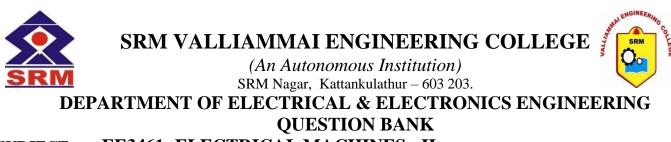
SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution) SRM Nagar, Kattankulathur – 603 203

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

QUESTION BANK


IV SEMESTER

EE3461 -ELECTRICAL MACHINES – II

Regulation-2023

Academic Year 2024-2025 (Even)

Prepared by Mr. V. Sudhagar, Assistant Professor (Sr.G) / EEE

SUBJECT : EE3461 -ELECTRICAL MACHINES - II

SEM / YEAR : II / IV - 2024-2025 (Even)

UNIT-I - THREE PHASE INDUCTION MOTOR

Constructional details –magnetic fields in rotating machines- Types of rotors – Principle of operation – Slip – cogging and crawling - Equivalent circuit – Torque-Slip characteristics – Condition for maximum torque – Losses and efficiency – Load test - No load and blocked rotor tests - Circle diagram – Separation of losses – Double cage induction motors – Induction generators – Synchronous induction motor.

	PART-A			
Q. No	Questions	BT Level	Competence	CO
1.	Demonstrate why the stator core of induction motor made of silicon content steel stamping.	BTL 3	Apply	CO1
2.	Why are the slots on the cage rotor of induction motor usually skewed.	BTL 2	Understand	CO1
3.	Classify the two types of 3-phase induction motor.	BTL 2	Understand	CO1
4.	Describe why an induction motor is called a rotating transformer'.	BTL 1	Remember	CO1
5.	Why is it objectionable to start large three phase induction motor by switching it directly on the line?	BTL 6	Create	CO1
6.	A 3-phase induction motor is wound for 4 poles and is supplied from 50 Hz system. Calculate the speed at which the magnetic field of the stator is rotating.	BTL 4	Analyze	CO1
7.	Why an induction motor will never run at its synchronousspeed?	BTL 2	Understand	CO1
8.	Define Pullout torque.	BTL 1	Remember	CO1
9.	Describe cogging in an induction motor.	BTL 1	Remember	CO1
10.	What measure can be taken for minimizing the effect of crawling in a 3-phase induction motor?	BTL 4	Analyze	CO1
11.	Explain the power development stages in an induction motor.	BTL 3	Apply	CO1
12.	Identify the condition of maximum torque developed inthree phase induction motor.	BTL 1	Remember	CO1
13.	Explain why an induction motor, at no-load, operates atvery low power factor.	BTL 3	Apply	CO1
14.	Describe how do change in supply voltage and frequency affect the performance of a 3-phase	BTL 2	Understand	CO1

	induction motor.				
15.	Generalize why staring torque of a squirrel induction motor cannot be altered when the ap	-	BTL 6	Create	CO1
	voltage is constant.	1			
16.	State the merits and demerits of double squirrel induction machines.	cage	BTL 1	Remember	CO1
17.	Explain the purpose of conducting blocked rotor	test.	BTL 4	Analyze	CO1
18.	Draw the torque-slip double-cage induction motor		BTL 5	Evaluate	C01
19.	List the applications of 3-phase induction motor.		BTL 1	Remember	C01
20.	Explain about an induction generator.		BTL 5	Evaluate	C01
21.	Explain slip in induction machine.		BTL 4	Analyze	CO1
22.	Generalize about fixed losses in induction generato	r.	BTL 6	Create	C01
23.	Explain how harmonics effects performance of 3		BTL 3	Apply	CO1
	induction motor.	L		11.5	
24.	Why maximum torque line differs with change in	rotor	BTL 2	Understand	CO1
	resistance.				
	PART-B				
1.	Describe the construction and working principle	(16)	BTL 1	Remember	CO1
	of 3 phase induction motor.				
2.	Distinguish between Synchronous motor and	(16)	BTL 2	Understand	C01
	Induction Motor.	× /			
3.	Discuss the phenomena of Cogging or Magnetic	(16)	BTL 2	Understand	CO1
	locking and crawling in an induction motor.				
4.	Explain in detail about equivalent circuit of induction motor.	(16)	BTL 4	Analyze	CO1
5.	Explain in detail about region of torque slip	(16)	BTL 4	Analyze	CO1
	characteristics of 3 phase induction motor.	(10)			0.01
6.	Explain how the rotating magnetic field is	(16)	BTL 5	Evaluate	CO1
	produced in an induction motor.	` '			
7.	Derive the expression for torque under running	(16)	BTL 1	Remember	CO1
	condition of a 3-phase induction motor and	~ /			
	obtain the condition for maximum torque.				
8.	Discuss the different power stages of an	(16)	BTL 2	Understand	CO1
	induction motor with losses.				
9.	Develop an equivalent circuit for three phase	(16)	BTL6	Create	CO1
	induction motor. State the difference between				
	exact and approximate equivalent circuit.				
10.	A 3-phase, 400 V induction motor gave the	(16)	BTL 6	Create	CO1
	following test reading: No-load: 400 V, 1250 W,				
	9 A Short circuit: 150 V, 4 kW, 38 A Draw the				
	circle diagram. If the normal rating is14.9 kW,				
	find from the circle diagram, the full-load value				
	ofcurrent, power factor and slip.				
11.	Analyze the effect of harmonics in performance	(16)	BTL 5	Evaluate	CO1
	of 3 - phase induction motor.				

12.	Explain about Synchronous-induction motor and	(16)	BTL 5	Evaluate	CO1
	different methods.				
13.	100kW, 330V, 50Hz, 3 phase, star connected	(16)	BTL3	Applying	CO1
	induction motor has a synchronous speed of 500				
	rpm. The full load slip is 1.8% and full load				
	power factor 0.85. Stator copper loss is 2440W,				
	iron loss is 3500W, and rotational loss is 1200W.				
	Calculate				
	(i) rotor copper loss, (6)				
	(ii) the line current and (5)				
	(iii) the full load efficiency. (5)				
14.	Describe the following:	(16)	BTL3	Applying	CO1
	(i) induction generator (8)				
	(ii) double cage rotor induction motors. (8)				
15.	Point out the effect of variation of rotor	(16)	BTL6	Creating	CO1
	resistance and rotor reactance on maximum				
	torque, efficiency and power factor of an				
	induction motor.				
16.	Describe about no load and blocked rotor test on	(16)	BTL1	Remembering	CO1
	3 phase induction motor.				
17.	Generalize about Synchronous-induction motor	(16)	BTL6	Create	CO1
	and different methods of DC excitation of rotor				
	winding.				
18.	Explain in detail the construction of circle	(16)	BTL3	Applying	CO1
	diagram of an induction motor.				

UNIT-II - STARTING AND SPEED CONTROL OF THREE PHASE INDUCTION MOTOR

Need for starting – Types of starters – DOL, Rotor resistance, Autotransformer and Star - delta starters – Speed control – Voltage control, Frequency control and pole changing – Cascaded connection - V/f control – Slip power recovery scheme -Braking of three phase induction motor: Plugging, dynamic braking and regenerative braking.

	PART-A			
Q.	Questions	BT	Competence	CO
No		Level		
1.	What is the need of starter for induction motor?		Remember	CO2
		BTL 1		
2.	Identify the cheapest method of starting a 3phase	BTL 1	Remember	CO2
	induction motor?			
3.	Express the relationship between staring torque and	BTL 2	Understand	CO2
	full load torque of DOL Starter?			
4.	List the advantages of rotor resistance starter-based	BTL 1	Remember	CO2
	induction motor starting.			
5.	Illustrate Auto transformer starting of 3-phase	BTL 3	Apply	CO2

	Induction motor.				
6.	Describe about the star-delta starter.		BTL 1	Remember	CO2
7.	Give the typical magnitude of starting current & tor for induction motor?	rque	BTL 2	Understand	CO2
8.	What are the different methods of speed control employed in three phase cage induction motor?		BTL 1	Remember	CO2
9.	Summarize the different methods of speed control of statorside of induction motor.	on	BTL 5	Evaluate	CO2
10.	Summarize the different methods of speed control from rotor side of induction motor.		BTL 2	Understand	CO2
11.	Criticize "is speed control by changing the applied voltage issimpler".		BTL 5	Evaluate	CO2
12.	What if "the number of poles of an induction motor Increases".	r	BTL 6	Create	CO2
13.	Show the cascade connections of induction motor		BTL 3	Apply	CO2
14.	Illustrate the advantages and disadvantages of V/F speedcontrol of an induction motor.		BTL 3	Apply	CO2
15.	Generalize how is super-synchronous speed achieve while controlling the speed of an induction motor.	ed,	BTL 6	Create	CO2
16.	Discuss the advantages of slip power scheme. And mention the types.	also	BTL 2	Understand	CO2
17.	Point out the two advantages of speed control of induction motor by injecting an e.m.f in the rotor circuit.		BTL 4	Analyze	CO2
18.	What type of braking is employed during deceleration of induction motor?	ion	BTL 1	Remember	CO2
19.	What are the conditions for regenerative braking of induction motor to be possible?	an	BTL 4	Analyze	CO2
20.	Compare Plugging and Regenerative braking.		BTL 4	Analyze	CO2
21.	Explain Dynamic braking.		BTL 3	Apply	CO2
22.	Discuss merits of slip power recovery scheme.		BTL 2	Understand	CO2
23.	Formulate equation to calculate rotor resistance star	rter.	BTL 5	Remember	CO2
24.	What are the types of slip power recovery scheme.		BTL 1	Understand	CO2
	PART-B				
1.	Summarize the different types of braking of three phase induction motor.	(16)	BTL 5	Evaluate	CO2
2.	Explain the different methods of slip power recovery schemes.	(16)	BTL 5	Evaluate	CO2
3.	Explain the different types of Starters used to start the induction motors.	(16)	BTL 5	Evaluate	CO2
4.	A 3 phase 50 Hz, 12 pole, 200 kW slip-ring induction motor drives a fan whose torque is proportional to the square of speed. At full load, the motor slip is 0.045. The rotor resistance measured between any two slip-rings is 61 m Ω .	(16)	BTL 6	Create	CO2

		1	1		-
	Invent what resistance should be added in the				
	rotor circuit to reduce the fan speed to 450 rpm?				
~		(1.0)		Create	
5.	Generalize V/F method of speed control of an	(16)	BTL 6	Create	CO2
(induction motor in detail.	(10)		Deversion	
6.	Discuss auto transformer and rotor resistance	(16)	DTI 1	Remember	CO2
7.	methods of induction.	(16)	BTL 1 BTL 1	Remember	CO2
1.	Describe why starters are necessary for starting 3-phase induction motors?	(16)	DILI	Keinenidei	
8.	With neat diagrams explains the working of any	(16)	BTL 4	Analyze	CO2
0.	two types of starters used for squirrel cage type 3	(10)	DILT	7 mary 20	
	phase induction motor with neat diagrams				
	explain the working of any two types of starters				
	used for squirrel cage type 3 phase induction				
	motor.				
9.	Discuss the following starters for three phase	(16)	BTL 2	Understand	CO2
	induction motor:				
	(i) Pole changing method (8)				
	(ii) Star-Delta Starter. (8)				
10.	Illustrate the rotor rheostat control of 3 phase	(16)	BTL 3	Apply	CO2
	slip ringinduction motor.			TT. 1	
11.	Discuss the cascade operation of induction	(16)	BTL 2	Understand	CO2
10	motors to obtain Variable speed.			Analyza	0.00
12.	Explain briefly the various speed control schemes		BTL 4	Analyze	CO2
13.	of induction motor. Explain in detail the scherbius system of speed	(16)	BTL 4	Analyze	CO2
13.	control.	(10)	DIL 4	1 mary 20	
14.	Illustrate in detail the static kramer system of	(16)	BTL 3	Apply	CO2
1 1.	speed control.	(10)	DILS	11.5	
15.	A 4 pole, 50 hz, 3phase induction motor as	(16)	BTL 3	Apply	CO2
	rotor resistance of 0.2Ω per phase and rotor	~ /			
	standstill reactance of 1Ω per phase. On				
	full load it is running with a slip of 4%.				
	· ·				
	Calculate the extra resistance required in				
	rotor circuit per phase to reduce the speed				
	to 1260 r.p.m, on the same load condition.				
16.	Describe starting to full load torque ratio for	(16)	BTL 2	Understand	CO2
	star-delta starter.				
17.	With detailed expression, compare the starting	(16)	BTL5	Evaluate	CO2
	and full load torque in auto transformer starting.				
18.	A 400 V induction motor runs at a speed of 1440	(16)	BTL 3	Apply	CO2
	rpm when supplied from a 50 Hz source. Find its				
	speed at 30 Hz when the load torque is constant.				

UNIT-III - SYNCHRONOUS GENERATOR

Constructional details – Types of rotors – winding factors - emf equation – Synchronous reactance – Armature reaction – Phasor diagrams of non salient pole synchronous generator connected to infinite bus - Synchronizing and parallel operation – Synchronizing torque - Change of excitation and mechanical input - Voltage regulation – EMF, MMF, ZPF and A.S.A methods – steady state power-angle characteristics – Two reaction theory – slip test -short circuit transients - Capability Curves.

	PART-A				
Q. No	Questions	BT Level	Competence	CO	
1.	Identify the type of synchronous generators that are used in Hydroelectric generation.	BTL 1	Remember	CO3	
2.	What are the advantages of salient pole type construction used for synchronous machines?	BTL 2	Understand	CO3	
3.	Why is the field system of an alternator made as a rotor?	BTL 3	Apply	CO3	
4.	Differentiate single layer and double layer winding.	BTL 4	Analyze	CO3	
5.	Summarize winding factors of an alternator.	BTL 5	Evaluate	CO3	
6.	Explain the role of damper winding in synchronous generator.	BTL 5	Evaluate	CO3	
7.	Describe about pitch factor.	BTL 3	Apply	CO3	
8.	What is the necessity of chording in the armature winding of a synchronous machine?	BTL 4	Analyze	CO3	
9.	Distinguish between the 'Synchronous reactance' and the 'Potier reactance' of a synchronous generator.	BTL 6	Create	CO3	
10.	Tell, what is meant by armature reaction in an alternator?	BTL 1	Remember	CO3	
11.	Express what is meant by alternator on infinite bus- bars?	BTL 2	Understand	CO3	
12.	Demonstrate the conditions to be satisfied for parallel operation of alternators.	BTL 3	Apply	CO3	
13.	Write the equation for frequency of emf induced in an alternator.	BTL 6	Create	CO3	
14.	Summarize the essential elements for generating emf in alternators.	BTL 2	Understand	CO3	
15.	What is synchronizing power of an alternator?	BTL 1	Remember	CO3	
16.	Explain the causes of voltage drop in an alternator when loaded.	BTL 4	Analyze	CO3	
17.	Define voltage regulation.	BTL 1	Remember	CO3	
18.	List the various methods to determine the voltage regulation.	BTL 1	Remember	CO3	
19.	Why the concept of Two reaction theory is applied only to salient pole	BTL 2	Understand	CO3	
20.	Distinguish between transient and sub-transient	BTL 1	Remember	CO3	

	reactance's.				
21.	List the effect of harmonic components in ince	luced	BTL 6	Create	CO3
22.	Explain armature leakage reactance.		BTL 4	Analyze	CO3
23.	Demonstrate voltage equation of alternator.		BTL 3	Apply	CO3
$\frac{23.}{24.}$	Explain synchronizing current.		BTL 5	Evaluate	CO3
PAR			DILJ	Livaluate	005
1.	Define armature reaction and explain the effect of armature reaction on different power factor loads of synchronous generators.	(16)	BTL1	Remember	CO3
2.	Derive the EMF equation of a 3-phase synchronous machine.	(16)	BTL1	Remember	CO3
3.	Describe how the direct and quadrature-axis reactance's of a salient-pole synchronous machine can be estimated by means of slip test.	(16)	BTL1	Remember	CO3
4.	Explain phasor diagram of one phase of a synchronous generator and describe the features of synchronous impedance.	(16)	BTL3	Apply	CO3
5.	A 3-phase, 50 Hz, star-connected alternator with 2-layer winding is running at 600 rpm. It has 12 turns/coil, 4 slots/pole/phase and a coil-pitch of 10 slots. If the flux/pole is 0.035 Wb sinusoidally distributed, find the phase and line emf's induced. Assume that the total turns/phase are series connected.	(16)	BTL3	Apply	CO3
б.	Describe the parallel operation of three phase alternators withhelp of a neat diagram.	(16)	BTL4	Analyze	CO3
7.	Define the terms synchronous reactance and voltage regulation of alternator. Explain synchronous impedance method for determining regulation of an alternator.	(16)	BTL3	Apply	CO3
8.	Predict the full load voltage regulation of a 3- phase star connected, 1000kVA, 11,000V alternator has rated current of 52.5A. The ac resistance of the winding per phase 0.45Ω . The test results are given below: OC Test: field current = 12.5A, voltage between lines = 422V SC Test: field current = 12.5A, line current = 52.5A For 0.8 pf lagging and 0.8 pf leading.	(16)	BTL3	Apply	CO3
9.	Sketch and explain the open-circuit and short- circuit characteristics of synchronous machines and explain its parameters in details.	(16)	BTL4	Analyze	CO3
	and explain his parameters in details.				

	speed operation generator with neat diagram.				
11.	Describe the potier and zero power factor method of determining the regulation of an alternator.	(16)	BTL1	Remember	CO3
12.	 (i)What is meant by Synchronizing? List the conditions for paralleling alternator with infinite busbars.(8) (ii)Point out the assumptions made in the potier method and explain the effect of these assumptions on the accuracy of the voltage regulation.(8) 	(16)	BTL2	Understand	CO3
13.	Summarize the two-reaction theory of salient pole alternator.	(16)	BTL2	Understand	CO3
14.	Generalize the EMF & MMF methods of determining the regulation of an alternator.	(16)	BTL4	Analyze	CO3
15.	Summarize the discussion on capability curve with its boundaries of synchronous machine.	(16)	BTL3	Apply	CO3
16.	Explain in detail about method of synchronization of alternators.	(16)	BTL5	Evaluate	CO3
17.	Formulate clearly the A S A method of determining the regulation of an alternator.	(16)	BTL4	Analyze	CO3
Duine	<u>UNIT-IV - SYNCHRONOU</u>			hans V and Luca	
curve const	<u>UNIT-IV - SYNCHRONOU</u> ciple of operation – Torque equation – Operation of es – Power input and power developed equations tant power input, constant excitation and constant	on infi – Sta t powe	nite bus rting met er develop	thods - Current 1	oci for
curve const	<u>UNIT-IV - SYNCHRONOU</u> ciple of operation – Torque equation – Operation of es – Power input and power developed equations tant power input, constant excitation and constant tency of oscillations – damper windings - synchronou	on infi – Sta t powe	nite bus rting met er develop	thods - Current 1	oci for
curve const	<u>UNIT-IV - SYNCHRONOU</u> ciple of operation – Torque equation – Operation of es – Power input and power developed equations tant power input, constant excitation and constant	on infi – Sta t powe	nite bus rting met er develop	thods - Current 1	oci for
curve const frequ Q. No	UNIT-IV - SYNCHRONOU ciple of operation – Torque equation – Operation of es – Power input and power developed equations tant power input, constant excitation and constant ency of oscillations – damper windings - synchronous PART-A Questions	on infi – Sta t powe	nite bus rting me er develog denser. BT	thods – Current l ped - Hunting –	oci for natura
curve const frequ Q. No 1.	<u>UNIT-IV - SYNCHRONOU</u> ciple of operation – Torque equation – Operation of es – Power input and power developed equations tant power input, constant excitation and constant ency of oscillations – damper windings - synchronous PART-A	on infi – Sta powe us con	nite bus rting met er develo denser. BT Level	thods – Current l ped - Hunting – Competence	oci for natura
curve const frequ Q. No 1. 2.	UNIT-IV - SYNCHRONOU ciple of operation – Torque equation – Operation of es – Power input and power developed equations tant power input, constant excitation and constant ency of oscillations – damper windings - synchronous PART-A Questions List the main parts of synchronous motor. Show the two fundamental characteristics of a rot	on infi – Sta t powe us con tating	nite bus rting met er develog denser. BT Level BTL1	thods – Current l ped - Hunting – Competence Remembering	oci for natural
curve const frequ Q. No 1. 2. 3.	UNIT-IV - SYNCHRONOU ciple of operation – Torque equation – Operation of ciple of operation – Torque equation – Operation of es – Power input and power developed equations tant power input, constant excitation and constant tency of oscillations – damper windings - synchronou PART-A Questions List the main parts of synchronous motor. Show the two fundamental characteristics of a rot magnetic field. Point out why synchronous motor is not a self-sta	on infi – Sta z powe us con tating arting	nite bus rting met er develog denser. BT Level BTL1 BTL2 BTL1	thods – Current l ped - Hunting – Competence Remembering Understanding	CO CO4 CO4
curve const frequ Q. No 1. 2. 3. 4.	UNIT-IV - SYNCHRONOU ciple of operation – Torque equation – Operation of es – Power input and power developed equations tant power input, constant excitation and constant ency of oscillations – damper windings - synchronous PART-A Questions List the main parts of synchronous motor. Show the two fundamental characteristics of a rot magnetic field. Point out why synchronous motor is not a self-stamotor. Why a 3-phase synchronous motor will always r	on infi – Sta t powe us con tating arting run at	nite bus rting met er develog denser. BT BTL1 BTL2 BTL1 BTL2	thods – Current l ped - Hunting – Competence Remembering Understanding Remembering	CO4 CO4 CO4 CO4
curve const <u>frequ</u> Q. No 1. 2. 3. 4. 5.	UNIT-IV - SYNCHRONOL ciple of operation – Torque equation – Operation of es – Power input and power developed equations tant power input, constant excitation and constant ency of oscillations – damper windings - synchronot PART-A Questions List the main parts of synchronous motor. Show the two fundamental characteristics of a rot magnetic field. Point out why synchronous motor is not a self-stamotor. Why a 3-phase synchronous motor will always r synchronous speed? Discuss how can we change the operating speed	on infi – Sta z powe us con tating tating arting run at ed of	nite bus rting met er develog denser. BT BTL1 BTL2 BTL1 BTL2	thods – Current I ped - Hunting – Competence Remembering Understanding Remembering Understanding	CO4 CO4 CO4 CO4 CO4
curve const frequ Q.	UNIT-IV - SYNCHRONOU ciple of operation – Torque equation – Operation of es – Power input and power developed equations tant power input, constant excitation and constant ency of oscillations – damper windings - synchronous PART-A Questions List the main parts of synchronous motor. Show the two fundamental characteristics of a rot magnetic field. Point out why synchronous motor is not a self-stamotor. Why a 3-phase synchronous motor will always r synchronous speed? Discuss how can we change the operating speet synchronous motor. Write down the significance of V and inverted	on infi – Sta z powe us con tating tating arting run at ed of	nite bus rting met er develog denser. BT BTL1 BTL2 BTL1 BTL2 BTL2 BTL3	thods – Current l ped - Hunting – Competence Remembering Understanding Remembering Understanding Applying	CO4 CO4 CO4 CO4 CO4 CO4 CO4
curve const frequ Q. No 1. 2. 3. 4. 5. 6.	UNIT-IV - SYNCHRONOU ciple of operation – Torque equation – Operation of es – Power input and power developed equations tant power input, constant excitation and constant ency of oscillations – damper windings - synchronous PART-A Questions List the main parts of synchronous motor. Show the two fundamental characteristics of a rot magnetic field. Point out why synchronous motor is not a self-stamotor. Why a 3-phase synchronous motor will always r synchronous speed? Discuss how can we change the operating speed synchronous motor. Write down the significance of V and inverte curves.	on infi – Sta z powe us con tating tating arting run at ed of	nite bus rting met er develog denser. BT BTL1 BTL2 BTL1 BTL2 BTL2 BTL3	thods – Current l ped - Hunting – Competence Remembering Understanding Remembering Understanding Applying Applying	CO4 CO4 CO4 CO4 CO4 CO4 CO4 CO4

10.	Name the various torques associated wit synchronous motor.	ih a	BTL4	Analyzing	CO4
11.	Name the starting methods of synchronous motor.		BTL1	Remembering	CO4
12.	How does a change of excitation affect its p factor?	ower	BTL4	Analyzing	CO4
13.	A 3-phase synchronous motor driving a constant torque draws power from infinite bus at leading p factor. How power angle and power factor will ch if the excitation is increased?	ower	BTL2	Understanding	CO4
14.	Invent what happens when the load on the synchromotoris changed.	onous	BTL4	Analyzing	CO4
15.	What is hunting?		BTL3	Applying	CO4
16.	Express the causes of hunting.		BTL1	Remembering	CO4
17.	Explain the methods of reducing the space harm in a machine.	onics	BTL1	Remembering	CO4
18.	What for damper windings are provided synchronous machine?	in a	BTL6	Creating	CO4
19.	How the synchronous motor can be used synchronous condenser.	d as	BTL6	Creating	CO4
20.	List the inherent disadvantages of synchronous mo	otor.	BTL5	Evaluating	CO4
21.	Explain the condition for excitation when r develops maximum power.		BTL1	Remembering	CO4
22.	List the methods to start synchronous motor.		BTL2	Understanding	CO4
23.	Write down the emf equation for synchronous mo	tor.	BTL3	Applying	CO4
24.	Express the phasor diagram between E_{ph} and V_{ph} load.	at no	BTL4	Analyzing	CO4
	PART-B				
1.	Explain briefly the features and principle of operation of three-phase synchronous motor.	(16)	BTL1	Remembering	CO4
2.	Deduce the expression for power delivered by a synchronous motor in terms of load angle (α).	(16)	BTL2	Understanding	CO4
3.	(i) Show that the synchronous motor is a variable power factor motor.(8)(ii) List the advantages of salient pole in synchronous motor.(8)	(16)	BTL3	Applying	CO4
4.	Draw the deuce into simplified equivalent circuit of synchronous motor.	(16)	BTL2	Understanding	CO4
5.	Examine the effect of loading in synchronous motor at various Power.	(16)	BTL1	Remembering	CO4
6.	 (i) Derive the mechanical power developed per phase of a synchronous motor.(8) (ii) Derive the expression for maximum torque developed perphase of synchronous motor.(8) 	(16)	BTL3	Applying	CO4
			BTL3	Applying	CO4

7.	What are 'constant excitation circles and constant power circle' for a synchronous motor? How are	(16)	BTL4	Analyzing	CO4
	they derived?				
8.	Explain in detail the V curve and inverted V	(16)	BTL1	Remembering	CO4
	curve of a synchronous motor.				
9.	Explain in detail the method of starting of synchronous motor.	(16)	BTL2	Understanding	CO4
10.	A 5kW, three-phase Y-connected 50 Hz, 440V,	(16)	BTL1	Remembering	CO4
10.	cylindrical rotor synchronous motor operates at	(10)	DILI	Trememoring	001
	rated condition with 0.8 pf leading. The motor				
	efficiency excluding field and stator losses is				
	95% and $Xs=2.5\Omega$. Calculate:				
	(i) Mechanical power developed (4)				
	(ii)Armature Current (4)				
	(iii) Back emf (4)				
	(iv) Power angle (2)				
	(v) Maximum or pull-out torque of the motor.				
	(2)				
11.	A 6600V, 3 phase, star connected synchronous	(16)	BTL4	Analyzing	CO4
	motor draws a full load current of 80A at 0.8pf				
	leading. The armature resistance is 2.2Ω and				
	reactance of 22Ω per phase. If the stray losses of				
	the machine are 3200W. find				
	Emf induced				
	output power				
	Efficiency of the machine.(6+6+4)				
12.	Generalize the effect of changing field current excitation at constant load.	(16)	BTL3	Applying	CO4
13.	Examine in detail the effect of varying excitation	(16)	BTL5	Evaluating	CO4
	on armature current and power factor of		_	8	
	synchronous motor.				
14.	Formulate the power flow equations for a	(16)	BTL6	Creating	CO4
	synchronous motor.				
15.	Illustrate the phenomenon of hunting and the use	(16)	BTL1	Remembering	CO4
	of damper winding with the help of dynamic				
	equations.				
16.	With phasor diagram illustrate how synchronous	(16)	BTL2	Understanding	CO4
	motor can beused as a synchronous condenser.				
17.	Explain in detail about importance of	(16)	BTL3	Applying	CO4
	synchronization with infinite bus bar. what is the				
	condition for synchronous motor to operate for				
	power factor improvement.				
18.	Explain the effect of varying field current and	(16)	BTL6	Creating	CO4
	load change on a synchronous motor.				

UNIT-V - SINGLE PHASE INDUCTION MOTORS AND SPECIAL MACHINES

Constructional details of single phase induction motor – Double field revolving theory and operation – Equivalent circuit – No load and blocked rotor test –Performance analysis – Starting methods of single-phase induction motors –Capacitor-start capacitor run Induction motor - Shaded pole induction motor - Linear induction motor – Repulsion motor - Hysteresis motor - AC series motor - Servo motors - Stepper motors - introduction to magnetic levitation systems - DC Linear Motor - Linear Synchronous Motor.

	PART-A			
Q. No	Questions	BT Level	Competence	CO
1.	Summarize why single-phase induction motor is not self-starting. What are the various methods available for makinga single-phase motor self-starting?	BTL1	Remembering	CO5
2.	Discuss the double revolving field theory.	BTL2	Understanding	CO5
3.	Distinguish the terms rotating and pulsating magnetic fields.	BTL1	Remembering	CO5
4.	Identify the inherent characteristics of plain 1-phase induction motor.	BTL2	Understanding	CO5
5.	Show the no load vector diagram for single phase induction motor.	BTL3	Applying	CO5
6.	Develop the Speed torque characteristics of single- phase induction motor.	BTL3	Applying	CO5
7.	Name the two windings of a single-phase induction motor.	BTL1	Remembering	CO5
8.	Examine why centrifugal switches are provided in many 1-phase induction motors	BTL5	Evaluating	CO5
9.	Design the capacitor rating required for an induction motor	BTL2	Understanding	CO5
10.	Illustrate why capacitor-start induction motors are advantageous.	BTL4	Analyzing	CO5
11.	Explain how the direction of a capacitor-start motor can be reversed.	BTL1	Remembering	CO5
12.	Summarize the advantages of capacitor start induction motorover split-phase induction motor.	BTL4	Analyzing	CO5
13.	What is the role of 'magnetic bridges' in the operation of a shaded pole induction motor?	BTL2	Understanding	CO5
14.	State the limitations of shaded pole motors.	BTL4	Analyzing	CO5
15.	Predict the type of motor that is used for ceiling fan.	BTL3	Applying	CO5
16.	Specify the use of single-phase induction motor.	BTL1	Remembering	CO5
17.	What is the principle of operation of a linear induction motor.	BTL1	Remembering	CO5
18.	What is the necessity of having laminated yoke in an acseries motor?	BTL6	Creating	CO5

19.	Discuss the working principle of repulsion motor.		BTL6	Creating	CO5			
20.	What is the principle of reluctance motor?		BTL5	Evaluating	CO5			
21.	Examine magnetic-levitation.		BTL1	Remembering	CO5			
22.	List applications of DC linear motor.		BTL2	Understanding	CO5			
23.	What are the advantages of linear synchronous motor.		BTL3	Applying	CO5			
24.	How does a servo motor works.		BTL4	Analyzing	CO5			
	PART-B							
1.	Give the classification of single-phase motors. Explain any two types of single-phase induction motors.	(16)	BTL1	Remembering	CO5			
2.	Using double field revolving theory, compose why a single phase induction motor is not self- starting. Also obtain the equivalent circuit of single-phase induction motor with necessary equations.	(16)	BTL2	Understanding	CO5			
3.	Illustrate the operation of single-phase induction motor withdouble field revolving theory.	(16)	BTL3	Applying	CO5			
4.	Describe the no-load test and blocked rotor test for obtaining the equivalent circuit parameters of a single-phase induction motor.	(16)	BTL2	Understanding	CO5			
5.	Describe the no-load test and blocked rotor test for obtaining the equivalent circuit parameters of a single-phase induction motor. R1m = 2.4 Ω , X1m = 3.2 Ω R2' = 4.7 Ω , X2' = 2.8 Ω \and Xm= 90 Ω . Examine (i) Input current (4) (ii) Power Factor (3) (iii) Developed power (3) (iv) Output power (3) (v) Efficiency for a slip of 0.04. (3)	(16)	BTL1	Remembering	CO5			
6.	List in detail the operation of capacitor start and run induction motor.	(16)	BTL3	Applying	CO5			
7.	Explain with suitable diagram the working principle of split-phase induction motor.	(16)	BTL4	Analyzing	CO5			
8.	Explain the working of linear induction motor and also writeits applications.	(16)	BTL1	Remembering	CO5			
9.	Demonstrate briefly about the Repulsion motor.	(16)	BTL2	Understanding	CO5			
10.	Discuss the construction, operation and characteristics of servo motor.	(16)	BTL1	Remembering	CO5			
11.	Explain the construction, operation and characteristics of linear induction motor.	(16)	BTL4	Analyzing	CO5			
12.	Write down the construction, operation and characteristics of AC series motor.	(16)	BTL3	Applying	CO5			
13.	Describe what kind of modifications have to be done on a DC series motor to make it to work	` ` `	BTL5	Evaluating	CO5			

		1			1		
	with single phase AC supply. State the						
	applications of AC series motors.						
14.	Formulate the constructional details, principle of	(16)	BTL6	Creating	CO5		
	operation and the application of Hysteresis	Ì Í		U U			
	motor.						
15.	Demonstrate the construction and working	(16)	BTL1	Remembering	CO5		
10.	principle of the following special Machines:	(10)	DILI	Remembering	005		
	(i) Stepper motors.						
16	(ii) Shaded pole induction motor. (8+8)	(10)		TT. 1	COF		
16.	Explain the theory of brushless DC Machines.	(16)	BTL2	Understanding	CO5		
17.	Develop in detail about applications of stepper,	(16)	BTL3	Applying	CO5		
	AC linear Induction, stepper and AC series						
	motor.						
18.	Generalize about Magnetic Levitation Systems.	(16)	BTL5	Evaluating	CO5		
Course Outcome:							
Upon the successful completion of the course, students will have the:							
Ability to understand the construction and working principle of Three phase Induction Motor.							
Acquire knowledge about the starting and speed control of induction motors.							
Ability to understand the construction and working principle of Synchronous generator.							
Ability to understand the construction and working principle of Synchronous Motor.							
To gain knowledge about the basic principles and working of Single-phase induction							
motors and Special Electrical Machines.							
notors and Special Electrical Machines.							