SRM VALLIAMMAI ENGINEERING COLLEGE (An Autonomous Institution)

SRM Nagar, Kattankulathur – 603 203

DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION ENGINEERING

Lab Manual

IV SEMESTER

EI3466 ELECTRICAL MACHINES AND CONTROL SYSTEMS LABORATORY

Regulation – 2023 Academic Year 2024-2025 EVEN SEMESTER

Prepared by

Dr.V.Srinivasan, Assistant Professor/ EIE

SYLLABUS

EI3466 ELECTRICAL MACHINES AND CONTROL SYSTEMS LABORATORY

COURSE OBJECTIVES

- 1. To expose the students to the operation of D.C. machines.
- 2. To expose the students to the operation of transformers.
- 3. To expose the students to the operation of generators and induction motors.
- 4. To impart knowledge about modelling of the system and the design of controllers.
- 5. To understand the performance of the system.

LIST OF EXPERIMENTS

- 1. Determination of Open circuit and Load characteristics of a self-excited D.C. shunt generator.
- 2. Load test on DC shunt motor.
- 3. Load test on DC series motor.
- 4. Load test on single phase induction motor.
- 5. Load test on single phase transformer.
- 6. Speed control of DC shunt motor.
- 7. Determination of Transfer function of DC motor.
- 8. Study of characteristics of Synchros.
- 9. Determination of time and frequency responses of a Second order system.
- 10. Stability analysis of LTI system.
- 11. Design, Analysis and implementation of lag, lead and lag-lead compensators.
- 12. Effect of P, PD, PI, PID controller on a second order system (open loop stable and open loop unstable system).

TOTAL : 45 PERIODS

L T P C 0 0 3 1.5

COURSE OUTCOMES

At the end of the course, the student should have the:

- 1. To understand and analyze DC Machine.
- 2. To understand and analyze AC Machine.
- 3. To identify the model of the system using various techniques.
- 4. To design and implementation of control techniques for various control application.
- 5. To obtain the performance of the system.

LIST OF EQUIPMENTS FOR A BATCH OF 30 STUDENTS

1.	DC Shunt Motor with Loading Arrangement	-3 nos
2.	Single Phase Transformer	-4 nos
3.	DC Series Motor with Loading Arrangement	- 1 No.
4.	Single Phase Induction Motor with Loading Arrangement	- 1 No.
5.	DC Shunt Motor Coupled with DC Shunt Generator	- 1 No.
6.	Tachometer -Digital/Analog	- 8 nos
7.	Single Phase Auto Transformer	-2 nos
8.	Single Phase Resistive Loading Bank	-2 nos
9.	SPST switch	-2 nos
10.	DC Motor Transfer Function Module	-2nos
11.	Synchro Transmitter and Receive module	-2nos

со	PO										PSO					
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
1	3	3	2	1	1	1	-	-	-	-	-	1	2	1	-	1
2	3	3	2	2	1	1	-	-	-	-	-	1	3	3	-	1
3	3	3	3	2	3	2	-	-	-	-	-	1	2	2	3	2
4	3	3	3	2	3	2	-	-	-	-	-	1	2	2	3	2
5	3	3	2	1	3	-	-	-	-	-	-	1	2	2	3	-
Avg.	3	3	2.4	1.6	2.2	1.2	-	-	-	-	-	1	2.2	2	1.8	1.2

MAPPING OF COs WITH POS AND PSOs

LIST OF EXPERIMENTS

Exp. No	Experiments								
	CYCLE 1								
1	Determination of Open circuit and Load characteristics of a self-excited D.C.								
	shunt generator.								
2	Load test on DC shunt motor.								
3	Load test on DC series motor.								
4	Load test on single phase induction motor.								
5	Load test on single phase transformer.								
6	Speed control of DC shunt motor.								
	CYCLE 2								
1	Determination of Transfer function of DC motor.								
2	Study of characteristics of Synchros.								
3	Determination of time and frequency responses of a Second order system.								
4	Stability analysis of LTI system.								
5	Design, Analysis and implementation of lag, lead and lag-lead compensators.								
6	Effect of P, PD, PI, PID controller on a second order system (open loop stable								
	and open loop unstable system).								

Ex. No: 1a Determination of Open circuit characteristics of a self-excited D.C. shunt generator

Date: Aim:

To obtain the open circuit characteristics of a self-excited DC shunt generator and hence deduce the critical field resistance and critical speed.

Apparatus required:

Sl. No.	Name of the apparatus	Range	Туре	Quantity
1.	Ammeter	(0 - 2A)	MC	1
2.	Ammeter	(0 - 10A)	MC	1
3.	Voltmeter	(0 - 300V)	MC	1
4.	Rheostat	400 Ω/1.1 A, 800 Ω/0.8 A	Wire wound	1 each
5.	Tachometer	(0 -9999 rpm)	Digital	1

THEORY

The voltage equation for DC shunt generator is given by $V_L=E_g-I_aR_a$. In separately excited DC Generator, the field winding is excited by separate external DC source. The induced EMF is directly proportional to the field current when speed is maintained constant. The plot between the induced EMF and the field current is known as open circuit characteristics of the DC generator. The typical shape of these characteristics is shown in model graph. The induced EMF when the field current is zero is known as residual voltage (R_V). This EMF is due to the presence of a small amount of flux retained in the field poles during previous process of the generator called residual flux.

PROCEDURE

Open Circuit Characteristics:-

- ✤ The connections are made as per the circuit diagram.
- After checking minimum position of motor field rheostat, maximum position of generator held rheostat, The DPST switch is closed and starting resistance is gradually removed.
- \clubsuit The motor is started using three point starter.
- By varying the field rheostat of the motor, the speed of the motor is adjusted to the rated speed of the generator.

- By varying the generator field rheostat, voltmeter and ammeter readings are taken in steps upto 120% of rated voltage.
- After bringing the generator rheostat to maximum position, field rheostat of motor to minimum position, the DPST switch is closed.
- Draw R_c line, such that it is tangent to the initial portion of O.C.C. at rated speed and passes through origin

PRECAUTION

- ✤ All the switches are kept open initially.
- ✤ The motor field rheostat is kept at minimum resistance position.
- ◆ The generator field rheostat is kept at maximum resistance position.

CIRCUIT DIAGRAM

Motor Specifications	Concreter Specifications
Voltage	Voltage
Line Current	Line Current
Speed	Speed
Capacity	Capacity

Fuse Ratings: Motor side Fuse rating= 125% of rated current

TABULAR COLOUMN FOR OPEN CIRCUIT CHARACTERISTICS

Sl. No.	Voltage in Volts	Current in A
1.		
2.		
3.		
4.		
5.		
6.		
7.		
8.		
9.		
10.		

MODEL GRAPH:-

Model Calculation:

 $E_0 \alpha N$

So, for different speeds, O.C.C. can be deduced from the O.C.C.at rated speed.

 $N_1/N_2 = E_1/E_2$

Critical field resistance, \mathbf{R}_{c} = the slope of R_{c} line= OA/OC

Critical speed, $N_{c} {=} \mbox{BC/AC} \ X \ N_{R(N)}$

Where N_R is the Rated speed.

Model Graphs:

Result:

Thus the O.C.C. characteristics of self excited D.C. shunt generator were drawn

Review Question

- 1. How the emf are build up in generator?
- 2. What is meant by residual magnetism?
- 3. What is meant by open circuit characteristics?
- 4. What is meant by critical resistance?
- 5. The occ of a dc shunt generator starts a little above the origin. Give reasons
- 6. At the time of rheostat in the field winding side of the generator should be in maximum position.why?
- 7. Explain the building up phenomena ina dc shunt generator.
- 8. What is meant by torque? or Define torque?
- 9. How can we reduce the eddy current loss in the electrical machine?
- 10. Explain its applications.

Ex. No: 1b Determination of Load Characteristics of a self-excited D.C. Shunt Generator

Date: Aim:

To obtain the load characteristics of a self-excited DC shunt generator.

Apparatus required:

Sl. No.	Name of the apparatus	Range	Туре	Quantity	
1.	Ammeter	(0 - 20A)	MC	1	
3.	Voltmeter	(0 - 300V)	MC	1	
4	Rheostat	400 Ω/1.1 A,	Wire wound	1 each	
	Moostut	800 Ω/0.8 A	whe would		
5.	Tachometer	(0 -9999 rpm)	Digital	1	

THEORY

The voltage equation for DC shunt generator is given by $V_L=E_g-I_aR_a$. Since I_a is negligibly small, from the above equation, the terminal voltage(V_L) is the no load induced EMF(E_g). As the load on the generator increases, the load current causes increase in I_aR_a drop. Hence the terminal voltage decreases with increasing load. The plot between terminal voltage (V_L) and load current (I_L) is known as the external or load characteristics. The plot between induced EMF (E_g) and the armature current causes increase in I_aR_a drop. Hence the terminal voltage decreases with increasing load. Typical graph of internal and external characteristics in shown in model graph.

PROCEDURE:

Load test:

- ✤ The connections are made as per the circuit diagram.
- ✤ The motor is started using three point starter.
- Run the MG set at rated speed
- Excite the Generator to its rated voltage after closing the SPSTS, and observe the readings on no load.
- Close the DPSTS on load side, vary the load for convenient steps of load current andobserve the meter readings.
- ♦ Note that on each loading the speed should be rated speed.
- ✤ Load the Generator upto its rated capacity.

PRECAUTION

- ✤ All the switches are kept open initially.
- ✤ The motor field rheostat is kept at minimum resistance position.
- ◆ The generator field rheostat is kept at maximum resistance position.
- Ensure that no load is connected, while switching on and switching off the supply side DPST switch.

Circuit Diagram

TABULAR COLOUMN FOR LOAD CHARACTERISTICS

Spe	ed =	rpm						
S.No.	Voltage (V) Volts	Current (I _L) Amps	No Load Voltage					
			_					

Model Calculation:

Load test: For self excitation $I_a = IL + I_f$ So, induced emf on load, $E_g = V + I_a R_a$ <u>Model Graphs:</u>

Internal (EgVsIa) and External (V_LVs I_L) characteristics

Result:

Thus the load characteristics of self excited D.C. shunt generator were drawn.

Review Question

- 1. What is Internal Characteristics?
- 2. What is External Characteristics?
- 3. What is the difference between the generating voltage and terminal voltage?
- 4. Write the derivation for generating voltage?
- 5. How the armature resistance are determined?
- 6. Principle of operation of a generator
- 7. What is the role of a Commutator?
- 8. What are the different types of generators?
- 9. Explain armature reaction?
- 10. What is the function of brushes

Ex. No: 2 Load Test on D.C. Shunt Motor

Date: Aim:

To determine the efficiency of D.C shunt motor.

 \triangleright To obtain the performance characteristics of shunt motor.

Apparatus required:

Sl. No.	Name of the apparatus	Range	Туре	Quantity
1.	Ammeter	(0 - 2A)	MC	1
2.	Ammeter	(0 - 20A)	MC	1
3.	Voltmeter	(0 - 300V)	MC	1
4.	Rheostat	400 Ω/1.1A,	Wire wound	1
5.	Tachometer	(0 -9999 rpm)	Digital	1

Precautions:

At the time of switching on and switching off the supply,

- ◆ The field rheostat should be at the **minimum resistance** position.
- There should not be any load on the motor.

Range fixing:

- The line Current of the shunt motor is $IL = ____A$
- ◆ The current drawn by the shunt motor on load is 120% of full load current.
- The range of ammeter AL is (0) A
- ✤ The rated field current is _____ A
- Field circuit rheostat rating is _____; ____ A (the current rating should be slightly
- ✤ higher than the rated current)
- Rated voltage of motor V =_____ Volts
- The range of voltmeter V is (0) Volts

Circuit Diagram for Load Test on D.C. Shunt Motor:

Motor Specifications						
Voltage						
Line Current						
Speed						
Capacity						

Observation:

S.No.	V	Ι	Sl	oring (K	Balance	Speed	Torque	Output	Input	Efficiency
	(Volts)	(Amps)	F ₁	F ₂	$F_1 \sim F_2$	N	Т	Power	Power	η
						(rpm)	(Nm)	Po	P _i (Watts)	%
								(Watts)		
1										
2.										
3.										
4.										

Radius of brake drum, r = _____ mts.

MODEL GRAPH:

Result:

Thus the performance characteristics of the DC shunt motor were drawn.

Review Question

- 1. Define torque.
- 2. What is meant by efficiency?
- 3. At the of starting of motor the field rheostat must be in minimum position. why?
- 4. If there is open circuit in the field circuit. What happen?
- 5. Name the different types of starters for DC motors.
- 6. How speed of the DC shunt motor can be increased?
- 7. Practical reason behind speed of DC shunt motor is proportional to back emf only is _____
- 8. What is back e.m.f or counter e.m.f?

Load Test on D.C. Series Motor

Ex. No: 3 Date: Aim:

- To determine efficiency of the D.C series motor.
- To obtain the performance characteristics of series motor.

Apparatus required:

Sl.	Name of the Apparatus	Range	Туре	Quantity
110.				
1.	Ammeter	(0-15)A	MC	1
2.	Voltmeter	(0-300)V	MC	1
3.	Rheostat	400 Ω/1.14A,	Wire	1
			wound	
4.	Tachometer	(0 -9999rpm)	Digital	1

Precaution:

• The motor should be started with some initial load.

Range fixing:

- ✤ The current drawn by the motor is 120% of full load current.
- Current drawn by the motor $I_L = _$ A
- The range of ammeter A_L is (0-)A
- The rated supply voltage is V
- The range of voltmeter V is (0-) V

Procedure:

- ✤ Connections are given as per circuit diagram.
- Before starting the motor some initial load is applied to the motor by using the brake drum with spring balance.
- Using two-point starter the motor is started to run. The meter readings are started at its initial condition.
- Gradually load the machine up to rated current and corresponding meter readings were noted.
- ✤ After the observation of all the readings the load is released gradually up to the initial load condition.

Formulae Used:

Circumference of the brake drum = _____cms Radius of the brake drum, r = mTorque applied on the shaft of the rotor, $T = (F1 \sim F2) r \times 9.81 Nm$

Output power, Po = $\frac{2\pi NT}{60}$ Watts

Input power $Pi = V \times IL$ Watts % Efficiency, $=\frac{P_o}{P_i} \times 100$

Fuse Rating:

120% of rated current The fuse rating is Α Circuit Diagram for Brake Test on D.C. Series Motor:

Motor Specifications						
Voltage						
Line Current						
Speed						
Capacity						

Observation:

Radius, r =___of brake drum _____mts.

S.No.	Voltage V _L (Volts)	Current I _L (Amps)	Ba	Sp lan	ring ce (Kg)	Speed N (rpm)	Torque T (Nm)	Output Power P _o (Watts)	Input Power P _i (Watts)	Efficiency η%
			F ₁	F ₂	F ₁ ~ F ₂					

Model Graphs:

Result:

Thus the performance characteristics of the DC series motor were drawn.

Review Question

1. How to reverse the direction of rotation of DC motor?

2. Explain why D.C series motor are started under no load.

3.Derive the torque equation.

4. Torque is directly proportional to the square of the current. Why and when?

5. State the difference between the shunt and series motor

Expt No: 4 LOAD TEST ON SINGLE PHASE INDUCTION MOTOR Date: AIM:

To conduct the load test on the given single phase induction motor and to plot its performance characteristics.

EQUIPMENTS REQUIRED:

SL NO	NAME OF THE EQUIPMENTS/INSTRUMENTS	ТҮРЕ	RANGE	QUANTITY
1.	Ammeter	MI	(0-10A)	1
2.	voltmeter	MI	(0-300V)	1
3	Wattmeter		300V,10A,UPF	1
4	Connecting Wires		As required	

PRECAUTIONS:

- Before starting the motor, release the load completely.
- ✤ Before providing a.c supply, the single phase variac must be in the minimum position.
- ✤ Handle the tachometer carefully.

PROCEDURE:

- Make the connections as per the circuit diagram. Release any load available on the motor. Switch ON the power supply by closing DPST switch.
- ◆ Vary the single phase auto transformer for rated input voltage.
- Initially when the motor is unloaded, note the readings of ammeter, voltmeter and wattmeter. Measure the speed using a tachometer at this no load condition.
- Load the motor in gradual steps up to the rated current. At each step, note down all the above mentioned readings.
- Add cooling water to the brake drum as and when required when the motor is loaded.
- Release the load on the motor and bring the auto transformer to initial position.
- Switch OFF the supply.
- Measure the circumferential length of the brake drum and use the same for calculation of the radius 'R' of the brake drum.

CIRCUIT DIAGRAM :

CIRCUIT DIAGRAM: LOAD TEST ON SINGLE PHASE INDUCTION MOTOR

TABULATION:

Sl. No.	VL (V)	IL (A)	Spee d (rp	I/P Powe (W	er ()	Spr read	ing ling	Balance	Torque (Nm)	O/P Power (W)	%slip	%η	cosφ
			m)	Obs	Ac t	S1	S2	S1~S2					

CALCULATIONS:

1. Torque, T= 9.81 (S1 ~ S2) R (Nm)

```
where R = (r + t/2) (m)
```

R---effective radius of the brake drum (m)

r--- Radius of the braked drum (m)

t---thickness of the belt (m)

2. Output power, $Po = 2\pi NT/60$ (W)

where N- actual speed of the motor (rpm)

3. Input power Pi = W(W)

where W- actual reading of the wattmeter reading (W)

4. % Slip S= (Ns-N)/Ns x 100 (%)

Where Ns-Synchronous speed (rpm), N=1500 rpm.

5. Power factor $\cos \phi = Pi / (V * I)$

where V-line voltage (V)

I-line current (A)

```
6. Efficiency \%\eta = (Po/Pi) \times 100 (\%)
```

7. Multiplication Factor (MF) of the wattmeter:

MF= (Current Coil Rating * Pressure Coil Rating * Power Factor)/ Full Scale Deflection

Where f is the frequency of the supply (or) stator frequency

P is the no. of poles of the motor

RESULT:

Thus the load test is performed in single phase Induction Motor and performance characteristics are drawn.

Review Question

- 1. What are the different types of single phase induction motors?
- 2. Explain why single phase induction motors are not self-starting?
- 3. Draw the phasor diagrams of Single phase induction motor indicating the starting winding and running winding current components.
- 4. Define slip.
- 5. List out the applications of single phase induction motor

EXP NO. 5 Load test on single phase transformer

Date : Aim:

To perform load test on 1-phase transformer and determine the following:

- a) Efficiency at different loads and to plot efficiency vs. load curve.
- b) Regulation of the transformer and to plot regulation vs. load curve.

Sl. No.	Equipments	Туре	Specification	Quantity
1.	Single Phase Transformer		1KVA, 230V/230V	1
2.	Wattmeter	Dynamometer	(0-300)V, 5/10 A 150/300/600 V	1
3.	Ammeter	MI	(0-5-10)A, AC	1
4.	Voltmeter	MI	(0-150-300) V, AC	1
5.	Lamp Bank Load	Resistive	Resistive 1 KW, 230 V	1

APPRATUS REQUIRED:

Precaution:

- The Variac should be kept in minimum position while switching on and switching off the supply side DPSTS.
- \clubsuit At the time of switching on the supply there should not be any load connected.

THEORY:

The transformer is a device which transfers energy from one electrical circuit to another electrical circuit through magnetic field as coupling medium. In this process it does not change the frequency of voltage or current. It works on the basic principle of electromagnetic induction (mutually induced e. m. f.). Being a static device it has a very high efficiency as compared to rotating machine of same rating as the losses are less.

Power input to the transformer,

```
P1 = reading of water * m.f.
```

power output from the transformer P2 = V2 * I2

(cosØ being unity for lamp bank load)

Now percentage efficiency:

Percentage efficiency $=\frac{P2}{P1} * 100$

When primary winding of transformer is energized with source of voltage V1 an e.m.f. E2 is induced across the secondary winding and it is also equal to secondary terminal voltage V₂ till there is no load across secondary winding. As soon as load is applied across the secondary winding the terminal voltage is decreased from E_2 to V_2 this phenomenon of changing the voltage is called "voltage regulation". We can define voltage regulation in numerical term as "it is change in secondary terminal voltage from no load to full load with respect secondary load voltage". Thus, the no to percentage voltage regulation = $\frac{E2-V2}{E2} * 100$

The voltage regulation should be as small as possible. Transformer being highly inductive device works on lagging power factor unless the load of highly capacitive nature is connected across the secondary winding to make overall circuit resistive purely or capacitive in nature.

PROCEDURE:

- ✤ Make the connections as per the circuit diagram.
- Keep the switch S on secondary side open so that load is zero to measure no load voltage. Also keep knob of auto transformer at zero output voltage position.
- Now increase the voltage through auto transformer until voltage in voltmeter V2 reads rated value of secondary winding & read no load voltage E2.
- Switch on certain lamps in the lamp in the bank load such that secondary winding current be approximately 10% of the rated current of secondary side.
- ◆ Take the readings from Wattmeter W2, Voltmeter V2, & Ammeter I2.
- Increase the load current in steps of 10% of the rated value by switching on few more lamps & take the readings of the Wattmeter, Ammeter & Voltmeter till it reaches 120-1255 of rated value.
- Reduce the load to zero by switching of the lamps one-by-one.
- ✤ Switch off the AC-Supply.

EI3466- ELECTRICAL MACHINES AND CONTROL SYSTEMS LAB / DEPT OF EIE /SRMVEC

CIRCUIT DIAGRAM:

OBSERVATION TABLE:

S	l No	VP	IP	W _P (V	Vatts)	Vs	Is	Ws (V	Vatts)	%	%
		(Volts)	(Amps)	Observed	Actual	(Volts)	(Amps)	Observed	Actual	Efficiency	Regulation

Po

RESULT:

The efficiency of given Transformer is______.

The Voltage Regulation of the given Transformer is_____.

Review Question

- 1. Define Regulation of a Transformer.
- 2. What is the effect of load p.f on regulation of Transformer?
- 3. What is the condition for maximum efficiency?
- 4. Determine the percentage load at which maximum efficiency occurred for the given single-phase transformer?
- 5. What is the effect of change in frequency on the efficiency of the transformer? 6. Why transformer rating is in KVA?

Ex. No: 6 SPEED CONTROL OF D.C. SHUNT MOTOR Date: Aim:

To draw the speed characteristics of DC shunt motor by

(1) Armature control method

(2) Field control method

APPARATUS REQUIRED:-

Sl. No.	Name of the apparatus	Range	Туре	Quantity
1.	Ammeter	(0-5A)	МС	1
2	Voltmeter	(0-300V)	МС	1
3.	Rheostat	400Ω, 1.1A, 50Ω,3.5A	Wire wound	1 each
4.	Tachometer		Digital	1

PROCEDURE

(1) Armature control method:-

- ✤ The connections are given as per the circuit diagram.
- ✤ The DPST switch is closed.
- ✤ The field current is varied in steps by varying the field rheostat.
- ◆ In each step of field current the armature voltage is varied in steps by varying the armature rheostat.
- ◆ In each step of armature rheostat variation the meter readings (Voltmeter & Tachometer) are noted.

(2) Field control method:-

- \checkmark The connections are given as per the circuit diagram.
- ✤ The DPST switch is closed.
- ✤ The armature voltage is varied in steps by varying the armature rheostat.
- ◆ In each step of armature voltage the field current in steps by varying the field rheostat.
- ✤ In each step of field rheostat the meter readings (Ammeter & tachometer) are noted.

PRECAUTION

- ✤ All the switches are kept open initially.
- ◆ The field rheostat should be kept at minimum resistance position.
- ◆ The armature rheostat should be kept at maximum resistance position.

<u>Circuit Diagram</u>

Name plate details:

Voltage	:
Current	:
Power	:
Speed	:

Fuse Rating

 $\frac{125 \% \text{ of rated current}}{\frac{1.25}{100} \times}$

Tabular Column

Armature voltage control:

	$I_{F1} =$	Α	$I_{F2} =$	Α		
S.No	Voltage V	Speed N rpm	Voltage V	Speed N rpm		

Field control:

		Voltage V ₁ =	V	Voltage V ₂ =	V
	S.No	Field current I _F A	Speed N rpm	Field current IF	Speed N rpm
			E		A
Model Gr	aph:				

Result:

Thus the speed characteristics of the DC shunt motor were drawn.

Review Question

- ✤ what is the relationship between the voltage and speed?
- ✤ what is the relationship between the flux and speed?
- ✤ what are the methods for speed control of dc motors?
- which method of speed control can be used for above the rated speed control?
- which method of speed control can be used for below the rated speed control?
- explain different methods of speed control of d.c series motors
- how can you reverse the direction of rotation of a d.c motor?
- ✤ what are the different tests conducted on d.c machines?

Exp. No: 7.Determination of transfer function of dc motorDate:Aim:

- 1. To determine the transfer function of an armature-controlled DC motor.
- 2. To determine the transfer function of a field-controlled DC motor.

APPARATUS REQUIRED:

S.No	Name	Range	Qty	Туре
1	Ammeter	(0-5A),(0-2A),(0-10A),	Each 1	MC
2	Voltmeter	(0-100mA) (0-300V),(0-300V) (0-300V) (0-150V)	Each1	MC MI
3	Auto transformer	10-300V,(0-130V) 10-230V/(0-270V),5A	1	1 V11
4	Rheostat	400Ω/1.1A,50Ω/3.5A,250 Ω/1.5A	Each1	
5	Tachometer	24/1. <i>31</i> X.	1	
6	Stopwatch		1	
7	Connecting Wires		12	

THEORY:

TRANSFER FUNCTION OF ARMATURE CONTROLLED DC MOTOR

The differential equations governing the armature controlled |DC motor speed control system are

$V_{a=}I_{a}R_{a} + L_{a}\frac{di_{a}}{dt} + e_{b}$	(1)
$T = K_t I_a$	(2)

$$T = J \frac{d^2 \theta}{dt^2} + B \frac{d\theta}{dt}$$
(3)
$$e_b = K_b \frac{d\theta}{dt}$$
(4)

On taking Laplace transform of the system differential equations with zero initial conditions we get

$$V_{a}(s) = I_{a}(s) R_{a} + L_{a} s I_{a}(s) + E_{b}(s)$$
(5)

CIRCUIT DIAGRAM:

ARMATURE AND FIELD CONTROLLED DC MOTOR:

TO MEASURE ARMATURE RESISTANCE Ra:

TO MEASURE FIELD RESISTANCE Rf:

TO MEASURE ARMATURE INDUCTANCE(La):

TO MEASURE FIELD INDUCTANCE(LF):

TO MEASURE Ka

$$T(s) = K_t I_a(s) \tag{6}$$

$$T(s) = Js^2\theta(s) + Bs\theta(s) \tag{7}$$

$$E_b(s) = K_b s \theta(s) \tag{8}$$

on equating equation (6) and (7)

$$I_a(s) = \frac{Js^2 + Es}{K_t} \theta(s)$$
(9)

Equation (5) can be written as

$$V_a(s) = (R_a + sL_a)I_a(s) + E_b(s)$$
(10)

Substitute E_b(s) and I_a(s) from eqn (8),(9) respectively in equation 10

$$V_a(s) = \left[\frac{(R_a + sL_a)(Js^2 + Bs) + K_b K_t s}{K_t}\right] \theta(s)$$

The required transfer function is

$$\frac{\theta(s)}{V_a(s)} = \frac{K_t}{(R_a + sL_a)(Js^2 + Bs) + K_b K_t s}$$
$$\frac{\theta(s)}{V_a(s)} = \frac{K_t / R_a B}{s(1 + sT_a)(1 + sT_m) + \frac{K_b K_t}{R_a B}}$$

Where $L_a / R_a = T_a =$ electrical time constant

J/B =Tm =mechanical time constant

TRANSFER FUNCTION OF FIELD CONTROLLED DC MOTOR

The differential equations governing the field controlled DC motor speed control system are,

$$V_f = R_f I_f + L_f \frac{di_f}{dt} \tag{11}$$

$$T(s) = K_{t_f} I_f(s) \tag{12}$$

$$T(s) = Js^2\theta(s) + Bs\theta(s)$$
(13)

Equation (12) and (13)

$$K_{t_f} I_f(s) = J s^2 \theta(s) + B s \theta(s)$$
(14)

TO FIND Kb

TABULATION:

To find R_a:

Va(V)	Ia(A)	$R_a(\Omega)$

To find Rf:

V _f (V)	I _f (A)	$R_f(\Omega)$

$$l_f(s) = \frac{s(js+Bs)}{K_{t_f}}\theta(s)$$

The equation (4) becomes

$$V_f(s) = (R_f + sL_f) I_f(s)$$
 (16)

On substituting If(s) from equation (7) and (8), we get

$$V_f(s) = (R_f + sL_f) \frac{s(Js + Bs)}{\kappa_{t_f}} \theta(s)$$
(17)

$$\frac{\theta(s)}{v_f(s)} = \frac{\kappa_{lf}}{s(R_f + sL_f)(B + sJ)}$$
(18)

$$\frac{\theta(s)}{v_f(s)} = \frac{K_m}{s(1+sT_f)(1+sT_m)}$$
(19)

Where

Motor gain constant $K_m = K_{tf}/R_{fb}$

Field time constant $T_f = L_f/R_f$

Mechanical time constant $T_m = J/B$

PROCEDURE:

To find armature resistance Ra:

- 1. Connections were given as per the circuit diagram.
- 2. By varying the loading rheostat take down the readings on ammeter and voltmeter.
- 3. Calculate the value of armature resistance by using the formula $R_a = V_a / I_a$.

To find armature resistance La:

- 1. Connections were given as per the circuit diagram.
- 2. By varying the AE positions values are noted.
- 3. The ratio of voltage and current gives the impedance Z_a of the armature reading. Inductance L_a is calculated as follows.

$$X_a = \sqrt{Z_a^2 - R_a}$$
$$L_a = \frac{X_a}{2\pi f}$$

To find La:

Va(V)	I _a (A)	$Z_a(\Omega)$	$L_a(\Omega)$	

To find Lf:

V _f (V)	I _f (A)	$Z_f(\Omega)$	$L_f(\Omega)$

ARMATURE CONTROLLED DC MOTOR:

Va (V)	I _a (A)	N(RPM	T(NM)	Ω(Rad)	Kb	Kt	Eb

To find armature ka:

- 1. Connections are made as per the circuit diagram.
- 2. Keep the rheostat in minimum position.
- 3. Switch on the power supply.
- 4. By gradually increasing the rheostat, increase the motor to its rated speed.
- 5. By applying the load note down the readings of voltmeter and ammeter.
- 6. Repeat the steps 4 to 5 times.

To find kb:

- 1. Connections are made as per the circuit diagram.
- 2. By observing the precautions switch on the supply.
- 3. Note down the current and speed values.
- Calculate E_b and ω.

FIELD CONTROLLED DC MOTOR:

Va (V)	I _a (A)	N(RPM)	T _m (NM)	ω(Rad)	E _b (V)	Km	T(NM)	Ktf	T _f (NM)

MODEL GRAPH:

MODEL CALCULATION

RESULT:

Study of characteristics of Synchros

Exp. No: 8

Date: Aim:

- 1. To study the operation of synchro transmitter and receiver as a error detector
- 2. To study the operation of Synchro Transmitter and Receiver.

Apparatus Required:

- ✤ Synchro transmitter and receiver kit
- Patch cords

Procedure:

Synchro transmitter and receiver as an error detector

- Connect the R1-R2 terminals of transmitter to power supply.
- Short S1-S2, S2-S2, S3-S3 winding of transmitter and receiver.
- Connect the R1-R2 terminals of receiver to digital panel meter.
- ✤ As the power is switched ON transmitter and receiver shaft will come to the same position on the dial.
- Set the transmitter rotor in zero position and rotate the receiver rotor.
- Take the error voltage display on the digital panel meter corresponding to the angle difference between transmitter and receiver.
- ✤ Tabulate the reading as per the following table.

Synchro Transmitter and Receiver

- Arrange power supply, synchro transmitter and synchro receiver near to each other.
- Connect power supply output to R1-R2 terminals of the transmitter and receiver.
- Short S1-S2, S2-S2, and S3-S3 winding of transmitter and receiver with the help of patch cords.
- Switch on the unit, supply neon will glow on.
- As the power is switched on transmitter and receiver shaft will come to the same position on the dial.
- Vary the shaft position of the transmitter and observe the corresponding change in the shaft position of the receiver.
- Repeat the above steps for different angles of the shaft of the transmitter, you should have observed that the receiver shaft move by an equal amount as that of a transmitter.

Synchro transmitter and receiver angle difference Vs output error voltage

Synchro Transmitter stator angle Vs receiver rotor angle characteristics

Tabulation for rotor angle versus receiver angle:

S.No	Transmitter angular position (degrees)	Receiver angular position (degrees)

Model Graph:

Tabulation for error voltage Vs difference between transmitter and receiver rotor angle

S.No	Transmitter position (degrees)	Receiver position (degrees)	Error output Voltage (Volts)	Angle of Difference (degrees)

Model Graph

MODEL CALCULATION

RESULT:

Transfer function:

100

 $s^2 + 15 s$

Transfer function:

100

s^2 + 15 s + 100

(i) Wn = 10.0000

10.0000

Z = 0.7500

0.7500

 $P=\ -7.5000+6.6144i$

-7.5000 - 6.6144i

(ii) Kp = Inf Kv = 6.6667

Ka = 0

(iii)Wd = 6.6144

Theta= 0.7227

- (iv) Td = 0.1525
- (v) Tr = 0.3655
- (vi) Tp = 0.4747

(vii)MpPercentage = 2.8427

(viii) Ts = 0.5333 Ts = 0.4000

Exp. No: 9 Determination of time and frequency responses of a Second order system Date:

Aim

To obtain the time domain and Frequency Domain Specifications for the given system using

MATLAB Software.

Apparatus Required

MATLAB Software

Design Procedure :

1. The open loop transfer function G(s)=100/s(s+15) has a unity feedback. Find (i) Natural Frequency and Damping Ratio (ii)Position, Velocity, Acceleration Error Constants (iii)Damped Frequency and Theta (iv)Delay Time (v) Rise Time (vi)Peak Time (vii)Maximum Peak over shoot percentage (viii) Settling Time for 2% and 5% and Calculate the same results using MATLAB Software.

Solution

```
% Time Domain Specifications num=[100];
den=[1 15 0];
%Transfer Function Form
G=tf(num,den)
% Unity Feedback System
C = feedback(G, 1)
% (i)Natural frequency and Damping Ratio
[Wn Z P] = damp(C)
Wn=Wn(1);
Z=Z(1):
%(ii)Position, Velocity, Acceleration Error Constants
% Position Error Constant
Kp=dcgain(G)
%Differentiator Part
num1 = [1 0]; den1 = [1]; G1 = tf(num1, den1);
%Velocity Error Constant
Gv=G1*G:
Kv=dcgain(Gv)
% Acceleration Error Constant
```

Ga=Gv*G1; Ka=dcgain(Ga) %(iii) Damped Frequency and Theta

% Damped Frequency of oscillation $Wd=Wn*sqrt(1-(Z^2))$ %Angle of Theta Theta= $atan((sqrt(1-(Z^2)))/Z)$ %(iv)Delay Time(Td) Td=(1+0.7*Z)/Wn %(v)Rise Time Tr=(3.14-Theta)/Wd %(vi)Peak Time Tp=3.14/Wd %(vii)Percentage of Peak over shoot MpPercentage=exp($(-3.14*Z)/(sqrt(1-Z^2)))*100$ %(viii) Settling Time % For 2% Ts=4/(Z*Wn)% For 5% Ts=3/(Z*Wn)

2. The open loop transfer function of a unity feedback system $G(s)=K/s(s^2+2s+3)$ Draw the Bode Plot manually Find (i)Gain Margin (ii)Phase Margin (iii)Gain cross over frequency (iv)Phase cross over frequency (v) Resonant Peak (vi)Resonant Frequency (vii)Bandwidth and Check the same results using MATLAB Software. (Assume K=1)

Solution

```
%Draw the Bode Plot for the given transfer function G(S)=1/S(S2+2S+3) %Find (i)Gain Margin
%(ii) Phase Margin (iii) Gain Cross over Frequency %(iv) Phase Cross over Frequency
%(v)Resonant Peak (vi)Resonant %Frequency (vii)Bandwidth
num=[1];
den=[1 2 3 0];
w=logspace(-1,3,100);
figure(1);
bode(num,den,w);
title('Bode Plot for the given transfer function G(s)=1/s(s^2+2s+3)')
grid;
[Gm Pm Wcg Wcp] = margin(num,den);
Gain_Margin_dB=20*log10(Gm) Phase_Margin=Pm
Gaincrossover_Frequency=Wcp Phasecrossover_Frequency=Wcg
[M P w]=bode(num,den);
[Mp i]=max(M);
Resonant PeakdB=20*log10(Mp)
Wp=w(i);
```

Resonant_Frequency=Wp for i=1:1:length(M); if M(i)<=1/(sqrt(2)); Bandwidth=w(i) break; end; end;

Gain_Margin_dB =15.5630 Phase_Margin = 76.8410 Gaincrossover_Frequency = 0.3374 Phasecrossover_Frequency= 1.7321 Resonant_PeakdB = 10.4672 Resonant_Frequency = 0.1000 Bandwidth = 0.5356

RESULT

EI3466- ELECTRICAL MACHINES AND CONTROL SYSTEMS LAB / DEPT OF EIE /SRMVEC

Page 48

Stability Analysis of LTI System

Exp. No: 10

Date:

Aim:-

To check the stability analysis of the given system or transfer function using

MATLAB Software.

Apparatus Required

MATLAB Software

Design Procedure :

1. Root Locus : The open loop transfer function of a unity feedback system $G(s)=K/s(s^2+8s+17)$ Draw the root locus manually and Check the same results using MATLAB Software. (Assume K=1)

Solution

% Rootlocus of the transfer function G(s)=1/(S^3+8S^2+17S) num=[1]; den=[1 8 17 0]; figure(1); rlocus(num,den); Title('Root Locus for the transfer function G(s)=1/(S^3+8S^2+17S)') grid;

BODE PLOT : The open loop transfer function of a unity feedback system G(s)=K/s(s²+2s+3) Draw the Bode Plot manually Find (i)Gain Margin (ii)Phase Margin (iii)Gain cross over frequency (iv)Phase cross over frequency (v) Resonant Peak (vi)Resonant Frequency (vii)Bandwidth and Check the same results using MATLAB Software. (Assume K=1)

Solution

% Draw the Bode Plot for the given transfer function G(S)=1/S(S2+2S+3) % Find (i)Gain Margin

(ii) Phase Margin (iii) Gain Cross over Frequency %(iv) Phase Cross over

Frequency (v)Resonant Peak (vi)Resonant %Frequency (vii)Bandwidth

num=[1]; den=[1230];

w=logspace(-1,3,100); figure(1); bode(num,den,w);

title('Bode Plot for the given transfer function $G(s)=1/s(s^2+2s+3)$ ') grid;

[Gm Pm Wcg Wcp] =margin(num,den); Gain_Margin_dB=20*log10(Gm)

Phase_Margin=Pm Gaincrossover_Frequency=Wcp Phasecrossover_Frequency=Wcg

```
[M P w]=bode(num,den); [Mp i]=max(M);
```

Resonant_PeakdB=20*log10(Mp) Wp=w(i);

Resonant_Frequency=Wp for i=1:1:length(M);

if M(i)<=1/(sqrt(2)); Bandwidth=w(i)

break; end; end;

Answer

Gain_Margin_dB =15.5630

Phase_Margin = 76.8410

 $Gaincrossover_Frequency = 0.3374$

Phasecrossover_Frequency= 1.7321

 $Resonant_PeakdB = 10.4672$

 $Resonant_Frequency = 0.1000$

Bandwidth = 0.5356

3. Nyquist Plot : The open loop transfer function of a unity feedback system

 $G(s)=K/s(s^2+2s+3)$ Draw the Nyquist Plot manually Find (i)Gain Margin (ii)Phase Margin (iii)Gain cross over frequency (iv)Phase cross over frequency and Check the same results using MATLAB Software. (Assume K=1)

Solution

```
%Nyquist Plot for the Transfer Function G(s)=1/(s+1)^3
 num=[1];
 den=[1 3 3 1];
figure(1
);
 nyquist(
 num,de
 n)
 Title('Nyquist Plot for the Transfer Function
 G(s)=1/(s+1)^{3'} [Gm,Pm,Wcg,Wcp]
=margin(num,den)
grid;
 [Gm,Pm,Wcg,Wcp]
 =margin(num,den);
 Gain_Margin=Gm
 Phase Margin=Pm
 PhaseCrossover_Frequency=
 Wcg
 GainCrossover_Frequency=
 Wcp
```


Answer

Gain_Margin = 8.0011

Phase_Margin = -180

PhaseCrossover_Frequency = 1.7322

 $GainCrossover_Frequency = 0$

4. Nichols Chart : The open loop transfer function of a unity feedback system G(s)=60/s(s+2)(s+3) Draw the Nichol's Chart manually Find (i)Gain Margin (ii)Phase Margin (iii)Gain cross over frequency (iv)Phase cross over frequency (v) Resonant Peak (vi)Resonant Frequency (vii)Bandwidth and Check the results using MATLAB Software. (Assume K=1)

num=[60]; den=[1 8 12 0];

Solution

figure(1); nichols(num,den)

Title('Nichols Plot for the Transfer Function G(s)=60/s(s+2)(s+6)') grid;

[Mag,Ph,w] =bode(num,den);

[Gm,Pm,Wcg,Wcp] =margin(num,den);

Gain_Margin=Gm

GainMargin_dB=20*log10(Gm)

Phase_Margin=Pm Phase

Crossover_Frequency=Wcg

GainCrossover_Frequency=Wcp

[Mp,k] =max(Mag);

Resonant_Peak=Mp;

Resonant_PeakdB=20*log10(Gm)

Resonant_Frequency=w(k)

% In Nichol's Chart the bandwidth is obtained in -3dB n=1;

while 20*log10(Mag(n))>=-3 n=n+1;

end; Bandwidth=w(n)

 $GainMargin_dB = 4.0824$

Phase_Margin = 12.1738

PhaseCrossover_Frequency = 3.4641 GainCrossover_Frequency = 2.7070 Resonant_PeakdB = 4.0824 Resonant_Frequency = 0.1000 Bandwidth = 3.4641

RESULT

Answers
num = 20
den = $1 \ 5 \ 4 \ 0$
Transfer function:
20
s^3 + 5 s^2 + 4 s
Gm = 1.0000
Pm = 7.3342e-006 Wcp = 2.0000
Wcp = 2.0000
PM = -135
Wg = 0.7016
beta = 5.7480
tau = 11.4025
Transfer function:
11.4 s + 1
65.54 s + 1
Transfer function:
228 s + 20 65.54 s^4 + 328.7 s^3 + 267.2 s^2 + 4 s
Gm1 = 5.2261
Pm1 = 38.9569
Wcg1 = 1.9073
Wcp1 = 0.7053

Exp.No: 11 Design, Analysis and implementation of lag, lead and lag-lead compensators

Date:

Aim :

To Design the Lead, Lag and Lead-Lag compensator for the system using MATLAB Software.

Apparatus Required :

✤ MATLAB Software.

DESIGN PROCEDURE

1. Design a Phase Lag compensator for the unity feedback transfer function G(s)=K/s(s+1)(s+4) has specifications : a. Phase Margin>_ 40° b. The steady state error for ramp input is less than or equal to 0.2 and check the results using MATLAB Software.

Solution

num=[20]

den=[1 5 4 0]

G=tf(num,den)

figure(1);

bode(num,den);

Title('bode plot for uncompensated system G(s)=20/S(S+1)(S+4)')

grid;

[Gm,Pm,Wcp,Wcp]=MARGIN(num,den)

Gmdb=20*log10(Gm);

W=logspace(-1,1,100)';

[mag,ph]=BODE(G,W);

ph=reshape(ph,100,1);

mag=reshape(mag,100,1);

PM=-180+40+5

Wg=interp1(ph,W,PM)

beta=interp1(ph,mag,PM)

tau=8/Wg

D=tf([tau 1],[beta*tau 1])

Gc=D*G

figure(2);

bode(Gc);

Title('Bode Plot for the Lag compensated System')

grid;

[Gm1,Pm1,Wcg1,Wcp1]=MARGIN(Gc)

EI3466- ELECTRICAL MACHINES AND CONTROL SYSTEMS LAB / DEPT OF EIE /SRMVEC

Page 58

2. Design a Phase Lead compensator for the unity feedback transfer function G(s)=K/s(s+2) has specifications : a. Phase Margin>_ 55⁰ b. The steady state error for ramp input is less than or equal to 0.33 and check the results using MATLAB Software. (Assume K=1)

Solution num=[5] den=[1 2 0] G=tf(num,den) figure(1); bode(num,den); Title('Bode Plot for uncompensated system G(s)=5/s(s+2)') grid; [Gm,Pm,Wcg,Wcp]=MARGIN(num,den) GmdB=20*log10(Gm)

PM=55-Pm+3

alpha=(1-sin(PM*pi/180))/(1+sin(PM*pi/180))

```
Gm=-20*log10(1/sqrt(alpha))
```

w=logspace(-1,1,100)';

[mag1,phase1]=BODE(num,den,w);

mag=20*log10(mag1);

magdB=reshape(mag,100,1);

Wm=interp1(magdB,w,-20*log10(1/sqrt(alpha)))

tau=1/(Wm*sqrt(alpha))

D=tf([tau 1],[alpha*tau 1])

Gc=D*G

figure(2);

bode(Gc);

Title('Bode Plot for the Lead Compensated System')

grid;

[Gm1,Pm1,Wcg1,Wcp1]=MARGIN(Gc)

Answers num = 5 den = 1 2 0 Transfer function: 5 _____ s^2 + 2 s Gm = InfPm = 47.3878 Wcg = InfWcp = 1.8399 GmdB = InfPM = 10.6122 alpha = 0.6890 Gm = -1.6181 Wm = 2.0853 tau = 0.5777 Transfer function: 0.5777 s + 1 _____ 0.398 s + 1 Transfer function:

2.889 s + 5

0.398 s^3 + 1.796 s^2 + 2 s

Gm1 = Inf

- Pm1 = 54.4212
- Wcg1 = Inf
- Wcp1 = 2.0849

3. Design a Phase Lead-lag compensator for the unity feedback transfer function G(s)=K /s(s+1)(s+2) has specifications : a. Phase Margin>_ 50⁰ b. The Velocity error constant Kv=10 sec⁻¹ and check the results using MATLAB Software. (Assume K=1).

```
Solution
num=[20]
den=[1 3 2 0]
G=tf(num,den)
figure(1);
bode(num,den);
Title('bode Plot for Uncompensated System G(s)=20/S(S+1)(S+2)')
grid;
[Gm,Pm,Wcg,Wcp]=MARGIN(num,den)
GmdB=20*log10(Gm);
W=logspace(-1,1,100)';
%Bode Plot for Lag Section
[mag,ph]=BODE(G,W);
ph=reshape(ph,100,1);
mag=reshape(mag,100,1);
PM=-180+50+5
Wg=interp1(ph,W,PM)
beta=interp1(ph,mag,PM)
tau=8/Wg
D=tf([tau 1],[beta*tau 1])
%Bode Plot for Lead section
alpha=20/beta
mag=20*log10(mag)
Gm=-20*log10(1/sqrt(alpha))
```

Wm=interp1(mag,W,-20*log10(1/sqrt(alpha)))

tau=1/(Wm*sqrt(alpha))

E=tf([tau 1],[alpha*tau 1])

Gc1=D*E*G

figure(2);

bode(Gc1);

Title('Bode Plot for the Lag-lead compensated System')

grid;

```
[Gm1,Pm1,Wcg1,Wcp1]=MARGIN(Gc1)
```

Answers num = 20 den = 1 3 2 0 Transfer function: 20 _____ $s^3 + 3s^2 + 2s$ Gm = 0.3000Pm = -28.0814Wcg = 1.4142 Wcp = 2.4253 PM = -125 Wg = 0.4247 beta = 21.2032 tau = 18.8362 Transfer function: 18.84 s + 1 -----399.4 s + 1 alpha = 0.9433Gm = -0.2537 Wm = 2.4546 tau = 0.4195Transfer function: 0.4195 s + 1 _____ 0.3957 s + 1 Transfer function:

158 s^2 + 385.1 s + 20

158 s^5 + 873.9 s^4 + 1516 s^3 + 802.6 s^2 + 2 s Gm1 = 6.1202 Pm1 = 48.5839 Wcg1 = 1.3976 Wcp1 = 0.4279

RESULT

EI3466- ELECTRICAL MACHINES AND CONTROL SYSTEMS LAB / DEPT OF EIE /SRMVEC

Page 64

Page 65

Exp.No: 11 Effect of P, PD, PI, PID controller on a second order system

Date: Aim :

To obtain the response of the P, PI, PD, PID controller using MATLAB software.

APPARATUS REQUIRED

1. MATLAB Software

PROGRAM

% Step Response for OLTF 1/(s^2+10s+20)

num=[1];

den=[1 10 20];

figure(1);

step(num,den)

% Proportional Controller

Kp=300;

num1=[Kp];

den1=[1 10 20+Kp];

t=0:0.01:2;

figure(2);

step(num1,den1,t)

grid;

EI3466- ELECTRICAL MACHINES AND CONTROL SYSTEMS LAB / DEPT OF EIE /SRMVEC

Page 67

% Proportional Derivative Controller

Kp=300;

Kd=10;

num2=[Kd Kp];

den2=[1 10+Kd 20+Kp];

t=0:0.01:2;

figure(3);

step(num2,den2,t)

grid;

% Proportional Integral Controller

Kp1=30

Ki=70;

num3=[Kp1 Ki]

```
den3=[1 10 20+Kp1 Ki]
```

t=0:0.01:2;

figure(4);

step(num3,den3,t)

grid;

EI3466- ELECTRICAL MACHINES AND CONTROL SYSTEMS LAB / DEPT OF EIE /SRMVEC

Page 68

%Proportional Integral Derivative Controller

Kp2=350;

Kd2=50;

Ki2=300;

```
num4=[Kd2 Kp2 Ki2]
```

den4=[1 10+Kd2 20+Kp2 Ki2]

t=0:0.01:2;

figure(5);

step(num4,den4,t)

grid;

RESULT