



MA3222 – STATISTICS AND NUMERICAL METHODS Regulation – 2023 Academic Year – 2024-2025 Prepared by

Mr. D. CAPTAIN PRABAKARAN, Assistant Professor/Mathematics Ms. M.H.A.AYSHA CHITHUKKA, Assistant Professor/Mathematics Dr. M. PALANIKUMAR, Assistant Professor/Mathematics



# VALLIAMMAI ENGINEERING COLLEGE (An Autonomous Institution)



SRM Nagar, Kattankulathur – 603 203.

### DEPARTMENT OF MATHEMATICS SUBJECT : MA3222 – STATISTICS AND NUMERICAL METHODS

#### SEM / YEAR : II/ I

## UNIT I :STATISTICAL HYPOTHESIS TESTS

Sampling distributions - Tests for single mean and difference of means (Large and small samples) – Tests for single variance and equality of variances – Chi square test for goodness of fit – Independence of attributes.

| Q.No | Question                                                                                                                         | Bloom's<br>Taxonomy<br>Level | Domain        | Course<br>Outcome |
|------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------|-------------------|
|      | PART – A                                                                                                                         | -                            |               |                   |
| 1.   | Define Statistics                                                                                                                | BTL -1                       | Remembering   | CO 1              |
| 2.   | Define Parameter.                                                                                                                | BTL -2                       | Understanding | CO 1              |
| 3.   | Define Standard Error.                                                                                                           | BTL -2                       | Understanding | CO 1              |
| 4.   | What are the parameters and statistics in sampling.                                                                              | BTL -1                       | Remembering   | CO 1              |
| 5.   | Explain null and alternate hypothesis.                                                                                           | BTL -2                       | Understanding | CO 1              |
| 6.   | Define Type I and Type II error.                                                                                                 | BTL -1                       | Remembering   | CO 1              |
| 7.   | Mention the various steps involved in testing of hypothesis.                                                                     | BTL -2                       | Understanding | CO 1              |
| 8.   | What is the essential difference between confidence limits and tolerance limits?                                                 | BTL -1                       | Remembering   | CO 1              |
| 9.   | Define level of significance.                                                                                                    | BTL -2                       | Understanding | CO 1              |
| 10.  | State the applications of Z-test.                                                                                                | BTL -1                       | Remembering   | CO 1              |
| 11.  | When does the Z-test apply?                                                                                                      | BTL -1                       | Remembering   | CO 1              |
| 12.  | Write down the formula of test statistic 't' to test the significance of difference between the population mean and sample mean. | BTL -1                       | Remembering   | CO 1              |
| 13.  | Write down the formula of test statistic 't' to test the significance of difference between two sample means.                    | BTL -2                       | Understanding | CO 1              |

| 14.           | What are the applications of t-test?                                                                                                                                                                                                                                                                                                                                                                | BTL -1 | Remembering   | CO 1 |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------|------|
| 15.           | What is the assumption of t-test?                                                                                                                                                                                                                                                                                                                                                                   | BTL -2 | Understanding | CO 1 |
| <b>16</b> .   | Write the application of 'F' test.                                                                                                                                                                                                                                                                                                                                                                  | BTL -2 | Understanding | CO 1 |
| 17.           | Define 'F' variate.                                                                                                                                                                                                                                                                                                                                                                                 | BTL -2 | Understanding | CO 1 |
| <b>18</b> .   | What are the properties of "F" test?                                                                                                                                                                                                                                                                                                                                                                | BTL -1 | Remembering   | CO 1 |
| 19.           | Write the formula for the chi- square test of goodness of fit of a random sample to a hypothetical distribution.                                                                                                                                                                                                                                                                                    | BTL -1 | Remembering   | CO 1 |
| 20.           | State the main use of $\psi^2$ -test                                                                                                                                                                                                                                                                                                                                                                | BTL -1 | Remembering   | CO 1 |
| 21.           | What are the expected frequencies of 2x2 contingency table?                                                                                                                                                                                                                                                                                                                                         | BTL -2 | Understanding | CO 1 |
| 22.           | State any two applications of $\psi^2$ -test.                                                                                                                                                                                                                                                                                                                                                       | BTL -1 | Remembering   | CO 1 |
| 23.           | What are the conditions for Large samples?                                                                                                                                                                                                                                                                                                                                                          | BTL -2 | Understanding | CO 1 |
| 24.           | What are the conditions for small samples?                                                                                                                                                                                                                                                                                                                                                          | BTL -1 | Remembering   | CO 1 |
| 25.           | Given a sample mean of 83, a sample standard deviation of 12.5 and a sample size of 22, test the hypothesis that the value of the population mean is 70 against the alternative that it is more than 70. Use the 0.25 significance level.                                                                                                                                                           | BTL -2 | Understanding | CO 1 |
|               | PART-B                                                                                                                                                                                                                                                                                                                                                                                              |        |               |      |
| 1.            | A simple sample of heights of 6400 Englishmen has a mean of 170cms and a standard deviation of 6.4cms, while a simple sample of heights of 1600 Americans has a mean of 172 cm and a standard deviation of 6.3cms. Do the data indicate that Americans are, on the average, taller than Englishmen?                                                                                                 | BTL -3 | Applying      | CO 1 |
| 2.(b)         | A sample of 100 students is taken from a large population. The mean<br>height of the students in this sample is 160cms. Can it be reasonably<br>regarded that this sample is from a population of mean 165 cm and<br>standard deviation 10 cm?                                                                                                                                                      | BTL -3 | Applying      | CO 1 |
| 2.(b)         | In a certain factory there are two independent processes manufacturing<br>the same item. The average weight in a sample of 250 items produced<br>from one process is found to be 120 Ozs, with a standard deviation of<br>12 Ozs, while the corresponding figures in a sample of 400 items from<br>the other process are 124 and 14. Is the difference between the two<br>sample means significant? | BTL -3 | Applying      | CO 1 |
| <b>3.</b> (a) | Two random sample of size 400 and 500 have mean 10.9 and 11.5 respectively can the sample regarded as drawn from the same                                                                                                                                                                                                                                                                           | BTL -3 | Applying      | CO 1 |

| -             |                                                                       |                |         |         |         |         |           |         |         |        |           |      |        |             |      |
|---------------|-----------------------------------------------------------------------|----------------|---------|---------|---------|---------|-----------|---------|---------|--------|-----------|------|--------|-------------|------|
|               | pop                                                                   | pulation vari  | iance   | 25      |         |         |           |         |         |        |           |      |        |             |      |
|               | The                                                                   | Intelligence   | e on    | two g   | groups  | s of t  | ooys ar   | nd gir  | ls gar  | ve th  | e follov  | wing |        |             |      |
|               | resu                                                                  | lts            |         |         |         |         |           |         |         |        |           |      |        |             |      |
|               |                                                                       |                | <b></b> | [       | Mag     | m       | ۶D        | So      | mplo    |        |           |      |        |             |      |
| <b>2</b> (L)  |                                                                       |                |         |         | WIC     | ui      | 5.D       | Sa      | Sizo    |        |           |      | BTL -3 | Applying    | CO 1 |
| 3.(D)         |                                                                       |                |         |         |         |         |           |         | IZC     |        |           |      |        |             | COT  |
|               |                                                                       |                | Gi      | rls     | 75      |         | 15        | 1       | 50      |        |           |      |        |             |      |
|               |                                                                       |                |         |         | 70      |         | 20        |         | 250     | _      |           |      |        |             |      |
|               |                                                                       |                | BC      | bys     | /0      |         | 20        | 4       | 250     |        |           |      |        |             |      |
|               | Two                                                                   | o independe    | ent sa  | mples   | s of s  | sizes   | 8 and     | 7 co    | ntaine  | ed the | e follov  | wing |        |             |      |
|               | valu                                                                  | les.           |         |         |         |         |           |         |         |        |           |      |        |             |      |
|               |                                                                       |                |         |         |         |         |           |         |         |        |           |      |        |             |      |
|               |                                                                       | Sample I       |         | 19      | 17      | 15      | 21        | 16      | 18      | 16     | 14        |      | BTL -3 | Applying    | 00.1 |
| 4.            |                                                                       |                |         | 1.7     | 1.4     | 15      | 10        | 1.7     | 10      | 10     |           | -    | 212 0  |             | 01   |
|               |                                                                       | Sample II      |         | 15      | 14      | 15      | 19        | 15      | 18      | 16     | 14-       |      |        |             |      |
|               |                                                                       |                |         |         | 1       |         |           |         |         |        | 5         |      |        |             |      |
|               | Tes                                                                   | st if the two  | popu    | lation  | s hav   | e the   | same m    | lean.   |         |        |           | C    |        |             |      |
|               | Two                                                                   | o independer   | nt sar  | nples   | of 8 a  | nd 7    | items r   | espec   | tively  | had    | the       | 2    | 2      |             |      |
|               | follo                                                                 | owing Value    | es of t | the va  | riable  | (wei    | ght in k  | tgs.) l | Use 0.  | .05 L  | OS        |      |        |             |      |
|               | ſ                                                                     | Comple I       | 0       | 11      | 12      | 11      | 15        |         |         | 10     | 14        | 7    |        |             |      |
| 5.            |                                                                       | Sample I       | 9       | 11      | 15      | 11      | . 15      | 9       |         | 12     | 14        |      | BTI 1  | Analyzing   |      |
|               |                                                                       | Sample         | 10      | 12      | 10      | 14      | 9         | 8       |         | 10     | -         |      | DIL -4 | i mury znig | CO 1 |
|               |                                                                       | II             |         | 5       |         |         | 7         | 1       |         |        |           |      |        |             |      |
|               |                                                                       |                | -       |         |         | -       | _         | r       | ~       | _      |           |      |        |             |      |
|               | Test                                                                  | t if the two r | onul    | ations  | have    | the s   | ame me    | an      |         |        |           |      |        |             |      |
|               | Giv                                                                   | ven a sample   | e mea   | n of 8  | 33. a s | ampl    | e stand   | ard de  | eviatio | on of  | 12.5 an   | nd a |        |             |      |
|               | san                                                                   | nple size of   | 22, te  | est the | hypo    | thesis  | s that th | ne val  | ue of   | the p  | opulatio  | on   | BTL -4 | Analyzing   | GO 1 |
| <b>6.</b> (a) | me                                                                    | an is 70 aga   | inst t  | he alte | ernati  | ve tha  | t it is n | nore t  | han 7   | 0. Us  | the 0.    | .25  |        |             | 01   |
| -             | sig                                                                   | nificance lev  | vel.    |         |         |         |           |         |         | /      |           |      |        |             |      |
|               | Rai                                                                   | ndom sampl     | es dr   | awn fi  | rom ty  | wo pl   | aces ga   | ve the  | e follo | owing  | g data    |      |        |             |      |
|               | rela                                                                  | ating to the l | heigh   | ts of r | nale a  | dults   | :         |         |         |        |           |      |        |             |      |
|               |                                                                       |                |         |         |         |         | D         | 1       |         | Pl     | ace B     | 1    |        |             |      |
|               |                                                                       |                |         |         |         |         | P         | lace A  | 1       |        |           |      |        |             |      |
|               |                                                                       | Mean hei       | ght (i  | n inch  | nes)    |         |           | 58.50   |         | 6      | 5.50      |      | BTL -4 | Analyzing   | CO 1 |
| 0.(D)         |                                                                       | SD(in i        | nches   | )       |         |         |           | 2.5     |         |        | 3.0       | -    |        |             | COT  |
|               |                                                                       | 5.D ( III II   | lienes  | )       |         |         |           | 2.5     |         |        | 5.0       | _    |        |             |      |
|               | No. of adult males in sample                                          |                |         |         |         |         | 1200      |         | 1       | 500    |           |      |        |             |      |
|               | Tes                                                                   | st at 5 % lev  | el. th  | at the  | mean    | heig    | ht is the | e sam   | e for   | adult  | s in the  | two  |        |             |      |
|               | pla                                                                   | ces.           | ,       |         |         | 0       |           |         |         |        |           |      |        |             |      |
| _             | Ac                                                                    | certain stimu  | ilus a  | dmini   | stered  | l to ea | ach of 1  | 2 pat   | ients   | resul  | ted in th | ne   |        |             |      |
| 7.            | fol                                                                   | lowing incre   | ease c  | of bloc | od pre  | ssure   | 5,2,8,    | -1,3,0  | , -2,1  | ,5,0,  | 4 & 6. 0  | Can  | BTL -4 | Analyzing   | CO 1 |
|               | it be concluded that the stimulus will, in general, be accompanied by |                |         |         |         |         |           |         | ру      | •      |           |      |        |             |      |
|               | an increase in blood pressure?                                        |                |         |         |         |         |           |         |         |        |           |      |        |             |      |

|     | The<br>foun           | nicotine c<br>d to be as                                                                              | content<br>follow             | in m<br>s, test           | the si                     | am of t<br>ignifica       | two sar<br>int diffe | nples<br>erence                  | of to<br>betw  | bacco<br>een me     | where<br>ans of  | e<br>F |            |      |
|-----|-----------------------|-------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------|----------------------------|---------------------------|----------------------|----------------------------------|----------------|---------------------|------------------|--------|------------|------|
| 8.  | the t                 | wo sample                                                                                             | es.                           |                           |                            | -                         |                      |                                  |                |                     |                  | BTL -3 | Applying   | CO 1 |
|     |                       | Sample I                                                                                              | 21                            | 2                         | 4                          | 25                        | 26                   | 2                                | 7              | -                   |                  |        |            | 001  |
|     |                       | Sample II                                                                                             | 22                            | 2                         | .7                         | 28                        | 30                   | 3                                | 1              | 36                  |                  |        |            |      |
| 9.  | The<br>foun           | nicotine d<br>d to be as                                                                              | content<br>follows            | t in r<br>s               | nilligr                    | am of                     | two sa               | mples                            | of t           | toacco              | where            |        |            |      |
|     | Samj<br>Samj          | ple 1 2<br>ple 2 2                                                                                    | 4 27<br>7 30                  | 26<br>) 28                | 21<br>3 31                 | 25<br>22<br>uhara f       | 36                   | maln                             | opula          | tion                |                  | BTL -3 | Applying   | CO 1 |
|     | Samj<br>follo         | Samples of two types of electric bulbs were tested for length of life a following data were obtained. |                               |                           |                            |                           |                      |                                  |                |                     |                  |        |            |      |
| 10  |                       |                                                                                                       |                               |                           | Туре                       | Ι                         | 7                    | Гуре II                          | [              |                     |                  |        |            |      |
| 10. |                       | Sampl                                                                                                 | e Size                        | 8                         | 8                          |                           | 7                    | 7                                |                |                     |                  | BTL -3 | Applying   | CO 1 |
|     |                       | Sampl                                                                                                 | e Mea                         | n                         | 12341                      | nrs                       | S                    | 1036hr                           | S              |                     |                  | 5      |            |      |
|     |                       | Sampl                                                                                                 | e S.D                         | d.                        | 36hrs                      |                           | 4                    | 40hrs                            |                |                     |                  | G      |            |      |
|     | An type               | alyze that,<br>e I is super                                                                           | is the<br>ior to t            | differ<br>type I          | ence i<br>I regar          | n the m<br>ding th        | eans su<br>e lengtl  | fficient<br>fficient<br>fficient | nt to v<br>e?  | warrant             | that             | 11     |            |      |
|     | Two                   | random sa                                                                                             | amples                        | gave                      | the fo                     | llowing                   | g results            | s:                               |                |                     |                  |        |            |      |
|     |                       | Sample                                                                                                | Size                          | Sam<br>me                 | ple<br>an                  | dev                       | Sum of<br>riation f  | square                           | es of<br>ie me | an                  |                  |        |            |      |
| 11. |                       | 1                                                                                                     | 10                            | 15                        | 5                          |                           |                      | 90                               | /              |                     |                  | BTL -4 | Analyzing  | CO 1 |
|     |                       | 2                                                                                                     | 12                            | 14                        | 1                          |                           |                      | 108                              |                |                     |                  |        |            |      |
|     | Ana<br>pop            | ulyze whet<br>ulation.                                                                                | her the                       | samp                      | oles ha                    | ve com                    | e from               | the sa                           | me no          | ormal               |                  |        |            |      |
|     | Two                   | independe                                                                                             | ent sam                       | ples o                    | of size                    | 7 and                     | 6 have               | the fol                          | lowir          | ng value            | es               |        |            |      |
| 12. |                       | Sample                                                                                                | A 2                           | 28 3                      | 30 3                       | 32 33                     | 3 3                  | 1 2                              | 29             | 34                  |                  | BTL -3 | Applying   | CO 1 |
|     |                       | Sample                                                                                                | B 2                           | 29                        | 30 3                       | 50 24                     | 4 2                  | 7 2                              | 28             | -                   |                  |        |            |      |
|     | The<br>durir<br>unifo | following<br>ng the var<br>ormly distr                                                                | data gi<br>rious d<br>ributed | ives tl<br>lays (<br>over | ne nur<br>of a w<br>the we | nber of<br>veek. F<br>eek | aircraf<br>Find wh   | t accid                          | lents<br>the   | that occ<br>acciden | currec<br>ts are | BTI 4  | Analyzing  |      |
| 13. |                       | Days                                                                                                  | S                             | un                        | Mo<br>n                    | Tue                       | We<br>d              | Thu                              | Fri            | i Sat               |                  | DIL -4 | 7 mary 2mg | CO 1 |
|     |                       | No. of                                                                                                | 1                             | 4                         | 16                         | 08                        | 12                   | 11                               | 9              | 14                  |                  |        |            |      |

|     | a                                   | ccidents                                                   |                                                       |                                          |                                           |                                      |                               |                              |                      |                  |        |           |      |
|-----|-------------------------------------|------------------------------------------------------------|-------------------------------------------------------|------------------------------------------|-------------------------------------------|--------------------------------------|-------------------------------|------------------------------|----------------------|------------------|--------|-----------|------|
| 14. | The th<br>B, C a<br>numbe<br>experi | eory pre<br>and D sho<br>er in the<br>mental r             | dicts that<br>buld be 9:2<br>four group<br>esults sup | the pop<br>3:3:1. 1<br>os was<br>port th | pulation<br>In an ex<br>882,31<br>e surve | n of bea<br>tperime<br>3,287 a<br>y? | ans in the<br>ent amound 118  | ne four<br>ng 160<br>. Do th | group<br>0 beai<br>e | os A,<br>ns, the | BTL -4 | Analyzing | CO 1 |
| 15. | 5 coins<br>below :                  | were tos<br>No. of hea<br>Dbserved                         | ads                                                   | 0<br>15                                  | The nur                                   | nber of                              | heads<br>3<br>95              | 4                            | ed is g              | iven             | BTL -3 | Applying  | CO 1 |
|     | fi                                  | requencie                                                  | es                                                    | 15                                       | 43                                        | 65                                   | 95                            | 00                           | 20                   |                  |        |           |      |
|     | Exami                               | ine wheth                                                  | her the coi                                           | in is ur                                 | <u>ibiased</u>                            | .Use 5                               | % level                       | of sign                      | nificar              | nce.             |        |           |      |
|     | having<br>Numbe                     | four Chi                                                   | ldren are                                             | as follo                                 | $\frac{1}{0}$ $\frac{1}{1}$               | 2                                    |                               | uis ili d                    | 00 Ta                |                  |        |           |      |
| 16. | Numbe                               | er of fema                                                 | ale births                                            |                                          | 4 3                                       | 2                                    | 1                             | )                            |                      |                  | BTL -4 | Analyzing | CO 1 |
|     | Numbe<br>Infer v<br>binom<br>namel  | er of Fam<br>whether t<br>ial law 1<br>y p = $\frac{1}{2}$ | iilies<br>he data ar<br>holds the c<br>= q.           | :<br>re cons<br>chance                   | birth,                                    | LLEG                                 |                               |                              |                      |                  |        |           |      |
|     | Given<br>value c                    | the follo<br>of Chi-sq                                     | owing tab<br>Juare. Is t                              | le for<br>here g                         | hair co<br>ood ass                        | olor an<br>sociatio                  | d <mark>eye</mark><br>on betw | color,<br>een ha             | identi<br>r col      | fy the<br>or and | 127    |           |      |
|     | eye coi                             |                                                            |                                                       | I                                        |                                           |                                      |                               |                              |                      |                  |        |           |      |
|     |                                     |                                                            |                                                       | I<br>Foir                                |                                           |                                      | Dlack                         | Tota                         | _                    |                  |        |           |      |
| 17. |                                     | Eve                                                        | Blue                                                  | 15                                       | 5                                         | JWII                                 | 20                            | 101a                         |                      |                  | BTL -3 | Applying  | CO 1 |
|     |                                     | color                                                      | Gray                                                  | 20                                       | 10                                        |                                      | 20                            | 50                           |                      |                  |        |           |      |
|     |                                     |                                                            | Brown                                                 | 20                                       | 10                                        |                                      | 20                            | 50                           |                      |                  |        |           |      |
|     |                                     |                                                            | Total                                                 | 23<br>60                                 | 30                                        |                                      | 60                            | 150                          |                      |                  |        |           |      |
|     |                                     | 1. 6.00                                                    |                                                       |                                          |                                           | -1- "                                | 00                            | 150                          | -4 - 1 -             | 0                |        |           |      |
|     | A samp<br>these, 1<br>The res       | 100 were<br>sult are a                                     | o persons<br>e given a<br>s follows:                  | drug a                                   | nd the                                    | others                               | were n                        | as sele<br>ot give           | n any                | drug.            |        |           |      |
| 18. |                                     | Number                                                     | of persor                                             | ns                                       | Drug                                      | N                                    | o drug                        | То                           | tal                  |                  | BTL -3 | Applying  | CO 1 |
|     |                                     | Cured                                                      |                                                       |                                          | 65                                        |                                      | 55                            | 12                           | 120                  |                  |        |           |      |
|     |                                     | Not cure                                                   | ed                                                    |                                          | 35                                        |                                      | 45                            | 8                            | 0                    |                  |        |           |      |

|                                 | Total                                                                     | 100             | 100                          | 200         |       |                 |               |      |
|---------------------------------|---------------------------------------------------------------------------|-----------------|------------------------------|-------------|-------|-----------------|---------------|------|
|                                 | Test whether the drug is effe                                             | ctive or not?   |                              | <u> </u>    | J     |                 |               |      |
| <b>UNIT</b><br>One w<br>– Latin | TI- EXPERIMENTAL DES<br>vay and two way classification<br>n square design | SIGN FOR A      | <b>NOVA</b><br>ely randomize | ed design – | Rando | mized blocl     | k design      |      |
| Q. No                           | •                                                                         | Question        |                              |             |       | <b>BT Level</b> | Competence    |      |
|                                 |                                                                           | I               | PART – A                     |             |       |                 |               |      |
| 1.                              | What is the aim of design of                                              | experiments     | ?                            |             |       | BTL -1          | Remembering   | CO 2 |
| 2.                              | Write the basic assumptions                                               | in analysis of  | f variance.                  |             |       | BTL -2          | Understanding | CO 2 |
| 3.                              | When do you apply analysis                                                | of variance t   | echnique?                    | ERIA        |       | BTL -2          | Understanding | CO 2 |
| 4.                              | Define Randomization.                                                     | A.P.            |                              |             | 5     | BTL -1          | Remembering   | CO 2 |
| 5.                              | Define Replication.                                                       |                 |                              |             | 2     | BTL -2          | Understanding | CO 2 |
| 6.                              | Define Local control.                                                     |                 | SDM                          |             |       | BTL -1          | Remembering   | CO 2 |
| 7.                              | What is meant by tolerance l                                              | imits?          | SKIM                         |             |       | BTL -2          | Understanding | CO 2 |
| 8.                              | What is a completely random                                               | nized design.   | ~                            |             |       | BTL -1          | Remembering   | CO 2 |
| 9.                              | Explain the advantages of a                                               | Latin square    | design?                      |             |       | BTL -2          | Understanding | CO 2 |
| 10.                             | What are the basic elements Experimental Design?                          | of an Comple    | etely Random                 | nized       |       | BTL -1          | Remembering   | CO 2 |
| 11.                             | Demonstrate the purpose of                                                | blocking in a   | randomized                   | block desig | gn?   | BTL -1          | Remembering   | CO 2 |
| 12.                             | Manipulate the Basic princip                                              | oles of the des | sign of experi               | iment?      |       | BTL -1          | Remembering   | CO 2 |
| 13.                             | Why a 2x2 Latin square is no                                              | ot possible? I  | Explain.                     |             |       | BTL -2          | Understanding | CO 2 |
| 14.                             | Analyze the advantages of th design.                                      | ne Latin squar  | re design ove                | r the other |       | BTL -1          | Remembering   | CO 2 |
| 15.                             | Demonstrate main advantage<br>Block Design?                               | e of Latin squ  | are Design o                 | ver Randoi  | mized | BTL -2          | Understanding | CO 2 |
| <b>16</b> .                     | Write any two differences be                                              | etween RBD      | and LSD.                     |             |       | BTL -2          | Understanding | CO 2 |
| 17.                             | What is ANOVA?                                                            |                 |                              |             |       | BTL -2          | Understanding | CO 2 |
| 18.                             | What are the uses of ANOV.                                                | A?              |                              |             |       | BTL -1          | Remembering   | CO 2 |
| 19.                             | Define experimental error.                                                |                 |                              |             |       | BTL -1          | Remembering   | CO 2 |

| 20. | What is the Degree                                                                                           | is of fre                                                                     | edom b                                                                                        | y one w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ay class                                                                   | ification.                                                                                        | BTL -1        | Remembering   | CO 2 |
|-----|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------|---------------|------|
| 21. | Explain SSB and SS                                                                                           | SW in A                                                                       | NOVA                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                            |                                                                                                   | BTL -2        | Understanding | CO 2 |
| 22. | What is the advanta                                                                                          | ges of C                                                                      | CRD?                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                            |                                                                                                   | BTL -1        | Remembering   | CO 2 |
| 23. | What is RBD?                                                                                                 |                                                                               |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                            |                                                                                                   | BTL -2        | Understanding | CO 2 |
| 24. | What is the disadva                                                                                          | ntages o                                                                      | f RBD?                                                                                        | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                            |                                                                                                   | BTL -1        | Remembering   | CO 2 |
| 25. | Write any two differ                                                                                         | rences b                                                                      | etween                                                                                        | RBD ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nd CRD                                                                     |                                                                                                   | BTL -2        | Understanding | CO 2 |
|     |                                                                                                              |                                                                               |                                                                                               | Р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ART –                                                                      | 8                                                                                                 |               |               |      |
| 1.  | In order to determin<br>of 3makes of compu-<br>and the frequency o<br>The results are as fr<br>can you draw? | e wheth<br>iters, sa<br>f repair<br>ollows:<br>A<br>5<br>6<br>8<br>9<br>7     | er the s<br>mples of<br>during t<br>In view                                                   | ignifica<br>of size 5<br>the first<br>y of the<br>3<br>3<br>0<br>1<br>2<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nt differ<br>are seld<br>year of<br>above of<br>C<br>7<br>3<br>5<br>4<br>1 | rence in the durability<br>ected from each make<br>purchase is observed.<br>data, what conclusion | BTL -3        | Applying      | CO 2 |
| 2.  | Apply ANOVA te                                                                                               | chnique<br>4 machi<br>A<br>B<br>C<br>U<br>U<br>U                              | e and y<br>nes? Te<br>8<br>6<br>6<br>14<br>9<br>20                                            | vrite yo<br>st at 5%<br>9<br>8<br>12<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Dur     Corr       1     0       11     10       18     0       25     25  | 12<br>4<br>9<br>23                                                                                | FFF<br>BTL -4 | Analyzing     | CO 2 |
| 3.  | The following are the<br>four technicians we<br>the difference amo<br>chance. Test at a lev                  | ne numb<br>orking f<br>ong the<br>rel of sig<br>I<br>6<br>14<br>10<br>8<br>11 | er of m<br>or a ph<br>four s<br>gnifican<br>Tech<br>II<br>14<br>9<br>12<br>10<br>14<br>design | istakes istak | made in<br>hic labo<br>means<br>).05.<br>IV<br>9<br>12<br>8<br>10<br>11    | 5 successive days by<br>pratory. Test whether<br>can be attributed to<br>yith 10 plots and 3      | BTL -4        | Analyzing     | CO 2 |
| 4.  | treatments gave the                                                                                          | e results                                                                     | given                                                                                         | below.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Analyz                                                                     | the results for the                                                                               | D1L-3         | , thur we     | CO 2 |

|    | effects of th                                                                                                                                        | eatments.                                                                                                           |                                                                                       |                                                                        |                                                                                     |                                                                                             |                                                   |                                                              |                                                                                                     |                                         |           |      |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------|-----------|------|
|    |                                                                                                                                                      | Treate                                                                                                              | em                                                                                    |                                                                        | Replic                                                                              | ations                                                                                      |                                                   |                                                              |                                                                                                     |                                         |           |      |
|    |                                                                                                                                                      | А                                                                                                                   |                                                                                       | 5                                                                      | 7                                                                                   | 1                                                                                           | 3                                                 | 3                                                            |                                                                                                     |                                         |           |      |
|    |                                                                                                                                                      | В                                                                                                                   |                                                                                       | 4                                                                      | 4                                                                                   | 7                                                                                           |                                                   |                                                              |                                                                                                     |                                         |           |      |
|    |                                                                                                                                                      | С                                                                                                                   |                                                                                       | 3                                                                      | 1                                                                                   | 5                                                                                           |                                                   |                                                              |                                                                                                     |                                         |           |      |
| 5. | As part of<br>testing labor<br>steel struct<br>required to<br>Position 1:<br>Position 2:<br>Position 3:<br>Analyze at<br>whether the<br>are signific | the investi-<br>pratory is g<br>ture at thr<br>shear each<br>90<br>105<br>83<br>an analysis<br>e difference<br>ant. | gation of<br>given al<br>ree diff<br>of thes<br>82<br>89<br>89<br>of varia<br>es amor | of the<br>1 the<br>Ferent<br>8 bol<br>79<br>93<br>80<br>ance<br>ng the | e collap<br>availab<br>positiv<br>ts (code<br>98<br>104<br>94<br>to test<br>e sampl | ese of t<br>ole bolt<br>ons on<br>ed valu<br>83<br>89<br>at 0.0<br>le mean                  | he ro<br>s tha<br>the<br>es) an<br>5 lev<br>ns at | of of<br>t con<br>roo<br>re as<br>91<br>95<br>7el o<br>the t | f a building,<br>inected all th<br>f. The force<br>follows:<br>86<br>f significanc<br>hree position | a<br>e<br>ss<br><b>BTL -4</b><br>e<br>s | Analyzing | CO 2 |
| 6. | As head of<br>responsibilit<br>bulbs.                                                                                                                | A<br>A<br>20<br>19<br>21                                                                                            | nt of a c<br>g and co                                                                 | BR<br>25<br>23<br>21                                                   | mers res<br>ring life<br>ANDS<br>2<br>2<br>2<br>2<br>2                              | c<br>c<br>c<br>c<br>c<br>c<br>c<br>c<br>c<br>c<br>c<br>c<br>c<br>c<br>c<br>c<br>c<br>c<br>c | organi<br>of fou<br>I<br>2<br>2<br>2              | izatio<br>ur bra<br>D<br>3<br>0<br>0                         | n you have th<br>ands of electri                                                                    | BTL -4                                  | Analyzing | CO 2 |
| 7. | Four machir<br>Do you thin<br>machines                                                                                                               | k there is a s                                                                                                      | AA891112significa                                                                     | d to p<br>B<br>6<br>8<br>10<br>4<br>ant dif                            | oroduce a<br>C<br>14<br>12<br>18<br>9<br>ference                                    | a certain<br>D<br>20<br>22<br>25<br>25<br>23<br>in the p                                    | h kind<br>)<br>)<br>erfor                         | l of co                                                      | otton fabric.                                                                                       | BTL -4                                  | Analyzing | CO 2 |
| 8. | A company<br>in 3 season<br>following t                                                                                                              | y appoints 2<br>s, summer<br>able:<br>Season<br>Summe<br>Winter<br>Monsoc<br>an Analysis                            | 4 salesm<br>winter a<br>er<br>on<br>s of vari                                         | nen A<br>and n<br>1<br>45<br>43<br>39<br>iance                         | A, B, C anonsoon<br>2<br>40<br>41<br>39<br>2s.                                      | and D a<br>n. The<br>Salesmo<br>2<br>4<br>4                                                 | and o<br>figure<br>en<br>3<br>28<br>45<br>43      | bserves are                                                  | ves their sales<br>e given in th<br>4<br>7<br>8<br>1                                                | BTL -3                                  | Applying  | CO 2 |
| 9. | Five docto<br>observe the<br>are as follo                                                                                                            | rs each te<br>e number of<br>ws (recove<br>Doctor<br>A                                                              | est five<br>f days e<br>pry time<br>1<br>10                                           | trea<br>each p<br>in da<br>2<br>14                                     | atments<br>batient t<br>ays)<br>Treat<br>3<br>4 22                                  | for a akes to ment                                                                          | certa<br>reco<br>4<br>18                          | ain cover.                                                   | lisease and<br>The results                                                                          | BTL -3                                  | Applying  | CO 2 |

|     |                         | В            | 11           | 15            | 24         | 17                           | 21                           |            |               |           |      |
|-----|-------------------------|--------------|--------------|---------------|------------|------------------------------|------------------------------|------------|---------------|-----------|------|
|     |                         | С            | 9            | 12            | 20         | 16                           | 19                           |            |               |           |      |
|     |                         | D            | 8            | 13            | 17         | 17                           | 20                           |            |               |           |      |
|     |                         | Е            | 12           | 15            | 19         | 15                           | 22                           |            |               |           |      |
|     | Estimate t              | he differend | ce betwe     | en (a) d      | octors a   | nd(b)tre                     | eatments f                   | for the    |               |           |      |
|     | above data              | a at 5% leve | el.          |               |            |                              |                              |            |               |           |      |
|     | Perform a               | 2-way AN     | OVA on       | the data      | a given    | below:                       |                              | 1          |               |           |      |
|     |                         |              |              | Treatment 1   |            |                              |                              |            |               |           |      |
|     |                         |              |              | 1             |            | 2                            | 3                            |            |               |           |      |
|     |                         |              | 1            | 30            |            | 26                           | 38                           |            | <b>р</b> ті 2 | Applying  |      |
| 10. |                         | Treatment    | 2            | 24            |            | 29                           | 28                           |            | DIL-3         | rippiying | CO 2 |
|     |                         | 2            | 3            | 33            |            | 24                           | 35                           |            |               |           |      |
|     |                         | -            | 4            | 36            |            | 31                           | 30                           |            |               |           |      |
|     |                         |              | 5            | 27            |            | 35                           | 33                           |            |               |           |      |
|     | Use the co              | oding metho  | od subtra    | cting 30      | ) from the | he giver                     | n no.                        |            |               |           |      |
|     | A chemist               | wishes to    | test the     | effect of     | f four c   | hemical                      | agents o                     | n the      |               |           |      |
|     | strength c              | of a particu | ular type    | e of clo      | oth. Bee   | cause the                    | here migl                    | nt be      |               |           |      |
|     | variability             | from one t   | polt to a    | nother,       | the che    | emist d                      | ecides to                    | use a      |               |           |      |
|     | randomize               | d block      | design ,     | with th       | e bolts    | of clot                      | h consid                     | er as      |               |           |      |
|     | blocks ,sr              | ie selects i | five boli    | al in         | (C.        |                              |                              |            |               |           |      |
|     | random or               | der to each  | bolt, Th     | ws            | 5          |                              |                              |            |               |           |      |
| 11. |                         |              | -1           | 1             | B          |                              | 4 5                          |            | BTL -3        | Applying  | CO 2 |
|     | _                       | -            | 1            | 1             | 2          | 3 4                          | $4 \qquad 5$                 |            | C1            |           |      |
|     |                         | CHEMIC       | 1            | 73            | 08         | 14 1<br>75 7                 | $\frac{1}{2}$ $\frac{0}{70}$ | _          | 111           |           |      |
|     |                         |              | 2            | 75            | 0/         | 70 7                         | $\frac{2}{6}$                | -          |               |           |      |
|     |                         | AL           | 3            | 72            | 08         | 18 1                         | 3 08                         | -          |               |           |      |
|     | Doog the                | toncilo etr  | 4<br>nath da | 75<br>nond ou | /1         | 7.5 7<br>icel <sup>2</sup> T | 3 09                         |            |               |           |      |
|     | boes the                |              | engui de     | pend of       | ii chem    |                              | est at 5%                    | b level of |               |           |      |
|     | Δnalvze tł              | he RRD at 4  | 5% level     | of signi      | ificance   |                              | -                            | /          |               |           |      |
|     | <sup>2</sup> mary 20 ti |              |              |               | Voriet     | •                            |                              |            |               |           |      |
|     |                         |              |              |               | variety    | Y                            |                              |            |               |           |      |
|     |                         | ]            | Freatment    | 1             | 2          | 3                            |                              |            |               | A 1 '     |      |
| 12. |                         |              | 1            | 8             | 10         | 12                           |                              |            | BTL -3        | Applying  | CO 2 |
|     |                         |              | 2            | 2             | 6          | 7                            |                              |            |               |           |      |
|     |                         |              | 3            | 4             | 10         | 9                            |                              |            |               |           |      |
|     |                         |              | 4            | 3             | 5          | 9                            |                              |            |               |           |      |
|     | The follow              | ving table g | gives the    | number        | of Acs     | sold by                      | 4 salesm                     | an in      |               |           |      |
|     | three mon               | ths          |              |               |            |                              |                              | _          |               |           |      |
|     |                         |              |              |               | Sale       | esmen                        |                              |            |               |           |      |
| 13  |                         | Season       |              | 1 2 3 4       |            |                              |                              | BTI 3      | Applying      | CO 2      |      |
| 13. |                         | Summe        | er           | 45            | 40         | 28                           | 37                           |            | DIL-3         | Apprying  |      |
|     |                         | Winter       |              | 43            | 41         | 45                           | 38                           | _          |               |           |      |
|     |                         | Monso        | on           | 39            | 39         | 43                           | 41                           |            |               |           |      |
|     | Analyze t               | he RBD at    | 5% level     | l of sign     | ificance   | e                            |                              |            |               |           |      |

|         | The following data resulted from an experiment to compare three               |               |                |          |
|---------|-------------------------------------------------------------------------------|---------------|----------------|----------|
|         | burners A, B, C. A Latin square design was used as the tests were made        |               |                |          |
|         | on 3 engines and were spread over 3 days.                                     |               |                |          |
| 14.     | A 16 B 17 C 20                                                                | BTL -4        | Analyzing      | CO 2     |
|         | B 16 C 21 A 15                                                                |               |                |          |
|         | C 15 A 12 B 13                                                                |               |                |          |
|         | Test the hypothesis and infer that there is no difference between the         |               |                |          |
|         | burners.                                                                      |               |                |          |
|         | A farmer wishes to test the effects of four different fertilizers A,B,C,D     |               |                |          |
|         | on the yield of Wheat. In order to eliminate sources of error due to          |               |                |          |
|         | variability in soil fertility, he uses the fertilizers, in a Latin square     |               |                |          |
|         | arrangement a syndicated in the following table, where the numbers            |               |                |          |
| 15.     | indicate yields per unit area.                                                | RTI _3        | Applying       | ~ ~ ~    |
|         | A18 C21 D25 B11                                                               | DIL-5         | 119919118      | CO 2     |
|         | D22 B12 A15 C19                                                               |               |                |          |
|         | B15 A20 C23 D24                                                               |               |                |          |
|         | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                        |               |                |          |
|         | Design an analysis of variance to determine if there is a significant         |               |                |          |
|         | difference between the fertilizers at $\alpha = 0.05$ levels of significance. |               |                |          |
|         | Set up the analysis of variance for the following results of a Latin          | 2             |                |          |
|         | Square Design                                                                 | -             |                |          |
| 16      | A12 C19 B10 D8                                                                | <b>BTL -4</b> | Analyzing      | CO2      |
| 10.     | C18 B12 D6 A7                                                                 | 1.1           |                |          |
|         | B22 D10 A5 C21                                                                | 62            |                |          |
|         | D12 A7 C27 B17                                                                | 111           |                |          |
|         | The following data resulted from an experiment to compare three               |               |                |          |
|         | Machine A, B, C. A Latin square design was used as the tests were             |               |                |          |
|         | made on 3 engines and were spread over 3 days.                                |               |                |          |
| 17      | A 10 B 11 C 9                                                                 | DTI 2         | A              | 000      |
| 17.     | B 14 C 12 A 15                                                                | BIL-3         | Applying       | CO 2     |
|         | C 16 A 15 B 13                                                                |               |                |          |
|         | Test the hypothesis and infer that there is no difference between the         |               |                |          |
|         | burners.                                                                      |               |                |          |
|         | In a 5x5 Latin square experiment, the data collected is given in the          |               |                |          |
|         | matrix below Yield per plot is given in quintals for the five different       |               |                |          |
|         | cultivation treatments A, B, C,D and E. Perform the analysis of               |               |                |          |
|         | variance.                                                                     |               |                |          |
| 18.     | A48 E66 D56 C52 B61                                                           | <b>BTL -3</b> | Applying       | CO 2     |
|         | D64 B62 A50 E64 C63                                                           |               |                |          |
|         | B69 A53 C60 D61 E67                                                           |               |                |          |
|         | C57 D58 E67 B65 A55                                                           |               |                |          |
|         | E67 C57 B66 A60 D57                                                           |               |                |          |
| UNIT    | -III: SOLUTION OF EQUATIONS AND EIGENVALUEPROBLEM                             | IS            |                |          |
|         |                                                                               |               |                |          |
| Solutio | on of algebraic and transcendental equations - Fixed point iteration me       | ethod – Nev   | wton - Raphson | method - |
| 1       | - • •                                                                         |               | *              |          |

Solution of linear system of equations - Gauss elimination method - Pivoting - Gauss Jordan method - Iterative

method of Gauss Seidel –Dominant Eigenvalue of a matrix by Power method.

|                | PART – A                                                                                                                            |          |               |      |  |  |  |  |  |  |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------|----------|---------------|------|--|--|--|--|--|--|
| <b>Q. No</b> . | Question                                                                                                                            | BT Level | Competence    |      |  |  |  |  |  |  |
| 1.             | Give two examples of transcendental and algebraic equations                                                                         | BTL -1   | Remembering   | CO 3 |  |  |  |  |  |  |
| 2.             | When should we not use Newton Raphson method?                                                                                       | BTL -2   | Understanding | CO 3 |  |  |  |  |  |  |
| 3.             | Write the iterative formula of Newton's- Raphson Method                                                                             | BTL -2   | Understanding | CO 3 |  |  |  |  |  |  |
| 4.             | State the rate of Convergence of Newton Raphson method.                                                                             | BTL -1   | Remembering   | CO 3 |  |  |  |  |  |  |
| 5.             | Derive the Newton's iterative formula for P <sup>th</sup> root of a number N.                                                       | BTL -2   | Understanding | CO 3 |  |  |  |  |  |  |
| 6.             | Find where the real root lies in between, for the equation $x \tan x = -1$ .                                                        | BTL -1   | Remembering   | CO 3 |  |  |  |  |  |  |
| 7.             | State the order and condition for convergence of Iteration method.                                                                  | BTL -2   | Understanding | CO 3 |  |  |  |  |  |  |
| 8.             | State the principle used in Gauss Jordon method.                                                                                    | BTL -1   | Remembering   | CO 3 |  |  |  |  |  |  |
| 9.             | Find the inverse of A = $\begin{pmatrix} 4 & 1 \\ 1 & 3 \end{pmatrix}$ by Jordon method.                                            | BTL -2   | Understanding | CO 3 |  |  |  |  |  |  |
| 10.            | Solve by Gauss Elimination method $x + y = 2$ and $2x + 3y = 5$                                                                     | BTL -1   | Remembering   | CO 3 |  |  |  |  |  |  |
| 11.            | Distinguish the advantages of it <mark>erative methods over direct method of solving a system of linear algebraic equations.</mark> | BTL -1   | Remembering   | CO 3 |  |  |  |  |  |  |
| 12.            | Find the inverse of $A = \begin{pmatrix} 1 & 3 \\ 2 & 7 \end{pmatrix}$ by Jordan method.                                            | BTL -1   | Remembering   | CO 3 |  |  |  |  |  |  |
| 13.            | Compare Gauss Elimination, Gauss Jordan method.                                                                                     | BTL -2   | Understanding | CO 3 |  |  |  |  |  |  |
| 14.            | State the condition for the convergence of Gauss Seidel iteration method for solving a system of linear equation.                   | BTL -1   | Remembering   | CO 3 |  |  |  |  |  |  |
| 15.            | What is diagonally dominant?                                                                                                        | BTL -2   | Understanding | CO 3 |  |  |  |  |  |  |
| 16.            | Which of the iterative methods is used for solving linear system of equations it converges fast?                                    | BTL -2   | Understanding | CO 3 |  |  |  |  |  |  |
| 17.            | Compare Gauss Seidel method, Gauss Elimination method.                                                                              | BTL -2   | Understanding | CO 3 |  |  |  |  |  |  |
| 18.            | Explain Power method to find the dominant Eigen value of a square matrix A                                                          | BTL -1   | Remembering   | CO 3 |  |  |  |  |  |  |
| 19.            | How will you find the smallest Eigen value of a matrix A.                                                                           | BTL -1   | Remembering   | CO 3 |  |  |  |  |  |  |
| 20.            | Find the dominant Eigen value of $A = \begin{pmatrix} 2 & 3 \\ 5 & 4 \end{pmatrix}$ by power method up to                           | BTL -1   | Remembering   | CO 3 |  |  |  |  |  |  |

|        | 1 decimal place accuracy. Start with $X^{(0)} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$                                                      |        |               |      |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------|------|
| 21.    | Write the other name of Newton Raphson method?                                                                                             | BTL -2 | Understanding | CO 3 |
| 22.    | When Gauss Elimination method fails?                                                                                                       | BTL -1 | Remembering   | CO 3 |
| 23.    | Give two indirect methods to solve system of linear equations.                                                                             | BTL -2 | Understanding | CO 3 |
| 24.    | Is the Iteration method, a self-correcting method always?                                                                                  | BTL -1 | Remembering   | CO 3 |
| 25.    | Find the root of the equation $x^3 - 2x - 5 = 0$ .                                                                                         | BTL -2 | Understanding | CO 3 |
|        | PART – B                                                                                                                                   |        |               |      |
| 1.     | Find the positive real root of $log_{10} x = 1.2$ using<br>Newton – Raphson method.                                                        | BTL -3 | Applying      | CO 3 |
| 2.(a)  | Solve using Gauss-Seidel method<br>4x + 2y + z = 1, x + 5y - z = 10, x + y + 8z = 20                                                       | BTL -3 | Applying      | CO 3 |
| 2.(b)  | Evaluate the positive real root of $x^2 - 2x - 3 = 0$ using Iteration method, Correct to 3 decimal places.                                 | 15     |               |      |
| 3.(a)  | Find the inverse of the matrix $\begin{pmatrix} 2 & 2 & 3 \\ 2 & 1 & 1 \\ 1 & 3 & 5 \end{pmatrix}$ using Gauss Jordan method.              | BTL -3 | Applying      | CO 3 |
| 3.(b)  | Solve by Gauss Elimination method $3x + y - z = 3$ ;<br>2x - 8y + z = -5; $x - 2y + 9z = 8$                                                |        |               |      |
| 4.     | Find the dominant Eigen value and vector of $A = \begin{pmatrix} 3 & 2 & 4 \\ -1 & 4 & 10 \\ 1 & 3 & -1 \end{pmatrix}$ using Power method. | BTL -3 | Applying      | CO 3 |
| 5. (a) | Solve by Gauss Jordan method $10 x + y + z = 12$ ;<br>2x + 10y + z = 13; x + y + 5z = 7.                                                   | BTL -3 | Applying      | CO 3 |
| 5.(b)  | Find the positive root of $cos x = 3x - 1$ correct to 3 decimal places using fixed point iteration method.                                 |        |               |      |
| 6.     | Apply Gauss Seidel method to solve system of equations<br>x - 2y + 5z = 12,5x + 2y z = 6,2x + 6y - 3z = 5 (Do up<br>to 5 iterations)       | BTL -3 | Applying      | CO 3 |

| Q. No.  | Question                                                                                                        | BT Level   | Competence        |             |
|---------|-----------------------------------------------------------------------------------------------------------------|------------|-------------------|-------------|
|         | PART – A                                                                                                        |            |                   |             |
| - apez  | ,                                                                                                               |            |                   | 1           |
| Tranez  | zoidal. Simpson's rules.                                                                                        | uib i tull | ieneur miegrau    | using using |
| interno | plation – Approximation of derivates using interpolation polynomi                                               | als – Num  | nerical integrati | ons using   |
| Lagran  | nge's and Newton's divided difference interpolations – Newton's                                                 | forward    | and backward      | difference  |
|         | THE DEFICIT, TOTAL DEFENDING AN                                                                                 |            |                   |             |
| UNIT.   | -INEWION – Raphson method start with $x_0 = 10$ .<br>-IV:INTERPOLATION, NUMERICAL DIFFERENTIATION AN            | D NUME     | RICAL INTEG       | RATION      |
| 18.     | Newton Raphson method start with $x = 10$                                                                       | BTL -3     | Applying          | 003         |
|         | Find the positive real root of $x log_{10} x = 12.34$ using                                                     |            |                   | <u> </u>    |
| 17.     | Using Gauss-Jordan method, find the inverse of the matrix $(1 \ 1 \ 3 \ 1 \ 3 \ - \ 3 \ - \ 2 \ - \ 4 \ - \ 4)$ | BTL -4     | Analyzing         | CO 3        |
|         | 2x + 10y - 5z = -33; $3x - 4y + 10z = 41.$                                                                      |            |                   |             |
| 16.     | Solve by Gauss Jordan method $10 \times -2y + 3z = 23$ ;                                                        | BTL -4     | Analyzing         | CO 3        |
|         | x + 3y + 3z = 16; $x + 4y + 3z = 18$ ; $x + 3y + 4z = 19$ .                                                     |            |                   |             |
| 15.     | Solve by Gauss Elimination method                                                                               | BTL -3     | Applying          | CO 3        |
|         | $8x - 3y + 2z = 20, \ 4x + 11y - z = 33, \ 6x + 3y + 12z = 35$                                                  |            |                   |             |
| 14.     | Solve using Gauss-Seldal method                                                                                 | BTL -4     | Analyzing         | CO 3        |
|         | fixed point iteration method.                                                                                   | G          |                   |             |
| 13.     | Find the positive root of $e^x - 3x = 0$ correct to 3 decimal places using                                      | BTL -3     | Applying          | CO 3        |
| 12.     | Using Gauss-Jordan method, find the inverse of the matrix $(8 - 40 - 48 - 40 - 48)$                             | BTL -3     | Applying          | CO 3        |
| 12      | Find all possible Eigen values by Power method for $A = \begin{pmatrix} 0 & 0 & 3 \end{pmatrix}$                |            |                   |             |
| 11.     | $ \begin{pmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 2 & 2 \end{pmatrix} $                                           | BTL -3     | Applying          | CO 3        |
|         | $A = \begin{pmatrix} 2 & 0 & -4 \end{pmatrix}$ using Power method.                                              |            |                   |             |
| 10.     |                                                                                                                 |            |                   |             |
| 10      | $(25 \ 1 \ 2)$                                                                                                  | BTL -4     | Analyzing         | CO 3        |
|         | Evaluate the dominant Eigen value and vector of                                                                 |            |                   |             |
| _       | using Newton's method and hence find the value of $\sqrt{142}$                                                  |            | FF-J0             |             |
| 9.      | Derive the iterative formula for $\sqrt{N}$ where N is positive integer                                         | BTL -3     | Applying          | CO 3        |
|         | x + y + 54z = 110; 27x + 6y - z = 85; 6x + 15y - 2z = 72.                                                       | DIL -4     | 1 mary 2mg        | 003         |
| 8.      | By Gauss seidel method to solve system of equations                                                             | рті Л      | Analyzing         | CO 3        |
|         | positive integer and hence find the value of $\overline{26}$                                                    |            |                   |             |
| 7.      | Using Newton's method find the iterative formula for $N$ where N is                                             | BTL -4     | Analyzing         | CO 3        |
| -       | $\frac{1}{N}$                                                                                                   |            |                   |             |
|         |                                                                                                                 |            |                   |             |

| 1.  | Define interpolation                                                                                                                              | BTL -1 | Remembering   | CO 4 |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------|------|
| 2.  | Write down the Lagrange's interpolation formula                                                                                                   | BTL -2 | Understanding | CO 4 |
| 3.  | Create Forward interpolation table for the following data<br>X : 0 5 10 15<br>Y : 14 379 1444 3584                                                | BTL -2 | Understanding | CO 4 |
| 4.  | Using Lagrange's formula to fit a polynomial from the data           X         0         1         3           Y         5         6         4    | BTL -1 | Remembering   | CO 4 |
| 5.  | State Newton Gregory forward interpolation formula.                                                                                               | BTL -2 | Understanding | CO 4 |
| 6.  | Write any two properties of divided differences                                                                                                   | BTL -1 | Remembering   | CO 4 |
| 7.  | Find the divided difference table for the following data $(0, 0)$ , $(1, 2)$ , $(2, 2, 5)$ , $(3, 2, 3)$ , $(4, 2)$ , $(5, 1, 7)$ and $(6, 1, 5)$ | BTL -2 | Understanding | CO 4 |
| 8.  | State the formula to find the first and second order derivative using the forward differences                                                     | BTL -1 | Remembering   | CO 4 |
| 9.  | State the formula to find the first and second order derivative using                                                                             | BTL -2 | Understanding | CO 4 |
| 10. | Form the divided difference table for the following data:X51522Y736160                                                                            | BTL -1 | Remembering   | CO 4 |
| 11. | Find the polynomial which takes the following values given<br>f(0) = -1, $f(1) = 1$ and $f(2) = 4$ using the Newton's interpolating<br>formula    | BTL -1 | Remembering   | CO 4 |
| 12. | Find the divided difference table for the following data $(0,1)$ , $(1, 4)$ , $(3,40)$ and $(4,85)$ .                                             | BTL -1 | Remembering   | CO 4 |
| 13. | Find the divided difference table for the following data<br>X : 4  5  7  10  11  13<br>f(x) :  48  100  294  900  1210  2028  .                   | BTL -2 | Understanding | CO 4 |
| 14. | Write the formula of inverse Lagrange's interpolation formula                                                                                     | BTL -1 | Remembering   | CO 4 |
| 15. | Find the divided difference table for the following datax2510y529109                                                                              | BTL -2 | Understanding | CO 4 |
| 16. | Write the Trapezoidal rule to evaluate the single integration.                                                                                    | BTL -2 | Understanding | CO 4 |

| 17.    | State the                                                     | e Simpso                                        | on's 1/3-r                                         | ule in n                           | umerical                    | integratio                             | on                                   |                                   | BTL -2        | Understanding | CO 4        |
|--------|---------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------|------------------------------------|-----------------------------|----------------------------------------|--------------------------------------|-----------------------------------|---------------|---------------|-------------|
| 18.    | What is rules?                                                | the orde                                        | r of error                                         | in Trap                            | ezoidal                     | and Sim                                | pson's o                             | ne-third                          | BTL -1        | Remembering   | <b>CO 4</b> |
| 19.    | State Tr                                                      | apezoida                                        | ll for dou                                         | ble inte                           | <b>BTL -1</b>               | Remembering                            | <b>CO 4</b>                          |                                   |               |               |             |
| 20.    | State Sin                                                     | mpson's                                         | rule for a                                         | double i                           | ntegration                  | ı                                      |                                      |                                   | <b>BTL -1</b> | Remembering   | <b>CO 4</b> |
| 21.    | Calculat<br>x : 1<br>f(x): 1                                  | $\frac{\int_{a}^{4} f(x)dx}{2}$                 | <i>lx</i><br>from t<br>6 4<br>7 64                 | BTL -2                             | Understanding               | CO 4                                   |                                      |                                   |               |               |             |
| 22.    | Evaluate                                                      | $e \int_{0.5}^{1} \frac{d}{dt}$                 | <sup>lx</sup> by Trap                              | bezoidal                           | rule, divi                  | iding the                              | range in                             | to 4 equal                        | BTL -1        | Remembering   | <b>CO 4</b> |
| 23.    | Describe<br>intervals                                         | e in num<br>s to apply                          | erical int<br>y Simpso                             | egration                           | n, what sh<br>– third ru    | ould be t<br>ile.                      | he numt                              | ber of                            | BTL -2        | Understanding | CO 4        |
| 24.    | Using T<br>an appro                                           | rapezoid<br>oximate v                           | al rule, e                                         | valuate                            | $\int_0^1 \frac{dx}{1+x}$   | $\frac{1}{2}$ with h =                 | = 0.2 he                             | nce obtain                        | BTL -1        | Remembering   | <b>CO 4</b> |
| 25.    | Evaluate                                                      | $e \int_1^2 \frac{a}{1-a}$                      | $\frac{dx}{dx}$ , usin                             | g Trape                            | zo <mark>idal rul</mark>    | e, taking                              | h = 0.5                              |                                   | BTL -2        | Understanding | CO 4        |
|        |                                                               | <b>1</b>                                        | 1 1                                                |                                    |                             | PART-B                                 |                                      |                                   |               |               |             |
| 1.(a)  | From the difference X                                         | e followi<br>ce formu<br>1<br>1                 | ing table,<br>ila<br>2<br>5                        | , find y a                         | at $x = 6$ us<br>7<br>5     | sing New<br>8<br>4                     | <mark>zton's di</mark>               | vided                             | BTL -3        | Applying      | CO 4        |
| 1. (b) | A Jet fig<br>landing<br>t(sec)<br>y(m)<br>where y<br>accelera | 1.0         7.989         is the d         tion | sition on<br>1.1<br>8.403<br>istance f<br>t = 1.0. | an air c<br>1.2<br>8.781<br>rom en | 1.3<br>9.129                | es runwa<br>1.4<br>9.451<br>ier. Estin | y was ti<br>1.5<br>9.750<br>nate the | med during 1.6 10.031 velocity ar | BTL -3        | Applying      | CO 4        |
| 2.     | Find the<br>also find<br>X<br>y                               | e polynor<br>l y(1.5) a<br>0<br>1               | nial using<br>and y (4),<br>1<br>2                 | g Newto                            | on's forwa<br>hat<br>2<br>1 | ard interp                             | oolation                             | formula an                        | d<br>BTL -3   | Applying      | CO 4        |
| 3.     | Calculat                                                      | te f'(50)                                       | ), <i>f</i> ′(56)                                  | , <i>f</i> "(50)                   | ) and <i>f</i> "            | (56) from                              | n the fol                            | lowing tab                        | le BTL -3     | Applying      | <b>CO 4</b> |

|     | х                                                                                                                  | 50                                                                                                                         |                               | 51                        | 52                         | 53                                   | 54                            | 55                    | 56                 |           |          |           |      |
|-----|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------|----------------------------|--------------------------------------|-------------------------------|-----------------------|--------------------|-----------|----------|-----------|------|
|     | f(x)                                                                                                               | 3.684                                                                                                                      | 40 3.7                        | 7084                      | 3.7325                     | 3.7563                               | 3.7798                        | 3.8030                | 3.8259             | -         |          |           |      |
| 4.  | • Evaluate $\int_0^2 e^x dx$ by using Trapezoidal rule taking 6 subintervals.                                      |                                                                                                                            |                               |                           |                            |                                      |                               |                       |                    | BTL -3    | Applying | CO 4      |      |
| 5.  | Evaluate $\int_0^1 \frac{dx}{1+x^2}$ , dividing the range into 4 equal parts using Trapezoidal and Simpson's rule. |                                                                                                                            |                               |                           |                            |                                      |                               |                       |                    |           |          | Applying  | CO 4 |
|     | Use Lagrange's interpolation formula, find the value of f(3) from the following data:                              |                                                                                                                            |                               |                           |                            |                                      |                               |                       |                    |           |          |           |      |
| 0.  |                                                                                                                    | X                                                                                                                          |                               | 0                         |                            | 1                                    | 2                             |                       | 5                  |           | BTL -3   | Applying  | CO 4 |
|     | f(                                                                                                                 | x)                                                                                                                         |                               | 2                         |                            | 3                                    | 12                            |                       | 147                |           |          |           |      |
|     |                                                                                                                    |                                                                                                                            |                               |                           |                            | 2N                                   | GIN                           | EEL                   | 2.                 | 1         |          |           |      |
|     | From t                                                                                                             | he data                                                                                                                    | a given                       | below                     | w, find f                  | (43) and                             | f(71)                         |                       |                    |           |          |           |      |
| 7.  | X                                                                                                                  |                                                                                                                            | 40                            |                           | 50                         | 60                                   |                               | 70                    | 80                 | 0         | BTL -4   | Analyzing | CO 4 |
|     | f(x                                                                                                                | )                                                                                                                          | 184                           |                           | 204                        | 226                                  | 2                             | .50                   | 276                |           |          |           |      |
| 8.  | Using<br>the fol                                                                                                   | Using Lagrange's Interpolation formula, Find the polynomial $f(x)$ formthe following data also find $f(3)$ x0145f(x)432439 |                               |                           |                            |                                      |                               | orm                   | BTL -4             | Analyzing | CO 4     |           |      |
| 9.  | Find th<br>4<br>x<br>f(x)                                                                                          | 1                                                                                                                          | and sec<br>5<br>375           | 2<br>7                    | derivativ<br>2.5<br>13.625 | a     a       3     3       24     3 | function<br>.5<br>8.875       | f(x) at x<br>4<br>59  | =1.5 and           | x =       | BTL -3   | Applying  | CO 4 |
| 10. | Determ<br>follow<br>X<br>Y                                                                                         | nine by<br>ing tab<br>5<br>12                                                                                              | y Lagra<br>ble<br>6 9<br>13 1 | ange'i<br>9 1<br>4 1      | s interpo<br>11<br>16      | plation n                            | nethod,                       | find y(10             | 0) from            | the       | BTL -4   | Analyzing | CO 4 |
| 11. | Use<br>f(2), f(2)<br>x<br>f(x)                                                                                     | the $f(8)$ and $4$ 48                                                                                                      | Newton<br>nd f (1<br>5<br>100 | n di<br>5) fro<br>7<br>29 | wided<br>om the fo         | different<br>ollowing<br>10<br>000   | ce for<br>table<br>11<br>1210 | nula to<br>13<br>2028 | o calcu            | late      | BTL -3   | Applying  | CO 4 |
| 12. | Find f<br>Newto                                                                                                    | '(x) a<br>n's div                                                                                                          | is a po<br>vided di           | lynor                     | nial in z                  | x from<br>ula and f                  | the follo                     | owing data            | ata by us<br>f(8). | sing      | BTL -3   | Applying  | CO 4 |

|     | X                                                       | 3                                                                   | 7                                                   | 9                            | 10                 |                                                                                                             |        |           |             |
|-----|---------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------|------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------|--------|-----------|-------------|
|     | f(x)                                                    | 168                                                                 | 120                                                 | 72                           | 63                 |                                                                                                             |        |           |             |
| 13. | By divi<br>by Trap                                      | ding th<br>ezoida                                                   | e range<br>l and S                                  | into 1<br>impso              | 0 equ<br>n's rul   | al parts, evaluate $\int_0^{\pi} \sin \sin x  dx$<br>le. Verify your answer with integration                | BTL -3 | Applying  | CO 4        |
| 14. | Evaluat<br>rule, gi                                     | $\int_{1}^{1} \int_{1}^{2} \sqrt{1}$                                | $\frac{2xy  dx}{1 + x^2} \Big  1$<br>t h = k        | $\frac{dy}{dy} + y^2 = 0.25$ | using,             | , Trapezoidal and Simpson's 1/3 <sup>rd</sup>                                                               | BTL -4 | Analyzing | CO 4        |
| 15. | The ve<br>given b<br>T fee<br>V fee<br>Estima<br>Simpso | locity<br>y the ta<br>et (<br>et/s 4<br>et/s 4<br>te the<br>m's 1/3 | V of a<br>ible<br>) 1<br>7 5<br>time ta<br>rd rule. | partic<br>0<br>58<br>aken t  | 20<br>64<br>o trav | distances from a point on its path is<br>30 40 50 60<br>65 61 52 38<br>vel 60 feet by using Trapezoidal and | BTL -3 | Applying  | CO 4        |
| 16. | Constru<br>data:<br>x<br>f(x)                           | 1 2<br>1 -                                                          | vton's 1<br>3<br>1 1                                | forwar 4 -1                  | d inter            | rpolation polynomial for the following                                                                      | BTL -4 | Analyzing | CO 4        |
| 17. | Find $\int_0^1$                                         | $\int_0^1$                                                          | $\frac{dx  dy}{1+xy}$                               | using                        | Simp               | son's one-third rule with h=k=0.25                                                                          | BTL -4 | Analyzing | <b>CO 4</b> |

## UNIT-V: NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS

Single step methods: Taylor's series method - Euler's method - Modified Euler's method Fourth order Runge-Kutta method for solving first order equations - Multi step methods: Milne's and Adams -Bash forth predictor corrector methods for solving first. order equations.

| PART-A |                                                                                                            |          |               |      |  |  |  |  |  |
|--------|------------------------------------------------------------------------------------------------------------|----------|---------------|------|--|--|--|--|--|
| Q. No. | Question                                                                                                   | BT Level | Competence    |      |  |  |  |  |  |
| 1.     | Give Euler's iteration formula for ordinary differential equation.                                         | BTL -1   | Remembering   | CO 5 |  |  |  |  |  |
| 2.     | Estimate $y(0.2)$ if $\frac{dy}{dx} = \frac{x-y}{2}$ , $y(0) = 1$ taking $h = 0.1$ , using Euler's method. | BTL -2   | Understanding | CO 5 |  |  |  |  |  |
| 3.     | Estimate y (0.2) given that $y' = x + y$ , $y(0) = 1$ , using Euler's method.                              | BTL -2   | Understanding | CO 5 |  |  |  |  |  |
| 4.     | Define local truncation error of the Euler's method.                                                       | BTL -1   | Remembering   | CO 5 |  |  |  |  |  |
| 5.     | Define initial value problems.                                                                             | BTL -2   | Understanding | CO 5 |  |  |  |  |  |
| 6.     | Write the Euler's modified formula for solving<br>$\frac{dy}{dx} = f(x, y), y(x_0) = y_0$                  | BTL -1   | Remembering   | CO 5 |  |  |  |  |  |
| 7.     | Using modified Euler's method to find y (0.4) given $y' = xy$ , $y(0) = 1$                                 | BTL -2   | Understanding | CO 5 |  |  |  |  |  |
| 8.     | Write the merits and demerits of the Taylor's method.                                                      | BTL -1   | Remembering   | CO 5 |  |  |  |  |  |
| 9.     | Find y(0.1), if $\frac{dy}{dx} = y^2 + x$ given y (0) = 1, by Taylor series method.                        | BTL -2   | Understanding | CO 5 |  |  |  |  |  |
| 10.    | Using Taylor series formula to find y (x <sub>1</sub> ) for solving $y' = f(x, y), y(x_0) = y_0$ .         | BTL -1   | Remembering   | CO 5 |  |  |  |  |  |
| 11.    | Using Taylor's series up to $x^3$ terms for $2y' + y = x + 1$ , $y(0) = 1$ .                               | BTL -1   | Remembering   | CO 5 |  |  |  |  |  |
| 12.    | Using Taylor series for the function $y' = x + y$ when $y(1) = 0$ find $y at x = 1.2$ with $h = 0.1$ .     | BTL -1   | Remembering   | CO 5 |  |  |  |  |  |
| 13.    | Write the formula Runge – Kutta method of order 4 for ordinary differential equation.                      | BTL -2   | Understanding | CO 5 |  |  |  |  |  |

| 14. | What are the advantages of R-K method over Taylor's method.                                                                                          | BTL -1 | Remembering   | CO 5 |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------|------|
| 15. | Using fourth order Runge – Kutta method to find y (0.1) given<br>$\frac{dy}{dx} = x + y$<br>y (0) = 1, h = 0.1                                       | BTL -2 | Understanding | CO 5 |
| 16. | State Adam- Bashforth predictor and corrector formulae to solve first order ordinary differential equations.                                         | BTL -2 | Understanding | CO 5 |
| 17. | State Milne's predictor corrector formula.                                                                                                           | BTL -2 | Understanding | CO 5 |
| 18. | What are the single step methods available for solving ordinary differential equations.                                                              | BTL -1 | Remembering   | CO 5 |
| 19. | Adam- Bashforth predictor and corrector method is applicable for?                                                                                    | BTL -1 | Remembering   | CO 5 |
| 20. | Prepare the multi-step methods available for solving ordinary differential equation.                                                                 | BTL -1 | Remembering   | CO 5 |
| 21. | Write the Error for Adam- Bashforth predictor and corrector method.                                                                                  | BTL -2 | Understanding | CO 5 |
| 22. | Estimate y (0.1) given that $y' = x y, y(0) = 2$ , using Euler's method.                                                                             | BTL -1 | Remembering   | CO 5 |
| 23. | Using modified Euler's method to find y (0.5) given $y' = x + y$ ,<br>y(0) = 1                                                                       | BTL -2 | Understanding | CO 5 |
| 24. | Using Taylor series for the function $\frac{dy}{dx} = 2x + 3y$ when $y(1) = 0$ find $y$ at $x = 1.5$ with $h = 0.5$ .                                | BTL -1 | Remembering   | CO 5 |
| 25. | Find $k_1$ given $y' = x^3 + y$ , $y(0) = 1$ , using R-K method of fourth order.                                                                     | BTL -2 | Understanding | CO 5 |
|     | PART – B                                                                                                                                             |        |               |      |
| 1.  | Apply Euler method to find y (0.2) given $\frac{dy}{dx} = y - x^2 + 1$ and y(0) = 0.5.                                                               | BTL -3 | Remembering   | CO 5 |
| 2.  | Find the values of y at $x = 0.2$ for , $y(0) = 1$ with step length 0.1 using Taylor series method                                                   | BTL -4 | Analyzing     | CO 5 |
| 3.  | Using Taylor series method find y at x = 0.5, y (0) = -1, with step<br>length 0.1 given $\frac{dy}{dx} = -2x - y$                                    | BTL -3 | Remembering   | CO 5 |
| 4.  | Using Euler Method to find y(0.2) and y(0.4) from $\frac{dy}{dx} = x + y$ ,<br>y (0) = 1 with h = 0.2                                                | BTL -4 | Analyzing     | CO 5 |
| 5.  | By Euler method for the function $\frac{dy}{dx} = \log_{10}(x+y)$ , $y(0) = 2$ find the values of $y(0.2)$ $y(0.4)$ and $y(0.6)$ by taking $h = 0.2$ | BTL -3 | Understanding | CO 5 |

| 6.  | Find y(2) by Milne's method $\frac{dy}{dx} = \frac{1}{2}(x+y)$ , given y(0) = 2,<br>y(0.5) = 2.636, y(1.0) = 3.595 and y(1.5) = 4.968                                                                           | BTL -3 | Understanding | CO 5 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------|------|
| 7.  | Using Taylor series method find y(0.1), given $\frac{dy}{dx} = x^2 y - 1$ , y (0) = 1                                                                                                                           | BTL -4 | Analyzing     | CO 5 |
| 8.  | Examine $2y' - x - y = 0$ given $y(0) = 2$ , $y(0.5) = 2.636$ , $y(1) = 3.595$ , $y(1.5) = 4.968$ to get $y(2)$ by Adam's method.                                                                               | BTL -4 | Analyzing     | CO 5 |
| 9.  | Solve the equation $\frac{dy}{dx} = x^2(1+y)$ , $y(1) = 1$ , $y(1.1) = 1.233$ , $y(1.2) = 1.548$ , $y(1.3) = 1.979$ , evaluate $y(1.4)$ By Adam's Bash forth predictor corrector method                         | BTL -3 | Applying      | CO 5 |
| 10. | Solve the equation $\frac{dy}{dx} = \log(x + y)$ , $y(0) = 2$ find y at $x = 0.2$ using Modified Euler's method.                                                                                                | BTL -3 | Remembering   | CO 5 |
| 11. | Calculate y(0.4) by Milne's predictor – corrector method, Given<br>$\frac{dy}{dx} = \frac{1}{2}(1+x^2)y^2$ , y(0) = 1, y(0.1) = 1.06, y(0.2) = 1.12, y(0.3) = 1.21                                              | BTL -3 | Applying      | CO 5 |
| 12. | Find y(4.4) given $5xy' + y^2 - 2 = 0$ , $y(4) = 1$ ; $y(4.1) = 1.0049$ ; $y(4.2) = 1.0097$ ; and $y(4.3) = 1.0143$ . Using Milne's method.                                                                     | BTL -3 | Understanding | CO 5 |
| 13. | Find y(0.4) by Milne's method, Given $\frac{dy}{dx} = xy + y^2$ , y(0) = 1,y(0.1)<br>= 1.1169, y(0.2) = 1.2773 Find i) y(0.3) by Runge –kutta method of 4 <sup>th</sup> order and ii) y(0.4) by Milne's method. | BTL -3 | Applying      | CO 5 |
| 14. | Apply Milne's method find y(0.4) given $\frac{dy}{dx} = xy + y^2$ , y(0) =1, using Taylor series method find y(0.1), Euler Method to find y(0.2) and y(0.3).                                                    | BTL -4 | Analyzing     | CO 5 |
| 15. | Using Milne's method find y(2) if y(x) is the solution of ,<br>$\frac{dy}{dx} = \frac{1}{2}(x+y) , \text{ given y}(0) = 2, \text{ y}(0.5) = 2.636, \text{ y}(1) = 3.595 \text{ and y}(1.5)$ $= 4.968$           | BTL -3 | Applying      | CO 5 |
| 16. | Apply fourth order Runge-kutta method, to find an approximate value of y when $x=0.2$ given that $y'=x+y$ , $y(0)=1$ with $h=0.2$                                                                               | BTL -4 | Analyzing     | CO 5 |
| 17. | Using Euler Method to find y(0.3) and y(0.4) from $\frac{dy}{dx} = \frac{1}{2}(x^2+1)y^2$ , y<br>(0.2) = 1.1114 with h = 0.1                                                                                    | BTL -3 | Applying      | CO 5 |
| 18. | Apply fourth order Runge-kutta method, to find an approximate value of y when $x=0.1$ given that $y'=x+y^2$ , $y(0)=1$ with h=0.1.                                                                              | BTL -3 | Applying      | CO 5 |

