SRM VALLIAMMAI ENGINEERING COLLEGE (An Autonomous Institution)

SRM Nagar, Kattankulathur – 603 203

DEPARTMENT

OF

ELECTRONICS AND INSTRUMENTATION ENGINEERING

QUESTION BANK

IV SEMESTER

EI3462- INDUSTRIAL INSTRUMENTATION – I

Regulation – 2023

Academic Year 2024 – 25 (Even)

Prepared by

Mr.C.Praveen Kumar, M.E, (Ph.D), Assistant Professor (Senior Grade) – Dept. of EIE

SRM VALLIAMMAI ENGINEERING COLLEGE (An Autonomous Institution)

SRM Nagar, Kattankulathur – 603 203.

DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION ENGINEERING

QUESTION BANK

SUBJECT : EI3462 INDUSTRIAL INSTRUMENTATION-I SEM / YEAR : IV/II

UNIT I MEASUREMENT OF FORCE, TORQUE AND SPEED

Different types of load cells: Hydraulic, Pneumatic, Strain gauge, Magneto-elastic and Piezoelectric load cells - Different methods of torque measurement: Strain gauge, Relative angular twist. Speed measurement: Capacitive tacho, Drag cup type tacho, D.C and A.C tacho generators – Stroboscope.

	PART A				
Q.No	Question	COs	BT Level	Competence	
1.	What is meant by Strobotron?	CO1	BTL 1	Remember	
	What are the properties of materials used for Piezo	CO1	BTL 1	Remember	
2.	electric transducers?				
3.	Define gauge factor for strain gauge.	CO1	BTL 1	Remember	
4.	What is magneto-elastic effect?	CO1	BTL 1	Remember	
5.	What are the merits of stroboscope?	CO1	BTL 1	Remember	
6.	List the main parts of a hydraulic load cell.	CO1	BTL 1	Remember	
7.	Define Load Cell.	CO1	BTL 2	Understand	
8.	What is the principle of drag cup type Tachometer?	CO1	BTL 2	Understand	
9.	Give the different types of strain gauge load cell.	CO1	BTL 2	Understand	
10.	Write the significance of stroboscope.	CO1	BTL 2	Understand	
11.	Write the significance of the Load cell.	CO1	BTL 2	Understand	
12.	What are the classifications of Tachometer?	CO1	BTL 2	Understand	
13.	State the principle of DC Tacho generator.	CO1	BTL 2	Understand	
14.	Show how Elastic materials are used for force	CO1			
	measurement.		BTL 2	Understand	
15.	List the types of load cell.	CO1	BTL 1	Remember	
16.	Why are dummy gauges used? In what way they affect	CO1	BTL 1	Remember	
	the output of a strain gauge bridge?				
17.	Point out the measurement procedure for force using	CO1			
	load cell.		BTL 2	Understand	
18.	Identify the factors affecting the accuracy of force	CO1			
	measurement.		BTL 2	Understand	
19.	Justify the effect of Temperature in strain gauge	CO1	BTL 1	Remember	
	bridge				

	circuitry? How it is to be compensated?			
20.	Summarize the applications of load cell.	CO1	BTL 1	Remember
21.	Prepare a bridge circuit for any measuring instrument	CO1	BTL 1	Remember
	and justify its need.			
22.	Propose a suitable signal conditioning circuit for LVDT	CO1		
	based force measurement system of your own.		BTL 2	Understand
23.	List the factors to be considered in the selection of load	CO1		
	cell for a application.		BTL 2	Understand
24.	What are the advantages of measurement of torque by	CO1		
	using electronic techniques.		BTL 2	Understand
	PART B			
1.	Explain the principle and working of a strain gauge.	CO1		
	Also describe its usefulness in measurement of torque.		BTL 5	Evaluate
	(16)			
2.	Explain the principle and construction of :	CO1	BTL 4	Analyze
	(i) Hydraulic load cell. (8)			
	(ii) Drag cup DC tachogenerator. (8)			
3.	Describe about Magneto Elastic and Piezo Electric Load	CO1	BTL 3	Apply
	cell with a neat diagram. (16)			
4.	Draw the diagram and describe the working,	CO1	BTL 3	Apply
	construction of:			
	(i) Inductive torque transducer. (8)			
	(ii) Electric balance. (8)			
5.	Discuss the construction and working of DC and AC	CO1	BTL 3	Apply
	Tachogenerator with diagram and mention its			
	advantages and disadvantages. (16)			
6.	Briefly describe the working of different speed	CO1	BTL 3	Apply
	measurement methods. (16)			
7.	With necessary diagram, describe how speed can be	CO1	BTL 3	Apply
	measured using Revolution counter. (16)			
8.	Describe how proximity sensor can be used for torque	CO1	BTL 3	Apply
	measurement, explain with relevant diagram. (16)			
9.	(i) Illustrate the basic means of force measurement. (8)	CO1	BTL 3	Apply
	(ii)Illustrate with neat sketches, the working of			
	pneumatic load cell. (8)			
10.	With neat diagram explain ,the construction and	CO1	BTL 3	Apply
	working of			
	(i) Strain gauge load cell. (8)			
	(ii) Stroboscope. (8)			
11.	(i) Illustrate the construction, working of optical torsion	CO1	BTL 3	Apply
	(8)			
	(ii) Describe the torque measurement principle involving			
	relative angular twist. (8)			

12.	Explain the following methods of measurement of	CO1	BTL 4	Analyze
	torque:			
	(i) Capacitive torque transducer. (8)			
	(ii) Magneto strictive methods. (8)			
13.	(i) Illustrate the working of Strobotron. (8)	CO1	BTL 3	Apply
	(ii)Mention the advantages and disadvantages of			
	stroboscope measurement technique? (8)			
14.	Propose a method for strain gauge torsion meter. Discuss	CO1	BTL 3	Apply
	the construction, working and advantage of the same.(16)			
15.	Explain any two types of torque measurement with neat	CO1	BTL 3	Apply
	sketch. (16)			
16.	A toothed rotor tachometer is used in a digital counter	CO1	BTL 3	Apply
	for measuring speed of rotation of the shaft on which the			
	wheel is mounted. The grating period is 10^3 us and a			
	reading of 0004 is obtained on the four digit display.			
	Determine the speed of the shaft if the number of teeth			
	on rotor is 150. (16)			
17.	The frequency of the flashes of a stroboscope is adjusted	CO1	BTL 4	Analyze
	such that a disc with 20 points mounted on the shaft of			
	the machine seems to be at standstill. If the adjusted			
	frequency of the flashes is 5000 per minute and			
	approximate speed of the machine is 765 rpm given by			
	the other method, determine the correct speed of the			
	machine in rpm. (16)			

UNIT II -MEASUREMENT OF ACCELERATION, VIBRATION AND DENSITY

Accelerometers :- LVDT, Piezoelectric, Strain gauge and Variable reluctance type accelerometers Mechanical type vibration instruments - Seismic instruments as accelerometer - Vibration sensor Calibration of vibration pickups - Units of density and specific gravity - Baume scale and API scale Pressure type densitometers - Float type densitometers - Ultrasonic densitometer – gas densitometer

IANIA				
Q.No	Question	COs	BT Level	Competence
1.	What is a seismic instrument? State the function of	CO2	BTL 1	Remember
	seismic transducer.			
2.	List the properties of spring employed seismic type of	CO2	BTL 1	Remember
	instrument for measurement of vibration and acceleration.			
3.	State the principle of operation of Ultrasonic	CO2	BTL 1	Remember
	densitometer.			
4.	Give any two features of piezo-electric accelerometer.	CO2	BTL 1	Remember
5.	What is meant by vibration pickups? Give example.	CO2	BTL 1	Remember
6.	Define specific weight and density.	CO2	BTL 1	Remember

7.	State the properties of semiconductor strain gauge.	CO2	BTL 2	Understand
8.	Give the units of density used in industries.	CO2	BTL 2	Understand
9.	Mention the advantages of LVDT type accelerometers.	CO2	BTL 2	Understand
10.	Summarize the different ways to measure density.	CO2	BTL 2	Understand
11.	Specify the applications of bridge type gas densitometer.	CO2	BTL 2	Understand
12.	What is the basic principle of strain gauge accelerometer?	CO2	BTL 2	Understand
13.	Draw the block diagram ad label the parts of Piezo	CO2		
	electric type vibration pickup.		BTL 1	Remember
14.	Examine the quantities required in a vibration	CO2		
	measurement system.		BTL 2	Understand
15.	Show the advantages of mechanical type vibration	CO2		
	measuring instruments.		BTL 1	Remember
16.	Draw the block diagram of Seismic transducer.	CO2	BTL 2	Understand
17.	An accelerometer has a seismic mass of 0.05kg and a	CO2		
	spring constant of 3000 N/m. Maximum mass			
	displacement is +/- 0.02 m. Calculate the natural			
	frequency.		BTL 1	Remember
18.	Differentiate relative and absolute Acceleration	CO2		
	measurement.		BTL 2	Understand
19.	Realize the role of Baume scale and API scale in	CO2		
	instrumentation.		BTL 1	Remember
20.	Differentiate the two modes of operation of	CO2		
	accelerometer.		BTL 2	Understand
21.	Compare the terms specific weight and specific gravity.	CO2	BTL 1	Remember
22.	Criticize how a seismic instrument acts as accelerometer.	CO2	BTL 2	Understand
23.	Formulate the expression for sinusoidal vibration.	CO2	BTL 1	Remember
24.	Design a setup for Gas densitometer.	CO2	BTL 2	Understand
	PART B			
1.	(i) Explain about the working of LVDT type and Piezo	CO2	BTL 4	Analyze
	electric type accelerometers which are used for			
	measurement of acceleration. (8)			
	(ii)Write their advantages and disadvantages. (8)			
2.	An accelerometer has a seismic mass of 0.06 kg and a	CO2	BTL 4	Analyze
	spring constant of 4500 N/m. Maximum mass			
	displacement is ± 0.025 m (before the mass hits the top).			
	Determine 1) maximum measurable acceleration and ii)			
	natural frequency (16)	000	DITLO	A
3.	Discriminate the seismic instruments as a vibrometer and	CO2	BIL 3	Арріу
	accelerometer. (16)	002		A 1
4.	Discuss about the quantities involved in vibration	CO2	BIL 3	Арріу
	in different modes of operation of seismic transducer			
	in different modes of operation. (16)			

_				
5.	In an LVDT accelerometer the outputs are 0.4 mV/mm	CO2	BTL 3	Apply
	with a ± 25 mm core displacement. The spring constant is			
	300 N/m and the mass of the core is 50g. Determine (i)			
	maximum measurable acceleration (ii) natural frequency			
	and (iii) sensitivity of the accelerometer. (16)			
6.	Investigate how relative motion is measured using seismic	CO2	BTL 4	Analyze
	instruments. (16)			
7.	(i)What is a vibrational pick up? Explain about the nature	CO2	BTL 4	Analyze
	of vibration. (8)			
	(ii) What are the quantities involved in Vibration			
	Measurements? (8)			
8.	(i)Describe about the basic of Vibration Measurement	CO2	BTL 4	Analyze
	System. (8)			
	(ii)Describe the different methods of controlling exposure			
	to vibration. (8)			
9.	(i) Explain in detail about Variable reluctance	CO2	BTL 4	Analyze
	accelerometer with a neat sketch. (8)			
	(ii) Explain in detail about strain gauge accelerometer. (8)			
10.	Draw the schematic diagram of Pressure head type	CO2	BTL 4	Analyze
	densitometer and explain its working and construction(16)			
11.	Explain the following with a neat sketch	CO2	BTL 5	Evaluate
	(i) Float type densitometer. (8)			
	(ii) Electromagnetic suspension type gas densitometer. (8)			
12.	Briefly describe about the construction and working	CO2	BTL 3	Apply
	principle of Ultrasonic densitometer. (16)			
13.	Briefly describe about the construction and working	CO2	BTL 3	Apply
	principle of Hydrostatic type densitometer. (16)			
14.	Explain the working and construction of displacement-	CO2	BTL 3	Apply
	type densitometers. (16)			
15.	Mention in detail about the API scale and Baume scale.	CO2	BTL 3	Apply
	(16)			
16.	Explain the working and construction of Thermal gas	CO2	BTL 4	Analyze
	densitometer. (16)			
17.	Illustrate in detail about the calibration of vibration	CO2	BTL 3	Apply
	pickup. (16)			

UNIT III MEASUREMENT OF VISCOSITY, HUMIDITY AND MOISTURE

Viscosity: Saybolt viscometer - Rotameter type and Torque type viscometers – Consistency Meters – Humidity: Dry and wet bulb psychrometers – Resistive and capacitive type hygrometers – Dew cell – Commercial type dew meter. Moisture: Different methods of moisture measurements –Thermal, Conductivity and Capacitive sensors, Microwave, IR and NMR sensors, Application of moisture measurement - Moisture measurement in solids.

Q.No	Question	COs	BT	Competence
1	Outling the limitations of neurohypermeter	<u> </u>	Level	Understand
1.	Distinguish between dry and wat hulk nevel remeter.	$\frac{003}{003}$	BIL 2	Understand
<u> </u>	Distinguish between dry and wet build psychrometer.		BIL 2	Understand
3.	Inustrate the term viscosity.		BIL 2	Understand
4.	Define psychrometer.	<u>CO3</u>	BTL 2	Understand
5.	Compare Saybolt and rotary type viscometers in terms of	003	BTL 2	Understand
6	Differentiate Newtonian and non Newtonian fluids	<u> </u>	DTI 2	Understand
0.	White down the uses of charmonister system	$\frac{003}{002}$	DIL 2 DTL 1	Domombon
/.	white down the uses of anemometer system.		BIL I	Remember
8.	Explain humidity.	<u>C03</u>	BIL 2	Understand
9.	State the advantages of Aluminium Oxide Hygrometer.	<u>CO3</u>	BTL 2	Understand
10.	List the limitations of Aluminium Oxide Hygrometer	CO3	BTL 2	Understand
	sensor.	~~~		
11.	What are the commonly used electrical transducer used	CO3	BTL 2	Understand
	for the humidity measurement.			
12.	Explain about the relative humidity of the substance.	CO3	BTL 2	Understand
13.	What is meant by dew-point temperature? What is the	CO3	BTL 1	Remember
	dew-point temperature of a gas or air?			
14.	Mention the factors which should be considered as	CO3	BTL 2	Understand
	possible sources of error in humidity measurements.			
15.	Define kinematic viscosity.	CO3	BTL 1	Remember
16.	Write the principle of dew cell.	CO3	BTL 2	Understand
17.	What do you mean by the term consistency?	CO3	BTL 1	Remember
18.	Justify the importance of viscosity measurement for	CO3	BTI 2	Understand
	industrial process.		DIL 2	Onderstand
19.	Compare and contrast about fluidity and relative	CO3	BTL 2	Understand
	humidity.			
20.	Define fluidity and relative humidity.	CO3	BTL 1	Remember
21.	Differentiate kinematic viscosity from specific viscosity.	CO3	BTL 1	Remember
22.	Examine the different types of viscometer.	CO3	BTL 1	Remember
23.	Which device is suitable for measuring the level of	CO3	BTL 1	Remember
	corrosive and abrasive liquids?			
24.	What is meant by viscosity index?	CO3	BTL 1	Remember
	PART B		•	
1.	Explain the different methods of consistency	CO3	BTL 4	Analyze
	measurement. (16)			
2.	(i)Define the terms associated with viscosity. (8)	CO3	BTL 4	Analyze
	(ii) Explain the principle of operation of commercial dew			
	point meter. (8)			
3.	Describe the different methods used for measurement of	CO3	BTL 4	Analyze
	Humidity. (16)			
4.	Explain the working of industrial type dew point	CO3	BTL 4	Analyze

	determination. (16)			
5.	(i) Explain the measurement of moisture content of solid	CO3	BTL 4	Analyze
	bodies by measuring electrical conductivity. (8)			
	(ii) How relative humidity is measured using automatic			
	electron psychrometer? (8)			
6.	Explain in detail about dry and wet bulb psychrometer.	CO3	BTL 3	Apply
	(16)			
7.	Describe the principle of humidity measurement and also	CO3	BTL 4	Analyze
	explain the working principle of any one type of			
	hygrometer with neat sketch. (16)			
8.	Discuss the principle of operation of different methods of	CO3	BTL 3	Apply
	moisture measurement. (16)			
9.	Explain the working principle of hot wire electrode type	CO3	BTL 4	Analyze
	hygrometer for humidity measurement with neat sketch.			
	(16)			
10.	(i)What is psychrometer? (3)	CO3	BTL 3	Apply
	(ii)How does it differ from hygrometer? (3)			
	(iii)Explain any one Psychrometer in detail. (10)			
11.	Explain Rotameter type viscometer with a neat sketch.	CO3	BTL 4	Analyze
	(16)			
12.	Briefly describe about consistency meters with neat	CO3	BTL 3	Apply
	sketch. (16)			
13.	Explain how moisture is measured in granular materials	CO3	BTL 3	Apply
	and solid penetrable materials. (16)			
14.	Explain the conductivity and IR sensors used in moisture,	CO3	BTL 3	Apply
	humidity and viscosity measurement. (16)			
15.	Explain the microwave and NMR and IR probes used in	CO3	BTL 3	Apply
	moisture, humidity and viscosity measurement. (16)			
16.	Illustrate with neat sketch about Saybolt Viscometer. (16)	CO3	BTL 3	Apply
17.	(i) Describe the Chemical reaction method of measuring	CO3	BTL 3	Apply
	moisture. (8)			
	(ii)Write short notes on moisture measurement in paper			
	industry. (8)			

UNIT IVTEMPERATURE MEASUREMENTDefinitions and standards – Primary and secondary fixed points – Different types of filled in systemthermometers – Sources of errors in filled in systems and their compensation – Bimetallicthermometers – IC sensors – Thermocouples: Laws of thermocouple, Fabrication of industrialthermocouples, Reference junctions compensation, Signal conditioning for thermocouple,Commercial circuits for cold junction compensation, Response of thermocouple, Special techniques

for measuring high temperature using thermocouple – Radiation fundamentals - Radiation methods of temperature measurement – Total radiation pyrometers – Optical pyrometers – Two color radiation pyrometers – Fiber optic sensor for temperature measurement – Thermograph, Temperature switches and thermostats – Temperature sensor selection, Installation and Calibration.

PART A				
Q.No	Question	COs	BT	Competence
			Level	
1.	List the sources of error in filled in system thermometer.	CO4	BTL 1	Remember
2.	Show the relationship between Celsius and Fahrenheit.	CO4	BTL 1	Remember
3.	What are the primary standards for temperature	CO4	BTL 1	Remember
	measuring calibration?			
4.	State the law of Homogeneous metals.	CO4	BTL 2	Understand
5.	State the law of Intermediate metals.	CO4	BTL 2	Understand
6.	Define boiling point, freezing point and triple point.	CO4	BTL 1	Remember
7.	Illustrate the working principle of bimetallic	CO4		
	thermometer.		BTL 2	Understand
8.	Classify the different temperature measurement types	CO4	BTL 2	Understand
	using change in physical properties.			
9.	Define thermocouple.	CO4	BTL 2	Understand
10.	Explain Peltier effect.	CO4	BTL 2	Understand
11.	Draw the response curve for different bimetallic	CO4	BTL 2	Understand
	elements.			
12.	Draw the different compensation types in filled in	CO4	BTL 2	Understand
	system thermometers.			
13.	Sketch the response curves for resistance thermometers	CO4	BTL 2	Understand
	in air and water.			
14.	Point out the operation of optical pyrometer.	CO4	BTL 2	Understand
15.	A bimetal element formed with stainless steel and invar	CO4	BTL 2	Understand
	at 100° C is raised to 200° C. Each strip has a			
	thickness 0.0107cm, calculate ρ.			
16.	Write down the classification of Expansion	CO4	BTL 1	Remember
	thermometers.			
17.	Assess the criteria to be considered while selecting a	CO4	BTL 1	Remember
	temperature sensor.			
18.	Propose the sources of error is occurring in filled system	CO4	BTL 1	Remember
	thermometer.			
19.	Write the features of liquid in glass thermometer.	CO4	BTL 1	Remember
20.	State the selective radiation pyrometer principle.	CO4	BTL 1	Remember
21.	List any four types of Thermocouples with composition	CO4	BTL 1	Remember
	and temperature range.			
22.	Illustrate the need for cold junction compensation.	CO4	BTL 2	Understand
23.	Sketch the thermoelectric characteristics of	CO4	BTL 2	Understand

	thermocouple.			
24.	Summarize the application of thermograph and	CO4	BTL 2	Understand
	thermostat.			
	PART B			L
1.	(i) Demonstrate the applications of bimetallic	CO4	BTL 3	Apply
	thermometer in detail. (8)			
	(ii) Mention the merits and demerits of bimetallic			
	thermometer. (8)			
2.	Discuss the various types of filled in system	CO4	BTL 3	Apply
	thermometers. What are the possible sources of errors			
	in filled-in thermometers and how are they			
	compensated? (16)			
3.	With neat sketch, describe the construction and working	CO4	BTL 3	Apply
	principle of gas expansion type thermometer. (16)			
4.	Explain the construction and working principle of Total	CO4	BTL 4	Analyze
	radiation pyrometer. (16)			
5.	Explain the construction and working principle of Optical	CO4	BTL 4	Analyze
	pyrometer. (16)			
6.	(i) Name different types of Pyrometer and recall the basic	CO4	BTL 4	Analyze
	working principle of Pyrometer. (8)			
	(ii)Describe the working principle of two colour radiation			
	pyrometers. (8)			
7.	With neat sketch, describe the construction and working	CO4	BTL 3	Apply
	principle of Fluid expansion type thermometer. (16)			
8.	(i) Elaborate how the fiber optic temperature	CO4	BTL 4	Analyze
	measurement is advantageous than other methods? (8)			
	(ii) Explain in detail about the cold junction			
	compensation used in thermocouple. (8)			
9.	Demonstrate the different types of thermocouple with	CO4	BTL 3	Apply
	necessary specification. (16)			
10.	Describe the special techniques adopted for measuring	CO4	BTL 3	Apply
	high temperature using thermocouples. (16)			
11.	Determine the thermoelectric sensitivity and emf	CO4	BTL 3	Apply
	developed in a thermocouple made of copper and			
	constantan for a temperature difference of 25°C between			
	its junctions. Given that thermo-electric emfs of copper			
	and constantan against platinum are 7.4 and -34.4 uV per			
	⁰ C temperature difference. (16)			
12.	(i) Describe the advantages and disadvantages of optical	CO4	BTL 3	Apply
	pyrometer. (8)			
	(ii) Describe the applications of optical pyrometer in			
	detail. (8)			
13.	Explain about the construction and working of different	CO4	BTL 4	Analyze

	types of radiation pyrometer with neat sketch. (16)			
14.	Explain in detail about Thermograph, Temperature	CO4	р ті <i>1</i>	Analyza
	switches and thermostats. (16)		DIL 4	Anaryze
15.	Draw and explain the signal conditioning circuit diagram	CO4	р ті <i>1</i>	Analyza
	of thermocouple. (16)		DIL 4	Anaryze
16.	Prepare a short note on Temperature sensor selection,	CO4	р ті <i>1</i>	Analyza
	Installation and its Calibration. (16)		DIL 4	Anaryze
17.	A copper constantan thermocouple has $\alpha = 37.5 \ \mu V^{0}C$	CO4		
	and $\beta = 0.0045 \ \mu V/^{0}C$. Determine the emf developed by		р ті <i>1</i>	Analyza
	the thermocouple when its hot junction is at 200 0 C and		DIL 4	Anaryze
	cold junction is kept in ice. (16)			

UNIT V PRESSURE MEASUREMENT

Units of pressure – Manometers: Different types, Elastic type pressure gauges: Bourdon tube, Bellows, Diaphragms and Capsules - Electrical methods: Elastic elements with LVDT and strain gauges - Capacitive type pressure gauge - Piezo resistive pressure sensor-Resonator pressure sensor - Measurement of vacuum: McLeod gauge, Thermal conductivity gauge, lionization gauges, Cold cathode type and hot cathode type – Pressure gauge selection, installation and calibration using dead weight tester – Pressure Transmitter: Conventional and Smart Transmitter, Level measurement using DPT.

	PART A			
Q.No	Question	COs	BT	Competence
			Level	
1.	List the transducer used for measuring low pressure.	CO5	BTL 1	Remember
2.	Tabulate the difference between absolute pressure and	CO5		
	gauge pressure.		BTL 2	Understand
3.	What are the various types of manometers?	CO5	BTL 2	Understand
	Draw the structure of U tube manometer and label its	CO5		
4.	parts.		BTL 2	Understand
	Draw the structure of dead weight tester and label its	CO5		
5.	parts.		BTL 2	Understand
6.	List the applications of piezo resistive pressure sensor.	CO5	BTL 1	Remember
7.	What is a dead weight tester?	CO5	BTL 1	Remember
8.	State the principle of McLeod gauge.	CO5	BTL 1	Remember
9.	Mention any three elastic type pressure gauges.	CO5	BTL 1	Remember
10.	Identify the equipment require to install a pressure gauge	CO5		
	in a pipeline.		BTL 1	Remember
11.	Illustrate the working principle of thermal conductivity	CO5		
	gauge.		BTL 2	Understand
12.	Give the relationship between pressure and its	CO5	BTL 2	Understand

	measuring devices.					
13.	Express the different units of pressure.	CO5	BTL 2	Understand		
14.	Write the advantages and disadvantages of diaphragm	CO5				
	type pressure gauge.		BTL 2	Understand		
15.	Classify the types of Diaphragms.	CO5	BTL 2	Understand		
	What do you infer from the limitations of McLeod	CO5				
16.	gauge?		BTL 2	Understand		
17.	Classify the pressure based on the type of measurement.	CO5	BTL 2	Understand		
	Categorize the different application of dead weight	CO5				
18.	tester.		BTL 2	Understand		
19.	Compare the materials used for Diaphragm design.	CO5	BTL 2	Understand		
20.	How is differential pressure measured in multiple fluid	CO5	BTL 1	Remember		
	column?					
21.	Assess the working principle of capacitive transducer	CO5	BTL 1	Remember		
	for pressure measurement.					
22.	Why elastic element type gauges are recommended	CO5	BTL 1	Remember		
	and preferred to liquid column manometers in industry?					
23.	Develop an arrangement used for calibration of pressure	CO5	BTL 1	Remember		
	gauge					
24.	Formulate the expression for pressure in hot cathode	CO5	BTL 1	Remember		
	type ionization gauge.					
PART B						
1.	Describe the methods of measurement of pressure using	CO5	BTL 3	Apply		
	thermal conductivity gauges and ionization gauge. (16)					
2.	Describe the pressure measurement process using the	CO5	BTL 3	Apply		
	following:					
	(i) Bourdon tubes (6)					
	(ii) Bellows (5)					
	(iii) Diaphragms (5)					
3.	With neat sketch describe the method of measurement	CO5	BTL 4	Analyze		
	differential pressure using Capacitive differential					
	pressure sensor. Mention its advantages and					
	disadvantages. (16)					
4.	Describe the methods of pressure measurement using	CO5	BTL 3	Apply		
	resistive type pressure transducers. (16)					
5.	Describe the methods of pressure measurement using	CO5	BTL 3	Apply		
	pirani gauge. (16)					
6.	What are the different types of electrical pressure	CO5	BTL 3	Apply		
	transducers commonly used in industries? Discuss. (16)					
7.	Describe with a neat sketch, the construction and working	CO5	BTL 3	Apply		
	principles of U tube manometer with and without large					
	seal pots used for pressure measurement (16)					
8.	Describe with a neat sketch, the construction and working	CO5	BTL 4	Analyze		

	principles of well type manometer and enlarged leg type			
	manometer used for pressure measurement. (16)			
9.	(i)Classify the pressure transducer based on range of	CO5	BTL 5	Evaluate
	measurement and type of measurement. (8)			
	(ii)Explain with a neat sketch, the construction and			
	working principles of inclined type manometer used for			
	pressure measurement. (8)			
10.	Illustrate, the pressure measurement method by using the	CO5	BTL 3	Apply
	Capacitance Pressure Transducer with neat diagram. (16)			
11.	Explain the pressure measurement method by using the	CO5	BTL 4	Analyze
	Potentiometric Pressure Transducer with neat diagram.			
	(16)			
12.	Demonstrate how a Dead weight tester is used to	CO5	BTL 3	Apply
	calibrate Pressure measuring device and mention the			
	factors affecting the accuracy of Dead weight Tester. (16)			
13.	(i)What is meant by pressure? Write short notes on its	CO5	BTL 4	Analyze
	classification based on Reference pressure. (8)			
	(ii)Outline the working cold cathode type ionization			
	gauge. (8)			
14.	(i)How LVDT is used for process pressure measurement?	CO5	BTL 4	Analyze
	Explain. (8)			
	(ii) A pressure gauge in the range of 0 to 100kg/cm2 is to			
	be calibrated with the help of Deadweight tester.			
	Calibration is used to be checked in the steps of			
	10kg/cm2. Recommend the standard weights required if			
	the average area of piston and cylinder is 1cm2. Assume			
	that the friction and other effects are negligible. (8)			
15.	Describe the working of all types of bourdon tube	CO5	BTL 3	Apply
	pressure gauges with a neat schematic. (16)			
16.	Explain how McLeod gauge used for low pressure	CO5	BTL 4	Analyze
	measurement. Justify this with your answer. (16)			
17.	Propose a setup to measure vacuum pressure. Explain the	CO5	BTL 4	Analyze
	mechanism behind it. (16)			