SRM VALLIAMMAI ENGINEERING COLLEGE

SRM Nagar, Kattankulathur – 603 203

DEPARTMENT OF

ELECTRONICS AND COMMUNICATION ENGINEERING

QUESTION BANK

IV SEMESTER

EC3463 – ANALOG COMMUNICATION

Academic Year 2024 – 25 (Even Semester)

Prepared by

Dr. G. Udhayakumar, Professor

Dr. D. Judson, Professor

Mr. Prasanan V, Assistant Professor (Ordinary Grade)

SRM VALLIAMMAI ENGINEERING COLLEGE

SRM Nagar, Kattankulathur – 603 203.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

QUESTION BANK

SUBJECT : EC3463 – ANALOG COMMUNICATION

YEAR /SEM :II /IV

	UNIT I AMPLITUDE MODULATION									
	Amplitude Modulation- DSBSC, DSBFC, SSB, VSB - Modulation index, Spectra, Power relations and Bandwidth – AM Generation – Square law and Switching modulator, DSBSC Generation – Balanced and Ring Modulator, SSB Generation – Filter, Phase Shift and Third Methods – Comparison of different AM techniques, Super heterodyne Receiver.									
	PART – A									
Q. No	Questions	CO	BT Level	Competence						
1.	Define amplitude modulation	CO1	BTL 1	Remembering						
2.	Mention the need for the modulation in the communication system.	CO1	BTL 1	Remembering						
3.	List the types of AM modulation.	CO1	BTL 1	Remembering						
4.	What modulation scheme is used for television signal transmission?	CO1	BTL 1	Remembering						
5.	List the differences between the DSB-SC AM signal and the SSB-SC AM signal	CO1	BTL 1	Remembering						
6.	How do classify the AM signal based on the modulation index?	CO1	BTL 1	Remembering						
7.	Draw the power spectrum of an amplitude modulated wave.	CO1	BTL 2	Understanding						
8.	In a DSB-FC-AM signal the carrier power is $Pc = 100$ W with the modulation index of 0.67, compute the total power.	CO1	BTL 2	Understanding						
9.	List the difference between high-level modulation and low-level modulation	CO1	BTL 2	Understanding						
10.	Mention the techniques for generating an SSB modulated signal.	CO1	BTL 2	Understanding						
11.	Interpret the filter method approach for SSB generation.	CO1	BTL 2	Understanding						
12.	Why is a ring modulator called a double-balanced modulator?	CO1	BTL 2	Understanding						
13.	Name the distortions observed in the diode detector output.	CO1	BTL 1	Remembering						
14.	What is the output of a Weaver method modulator when a modulating signal and a carrier signal are applied?	C01	BTL 1	Remembering						

15.	Illust	rate the advantages of the vestigial sideband modulation.	CO1	BTL 2	Understanding	
16.	How is the transmission bandwidth of vestigial sideband modulation assessed?				BTL 2	Understanding
17.	How techn	does SSB modulation save bandwidth compared to othe iques?	er AM	CO1	BTL 2	Understanding
18.	Why system	is SSB modulation preferred over DSB modulation in communities?	ication	CO1	BTL 2	Understanding
19.	Write	e about coherent detection.		CO1	BTL 2	Understanding
20.	State	the heterodyning principle.		CO1	BTL 1	Remembering
21.	What bandy	t is the maximum modulating frequency if an AM radio channel width of 10 kHz?	l has a	CO1	BTL 1	Remembering
22.	What	t are sidebands in AM system?		CO1	BTL 2	Understanding
23.	What	t components are present in an AM wave?		CO1	BTL 2	Understanding
24.	What	t are the applications of SSB?		CO1	BTL 2	Understanding
		PART - B		1		I
Q. No	Questions				BT Level	Competence
•		J SKM				
· 1.	Desc an A AM	The concepts of AM modulation and derive the equation of M wave. Draw the phasor diagram, spectrum and modulated wave for various degrees of modulation index.	(16)	CO1	BTL 3	Apply
· 1.	Desc an A AM	The phase of AM modulation and derive the equation of M wave. Draw the phaser diagram, spectrum and modulated wave for various degrees of modulation index. Derive the mathematical expression of AM signal using the square law method.	(16)	CO1	BTL 3 BTL 4	Apply Analyse
· 1. 2.	Desc an A AM (i) (ii)	The phase of AM modulation and derive the equation of M wave. Draw the phasor diagram, spectrum and modulated wave for various degrees of modulation index. Derive the mathematical expression of AM signal using the square law method. Estimate the message signal from the amplitude modulated signal based on the envelope detector approach.	(16) (8) (8)	CO1 CO1 CO1	BTL 3 BTL 4	Apply Analyse
· 1. 2.	Desc an A AM (i) (ii) (ii)	 cribe the concepts of AM modulation and derive the equation of M wave. Draw the phasor diagram, spectrum and modulated wave for various degrees of modulation index. Derive the mathematical expression of AM signal using the square law method. Estimate the message signal from the amplitude modulated signal based on the envelope detector approach. Draw the diagram of switching modulator and explain the generation of amplitude modulated signal. 	 (16) (8) (8) (10) 	CO1 CO1 CO1 CO1	BTL 3 BTL 4 BTL 3	Apply Analyse Apply
. 1. 2. 3.	Desc an A AM (i) (ii) (ii) (ii)	 cribe the concepts of AM modulation and derive the equation of M wave. Draw the phasor diagram, spectrum and modulated wave for various degrees of modulation index. Derive the mathematical expression of AM signal using the square law method. Estimate the message signal from the amplitude modulated signal based on the envelope detector approach. Draw the diagram of switching modulator and explain the generation of amplitude modulated signal. List the limitations of an amplitude modulation. 	 (16) (8) (8) (10) (6) 	CO1 CO1 CO1 CO1 CO1	BTL 3 BTL 4 BTL 3	Apply Analyse Apply
1. 2. 3.	Desc an A AM (i) (ii) (ii) (ii) For a carrie mode	The the concepts of AM modulation and derive the equation of M wave. Draw the phasor diagram, spectrum and modulated wave for various degrees of modulation index. Derive the mathematical expression of AM signal using the square law method. Estimate the message signal from the amplitude modulated signal based on the envelope detector approach. Draw the diagram of switching modulator and explain the generation of amplitude modulated signal. List the limitations of an amplitude modulation. a DSB-FC amplitude modulated signal with peak unmodulated er voltage V_c = 10 V, a load resistance R_L = 10 Ω and a ulation index m = 1, Evaluate the	 (16) (8) (10) (6) 	CO1 CO1 CO1 CO1 CO1 CO1	BTL 3 BTL 4 BTL 3 BTL 3	Apply Analyse Apply Apply
· 1. 2. 3. 4.	Desc an A AM (i) (ii) (ii) (ii) For a carrie modu (a) C	The the concepts of AM modulation and derive the equation of M wave. Draw the phasor diagram, spectrum and modulated wave for various degrees of modulation index. Derive the mathematical expression of AM signal using the square law method. Estimate the message signal from the amplitude modulated signal based on the envelope detector approach. Draw the diagram of switching modulator and explain the generation of amplitude modulated signal. List the limitations of an amplitude modulation. a DSB-FC amplitude modulated signal with peak unmodulated er voltage V_c = 10 V, a load resistance R_L = 10 Ω and a ulation index m = 1, Evaluate the	 (16) (8) (8) (10) (6) (4) (4) 	CO1 CO1 CO1 CO1 CO1	BTL 3 BTL 4 BTL 3 BTL 3	Apply Analyse Apply Apply
· 1. 2. 3. 4.	Desc an A AM (i) (ii) (ii) (ii) (ii) For a carrie modu (a) C (b) T	ribe the concepts of AM modulation and derive the equation of M wave. Draw the phasor diagram, spectrum and modulated wave for various degrees of modulation index. Derive the mathematical expression of AM signal using the square law method. Estimate the message signal from the amplitude modulated signal based on the envelope detector approach. Draw the diagram of switching modulator and explain the generation of amplitude modulated signal. List the limitations of an amplitude modulation. a DSB-FC amplitude modulated signal with peak unmodulated er voltage V_c = 10 V, a load resistance R_L = 10 Ω and a ulation index m = 1, Evaluate the Carrier power and the upper sideband power Fotal sideband power	 (16) (8) (8) (10) (6) (4) (4) (4) (4) 	CO1 CO1 CO1 CO1 CO1	BTL 3 BTL 4 BTL 3 BTL 3	Apply Analyse Apply Apply
1. 2. 3. 4.	Desc an A AM (i) (ii) (ii) (ii) (ii) (ii) For a carrie modu (a) C (b) T (c) T	ribe the concepts of AM modulation and derive the equation of M wave. Draw the phasor diagram, spectrum and modulated wave for various degrees of modulation index. Derive the mathematical expression of AM signal using the square law method. Estimate the message signal from the amplitude modulated signal based on the envelope detector approach. Draw the diagram of switching modulator and explain the generation of amplitude modulated signal. List the limitations of an amplitude modulation. a DSB-FC amplitude modulated signal with peak unmodulated er voltage V _c = 10 V, a load resistance R _L = 10 Ω and a ulation index m = 1, Evaluate the Carrier power and the upper sideband power Total sideband power	 (16) (8) (8) (10) (6) (4) (4) (4) (4) (4) (4) 	CO1 CO1 CO1 CO1 CO1	BTL 3 BTL 4 BTL 3 BTL 3	Apply Analyse Apply Apply
. 1. 2. 3. 4.	Desc an A AM (i) (ii) (ii) (ii) (ii) (ii) (ii) (ii)	ribe the concepts of AM modulation and derive the equation of M wave. Draw the phasor diagram, spectrum and modulated wave for various degrees of modulation index. Derive the mathematical expression of AM signal using the square law method. Estimate the message signal from the amplitude modulated signal based on the envelope detector approach. Draw the diagram of switching modulator and explain the generation of amplitude modulated signal. List the limitations of an amplitude modulation. a DSB-FC amplitude modulated signal with peak unmodulated er voltage V _c = 10 V, a load resistance R _L = 10 Ω and a ulation index m = 1, Evaluate the Carrier power and the upper sideband power Total sideband power Total power of the modulated wave Power spectrum diagram	 (16) (8) (8) (10) (6) (4) (4) (4) (4) (4) (4) 	CO1 CO1 CO1 CO1 CO1	BTL 3 BTL 4 BTL 3 BTL 3	Apply Analyse Apply Apply

6.	Anal diagi	yze the operation of a ring modulator with the help of a circuit ram and graphical signal representation.	(16)	CO1	BTL 4	Analyse
_	(i)	Sketch the time domain representation of the SSB-SC- amplitude modulated signal and explain in detail.	(8)	CO1	BTL 3	Applying
1.	(ii)	Outline the working principle of the phase shift method to generate the single sideband suppressed carrier AM signal.	(8)	CO1		
8.	Anal a dio	yze how a message is reconstructed from an AM signal using ode detector and discuss the distortions in its output	(16)	CO1	BTL 4	Analyse
9.	Desc is use	cribe the concept of Weaver's method and demonstrate how it ed to generate an SSB signal.	(16)	CO1	BTL 3	Applying
10.	Illust a blo	trate the generation and demodulation of VSB with the help of ock diagram.	(16)	CO1	BTL 3	Applying
11	(i)	Explain the concept of Hilbert Transform with an appropriate expressions.	(8)	CO1	BTL 3	Applying
11.	(ii)	Describe the pre envelope and complex envelope of a signal with an illustrative diagram.	(8)	CO1		
12.	Com mod	pare the various parameters of different form of amplitude ulated signal.	(13)	CO1	BTL 4	Analyzing
13.	(i)	Categorize the performance parameters of the AM receivers used in the communication system.	(10)	CO1	BTL 4	Analyzing
14.	(ii)	In a superheterodyne receiver the input AM signal has a center frequency of 1425 kHz and bandwidth 10kHz. The input is down converted to 455 kHz. Evaluate the value of image frequency.	(6)	CO1		
15.	Drav	v and explain the block diagram of a superheterodyne receiver.	(13)	CO1	BTL 3	Applying
16.	Expl signa	ain the significance of power saving by suppressing the carrier al using DSB-FC and DSB-SC expressions.	(16)	CO1	BTL 3	Applying
17.	For a frequ the ir	n AM superheterodyne receiver with IF, RF and local oscillator encies of 455kHz, 600kHz and 1055 kHz respectively. Evaluate mage frequency and image frequency rejection ration for a pre-	(16)	CO1	BTL 4	Analyzing

UNIT II ANGLE MODULATION

Phase and frequency modulation, Narrow Band and Wide band FM – Modulation index, Spectra, Power relations and Transmission Bandwidth - FM modulation – Direct and Indirect methods, FM Demodulation – Foster Seeley FM discriminator– FM receiver.

	PART A			
Q .	Questions	CO	BT	Competence
No			Level	
1.	Define angle modulation.	CO2	BTL1	Rememberin
				g
2.	How do frequency modulation and phase modulation differ?	CO2		Understandin
			BIL 2	g

3.	Why frequency modulation is more preferred for voice transmission?	CO2	BTL 1	Rememberin
				g
4.	Summarize the relationship between frequency modulation and phase modulation.	CO2	BTL 2	Understandin g
5.	What is the condition for FM to be classified as narrowband FM?	CO2	BTL 1	Rememberin
				g
6.	What is the difference between narrowband FM and wideband FM?	CO2	BTL 2	Understandin
				g
7.	What are the key features of wideband FM ?	CO2	BTL 2	Understandin
				g
8.	How do you calculate the modulation index of an FM signal with a maximum frequency deviation of 75 kHz and an audio frequency limit of 15 kHz?			Understandin
	requerey deviation of 75 km2 and an audio frequency mint of 15 km2.	CO2	BTL 2	g
9	State the Carson's rule to determine the bandwidth of FM	CO2	BTL 1	Rememberin
2.		002		g
10.	How is the bandwidth of an FM wave calculated for a 2 kHz modulating	CO2	BTL 2	Understandin
	frequency and 12 kHz maximum frequency deviation?			g
11.	How indirect method is used to generate the modulated signal	CO2	BTL 2	Understandin
10				g .
12.	Mention the process of generating FM signal using indirect method.	CO2	BILI	Rememberin
13.	why is the Armstrong method of modulation better than the reactance modulator?	CO2	BIL 2	onderstandin
14.	List the non linear effects in FM.	CO2	BTL 1	Rememberin
				g
15.	Name the different types of FM demodulator.	CO2	BTL 1	Rememberin
				g
16.	How does the Foster-Seeley discriminator convert frequency variations to	CO2	BTL 2	Understandin
	voltage?	~ ~~		g
17.	What is the principle of a frequency discriminator in FM demodulation?	CO2	BTL I	Rememberin
10		CO2	DTI 1	g Damanaharin
18.	What are the merits and demerits of a balanced slope detector?	02	DILI	g
19	Mantion the limitations of slope datastor?	CO^2	BTL 2	Understandin
17.	Mention the minitations of slope detector?	002	2122	g
20.	Show how FM demodulation is performed using phase discriminator.	CO2	BTL 2	Understandin
				g
21.	Mention the drawbacks of angle modulation?	CO2	BTL 2	Understandin
				g
22.	Define carrier swing.	CO2	BTL 1	Rememberin
				g
23.	A 500HZ modulating voltage fed into a PM generator produces a frequency	CO2	BTL 2	Understandin
	deviation of 2.25 KHZ. what is the modulation index?			g

24.	4. A frequency modulated signal is given as $s(t) = 20cos[2\pi f_c t + 4sin(200\pi t)]$. Determine the required transmission bandwidth.			CO2	BTL 2	Understandin g
		PART B		l		
1.	(i)	Show the mathematical expression for Wideband Frequency Modulation. Also compare and contrast its characteristics with Narrowband Frequency modulation.	(8)	CO2	BTL 3	Apply
	(ii)	How do you obtain FM from PM and vice versa? Explain.	(8)		BTL 3	
2.	(i)	Compare the characteristics of amplitude modulation with Frequency modulation.	(8)	CO2	BTL 4	Analyzing
	(ii)	Obtain the expression for narrowband FM signal and explain with block diagram and phasor representation.	(8)		BTL 4	
3.	(i)	Illustrate the mathematical representation of FM and PM waves.	(8)	CO2	BTL 3	Applying
	(ii)	For an FM modulator with a modulation index $m_f=1$, $V_m(t)=V_msin(2pi*1000t)$ and an unmodulated carrier $V_c(t)=15sin(2pi*500t)$, determine number of set of sideband frequencies, Amplitude, Draw the frequency spectrum showing their relative amplitude and explain	(8)		BTL 4	
4.	An F	M wave is represented by the voltage equation		CO2	BTL 3	Applying
	V _{FM} ($f(t) = 10 \cos(8 \times 10^6 t + 2 \sin (3 \times 10^4 t)))$				
	Eval	uate				
	(a) Modulating frequency	(4)			
	(b) Carrier frequency	(4) (4)			
	()	d) Frequency deviation	(-)			
5	Ohto	in the expression for the single tone frequency modulated signal	(16)	CO2	DTI 4	Analyzing
5.	and 1 infin	hence prove that is the constant envelope modulation requiring ite bandwidth.	(10)	02	BIL 4	Anaryzing
6.	(i)	Assess the significance of transmission bandwidth of FM.	(6)	CO2	BTL 4	Analyzing
	(ii)	A carrier frequency of 80MHz is frequency modulated by a sine wave amplitude of 1volts and frequency of 10KHz and the frequency sensitivity of the modulator is 100Hz/V. Assess the appropriate bandwidth of the FM wave.	(10)		BTL 4	
7.	What gener	t are the methods of FM generation? Explain how an FM signal is rated using a direct method.	(16)	CO2	BTL 3	Applying
8.	With using	necessary block diagram explain the concept of FM generation g Armstrong method.	(16)	CO2	BTL 3	Applying
9.	Desc	ribe how FM generation is achieved using reactance modulators.	(16)	CO2	BTL 3	Applying
10.	Illust detec	trate the process of FM demodulation with balanced slope etor with the circuit diagram and characteristic curve.	(16)	CO2	BTL 3	Applying

11.	(i)	Construct the ratio detector to suppress the amplitude variation	(8)	CO2	BTL 3	Applying
		caused by the communication media without using amplitude				
		limited circuit.				
	(ii)	Design the circuit diagram of stagger tuned discriminator and	(8)		BTL 3	
		explain its working.				
12.	Analy	ze the working of the Foster-Seeley discriminator using	(16)	CO2	BTL 4	Analyzing
	phase	r representations.				
13.	Ana	yze the working principle of single slop detector circuit for	(16)	CO2	BTL 4	Analyzing
	dete	ction of FM signal and mention its advantages and				
	disa	dvantages,				
14.	(i)	How the threshold effect is realized in the FM discriminator.	(8)	CO2	BTL 3	Applying
	(ii)	Summarize the need for pre-emphasis and de-emphasis circuits	(8)		BTL 3	
		in the communication system.				
15.	Exar	nine the building blocks of phase locked loop and explain how it	(16)	CO2	BTL 4	Analyzing
	can ł	be used for FM demodulation.				
16.	Wha	t are the characteristics of frequency and phase discriminators?	(16)	CO2	BTL 3	Applying
	Expl	ain each with an example.	()			
1.5	- T		(1.5)			
17.	Deve	elop double trequency conversion FM super heterodyne receiver	(16)	CO2	BTL 3	Applying
	and	explain.				

UNIT III RANDOM PROCESS

Random variables, Random Process, Stationary Processes, Mean, Correlation & Covariance functions, Power Spectral Density, Ergodic Processes, Gaussian Process, Transmission of a Random Process through a LTI filter. PART A BT Q. Questions CO Competence No Level Define random variable. Specify the sample space and the random CO3 BTL 1 Remembering 1. variable for a coin tossing experiment. BTL 2 2. How do discrete random variables differ from uniform random CO3 Understanding variables? BTL 1 3. CO3 Remembering State central limit theorem. 4. List the properties of the cumulative distributive function. CO3 BTL 1 Remembering CO3 BTL 2 5. Classify random process? Give one example for each. Understanding CO3 BTL 2 Understanding 6. When is a random process considered stationary, deterministic, and ergodic? CO3 BTL 2 7. Understanding when do we say random processes X(t) as white process? 8. CO3 BTL 2 Understanding Compare the random variable and random process. 9. CO3 BTL 2 Define the terms mean and variance. Understanding

10.	What	are the properties of an autocorrelation function?		CO3	BTL 1	Remembering
11.	Express the autocorrelation function and power spectral density of white noise.			CO3	BTL 2	Understanding
12.	Outli	ne Ergodic processes and Gaussian processes.		CO3	BTL 1	Remembering
13.	Give	the conditions to be satisfied for wide sense stationary.		CO3	BTL 2	Understanding
14.	What	is the condition for a random process to be ergodic in mean	n?	CO3	BTL 1	Remembering
15.	What powe	t is the relationship between the autocorrelation function a preserved ar spectral density?	and	CO3	BTL 1	Remembering
16.	Show cross	the input output relation for a power spectral density a spectral density.	and	CO3	BTL 3	Applying
17.	Ment	ion the properties of Gaussian process.		CO3	BTL 3	Applying
18.	Analy Y(t).	yze the cross ccorrelation of random processes of X(t) a	and	CO3	BTL 4	Analyzing
19.	Sumr	narize an expression for noise equivalent bandwidth.		CO3	BTL 5	Evaluating
20.	Form time	ulate the mean of the output signal obtained from the line invariant filter.	ear	CO3	BTL 6	Creating
21.	Give varia	the probability density function for a Gaussian rando ble.	om	CO3	BTL 2	Understanding
22.	What	are the properties of covariance?	LEG	CO3	BTL 2	Understanding
23.	What	is the difference between correlation and regression?		CO3	BTL 2	Understanding
24.	Write invar	e the mean of the output signal obtained from the linear timination that the second second second second second	me	CO3	BTL 2	Understanding
		PART – B				
1.	(i)	Classify the random variables and mention the C mathematical representation of a random process.	CO3	(8)		Analyzing
	(ii)	Describe the concept of a probability distribution (function (PDF) and cumulative distribution function (CDF) with suitable examples.	203	(8)	BTL 4	
2.	Prob repro state	bability Density Function is the more convenient C esentation of continuous random variable – Justify the ement with the explanation of the properties.	203	(16)	BTL 4	Analyzing
3.	(i)	List the different types of random process and give descriptions for each type.	CO3	(8)	BTL 3	Applying
	(11)	Define the term mean, mean square value, variance and standard deviation.	203	(8)		
4.	Let X	Thave the uniform distribution given by $f_x(x) = \begin{cases} \frac{1}{2\pi}, & 0 \le \theta \le 2\pi \\ 0, & elsewhere \end{cases}$	CO3	(16)	BTL 3	Applying

	Solve	e for mean, mean square value and variance.				
5.	What W (t)	is autocorrelation function of a two random variables $V(x) = 0$	CO3	(16)	BTL 3	Applying
	$\mathbf{X}(\mathbf{t}_1)$	and $X(t_2)$? Explain the properties in detail.				
6.	(i)	Illustrate the terms mean, correlation, covariance and ergodicity	CO3	(8)	BTL 3	Applying
	(ii)	Interpret the process of autocorrelation and explain the properties of outocorrelation function	CO3	(8)		
7.	(i)	Express the random process with mathematical	CO3	(8)		Analyzing
		equations.	<u> </u>	(9)	BTL 4	
	(11)	strict sense stationary process.	COS	(8)		
8.	(i)	When is a random process said to be Strict Sense	CO3	(8)		Analyzing
		Stationary (SSS), Wide Sense Stationary (WSS) and Ergodic process.				
	(ii)	Let $X(t) = A \cos(\omega t + \phi)$ and $Y(t) = A \sin(\omega t + \phi)$,	CO3	(8)	BTL 4	
		where A and ω are constants and ϕ is a uniform random variables [0, 2π] Solve the cross				
		correlation of x(t) and y(t).	3			
9.	(i)	For ergodic process show that mean of the time	CO3	(8)		Analyzing
	(ii)	Given a random process $X(t) = A \cos(\alpha t + \theta)$	CO3	(8)		
	(11)	where A and ω are constants and θ is a uniform		(0)	BTL 4	
		random variable. Interpret that X(t) is ergodic in both mean and auto correlation				
10.	(i)	Outline the advantages of Gaussian Modelling of a	CO3	(8)		Applying
		random process.			BTL 3	
	(ii)	Describe about stationary processes and its	CO3	(8)		
11.	Sumi	narize and prove the properties of power spectral	CO3	(16)	DTI 4	Analyzing
10	densi	ty.		(1.6)	BIL 4	A 1 -
12.	varia	ble 'X' such that $y = cos(X)$ and 'X' is uniformly	003	(16)		Analyzing
	distri	buted in the interval $(-\pi, \pi)$ such as			BTL 4	
		$f_X(x) = rac{1}{2\pi}$, $-\pi < x < \pi$				
10	Calc	culate the mean value and variance of y.		(1.5)		
13.	Stat	e and prove the properties of Gaussian process.	03	(16)	BTL 4	Analyzıng
14.	(i)	Derive the input and output relation of the signal	CO3	(8)		Analyzing
		(LTI) filter.				
	(ii)	Consider two linear filters connected in cascade.	CO3		BTL 4	
		Let $X(t)$ be a stationary process with an auto correlation function $R_{xy}(\tau)$ the random process				
		appearing at the input of the first filter is $V(t)$ and				
		the second filter output is Y(t).		(4)		

	(a) Find the auto correlation function of $Y(t)$		(4)		
	(b) Compute the cross correlation function $R_{xy}(\tau)$				
	of V(t) and Y(t)				
15.	Probability Density Function of a continuous random	CO3	(16)		Analyzing
	variable said to be $F_x(x) = e^{-x}$ for $x \ge 0$. Estimate mean,		. ,	BTL 4	
	variance and SD of random variable.				
16.	A sinusoid generator output voltage is $A \cos \omega t$. This	CO3	(16)		Applying
	output is sampled randomly. The sampled output is a			BTL 3	
	random variable X, which can take on any value in the				
	range (-A,A). Determine mean and variance of the				
	sampled output X.				
17.	The amplitude modulated signal $X_{AM}(t) = A m(t) \cos(\omega t + \omega t)$	CO3			Analyzing
	θ) where m(t) is the baseband signal and A cos(ω t + θ) is				
	the carrier signal. The signal m(t) is modeled as a zero mean				
	stationary random process with the autocorrelation function				
	$Rxx(\tau)$ and the PSD $G_x(f)$. The carrier amplitude A and the				
	frequency ω are assumed to be constant and the initial				
	carrier phase θ is assumed to be a random uniformly			BIL 4	
	distributed in the interval $(-\pi,\pi)$. Assume m(t) and θ are				
	assumed to be independent.		(10)		
	(a) Evaluate that $X_{AM}(t)$ is Wide Sense Stationary		(6)		
	(b) Find PSD of $X_{AM}(t)$				
	A A A A A A A A A A A A A A A A A A A	G			

UNIT IV NOISE CHARACTERIZATION

Noise sources – Noise figure, Noise temperature and Noise bandwidth – Noise in cascaded systems. Representation of Narrow band noise – In-phase and quadrature, Envelope and Phase – Noise performance analysis in FM systems – Threshold effect, Capture effect, Pre-emphasis and de-emphasis for FM.

SRM

PART A

Q.	Questions	CO	BT	Competence
No			Level	
1.	What is white noise? Give its characteristics.	CO4	BTL 1	Remembering
2.	Define noise figure and noise equivalent temperature.	CO4	BTL 2	Understanding
3.	A Receiver is connected to an antenna with resistance 50Ω and an equivalent noise resistance of 30Ω . Calculate the receiver noise figure.	CO4	BTL 1	Remembering
4.	Identify the expression for the thermal noise voltage across a resistor. Also define thermal noise.	CO4	BTL 1	Remembering
5.	Compute the narrow-band noise m(t) at the IF filter output in terms of its in-phase and quadrature components.	CO4	BTL 2	Understanding
6.	Determine thermal noise voltage across the simple parallel RC circuit shown with R =1k Ω and C=1 μ F at T = 27°C.	CO4	BTL 2	Understanding
7.	Evaluate the equivalent noise temperature if the overall noise figure of the receiver is 24 dB	CO4	BTL 2	Understanding

8.	Calculate the noise voltages for the two resistors $20K\Omega \& 50K\Omega$ in series at 300^{0} K for a bandwidth of 100 KHz	CO4	BTL 2	Understanding
9.	Express the formula to find the overall noise figure of the cascaded networks.	CO4	BTL 2	Understanding
10.	State threshold effect in AM receiver.	CO4	BTL 1	Remembering
11.	Analyze the impact of FM threshold effect.	CO4	BTL 2	Understanding
12.	Write the characteristics of narrow band noise.	CO4	BTL 1	Remembering
13.	Point out the characteristic of shot noise.	CO4	BTL 2	Understanding
14.	What do you understand by 'capture effect' in FM?	CO4	BTL 1	Remembering
15.	Mention the methods used to improve FM threshold reduction?	CO4	BTL 1	Remembering
16.	Outline the significance of noise equivalent bandwidth.	CO4	BTL 3	Applying
17.	Analyze the performance of synchronous detector with envelope detector.	CO4	BTL 3	Applying
18.	Compare the noise performance of FM receiver with AM.	CO4	BTL 4	Analyzing
19	Summarize an expression for noise equivalent bandwidth.	CO4	BTL 5	Evaluating
20	Formulate the mean of the output signal obtained from the linear time invariant filter.	CO4	BTL 6	Creating
21	Give the probability density function for a Gaussian random variable.	CO4	BTL 2	Understanding
22	What are the properties of covariance?	CO4	BTL 2	Understanding
23	What is the difference between correlation and regression?	CO4	BTL 2	Understanding
24	Write the mean of the output signal obtained from the linear time invariant filter.	CO4	BTL 2	Understanding
	PART – B			
1	(i) Describe in detail various sources of noise. CO4	(8)	BTL 4	Analyzing
	(ii) Explain the role of noise figure in noise analysis at the CO4 receiver.	(8)		
2	Write a short note on			Analyzing
	(a) Shot noise with its power spectral density CO3	(16)	BTL 4	
	(b) Thermal noise with power spectral density			
3	Explain the use of noise temperature in the noise CO4 characterization of the receiver. Derive the relationship between noise figure and noise temperature.	(16)	BTL 4	Analyzing
4	Analyze the features of coherent detector. Derive an expression CO4 for SNR at input (SNR _c) and output of (SNR _o) of a coherent detector.	(16)	BTL 4	Analyzing

5	Express and derive the output SNR for FM reception. Also obtain the figure of merit.	CO4	(16)	BTL 4	Analyzing
6	Two resistors 20k ohm and 50k ohm are at room temperature. Evaluate; the thermal noise voltage for a bandwidth of 100kHz for	CO4 CO4	(16)	BTL 3	Applying
	(a) Each resistor.				
	(b) Two resistors in series.				
	(c) Two resistors in parallel.				
7	Comment and explain on the role of pre-emphasis and de- emphasis circuit on SNR improvement.	CO4	(16)	BTL 3	Applying
8	Obtain the Friis formula for effective noise figure of cascaded stage and express it in terms of noise temperature.	CO4	(16)	BTL 3	Applying
9	The three amplifiers 1, 2 and 3 have the following characteristics: $F_1 = 9dB$, $G_1 = 48dB$, $F_2 = 6dB$, $G_2 = 35dB$, F_3	CO4	(8)	BTI 3	Applying
	= 4dB, G_3 = 20dB. The amplifiers are connected in cascade. Apply to find noise figure and equivalent noise temperature.	CO4	(8)	DIL 5	
10	What is narrowband noise? Discuss the properties of the	CO4	(8)		Analyzing
	quadrature components of a narrowband noise.	CO4	(8)	BTL 4	
11	Consider two amplifiers are connected in cascade. First stage	CO4	(8)		Analyzing
	stage has noise figure of 20dB.Estimate the total noise figure.	CO4	(8)	BTL 4	
12	A receiver circuit has a noise figure of 12 dB and it is fed by a low noise amplifier that has a gain of 50dB and a noise	CO4	(8)		Analyzing
	temperature of 90°K. Calculate the noise temperature of the receiving system.	CO4	(8)	BTL 4	
13	Write short notes on	CO4	(8)	BTL 3	Applying
	(a) FM threshold effect				
	(b) FM capture effect	CO4	(8)		
14	Illustrate noise in FM receivers using Phasor diagram. Compare the noise performance of AM and FM systems.	CO4	(16)	BTL 4	Analyzing
15	(i) Classify the different noise sources and its effect in real scenario.	CO4	(16)	BTL 4	Analyzing
	(ii) Discuss the effects of noise in cascaded system.	CO4	(16)	BTL 4	Analyzing
16	Find the power spectral density of in-phase and quadrature phase noise of narrow band noise. Find the PDF of sine wave pulse noise.	CO4	(16)	BTL 4	Analyzing
17	Describe how pre emphasis and de-emphasis circuit can be used to overcome the threshold effects.	CO4	(16)	BTL 4	Analyzing

		UNIT V SAMPLING & QUANTIZATION					
	Low pass sampling – Aliasing- Signal Reconstruction-Quantization - Uniform & non- uniform quantization - Quantization noise - Companding –PAM, PPM, PWM– TDM, FDM.						
	PART A						
Q. No.		Questions	СО	BT Level	Domain		
1.	Mention the communication	advantages and disadvantages of digital n system.	CO5	BTL 1	Remembering		
2.	Define Band p	bass sampling.	CO5	BTL 1	Remembering		
3.	List out the di	fferent types of sampling.	CO5	BTL 1	Remembering		
4.	Distinguish na	tural and flat top sampling.	CO5	BTL 2	Understanding		
5.	Mention the u	se of pre-filtering before sampling a signal.	CO5	BTL 2	Understanding		
6.	Outline the co	ncept of aliasing.	CO5	BTL 1	Remembering		
7.	Name the correconstruction	omponents and processes required for signal	CO5	BTL 1	Remembering		
8.	Summarize th signal process	e characteristics of non-uniform quantization in ing.	CO5	BTL 2	Understanding		
9.	Illustrate the t	wo fold effects of quantization process.	CO5	BTL 2	Understanding		
10.	Compare unif characteristics	orm and non-uniform quantization based on their and applications.	CO5	BTL 2	Understanding		
11.	State the Nyqu	uist sampling Theorem.	CO5	BTL 1	Remembering		
12.	What is the ro	le of the Nyquist rate in signal reconstruction?	CO5	BTL 1	Remembering		
13.	Determine the minimum nun an output SNF signal.	minimum number of representation levels and the aber of bits required for a PCM scheme to achieve a greater than 13 dB when transmitting a sinusoidal	CO5	BTL 2	Understanding		
14.	Calculate the uniform quant 50 Mbps	message bandwidth for a PCM system with a izer and a 6-bit encoder, operating at a bit rate of	CO5	BTL 2	Understanding		
15.	Outline the i expander.	nput-output characteristic of a compressor and	CO5	BTL 2	Understanding		
16.	What is the pr	imary goal of companding in signal processing?	CO5	BTL 1	Remembering		
17.	What is the p systems?	purpose of µ-law compression in communication	CO5	BTL 1	Remembering		
18.	Compare Puls Modulation (applications.	se Position Modulation (PPM) and Pulse Width (PWM) in terms of their characteristics and	CO5	BTL 2	Understanding		

19.	De	Define aperture effect.			BTL 2	Understanding
20.	Wł	at are the basic operations involved in PCM system?	sic operations involved in PCM system?			Understanding
21.	Wł	at is Time Division Multiplexing (TDM)?	CO5		BTL 2	Understanding
22.	Lis Mu	List the advantages and disadvantages of Frequency Division Multiplexing (FDM).			BTL 1	Remembering
23.	Wh cor	at is the advantage of Time Division Multiplexing (TDM nmunication systems?) in	CO5	BTL 1	Remembering
24.	Ho (PF	w is information encoded in Pulse Position Modulat M)	tion CO5		BTL 1	Remembering
		PART – B				
1.	Disc and prov	uss the implications of Aliasing, Signal Reconstruction, Aperture Effect Distortion during the sampling process, iding detailed explanations and diagrams.	CO5	(16)	BTL 3	Applying
2.	Com Sam chara	pare and analyze the sampling procedures of Natural pling and Flat-top Sampling, highlighting their acteristics and applications.	CO5	(16)	BTL 4	Analyzing
3.	(i) (ii)	Find the sampling rate for the following signal $m(t)=2[\cos(500*pi*t).\cos(1000*pi*t)]$ Determine the Nyquist Rate for $m(t)=5*\cos(5000*pi*t)$	CO5 CO5	(8) (8)	- BTL 3	Applying
		$m(t)=3*\cos(3000*pi*t).\cos^2(8000*pi*t)$	m			
4.	Let t analo frequ relat maxi	he maximum spectral frequency component (f_m) in an og information signal be 3.3khz. Can you identify the ency spectra of sampled signal under the following ionships between the sampled frequency (f_s) and mum analog signal frequency (f_m) a) $f_s=2f_m$	CO5	(8) (8)	BTL 4	Analyzing
	(b) $f_s > 2f_m \& f_s < 2f_m$				
5.	Com quan	Compare the concept of uniform and non-uniform quantisation in digital communication system.		(16)	BTL 4	Analyzing
6.	Elab signa	Elaborate in detail about logarithmic companding of speech C signals and comment also on A-law and µ law.		(16)	BTL 4	Analyzing
7.	Expl Amp asses	ain the process of generating and detecting Pulse litude Modulation (PAM) using natural sampling, and as its advantages over other sampling methods.	CO5	(16)	BTL 3	Applying
8.	List midr diagr	List the types of Quantizer. Describe the mid tread and midrise type characteristics of uniform quantizer with suitable diagram.		(16)	BTL 3	Applying
9.	(i)	Distinguish various Pulse Modulation Techniques	CO5	(10)		Analyzing
	(ii)	Analyze the concept of Non Uniform Quantization and mention the Laws for implementing the same	CO5	(6)	BTL 4	
10.	(i)	Compare TDM and FDM	CO5	(10)	BTL 4	Analyzing

	(ii) Point out the sampling rate for the signal , given $m(t)=(1/2*pi)[\cos(4000*pi*t)\cos(1000*pi*t)]$	CO5	(6)		
11.	Discuss the process of multiplexing and demultiplexing in a Time Division Multiplexing (TDM) system for multiple channels, and explain how it efficiently manages bandwidth in communication systems.	CO5	(16)	BTL 3	Applying
12.	Describe about Frequency Division Multiplexing system for <i>N</i> - number of channels with neat diagrams.	CO5	(16)	BTL 3	Applying
13.	Examine the process of quantization in PCM systems and explain how the quantization error affects the signal. Derive the expression for the Signal to Quantization Noise Ratio (SQNR) and discuss its dependence on the number of quantization levels	CO5	(16)	BTL 4	Analyzing
14.	Given an analog signal with a maximum frequency of 3 kHz and 16 quantization levels, analyze and calculate the minimum number of bits per sample, the minimum sampling rate, and the resulting transmission data rate for the PCM system.	CO5	(16)	BTL 4	Analyzing
15.	The T1 carrier system used in digital Telephony multiplexes 24 voice channels based on 8 but PCM. Each voice signal is out through a LPF with cut off frequency of 3.4KHz. The LPF output is sampled at 8 KHz. Then a single bit is added at the end of the frame for the purpose of synchronization. Calculate (a) Bit duration (b) Transmission Rate (c) Nyquist Bandwidth	CO5	(5) (5) (5)	BTL 4	Analyzing
16.	Given the bandwidth of a TV signal (4.5 MHz) and 1024 quantization levels, calculate the number of bits per second generated by a PCM system when the signal is sampled at 20% above the Nyquist rate	CO5	(16)	BTL 3	Applying
17.	Illustrate the concept of PCM and provide a diagram showing the steps involved in its operation. Then, analyze the various pulse modulation schemes like PAM, PPM, and PWM, discussing their advantages and applications.	CO5	(16)	BTL 3	Applying