SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution)

SRM Nagar, Kattankulathur - 603 203

DEPARTMENT OF

ELECTRICAL AND ELECTRONICS ENGINEERING

QUESTION BANK

EE3463 – MEASUREMENTS AND INSTRUMENTATION

Regulation – 2023

Academic Year 2024-2025 (EVEN)

Prepared by

Mr.S.Venkatesh, Assistant Professor (O.G)/EEE

SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution) SRM Nagar, Kattankulathur – 603 203.

DEPARTMENT OF ELECRICAL AND ELECTRONICS ENGINEERING

OUESTION BANK

SUBJECT: EE3463- MEASUREMENTS AND INSTRUMENTATION

SEM / YEAR:IV/II

UNIT I - CONCEPTS OF MEASUREMENTS

Instruments: classification, applications – Elements of a generalized measurement system - Static and dynamic characteristics - Errors in measurement -Statistical evaluation of measurement data.

PART – A								
Q.No.	Questions	BT Level	Competence	COs				
1.	What are the basic functional elements of an instrument?	BTL 4	Create	CO1				
2.	Briefly explain the role of primary sensing element.	BTL 5	Evaluate	CO1				
3.	What are defection and null output instruments?	BTL 4	Analyse	CO1				
4.	Give the classification of secondary instruments	BTL 3	Apply	CO1				
5.	Compare Resolution and Precision.	BTL 3	Apply	CO1				
6.	Define the term "Sensitivity" of an Instrument.	BTL 1	Knowledge	CO1				
7.	Define the Static characteristics of an Instrument.	BTL 5	Evaluate	CO1				
8.	The true value of a voltage is 100V. The values indicated by a measuring instrument are 104, 103,105,103 and 105V. Calculate the Accuracy and Precision of the measurement.	BTL 6	Create	CO1				
9.	Define Dynamic characteristics of an Instrument.	BTL 4	Analyse	CO1				
10.	A Voltmeter reads 152 volts for a particular measurement. If the true value of the measurement is 154 volts, Determine the percentage static relative error and static correction.	BTL 1	Knowledge	CO1				
11.	Define fidelity.	BTL 2	Understand	CO1				
12.	State the different types of standards in an Instrument.	BTL 1	Knowledge	CO1				
13.	Enumerate the term calibration employed in instruments.	BTL 4	Analyse	CO1				
14.	Explain Absolute error of measurement?	BTL 3	Apply	CO1				
15.	Define Limiting error. Derive the expression for Relative limiting error.	BTL 4	Analyse	CO1				
16.	What are gross errors?	BTL 6	Create	CO1				
17.	What is Average deviation? What does indicate on a measuring instrument?	BTL 6	Create	CO1				
18.	Distinguish between Gravity control and Spring Control.	BTL 5	Evaluate	CO1				
19.	Express the Data presentation element.	BTL 2	Understand	CO1				
20.	Illustrate the Accuracy as 'Percentage of full scale reading'.	BTL 2	Understand	CO1				
21.	Define (i) Resolution (ii) Static Sensitivity.	BTL 1	Knowledge	CO1				
22.	What is meant by calibration of the instrument?	BTL 1	Knowledge	CO1				
23.	Draw the functional elements of measurements system.	BTL 1	Knowledge	CO1				
24.	List any 4-static characteristics of measurement system.	BTL 1	Knowledge	CO1				
	PART – B							

1.	 (i) Explain the functional elements of an instrument with a neat block diagram (ii) Define accuracy and reproducibility of an instrument and aurilain 	(16)	BTL 2	Understand	CO1
2.	Discuss the various classification of instruments in detail	(16)	BTL 2	Understand	C01
3.	Describe the static and dynamic characteristics of measuring instruments.	(16)	BTL 1	Knowledge	CO1
4.	 (i) What are the different types of error? Explain how to eliminate errors in instrument. (ii) An electric current of 3 Ampere is flowing through a resistanceof10ohms.Itwasfoundthattheresistancewas0.2% greater than what was specified as rated and the ammeter measurementwas0.5% more than the true value. Determine the relative error in power measurement. 	(8)	BTL6 BTL6	Create Create	CO1 CO1
5.	 (i) Define and explain the following static characteristics of an instrument. (a) Accuracy (b) Resolution (c) Sensitivity (d) Linearity (ii)Explain the types of static errors possible in an instrument. 	(8) (8)	BTL 1 BTL 2	Knowledge Understand	CO1 CO1
6.	A circuit was tuned for resonance by eight different students and the value of resonant frequency in kHz were recorded as 532, 548, 543, 535, 546, 531,543 and 536. calculate	(16)	BTL 5	Evaluate	CO1
	(i) Arithmetic mean				
	(ii) Deviation				
	(iii)Standard deviation				
	(iv) Average deviation				
7.	By using a micrometer screw, the following readings were taken of a certainlength:1.34, 1.38, 1.56, 1.47, 1.42, 1.44, 1.53,1.48,1.40,1.59 mm. Formulate the necessary equations and calculate the following: (i) Arithmetic mean (ii) Average deviation (iii) standard deviation and (iv) variance	(16)	BTL 4	Analyse	CO1
8.	Define the following terms in the context of normal frequency distribution of data: (i) Mean value (ii) Deviation (iii) Average deviation (iv) Variance (v) Standard deviation	(16)	BTL 2	Understand	CO1
9.	Classify and explain the different types of error and also mention	(16)	BTL 2	Understand	CO1
10	its compensation methods.				~~ 1
10.	(i) Explain the Classification of Standards in detail.	(8)	BTL 1	Knowledge	CO1
	(ii) Discuss the Significance of Calibration.	(8)			
11.	(i) Discuss the Different types of Standards and Errors of	(8)	BTL3	Apply	CO1
	Measurements. (ii) Discuss in detail about the Sources of errors in Measurement Techniques.	(8)	BTL3	Apply	CO1
12.	The following values were obtained from the measurements of	(16)	BTL 6	Create	CO1

	the values of 147.2, 147.4, 147.9, 147.7, 147.5, 147.6, and				
	14/.5. Calculate				
	(i) arithmetic mean				
	(i) standard deviation				
	(iii) The probable error of average of Ten readings				
13.	(i) Discuss with a neat sketch and explain the working	(8)	BTL1	Knowledge	CO1
	principle of PMMC Instrument.				
	(ii) AmeterAhasarangeof0-100Vandamultiplierresistance of				
	250hm.The meter B has range of 0-1000V and a multiplier	(8)	рті л	Annly	~~~
	resistance of $150 \text{K}\Omega$. Both meter have basic resistance	(0)	DIL4	Apply	COI
1.4	of $1K\Omega$. Which meter is more sensitive?	(16)	RTI 5	Fyaluata	CO1
14.	Explain in detail the types of errors and sources of error in	(16)	DILJ	Lvaluate	
15	Δ set of Independent current measurements were taken by six	(16)	BTL 1	Knowledge	CO1
15.	observer and were recorded as 12.8 A 12.2A 12.5A 13.1A 12.9A	(10)	DILI	imowieuge	
	and 12.4A.				
	(i) Arithmetic mean				
	(ii) Deviation from mean				
	(iii) Average deviation				
	(iv) standard deviation and variance				
16.	(i) What is a standard? Explain the different type standards.	(8)	BTL3	Apply	CO1
	(ii) Explain in details about calibration technique.	(8)			
17.	(i) Describe the functional elements of an instrument	(8)	BTL1	Knowledge	CO1
	withblock diagram,				
	(ii) Explain the dynamic characteristics of an instrument	(8)	BTL4	Apply	CO1
	indetails.				
	UNIT II -MEASUREMENT OF PARAMETERS	S IN EI	LECTRIC	CAL SYSTEM	IS
Classific	cation of instruments – moving coil and moving iron meters – Indu	uction t	ype, dyna	mometer type	watt
meters –	- Energy meter – Megger – Instrument transformers (CT & PT).				
	PART – A		RT		GO
Q.No	Questions	L	level	Competenc	COs
1.	How the measuring instruments can be classified?	В	TL 2	Understand	CO2
2	List out various sources in which the error of Electro dyname	R	TI 2	Understand	CO2
Ζ.	type wattmeter	D	11.4	Understand	02
		_			
3.	What are the Analog instruments?	B	TL 1	Knowledge	CO2
4.	Illustrate the Types of analog ammeter used for Instrumentation	B	TL 6	Create	CO2

5.	Write the torque Equation for the moving iron instruments	E	BTL 4	Analyse	CO2
6.	Mention any 4-applications of Multimeter.	E	BTL 1	Knowledge	CO2
7.	Why the ordinary Watt-meters are not suitable for Low	E	BTL 1	Knowledge	CO2
	power factor circuits?				
8.	How does one extend the range of Ammeter and Voltmeter?	E	BTL 1	Knowledge	CO2
9.	Specify the use of copper shading bands. Where is it placed	F	BTL 4	Analyse	CO2
	in the Energy meter?				
10.	Construct the gravity control system with neat diagram.	E	BTL 2	Understand	CO2
11.	Illustrate the types of instruments used as ammeters and	E	BTL 3	Apply	CO2
10	voltmeters.	T		A]	000
12.	Describe the basic principle of PMMC instruments.		51L4	Analyse	CO2
13.	Define Creeping in Energy meter.			Knowledge	CO2
14.	Draw the block diagram of attraction type moving iron	ľ	31L 3	Apply	CO2
1.5	Instrument.	T	DTT 2	Apply	002
15.	Distinguish between radial vane type and coaxial vane type.			Apply Evoluate	CO2
16.	Name the various errors in the moving instruments.	1 T		Evaluate	CO2
17.	which torque is absent in energy meter? why?			Evaluate	CO2
18.	Draw the basic diagram for Electro Dynamo type Wettmater		JIL 3	Lvaluate	02
10	Mention the main elements of Induction type Energy Meter	F	RTL 4	Analyse	CO2
<u> </u>	List out the Various causes which easur errors in a	F	TL 4	Knowledge	
20.	Dynamometer Wattmeter	*	,11,1	imowieuge	02
21	List out the methods used for Measurement of Iron loss in	E	BTL 1	Knowledge	CO2
21.	Ferromagnetic materials.			8	001
22.	List the advantages of instrument transformers	F	BTL 3	Apply	CO2
23	Point out any two applications of CT and of PT	F	BTL 3	Apply	CO2
23.	Define transformer ratio of an Instrumentation	F	BTL 5	Evaluate	CO2
21.	Transformer (IT).				001
	PART – B	I		I	I
1.	Discuss the Construction and its Working principle of	(16)	BTL 4	Analyse	CO2
	Flectrodynamometer type Wattmeter			-	
2	Discuss with Circuit and Phase diagram describe the	(16)	BTL 5	Evaluate	CO2
۷.	working of Single-phase AC Energy Meter	(10)	DILS	Lvaluate	02
3	State Blondel's theorem and explain how the power	(16)	BTL2	Understand	CO2
5.	measurement using two wattmeter methods	(10)	DILZ	Understand	002
1	Describe the Construction and Working of Permanent	(16)	BTL 2	Understand	CO2
4.	Magnet Moving Coil Instrument, Also Derive the expression	(10)	2122	Chaoistana	002
	for deflection.				
5.	Obtain the Mathematical expression for deflecting torque	(16)	BTL 3	Apply	CO2
	and Controlling t o r q u e for the DC Ammeter. Also write				
	the advantages and disadvantages.				
6.	Discuss the working principle of operation of	(16)	BTL 6	Create	CO2
	Electrodynamometer type of Instruments with its	、 - /			
	constructional diagram.				

7.	(i) Explain the Methods of turns compensation used in current	(8)	BTL3	Apply	CO2
	Transformers to reduce ratio error.		рті 🤈	.	GOA
	(ii) Explain the term "loading" in voltmeter and give the	(8)	DIL2	Understand	CO2
8	(i) The Coil of instrument has 42.5 turns. The mean width of the	(8)	BTL3	Apply	<u>CO2</u>
0.	(i) The Coll of instrument has 42.5 turns. The mean width of the coil is 2 cm. If the flux	(0)	DILS	Арріу	02
	density is 0.1 Wb/m2, Calculate the torque on the moving coil in				
	NM	(0)			
	(ii) A 100/5A current transformer having a rated burden of 25	(8)			
	VA has an iron loss of 0.4W and a magnetizing current of 2 A.				
	Calculate its ratio error and phase angle error when supply in				
	grated output current.				
9.	(i) Explain the Moving iron attraction type instrument.	(8)	BTL3	Apply	CO2
	(ii) Infer the Moving iron repulsion type instrument.	(8)			
10.	Explain the construction and working principle of megger instrument.	(16)	BTL3	Apply	CO2
11	(i) Discuss the effect of the following on the error of current	(8)	BTL 3	Apply	CO2
	Transformer				
	a) Change of primary winding circuit and				
	b) Change in secondary winding circuit burden.	(8)			
	Explain with suitable diagram.	(-)			
12	Illustrate the following	(8)	BTL2	Understand	CO2
12.	(i) Current transformer.	(0)			001
	(ii) Potential transformer.	(8)			
13.	Describe the constructional and working of an induction type	(16)	BTL 3	Apply	CO2
	wattmeter. Also derive an expression for the average torque				
	which is proportional to power.				
14.	Describe the construction details and working of Single Phase	(16)	BTL 2	Understand	CO2
	Induction Type Energy meter.				
15.	Discuss briefly the three types of operating torque needed for the	(16)	BTL 3	Apply	CO2
	satisfactory operation of the indicating instruments.				
16.	Discuss in detail, about the working principle characteristics of	(16)	BTL 3	Apply	CO2
	CT with its phasor diagram.Explain the operating principle of				
17	Instrument transformer.	(16)	BTL 6	Create	CO2
17.	transformer.	(10)	DILO	Create	02
	UNIT III - AC/DC BRIDGES AND INSTRUME	NTATI	ON AMP	LIFIERS	1
Whea	itstone bridge, Kelvin double bridge - Maxwell, Hay, Wien and Sch	ering b	ridges –E	rrors and	
comp	ensation in A.C. bridges - Instrumentation Amplifiers.				
	PART – A				
Q.No.	Questions		BT Level	Competence	COs
1.	Describe the types of bridges.		BTL 3	Apply	CO3
2.	Evaluate the Thevenin's equivalent circuit of Wheatstone bridge.		BTL 4	Analyse	CO3
3.	With the neat circuit diagram, illustrate the balanced equation		BTL 1	Knowledge	CO3
	of Wheatstone bridge.		ртт 4	A 1	
4.	Distinguish between Wheatstone bridge and Kelvin's bridge?		B1L 4	Analyse	CO3

5.	How Maxwell's bridge differ from Anderson bridge, although both are used for measuring inductance?	BTL 3	Apply	CO3
6.	Draw the circuit diagram write the expression for unknown inductance and its resistance of Anderson's bridge.	BTL 2	Understand	CO3
7.	Write the necessary balance condition for a Schering bridge.	BTL 4	Analyse	CO3
8.	Evaluate why there are two conditions of balance in AC bridges?	BTL 4	Analyse	CO3
9.	Which bridge is used to measure incremental inductance? Write the expression.	BTL 3	Apply	CO3
10.	List the application of AC bridge.	BTL 4	Analyse	CO3
11.	Generalize the active and passive bridge circuits?	BTL 3	Apply	CO3
12.	Give the relationship between the bridge balance equation of DC bridge and AC bridge	BTL 1	Knowledge	CO3
13.	What are the ways of minimizing the electromagnetic interference?	BTL 2	Understand	CO3
14.	State the features of ratio transformers which make them popular for bridge applications.	BTL 6	Create	CO3
15.	What is an isolation amplifier? Analyze and write where is it used?	BTL 1	Knowledge	CO3
16.	List the various types of detectors for AC Bridges.	BTL 1	Knowledge	CO3
17.	Distinguish between Wheatstone bridge and Kelvin's bridge?	BTL 3	Apply	CO3
18.	Show the advantages of Maxwell bridge.	BTL 1	Knowledge	CO3
19.	Discuss the power factor and dissipation factor for Schering	BTL 2	Understand	CO3
	bridge.			
20.	Analyze the Hay bridge circuit.	BTL 3	Apply	CO3
21.	Explain the operation of Wein bridge.	BTL 4	Analyse	CO3
22.	List out the types of A.C bridges.	BTL 3	Apply	CO3
23.	Explain the operation of Instrumentation Amplifiers.	BTL 4	Analyse	CO3
24.	List the Applications of Instrumentation Amplifiers	BTL 3	Apply	CO3

PART – B						
1.	Illustrate the Kelvin's bridge with its circuit diagram and derive its balance equation.	(16)	BTL 4	Analyse	CO3	
2.	Validate the following in detail: (i) Maxwell bridge, (ii) Hay bridge.	(16)	BTL 3	Apply	CO3	
3.	(i) Explain the theory and working principle of Wheat stone's Bridge. Derive the relation for finding unknown resistance.(ii) Describe any one method for the measurements of high resistance.	(8) (8)	BTL 2 BTL 2	Understand	CO3	
4.	Draw a neat diagram of Kelvin double bridge and explain how to measure low resistance.	(16)	BTL5	Evaluate	CO3	
5.	Explain how the inductance is measured in terms of known Capacitance using Maxwell's bridge. Compose the conditions for balance.	(16)	BTL 2	Understand	CO3	
6.	Examine the following bridges with neat diagram: (i) Schering bridge, (ii) Wien bridge	(16)	BTL 2	Understand	CO3	
7.	 (i) In a balanced network, AB is a resistance of 500 ohm in series with an inductor of 0.18H, BC and DA are non-inductive resistances of 1 k ohm each and CD consists of a resistance R in series with a capacitor C. A potential difference of 5 V at a frequency of 5000/2π is applied between points A and C. Determine the values of R and C. (ii) Draw and explain the balance conditions of a Wheatstone bridge. 	(8)	BTL5 BTL2	Evaluate Understand	CO3	
8.	 (i) Explain the construction of Anderson's bridge. Derive the unknown quantities at balance condition. Also write it's advantages and disadvantages. (ii) Derive the expressions for measurement of unknown capacitance with a neat bridge circuit. 	(8)(8)	BTL4 BTL4	Analyse Analyse	CO3 CO3	
9.	Estimate the way to measure the phase angle using ratio transformer?	(16)	BTL1	Knowledge	CO3	
10	Explain the following AC Bridges (i) Maxwell's Bridge (ii)Anderson's Bridge.	(8) (8)	BTL 1	Knowledge	CO3	

11.	Evaluate the expression for the current through the galvanometer in case of unbalanced Wheatstone Bridge. And also state its application.	(16)	BTL 1	Knowledge	CO3
12.	Explain the theory and working principle of Hay's Bridge. Derive the relation for finding unknown resistance and inductance.	(16)	BTL 2	Understand	CO3
13.	(i) With the help of Schering bridge, explain how loss angle of a dielectric can be determined.(ii) Explain the measurements of frequency by Wien's bridge.	(8) (8)	BTL 2	Understand	CO3
14.	Design the Kelvin's bridge and construct the Kelvin's double bridge from the principle of kelvin's bridge.	(16)	BTL 2	Understand	CO3
15.	Design the Kelvin's bridge and construct the Anderson's Bridge.	(16)	BTL5	Evaluate	CO3
16.	Explain the working and operation of Instrumentation Amplifiers.	(16)	BTL 2	Understand	CO3
17.	Explain the different types of Instrumentation Amplifiers.	(16)	BTL 2	Understand	CO3
τ	UNIT IV - TRANSDUCERS FOR MEASUREMENT OF NON-ELEC	TRICA	L PARAN	IETERS	
Classi Digita	fication of transducers – Measurement of pressure, temperature, d l transducers – Smart Sensors.	isplace	ment, flow	, angular veloc	ity –
	PART – A				•
Q.No	Questions		BT Level	Competence	COs
1.	Define primary transducer?		BTL 2	Understand	CO4
2.	Quote the principle of operation of optical transducer?		BTL 1	Knowledge	CO4
3.	What are the factors to be considered for selection of transducers?		BTL 3	Apply	CO4
4.	Write the functions of transducer.		BTL 6	Create	CO4
5.	Classify the transducers based on working principle		BTL 2	Understand	CO4
6.	Mention the need of ADC and DAC in digital data acquisition system	stem.	BTL 1	Knowledge	CO4
7.	Compare sensor and transducer.		BTL 4	Analyse	CO4
8.	In capacitive transducer, which principle exhibits linear characteristics? How?		BTL 3	Apply	CO4
9.	Mention the electrical phenomena used in transducers.		BTL 1	Knowledge	CO4
10.	What are mechanical transducer		BTL 5	Evaluate	CO4
11.	Classify any two applications of Smart Sensors		BTL 3	Apply	CO4
12.	List the elements of DAQ System.		BTL 2	Understand	CO4
13.	What are the two ways that the DAS are used to measure and record analog signals?		BTL 2	Understand	CO4
14.	Describe inverse transducers with example		BTL 2	Understand	CO4
15.	What is thermal imager?		BTL 4	Analyse	CO4
16.	Discuss in brief about LVDT		BTL 1	Knowledge	CO4
17.	Write the materials used for piezo electric transducer. Mention any 2- applications of it.		BTL 2	Understand	CO4
18.	Describe strain gauge? List its types.		BTL 2	Understand	CO4
19.	Explain in brief about gauge factor? Give its expression.		BTL 1	Knowledge	CO4
20.	Formulate the elements of data acquisition system.		BIL 1	Knowledge	CO4
21.	What is meant by thermal imager?		BTL 2	Understand	CO4
22.	Define Hall effect. Mention any 2-applications of Hall effect.		BTL 2	Understand	CO4

ſ	23.	What is meant by smart sensors?		BTL 1	Knowledge	CO4	1
-	24.	List any four applications of smart sensors.		BTL 1	Knowledge	CO4	
		PART – B					se
	1.	(i) What is called piezo-electric transducer? Explain its working with neat diagram.	(8)	BTL 4	Analyse	CO4	
		(ii) Examine how to measure pressure using capacitive type transducer.	(8)				
-	2.	Elaborate the types of resistive and inductive transducer used for measuring pressure	(16)	BTL 3	Apply	CO4	-
	3.	(i) Explain in brief about data acquisition system? With generalized block diagram, explain the functions of it.	(8)	BTL 3	Apply	CO4	
-		ii) Describe about smart sensors.	(8)	BTL 6	Create	<u> </u>	_
-	4.	transducers.	(16)	DIL U	Vnowlodgo	C04	_
	5.	 Discuss in brief on the following. (i) Capacitive transducer. (ii) Piezo electric transducer. (iii) Resistance thermometer. 	(16)	DIL I	Knowledge	CO4	
	6.	(i) Explain how a Hall Effect transducer is used to measure electric current with a schematic representation.(ii) Describe the concept of smart sensors.	(16)	BTL 5	Evaluate	CO4	
	7.	Analyse the working of Linear Variable Differential Transformer with its advantages.	(16)	BTL 1	Knowledge	CO4	
ſ	8.	(i) What are rosettes type strain gauges? Under which condition rosettes are used? Draw any two types of rosettes.(ii) Discuss active and passive transducers with an example briefly for each type.	(16)	BTL 1	Knowledge	CO4	
	9.	Explain the factors need to be considered for the selection of transducers.	(16)	BTL 2	Understand	CO4	
	10.	What is meant by transducer? Explain how the transducer can be classified.	(16)	BTL 2	Understand	CO4	
	11.	Describe the linear and angular measurement using capacitive transducer.	(16)	BTL 2	Understand	CO4	
	12.	Elucidate the principle of operation of optical transducers.	(16)	BTL 6	Create	CO4	
	13.	Explain in detail about hall effect transducer and mention some applications of hall effect transducer.	(16)	BTL 3	Apply	CO4	
	14.	 (i) Describe in detail, the working principle of capacitive Microphone. (ii) Write a detailed technical note on smart sensors. Explain also the various built-in features of them compared to conventional sensors. 	(16)	BTL 2	Understand	CO4	
	15.	Explain in detail about the components, working, types and applications of thermal imagers	(16)	BTL 3	Apply	CO4	
	16	With neat sketch explain the theory and operating principle of resistance strain gauge.	(16)	BTL 2	Understand	CO4	

17	Evaluate the general architecture of smart sensor with block level considerations.	(16)	BTL 3	Apply	CO4

UNIT V - DIGITAL INSTRUMENTATION

A/D converters: types and characteristics – Sampling, Errors- Measurement of voltage, Current, frequency and phase - D/A converters: types and characteristics- DSO- Data Loggers – Basics of PLC programming and Introduction to Virtual Instrumentation -Instrument standards.

$\mathbf{PART} - \mathbf{A}$							
Q.No	Questions	BT	Competence	COs			
		Level					
1.	Define primary transducer?	BTL 1	Knowledge	CO5			
2.	Quote the principle of operation of optical transducer	BTL 1	Knowledge	CO5			
3.	Write the functions of transducer	BTL 1	Knowledge	CO5			
4.	Compare sensor and transducer	BTL 1	Knowledge	CO5			
5.	Mention the need of ADC and DAC in digital data acquisition	BTL 6	Create	CO5			
6.	Mention the electrical phenomena used in transducers	BTL 1	Knowledge	CO5			
7.	Define piezo electric effect	BTL 1	Knowledge	CO5			
8.	Classify any two applications of Smart Sensors	BTL 2	Understand	CO5			
9.	List the elements of DAQ System.	BTL 1	Knowledge	CO5			
10.	What are the two ways that the DAS are used to measure and	BTL 3	Apply	CO5			
	record analog signals?						
11.	Describe strain gauge? List its types	BTL 3	Apply	CO5			
12.	Classify the functions of data logger?	BTL 2	Understand	CO5			
13.	Which type of Frequency meter is use wide range of voltage?	BTL 2	Understand	CO5			
	Why?						
14.	What is meant by the term "sampling	BTL 1	Knowledge	CO5			
15.	Define static error in measurement systems	BTL 6	Create	CO5			
16.	List two types of dynamic errors in measurement systems.	BTL 1	Knowledge	CO5			
17.	Name the types of systematic errors.	BTL 1	Knowledge	CO5			
18.	Show the mathematical expression for error.	BTL 2	Understand	CO5			
19.	Distinguish between the absolute error and relative error.	BTL 6	Create	CO5			
20.	What is a digital storage oscilloscope (DSO)?	BTL 3	Apply	CO5			
21.	Name two applications of a DSO	BTL 6	Create	CO5			
22.	Name two common parameters that can be recorded using data loggers.	BTL 1	Knowledge	CO5			
23.	Define standard.	BTL 1	Knowledge	CO5			
24.	List the different types of standards of measurement	BTL 2	Understand	CO5			

	PART – B				
1.	Explain the working principle and characteristics of different types of A/D converters. Compare their applications	(16)	BTL 5	Evaluate	CO5
2.	Describe the process of sampling in A/D conversion and analyze the effects of sampling rate on the output signal quality	(16)	BTL 4	Analyze	CO5
3.	Discuss the significance of resolution and quantization error in A/D converters with suitable examples	(16)	BTL 3	Apply	CO5
4.	Illustrate different types of errors in A/D and D/A conversion processes, and suggest methods to minimize these errors.	(16)	BTL 4	Analyze	CO5
5.	Explain the principles and methods used for the measurement of voltage and current in AC and DC circuits	(16)	BTL 3	Apply	CO5
6.	Explain the working principles of different types of D/A converters	(16)	BTL 4	Analyze	CO5
7.	Design an experimental setup for the measurement of phase difference between two signals	(16)	BTL 1	Knowledge	CO5
8.	Explain the architecture and working of a digital storage oscilloscope (DSO). Highlight its advantages over analog oscilloscopes	(16)	BTL 2	Understand	CO5
9.	Design and construct the Digital Storage Oscilloscope to display the digital signal.	(16)	BTL 5	Evaluate	CO5
10.	Write short notes on: (i) Instrumental Errors, (ii) Environmental Errors.	(16)	BTL 6	Create	CO5
11	Describe the following in detail: (i) Gross error, (ii) Observational error, Random error	(16)	BTL 6	Create	CO5
12	Construct the digital frequency meter with a neat block diagram.	(16)	BTL 4	Analyze	CO5
13	Explain the working of a data logger and evaluate its role in monitoring and controlling industrial processes	(16)	BTL 5	Evaluate	CO5
14	Design a data acquisition system using a data logger and justify its implementation in a real-time scenario.	(16)	BTL 5	Evaluate	CO5
15	Describe the architecture of a Programmable Logic Controller (PLC) and explain its applications in automation.	(16)	BTL 3	Apply	CO5
16	Explain the basic concepts of virtual instrumentation and analyze its significance in modern measurement system.	(16)	BTL 4	Analyze	CO5
17	Formulate the following (i) Mechanical resonance type frequency meter. (ii) Electrical resonance type frequency meter.	(16)	BTL 2	Understand	CO5

COURSE OUTCOMES:

- 1. To acquire knowledge on fundamental art of measurement in engineering.
- 2. To understand the concepts of structural elements of various instruments.
- 3. Ability to the importance of bridge circuits.
- 4. To acquire knowledge about various transducers and their characteristics by experiments.
- 5. To understand the concept of digital instrumentation and virtual instrumentation by experiments.

