ugchk.Value = .Fields("UG")
pgchk.Value = .Fields("PG")
ugcourse.Text = .Fields("ugcourse")
If .Fields("pgcourse") <>"" Then
pgcourse.Text = .Fields("pgcourse")

End If

End If

End With

End Sub

53

w Projectl - Microsofl Visual Basic [design] - [Project - Form2 {Farm)] ';”?'—4|
B e [e Eromet fomet [ebup Rin Ouery Dlogam Took gdlis Wiedow Quetfy PueComrage Heb =i x]
B-a-TEE BAc) « NEPAWRREADNG T 00 Fewnsn |

S wA R PR ; % % M @ﬂﬂﬂn‘] Hﬂﬂﬂﬂﬂ
| B I = 7 R R e e e e pe ey o e
o || 2 e .

)| m——— B e o)

o R g e = %5 Porms

............ 5 Feirg -

e | Ed IS B B BN) 3 VR 003 D R R s
i B i | 3o = 53 : LG Dl NEW
Vo e e e R e e e s s e e S e e
an ¥
&oy
|
ﬂ\
=R .:::ébrur'
=

s H s
D)
A Q= e i

DELETE

CANCEL

Trum

L~ Teareparent
M5 Sans Serf
Font Tranmanent | Tris -

¥ Mk Davaly w - I SR LR - P

54

	CS3466 - DATABASE MANAGEMENT SYSTEMS LABORATORY
	Prepared by
	• SQL is provided in two modes.
	SQL features
	SQL Language commands
	ORACLE DATA TYPES
	DATA DEFINITION LANGUAGE (DDL)
	Data Manipulation Language (DML)
	TRANSANCTION CONTROL LANGUAGE(TCL)
	COMMIT:
	Syntax:

	ROLLBACK
	Syntax:

	SAVEPOINT:
	PRIVILEGE COMMANDS (Data Control Commands)
	Syntax:
	Syntax: (1)

	Procedure
	Function
	Ex No. 1 SQL – Structured Query Language Date:
	Procedure:
	OUTPUT
	Ex No. 2 Data Manipulation Language (DML) Date:
	Procedure: (1)
	Example : Method-1
	Example: Method-2
	Example : Method-3
	Method-4

	2) SELECT
	Syntax

	To eliminate duplicate rows in the result, include the distinct clause in the ‘select’ command
	SELECT command with WHERE clause Syntax:
	UPDATE
	Method -1 WHERE clause Syntax:
	Method-2 Arithmetic Operations
	Method-3 UPDATE with another table
	DELETE
	Syntax:

	OUTPUT:
	Ex No. 3 Data Control Language (DCL) and Transaction Control
	Date:
	Procedure: (2)
	OUTPUT (1)
	Ex. No. 4 JOINS AND NESTED QUERIES
	Aim: To demonstrate Joins and Nested Queries
	STUDENT
	C_ID C_NAME C1 DSA
	STUDENT_COURSE
	JOIN OPERATIONS
	Syntax:
	Output:
	Syntax: (1)
	Ex. No. 5 High level language extensions – PL/SQL Date:
	Procedure: (3)
	OUTPUT: (1)
	RESULT:
	Ex No. 7 Write a PL/SQL block that handles all types of exceptions.
	Aim: To a PL/SQL block that handles all types of exceptions

	Raising Exceptions
	User-defined Exceptions
	Example
	Date:
	Procedure:
	OUTPUT:
	PROCEDURE
	Ex. No. 9 . Oracle or SQL Server Triggers – Block Level – Form Level Triggers
	Procedure: (1)
	PROGRAM
	OUTPUT: (1)
	Procedure: (2)
	Program:
	Output
	Procedure: (3)
	Program: (1)

