SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution)

Approved by AICTE, Affiliated to Anna University, Chennai, Accredited by NBA, 'A' Grade Accreditation by NAAC & ISO 9001:2015 Certified Institution SRM Nagar, Kattankulathur – 603 203

OUESTION BANK

IV SEMESTER

EI3464 – Control Systems

Regulation - 2023

Academic Year 2024 - 2025 (Even Sem)

Common to

Department of Electronics and Instrumentation Engineering Department of Electrical and Electronics Engineering Department of Electronics and Communication Engineering

Prepared by

Dr.R.Arivalahan. Professor/EEE Mr.P.Tamilmani, Assistant Professor/EIE Dr.M.Banu Sundareswari, Assistant Professor/EIE Ms.M.Shanthi, Assistant Professor/EIE **Dr.V.Srinivasan, Assistant Professor/EIE**

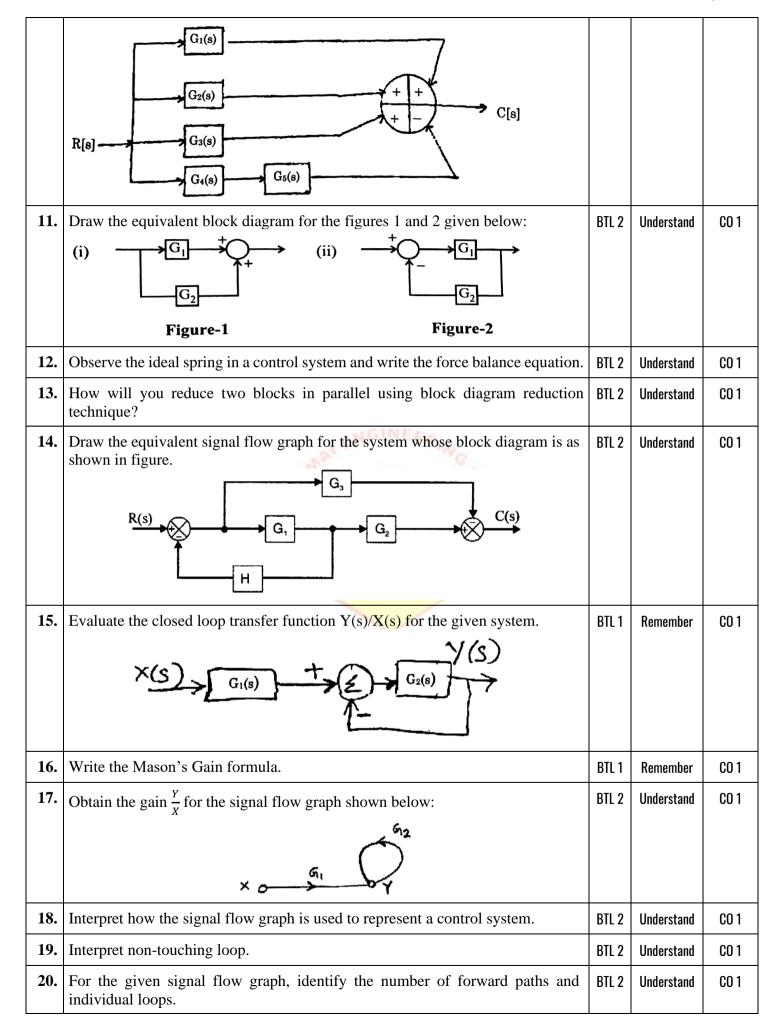
SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution)

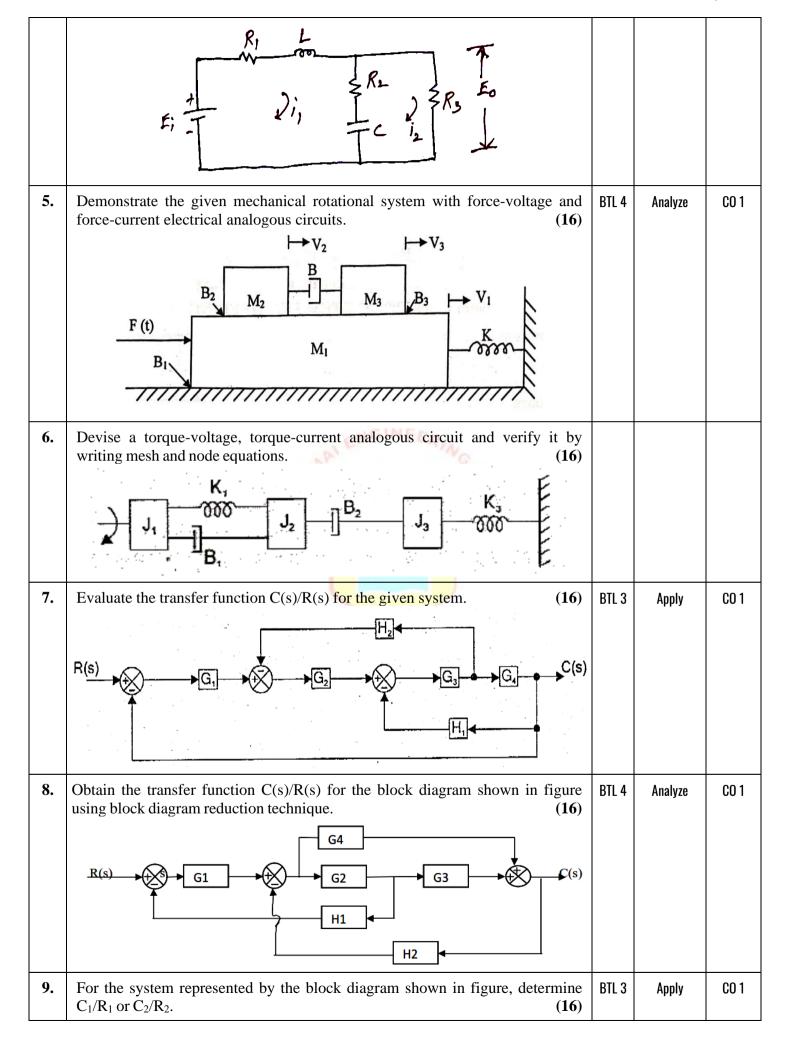
Approved by AICTE, Affiliated to Anna University, Chennai, Accredited by NBA, 'A' Grade Accreditation by NAAC & ISO 9001:2015 Certified Institution

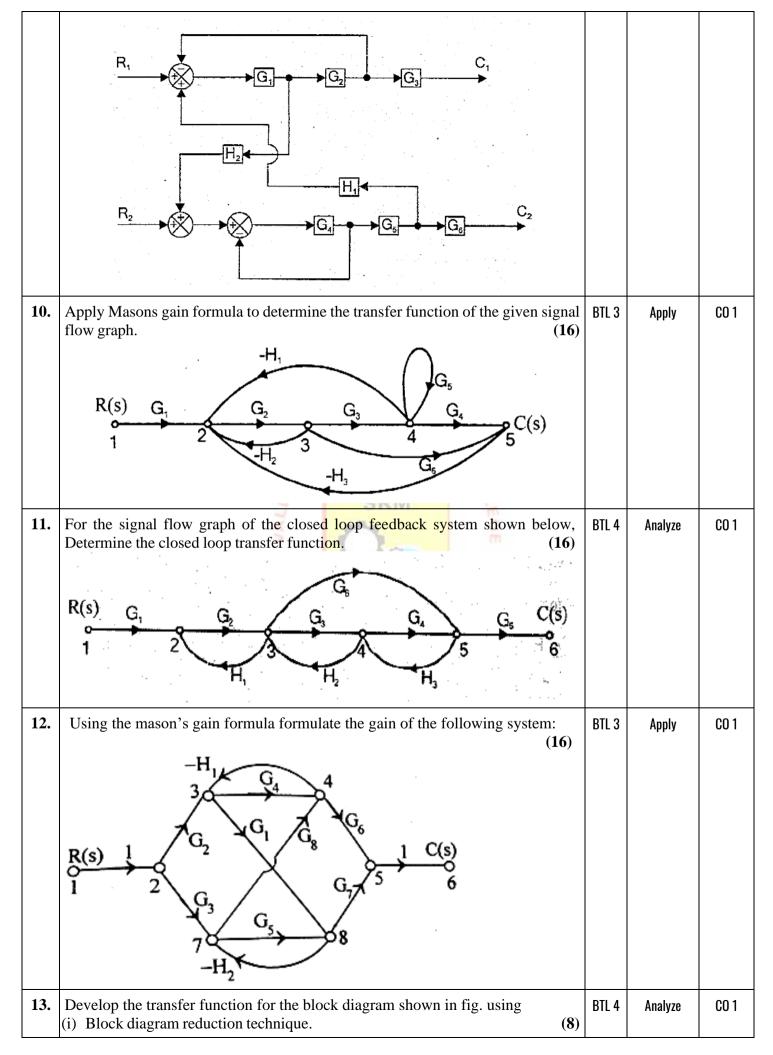
SRM Nagar, Kattankulathur - 603 203

QUESTION BANK


SUBJECT: EI3464 – Control Systems

BRANCH / YEAR / SEM: EIE, EEE & ECE / II / IV


UNIT I - SYSTEMS AND REPRESENTATION


Basic elements in control systems: – Open and closed loop systems – Electrical analogy of mechanical system– Transfer function – AC and DC servomotors - Synchro – Block diagram reduction techniques – Signal flow graphs.

	PART – A					
Q.No.	Questions	BT Level	Competence	Course Outcome		
1.	What is system?	BTL 1	Remember	CO 1		
2.	Define control system.	BTL 1	Remember	CO 1		
3.	Distinguish between open loop and closed loop system.	BTL 2	Understand	CO 1		
4.	Narrate components of feedback control system.	BTL 2	Understand	CO 1		
5.	Express the transfer function of a control system.	BTL 2	Understand	CO 1		
6.	Write the torque balance equation of a of an ideal rotational mass element.	BTL 2	Understand	CO 1		
7.	Find the transfer function of the network given in figure below. $V_i \rightarrow \downarrow $	BTL 2	Understand	CO 1		
8.	Mention the basic elements of the translational mechanical system.	BTL 2	Understand	CO 1		
9.	Name the two types of electrical analogous for mechanical system.	BTL 1	Remember	CO 1		
10.	Write down the transfer function of the system whose block diagram is shown in below.	BTL 2	Understand	CO 1		

21.	Enumerate the features of a servo motor.	BTL 2	Understand	CO 1
22.	Differentiate AC and DC servo motor.	BTL 2	Understand	CO 1
23.	Analyze the need of electrical zero position in synchro transmitter.	BTL 2	Understand	CO 1
24.	Quote the differential equation for series and parallel RLC circuit.	BTL 1	Remember	CO 1
	PART-B			
1.	Write the differential equations governing the mechanical system, and determine the transfer function for the system. (16)	BTL 3	Apply	CO 1
2.	Formulate the differential equation defining the mechanical translational system	BTL 3	Арріу	CO 1
	given below. And also derive the transfer function for the system. (16) $ \begin{array}{c} $,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
3.	Exhibit the mechanical rotational system with an appropriate differential equation and obtain the transfer function of the system. (16) $\begin{array}{c} \hline J_1 \\ \hline M_1 \\ \hline M_2 \\ \hline M_1 \\ \hline M_2 \\ \hline M_1 \\ \hline M_2 \\ \hline \hline M_2 \\ \hline M_2 \\ \hline M_2 \\ \hline \hline M_2 \\ \hline \hline $	BTL 3	Apply	CO 1
4.	Examine the given electrical network and deduce the transfer function. (16)	BTL 4	Analyze	CO 1

	(ii) Mason's Gain Formula. (8)			
	$R \longrightarrow G_1 \longrightarrow G_2 \longrightarrow C$ $H_2 \longrightarrow G_4 \longrightarrow H_1$			
14.	Interpret the transfer function by converting the block diagram into signal flow graph. (16)	BTL 4	Analyze	CO 1
	$\begin{array}{c} R(s) \\ \hline \\ H_1 \\ \hline \\ H_2 \\ \hline \\ H_1 \\ \hline \\ H_2 \\ \hline \\ H_1 \\ \hline \\ H_2 \\ \hline \\ H_2 \\ \hline \\ H_1 \\ \hline \\ H_2 \\ \hline $			
15.	Derive the transfer function of field Controlled DC servomotor with relevant diagram. (16)	BTL 4	Analyze	CO 1
16.	Derive the transfer function of armature Controlled DC servomotor with relevant	BTL 4	Analyze	CO 1
	diagram. (16)			

UNIT II - TIME RESPONSE ANALYSIS

Time response: – Time domain specifications – Types of test input – I and II order system response – Error coefficients – Generalized error series – Steady state error – Effects of P, PI, PID modes of feedback control – Time response analysis.

Q.No.	Questions	BT Level	Competence	Course Outcome
1.	What is time response?	BTL 1	Remember	CO 2
2.	Name the test signals used in control system.	BTL 1	Remember	CO 2
3.	Illustrate the mathematical expressions for step input and impulse input.	BTL 2	Understand	CO 2
4.	Point out the different time domain specifications.	BTL 2	Understand	CO 2
5.	Illustrate peak overshoot.	BTL 2	Understand	CO 2
6.	Express the type and order of the following system $\frac{G(s)}{H(s)} = \frac{10}{s^3(s^2 + 2s + 1)}$	BTL 2	Understand	CO 2
7.	Distinguish between the order and type of system.	BTL 2	Understand	CO 2
8.	For a system described by $\frac{C(S)}{R(S)} = \frac{16}{S^2 + 8S + 16}.$ Find the nature of the time response and justify.	BTL 2	Understand	CO 2
9.	Define pole and zero of a function F(s).	BTL 2	Understand	CO 2
10.	Assess the significance of rise time.	BTL 2	Understand	CO 2
11.	Estimate the damped frequency of oscillation for a second order system which has a damping ratio of 0.6 and natural frequency of oscillation is 10 rad/sec.	BTL 2	Understand	CO 2
12.	The closed loop transfer function of a second order system is given by $\frac{C(s)}{R(s)} = \frac{400}{(S^2 + 2S + 400)}$ Determine the damping ratio and natural frequency of oscillation.	BTL 2	Understand	CO 2
13.	A unity feedback system has an open loop transfer function of $G(s) = \frac{10}{(s+1)(s+2)}$ Formulate the steady state error for unit step input.	BTL 2	Understand	CO 2
14.	Exhibit the damped frequency of oscillation in a control system.	BTL 2	Understand	CO 2
15.	Solve for the type and order of the system $G(s)H(s) = \frac{(s+4)}{(s-2)(s+0.25)}$	BTL 2	Understand	CO 2
16.	Analyze the response of first-order system with unit step input.	BTL 2	Understand	CO 2
17.	How did the type number of a system is identified? Mention its significance.	BTL 2	Understand	CO 2
18.	Give the steady state errors to a various standard input for type-2 system.	BTL 2	Understand	CO 2
19.	The open loop transfer function of a unity feedback control system is given by	BTL 2	Understand	CO 2

	$G(s) = \frac{10(S+2)}{S^2(S+5)}$			
	$S^{2}(3+5)$ Calculate the acceleration error constant.			
20.	Find the unit impulse of system given with zero initial conditions.	BTL 2	Understand	CO 2
	$H(s) = \frac{5S}{(S+2)}$			
	(3 ± 2)			
21.	Express the transfer functions of PI and PID controllers.	BTL 2	Understand	CO 2
22.	Why derivative controller is not used separately in control applications?	BTL 2	Understand	CO 2
23.	For servo mechanisms with open loop transfer function is given by			CO 2
	$G(s) = \frac{1}{S^2 + 2S + 3}$	BTL 2	Understand	
	Calculate position error and steady state error for a unit step input.			
24.	Write the relation between generalized and static error coefficients.	BTL 2	Understand	CO 2
	PART-B	[
1.	Name the various standard test signals? Draw the characteristics diagram and obtain the mathematical representation of the test signals. (16)	BTL 3	Apply	CO 2
2.	Analyze the response of first order system for a unit step input. Plot the response of the system. (16)	BTL 4	Analyze	CO 2
3.	Summarize the response of undamped second order system for unit step input. (16)	BTL 3	Apply	CO 2
4.	Derive the expression for second order system for under damped case and when the input is unit step. (16)	BTL 3	Apply	CO 2
5.	Derive the expression for second order system for critically damped case and when the input is unit step. (16)	BTL 3	Apply	CO 2
6.	Obtain the response of unity feedback system whose open loop transfer function is	BTL 3	Apply	CO 2
	$G(s) = \frac{4}{s(s+5)}$			
	and when the input is unit step. $(s+5)$ (16)			
7.	Derive Expressions for the following time domain specifications of second order under damped system due to unit step input.	BTL 4	Analyze	CO 2
	(i) Rise time.(4)(ii) Peak time.(4)			
	(iii) Delay time. (4)			
8.	(iv) Peak over shoot. (4) The unity feedback system is characterized by an open loop transfer function	BTL 3	Annly	CO 2
0.	The unity feedback system is characterized by an open loop transfer function $G(s) = \frac{K}{s(s+10)}$	DIL J	Apply	60 Z
	(i) Examine the gain K, so that the system will have a damping ratio of 0.5 for this value of K. (8)			
	(ii) Examine peak overshoot for a unit step input. (8)			

9.	A Unity feedback control system is characterized by open loop transfer function $G(s) = \frac{10}{s(s+2)}$ Find the rise time, percentage overshoot, peak time and settling time for a step input of 12 units. (16)	BTL 4	Analyze	CO 2
10.	A closed loop servo is represented by the differential equation $\frac{d^2c}{dt^2} + 8\frac{dc}{dt} = 64e$ where c is the displacement of the output shaft, r is the displacement of the input shaft and $e = r - c$. Determine undamped natural frequency, damping ratio and percentage maximum overshoot for unit step input. (16)	BTL 3	Apply	CO 2
11.	For a unity feedback control system, the open loop transfer function is $G(s) = \frac{10(s+2)}{s^2(s+1)}$	BTL 3	Apply	CO 2
	(i) Find the position, velocity, acceleration error constants. (8)			
	(ii) Compute the steady state error when the input is R(s) where $R(s) = \frac{3}{s} - \frac{2}{s^2} + \frac{1}{3s^3}$ (8)			
12.	For the given open loop transfer function G(s) for servomechanism, interpret what type of input signal give rise to a constant steady state error and calculate the value. (16) $G(s) = \frac{10}{s^2(s+1)(s+2)}$	BTL 3	Apply	CO 2
13.	Measurements conducted on a servo mechanism show that the system response to be $c(t) = 1 + 0.2e^{-60t} - 1.2e^{-10t}$ when subjected to a unit step input. (16)	BTL 3	Apply	CO 2
	(i) Obtain an expression for closed loop transfer function. (8)			
	(ii) Compute the undamped natural frequency and damping ratio. (8)			
14.	A positional control system with velocity feedback is shown. Compute the response of the system for unit step input. (16) R(s) + C(s) + C(s	BTL 4	Analyze	CO 2
15.	A unity feedback system has the forward transfer function $G(s) = \frac{K(2s+1)}{s(5s+1)(1+s)^2}$ When the input is $r(t) = 1 + 6t$. Evaluate the minimum value of K so that the steady state error is less than 0.1 (16)	BTL 4	Analyze	CO 2

10	6.	Calculate the static error coefficients for a system whose transfer function is	BTL 4	Analyze	CO 2
		$G(s)H(s) = \frac{10}{s(1+s)(1+2s)}$. And also Calculate the steady state error for			
		$r(t) = 1 + t + \frac{t^2}{2}.$ (16)			
17	7.	Examine the Effects of P, PI, PID modes of feedback control. (16)	BTL 4	Analyze	CO 2

UNIT III - FREQUENCY RESPONSE ANALYSIS

Frequency response: – Bode plot – Polar plot – Determination of closed loop response from open loop response - Correlation between frequency domain and time domain specifications.

	PART - A			
Q.No.	Questions	BT Level	Competence	Course Outcome
1.	Define Phase margin.	BTL 1	Remember	CO 4
2.	Define gain margin.	BTL 1	Remember	CO 4
3.	The damping ratio and natural frequency of oscillations of a second order system is 0.3 and 3 rad/sec respectively. Calculate resonant frequency and resonant peak.	BTL 2	Understand	CO 4
4.	Evaluate the shape of polar plot for the open loop transfer function $G(s)H(s) = \frac{1}{s(1+Ts)}$	BTL 2	Understand	CO 4
5.	Show the shape of polar plot for the transfer function $G(s) = \frac{K}{s(1 + sT_1)(1 + sT_2)}$	BTL 2	Understand	CO 4
6.	Why frequency domain analysis is needed?	BTL 2	Understand	CO 4
7.	List the advantages of Frequency Response Analysis.	BTL 1	Remember	CO 4
8.	Define phase cross over frequency. SRM	BTL 1	Remember	CO 4
9.	Define gain cross over frequency.	BTL 1	Remember	CO 4
10.	State the significance of Nichol's plot.	BTL 1	Remember	CO 4
11.	Demonstrate the correlation between time and frequency response.	BTL 2	Understand	CO 4
12.	Differentiate non-minimum phase and minimum phase systems.	BTL 2	Understand	CO 4
13.	Discuss about the corner frequency in frequency response analysis?	BTL 2	Understand	CO 4
14.	Determine the phase angle of the given transfer function $G(s) = \frac{10}{s(1+0.4s)(1+0.1s)}$	BTL 2	Understand	CO 4
15.	A second order system has peak over shoot = 50% and period of oscillations 0.2 seconds. Tell the resonant frequency.	BTL 2	Understand	CO 4
16.	What does, a gain margin close to unity or phase margin close to zero indicate?	BTL 2	Understand	CO 4
17.	Describe the approximate polar plot for a Type 0 second order system.	BTL 2	Understand	CO 4
18.	Define the terms: resonant peak and resonant frequency.	BTL 1	Remember	CO 4
19.	What is meant by cut-off frequency?	BTL 2	Understand	CO 4
20.	Quote how will you get the closed loop frequency response from open loop response?	BTL 1	Remember	CO 4
21.	List the uses of Nichol's Chart.	BTL 1	Remember	CO 4

22.	Draw the polar plot of $G(s) = \frac{1}{1+sT}$.	BTL 2	Understand	CO 4
23.	Quote the corner frequency of $G(s) = \frac{10}{s(1+0.5s)}$.	BTL 2	Understand	CO 4
24.	List frequency domain specifications.	BTL 1	Remember	CO 4
	PART – B			
1.	Plot the bode diagram for the given transfer function and estimate the gain and phase cross over frequencies. (16) $G(s) = \frac{10}{s(1+0.4s)(1+0.1s)}$	BTL 3	Apply	CO 4
2.	Sketch the bode plot for the transfer function $G(s) = \frac{75(1+0.2s)}{s(s^2+16s+100)}$ and determine phase margin and gain margin. (16)	BTL 3	Apply	CO 4
3.	Calculate the system gain K by sketching the Bode plot for the transfer function $G(s) = \frac{Ks^2}{(1+0.2s)(1+0.02s)}$ with gain cross over frequency of 5rad/sec. (16)	BTL 4	Analyze	CO 4
4.	Analyze the bode plot for the function given by $G(s) = \frac{5(1+2s)}{(1+4s)(1+0.25s)}$ (16)	BTL 3	Apply	CO 4
5.	Given $G(s) = \frac{Ke^{-0.2s}}{s(s+2)(s+8)}$ Draw the Bode plot and Calculate K for the following two cases: (16) (i) Gain margin equal to 6db. (ii) Phase margin equal to 45°.	BTL 3	Apply	CO 4
6.	Sketch the Bode plot and hence evaluate Gain cross over frequency, Phase cross over frequency, Gain margin and Phase margin for the function (16) $G(s) = \frac{10(s+3)}{s(s+2)(s^2+4s+100)}$	BTL 4	Analyze	CO 4
7.	Demonstrate the bode plot for the system whose open loop transfer function is given below and Find (i) Gain margin (ii) Phase margin and (iii) closed loop stability. (16) $G(s) = \frac{100}{s(s+1)(s+2)}.$	BTL 4	Analyze	CO 4
8.	Evaluate open loop transfer function of a unity feedback system given by $G(s) = \frac{1}{s(1+s)(1+2s)}$ Sketch the polar plot. Evaluate the gain and phase margin for the above system. (16)	BTL 4	Analyze	CO 4
9.	Report on the polar plot of an open loop transfer function of a unity feedback system given by $G(s) = \frac{1}{s^2(1+s)(1+2s)}$	BTL 4	Analyze	CO 4

	Sketch the polar plot. Evaluate the gain and phase margin for the above system. (16)			
10.	Construct the polar plot and determine the gain margin and phase margin of a unity feedback control system whose open loop transfer function is, (16) $G(s) = \frac{(1+0.2s)(1+0.025s)}{s^3(1+0.005s)(1+0.001s)}$	BTL 4	Analyze	CO 4
11.	Consider a unity feedback system with open loop transfer function $G(s) = \frac{1}{s(1+s^2)}$ From the polar plot and determine the gain and phase margin. (16)	BTL 3	Apply	CO 4
12.	Describe the procedure for obtaining the polar plot for a system whose open loop transfer function is $G(s) = \frac{4}{(s+2)(s+4)}$ (16)	BTL 3	Apply	CO 4
13.	Consider a unity feedback system having an open loop transfer function $G(s) = \frac{K}{s(1+0.2s)(1+0.05s)}$ Sketch the polar plot and determine the value of K so that (i) gain margin is 18 dB. (ii) phase margin is 60 ⁰ . (16)	BTL 4	Analyze	CO 4
14.	Sketch the polar plot of a unity feedback system with open loop transfer function given by, $G(s) = \frac{50}{s(s+1)(s+5)(s+10)}$ and calculate the gain and phase margins of the closed loop system. (16)	BTL 3	Apply	CO 4
15.	Using polar plot, calculate gain cross over frequency phase cross over frequency, gain margin and phase margin of feedback system with open loop transfer function. $G(s) = \frac{10}{s(1+0.2s)(1+0.002s)}$ (16)	BTL 4	Analyze	CO 4
16.	Solve using Nichol's chart to obtain closed loop frequency response from open loop frequency response of a unity feedback system. Explain how the gain adjustment is carried out on this chart. (16)	BTL 4	Analyze	CO 4
17.	Draw the polar plot for the following transfer function and evaluate Gain cross over frequency, Phase cross over frequency, Gain margin and Phase margin for the transfer function $G(s) = \frac{400}{s(s+2)(s+10)}$. (16)	BTL 3	Apply	CO 4

UNIT IV – STABILITY ANALYSIS

Characteristics equation – Location of roots in S plane for stability – Routh Hurwitz criterion – Root locus construction – Effect of pole, zero addition – Gain margin and phase margin – Nyquist stability criterion. Design of Compensators using Bode plots.

	PART – A			
Q.No.	Questions	BT Level	Competence	Course Outcome
1.	What is characteristic equation?	BTL 1	Remember	CO 4
2.	Quote BIBO stability criterion.	BTL 1	Remember	CO 4
3.	State Routh's criterion for stability.	BTL 1	Remember	CO 4
4.	Write the necessary and sufficient condition for stability.	BTL 1	Remember	CO 4
5.	What conclusion can be provided when there is a row of all zeros in Routh array?	BTL 2	Understand	CO 4
6.	List the advantages of Routh Hurwitz stability criterion?	BTL 1	Remember	CO 4
7.	Give any two limitations of Routh stability criterion.	BTL 1	Remember	CO 4
8.	Find the range of K for stability of a closed loop system with characteristic equations $s^4 + 8s^3 + 36s^2 + 80s + K = 0$ using Routh stability criterion.	BTL 2	Understand	CO 4
9.	Point out the main objective of root locus analysis technique.	BTL 2	Understand	CO 4
10.	Interpret the relationship between roots of characteristic equation and stability.	BTL 2	Understand	CO 4
11.	Identify the meaning of relative stability.	BTL 1	Remember	CO 4
12.	Identify dominant pole location in s-plane and its significance.	BTL 1	Remember	CO 4
13.	Evaluate the effects of adding a zero to a system?	BTL 2	Understand	CO 4
14.	How centroid of the asymptotes found in root locus technique?	BTL 2	Understand	CO 4
15.	How will you find root locus on real axis?	BTL 2	Understand	CO 4
16.	Illustrate the effects of adding open loop poles and zeros on the nature of the root locus and on system?	BTL 1	Remember	CO 4
17.	Point out the regions of root locations for stable, unstable and limitedly stable systems.	BTL 1	Remember	CO 4
18.	Predict about the stability of the system when the roots of the characteristic equation are lying on imaginary axis?	BTL 2	Understand	CO 4
19.	State Nyquist stability criteria	BTL 1	Remember	CO 4
20.	Write the necessary and sufficient condition for stability.	BTL 1	Remember	CO 4
21.	Illustrate the need for compensation.	BTL 2	Understand	CO 4
22.	Summarize the lag-lead compensator using R and C network components.	BTL 2	Understand	CO 4
23.	Examine the circuit for lead compensator along with pole zero diagram.	BTL 2	Understand	CO 4
24.	Draw the circuit of lag compensator and draw its pole-zero diagram.	BTL 2	Understand	CO 4

	PART – B			
1.	Using Routh criterion, determine the stability of the system represented by the characteristics equation, $s^4 + 8s^3 + 18s^2 + 16s + 5 = 0$. Comment on the location of the roots of characteristic equation. (16)	BTL 3	Apply	CO 4
2.	Consider the sixth order system with the characteristic equation $s^{6} + 2s^{5} + 8s^{4} + 12s^{3} + 20s^{2} + 16s + 16 = 0$ Use Routh-Hurwitz criterion to examine the stability of the system and comment on location of the roots of the characteristics equation. (16)	BTL 4	Analyze	CO 4
3.	Apply Routh array and determine the stability of the system represented by the characteristic equation, $s^5 + s^4 + 2s^3 + 2s^2 + 3s + 5 = 0$ Comment on the location of characteristic equation. (16)	BTL 3	Apply	CO 4
4.	The characteristic equation of a feedback control system is given by $F(s) = s^6 + 4s^5 + 8s^4 + 24s^3 + 20s^2 + 32s + 16 = 0$.Analyze the stability analysis of the system using Routh's array and also find the frequency of oscillation. (16)	BTL 3	Apply	CO 4
5.	Evaluate the stability of the system by using Routh stability criterion for the equation $9s^5 - 20s^4 + 10s^3 - s^2 - 9s - 10 = 0$ (16) Identify the location of the roots and comment.	BTL 3	Apply	CO 4
6.	Determine the location of roots on S- Plane and stability for the polynomial $s^7 + 9s^6 + 24s^5 + 24s^4 + 24s^3 + 24s^2 + 23s + 15 = 0$ (16)	BTL 3	Apply	CO 4
7.	Identify the root locus of a unity feedback system having transfer function $G(s) = \frac{K}{s(s^2 + 4s + 13)}$ Find the range of K for which the system is stable. (16)	BTL 3	Apply	CO 4
8.	Sketch the root locus of the system whose open loop transfer function is $G(s) = \frac{K}{s(s+2)(s+4)}$ Find the value of K so that damping ratio of the closed loop system is 0.5. (16)	BTL 4	Analyze	CO 4
9.	The open loop transfer function of a unity feedback system $G(s) = \frac{K(s+9)}{s(s^2+4s+11)}$ Sketch the root locus of the system. (16)	BTL 3	Apply	CO 4
10.	Sketch the root locus for the unity feedback system whose open loop transfer (16) $G(s)H(s) = \frac{K}{s(s+4)(s^2+4s+20)}$	BTL 3	Apply	CO 4
11.	Sketch root locus for the unity feedback system whose open loop transfer function is, $G(s)H(s) = \frac{K(s+1.5)}{s(s+1)(s+5)}$ (16)	BTL 3	Apply	CO 4
12.	Determine the range of K for which closed loop system is stable for the open loop transfer function $G(s)H(s) = \frac{K}{s(s+2)(s+10)}$	BTL 3	Apply	CO 4
	by drawing the Nyquist plot. (16)			

13.	Construct the Nyquist plot for a system whose open loop transfer function is given by $G(s)H(s) = \frac{K(1+s)^2}{s^3}$ Find the range of K for stability.	BTL 3	Apply	CO 4
14.	Write down the procedure for designing lead compensator using bode plot. (16)	BTL 4	Analyze	CO 4
15.	Write down the procedure for designing lag-lead compensator using bode plot. (16)	BTL 3	Apply	CO 4
16.	Construct a phase lag series compensator for an open loop transfer function of certain unity feedback control system given by $G(s) = \frac{K}{s(s+4)(s+80)}$ It is desired to have phase margin to be at least 33° and the velocity error constant K _V =30 Sec ⁻¹ . (16)	BTL 4	Analyze	CO 4
17.	Design a lead compensator for a unity feedback system with open loop transfer function, $G(s) = \frac{K}{s(s+1)(s+5)}$ to satisfy velocity error constant ≥ 50 and phase margin $\geq 20^{\circ}$. (16)	BTL 4	Analyze	CO 4

UNIT V – STATE VARIABLE ANALYSIS

Concept of state variables – State models for linear and time invariant Systems – Solution of state and output equation in controllable canonical form – Concepts of controllability and observability.

PART – A				
Q.No.	Questions	BT Level	Competence	Course Outcome
1.	Write the state model of n th order system	BTL 1	Remember	CO 5
2.	Analyze the basic elements used to construct the state diagram?	BTL 2	Understand	CO 5
3.	Draw the block diagram representation of state model.	BTL 2	Understand	CO 5
4.	Mention the advantages of state space analysis?	BTL 2	Understand	CO 5
5.	List down the draw backs in transfer function model analysis?	BTL 1	Remember	CO 5
6.	Point out the limitations of physical system modelled by transfer function approach.	BTL 2	Understand	CO 5
7.	Illustrate the state model using the signal flow graph?	BTL 1	Remember	CO 5
8.	Define state and state variable	BTL 1	Remember	CO 5
9.	Discuss about state vector?	BTL 2	Understand	CO 5
10.	How will you analyze the controllability and observability of a system using Kalman's Test?	BTL 2	Understand	CO 5
11.	Give the condition for controllability by Kalman's method.	BTL 1	Remember	CO 5
12.	State the condition for observability by Gilberts method.	BTL 1	Remember	CO 5
13.	Describe about state space?	BTL 2	Understand	CO 5
14.	Summarize the disadvantages in choosing phase variable for state space modeling?	BTL 2	Understand	CO 5
15.	Outline the properties of state transition matrix?	BTL 2	Understand	CO 5
16.	State the solution of homogenous state equation	BTL 1	Remember	CO 5
17.	What do you mean by controllability?	BTL 1	Remember	CO 5
18.	Identify the difference between transfer function and state space system	BTL 1	Remember	CO 5
19.	Point out the state equation and output equation of the state model.	BTL 2	Understand	CO 5
20.	Develop the advantages and disadvantages in canonical form of state model	BTL 1	Remember	CO 5
21.	Formulate the block diagram of the state model of a discrete time system	BTL 2	Understand	CO 5
22.	Deduce the state model of n th order discrete time system	BTL 1	Remember	CO 5
23.	Evaluate the state model of a discrete time system using signal flow graph	BTL 2	Understand	CO 5
24.	Formulate the necessary condition to be satisfied for designing state feedback.	BTL 2	Understand	CO 5
	PART – B			

1.	Obtain the state model of the given electrical network by choosing minimal number of state variables. (16)	BTL 3	Apply	CO 5
2.	Obtain the state model of the given electrical network by choosing $v_1(t)$ and $v_2(t)$ as state variables. (16) $\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	BTL 4	Analyze	CO 5
3.	For the given mechanical system, write the differential equations governing the system. $y_{1} \downarrow \downarrow$	BTL 3	Apply	CO 5
	Construct the state model of the given mechanical system. (16)			
4.	Construct a state model for the system characterized by the differential equation. $\frac{d^3y}{dt^3} + 6 \frac{d^2y}{dt^2} + 11 \frac{dy}{dt} + 6y + u = 0$	BTL 3	Apply	CO 5
5.	Give the block diagram representation of the state model.(16)Obtain the state model of the system whose transfer function is given as, $\frac{Y(s)}{U(s)} = \frac{10}{s^3 + 4s^2 + 2s + 1}$ (16)	BTL 3	Apply	CO 5
6.	For $A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$ Compute the state transition matrix e ^{At} using Cayley-Hamilton theorem. (16)	BTL 3	Apply	CO 5
7.	A linear time invariant system is described by the following state model. $ \begin{bmatrix} \dot{x_1} \\ \dot{x_2} \\ \dot{x_3} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} u $ $ y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} $	BTL 4	Analyze	CO 5

	Transform this state model in to a canonical state model. (16)			
8.	Deduce the canonical state model for the given transfer function. (16) $\frac{Y(s)}{U(s)} = \frac{10(s+4)}{s(s+1)(s+3)}$	BTL 3	Apply	CO 5
9.	Obtain the transfer function of the system defined by the following state space model. $ \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} -2 & 1 & 0 \\ 0 & -3 & 1 \\ -3 & -4 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u $ $ y = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} $	BTL 3	Apply	CO 5
10.	A LTI system is characterized by homogenous state equation $ \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} $ Compute the solution of the homogenous equation, assuming initial state vector $X_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$	BTL 3	Apply	CO 5
11.	Examine the controllability and observability of a system having following coefficient matrices. (16) $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix}; B = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}; C^{T} = \begin{bmatrix} 10 \\ 5 \\ 1 \end{bmatrix}$	BTL 3	Apply	CO 5
12.	Consider the following plant of the state space representation: $A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}; B = \begin{bmatrix} -2 \\ 2 \end{bmatrix}; C = \begin{bmatrix} -2 & 0 \end{bmatrix}$ Examine the controllability and observability of a state space formed by the system. (16)	BTL 3	Apply	CO 5
13.	Examine the controllability and observability of the system with state equation. $ \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u $ $ y = \begin{bmatrix} 3 & 4 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} $	BTL 3	Apply	CO 5
14.	Elaborate whether the given system is completely Controllable and Observable $ \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ -2 & -3 & 0 \\ 0 & 2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} u $ $ y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} $	BTL 4	Analyze	CO 5
15.	Given that $A_1 = \begin{bmatrix} \sigma & 0 \\ 0 & \sigma \end{bmatrix}; A_2 = \begin{bmatrix} 0 & \omega \\ -\omega & 0 \end{bmatrix}; A = \begin{bmatrix} \sigma & \omega \\ -\omega & \sigma \end{bmatrix}$. Compute e^{At} . (16)	BTL 3	Apply	CO 5
16.	For the given digital transfer function $\frac{Y(z)}{U(z)} = \frac{4z^3 - 12z^2 + 13z - 7}{(z-1)^2(z-2)}$ Develop the state model in Jordan Canonical Form. (16)	BTL 4	Analyze	CO 5
17.	The state model of a discrete time system is given by	BTL 4	Analyze	CO 5

X(k+1) = A X(k) + B U(k)		
Y(k) = C X(k) + D U(k)		
Determine its transfer function. (16)		

